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Abstract. The Diffusive Back and Forth Nudging (DBFN) is an easy-to-implement iterative data1

assimilation method based on the well-known Nudging method. It consists in a sequence of forward2

and backward model integrations, within a given time window, both of them using a feedback term3

to the observations. Therefore in the DBFN, the Nudging asymptotic behavior is translated into an4

infinite number of iterations within a bounded time domain. In this method, the backward integra-5

tion is carried out thanks to what is called backward model, which is basically the forward model6

with reversed time step sign. To maintain numeral stability the diffusion terms also have their sign7

reversed, giving a diffusive character to the algorithm. In this article the DBFN performance to con-8

trol a primitive equation ocean model is investigated. In this kind of model non-resolved scales are9

modeled by diffusion operators which dissipate energy that cascade from large to small scales. Thus,10

in this article the DBFN approximations and their consequences on the data assimilation system set-11

up are analyzed. Our main result is that the DBFN may provide results which are comparable to12

those produced by a 4Dvar implementation with a much simpler implementation and a shorter CPU13

time for convergence. The conducted sensitivity tests show that the 4Dvar profits of long assimila-14

tion windows to propagate surface information downwards, and that for the DBFN, it is worth using15

short assimilation windows to reduce the impact of diffusion-induced errors. Moreover, the DBFN16

is less sensitive to the first guess than the 4Dvar.17
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1 Introduction19

In data assimilation, an interesting tool is the Kalman-Bucy filter (Kalman and Bucy, 1961), where a20

non-linear differential equation of the Riccati type was derived for the covariance matrix of the op-21

timal filtering error, the solution of which completely specifies the optimal filter for linear-quadratic22

problems. A few years later, Luenberger (1966, 1971) defined an observer for reconstructing the23

state of an observable deterministic linear system from exact measurements of the output. This Lu-24

enberger observer has been called ”asymptotic estimator”, since under linearity and observability25

hypothesis the estimator error converges to zero for time tending to infinity (Gelb et al., 1974; Bon-26

nans and Rouchon, 2005). Its advantage compared to Kalman filtering is that it does not require any27

information on the various covariance matrices, but as it was pointed out in Luenberger (1966), the28

Kalman-Bucy filter appears as a particular Luenberger observer which is the optimal least-mean-29

square estimate of the state in the case of noisy measurements. The stochastic observer unifies the30

concepts of deterministic Luenberger observer theory and stochastic Kalman filtering theory as it31

is explained in Gelb’s book (Gelb et al., 1974) for instance. Both are useful in practice. It should32

be mentioned that the concept of Luenberger observer has been extended to nonlinear systems for33

example in Zeitz (1987).34

This Luenberger observer has been rediscovered in the geophysical literature for atmospheric35

models under the term of nudging (Anthes, 1974; Hoke and Anthes, 1976; Stauffer and Seaman,36

1990), which consists in adding a forcing term in the right hand side of a given model in order to37

gently push (nudge) the solution toward a prescribed value. It is quite interesting to note that there is38

no mention of the link between nudging and Luenberger observer in the geophysical literature until39

the work of Auroux and Blum (2008). More recently, a comprehensive study on the nudging method40

and its variants was produced by Blum et al. (2008) and Lakshmivarahan and Lewis (2012).41

The first appearance of a successful application of nudging to ocean Data Assimilation (DA) was42

in 1992 in a work that assimilated sea surface height derived from satellite measurements into a43

quasi-geostrophic layered model (Verron, 1992). Since then, the method has been successfully ap-44

plied to several oceanographic numerical problems such as the estimation of boundary conditions45

(Marchesiello et al., 2001; Chen et al., 2013), downscaling (Li et al., 2012), and other DA problems46

(Verron, 1992; Haines et al., 1993; Blayo et al., 1994; Lewis et al., 1998; Killworth et al., 2001;47

Thompson et al., 2006). Concerning applications to DA problems, the weights given to the model48

and the observations are generally not based on any optimality condition, but are rather scalars or49

Gaussian-like functions constructed based on physical assumptions or empirical considerations. The50

appeals of this method are the simplicity of implementation in complex numerical models, the low51

computational power required and the time smoothness of the solution.52

The increasing availability of computing power has allowed to use more advanced data assimi-53

lation methods. In general, these methods use information on the model statistics and observations54

errors to weight the model-observations combination. Two of these methods that are widely used by55
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prediction centers are the ensemble Kalman filter- EnKF (Evensen, 1994) and its variations (Pham,56

2001; Hunt et al., 2007), and the four dimensional variational method 4Dvar (Le Dimet and Tala-57

grand, 1986; Courtier et al., 1994). For the first, the numerical costs are due to the propagation of the58

ensemble, usually formed by tenths of members, to calculate the forecast. For the second, the costs59

are due to the need of minimizing a cost function in a very large state space (108 variables). This60

requires several iterations of the minimization algorithm, which involves several integrations of the61

direct and adjoint models.62

However, even with the growing interest in these complex techniques built on solid theoretical63

arguments, nudging has not been left aside. Recent works have used nudging along with more64

advanced methods such as Optimal interpolation (Clifford et al., 1997; Wang et al., 2013), EnKF65

(Ballabrera-Poy et al., 2009; Bergemann and Reich, 2010; Lei et al., 2012; Luo and Hoteit, 2012),66

4Dvar (Zou et al., 1992; Stauffer and Bao, 1993; Vidard et al., 2003; Abarbanel et al., 2010) or67

particle filters (Luo and Hoteit, 2013; Lingala et al., 2013) to extract the best of each method. In68

the particular case of the hybridization with the EnKF proposed by Lei et al. (2012), the resulting69

algorithm takes the advantage of the dynamical propagation of the covariance matrix from the EnKF70

and uses nudging to mitigate problems related to the intermittence of the sequential approach, which71

among other things entails the possible discarding of some observations.72

In 2005, Auroux and Blum (2005) revisited the nudging method and proposed a new observer73

called Back and Forth Nudging (BFN), because Luenberger observer is an asymptotic observer, and74

as data assimilation is performed for finite time, the convergence of the real state is not yet achieved75

at limited horizon. The BFN consists in a sequence of forward and backward model integrations,76

both of them using a feedback term to the observations, as in the direct nudging. The BFN integrates77

the direct model backwards in time avoiding the construction of the adjoint and/or tangent linear78

models needed by 4DVar. Therefore, it uses only the fully non-linear model to propagate informa-79

tion forward and backward in time. The nudging gain, which has an opposite sign with respect to the80

forward case, has a double role: push the model toward observations and stabilize the backward in-81

tegration, which is especially important when the model is not reversible. Back and forth algorithms82

have already been used in the past for initialization and four-dimensional data assimilation (Morel83

et al., 1971; Talagrand, 1981), but without nudging. In these papers, the authors are just replacing at84

each observation time the values predicted by the model for the observed parameters by the observed85

values; this method requires the considered system to be reversible, which is not the case if there86

exists irreversible dissipation in the model.87

The BFN convergence was proved by Auroux and Blum (2005) for linear systems of ordinary88

differential equations and full observations, by Ramdani et al. (2010) for reversible linear partial dif-89

ferential equations (Wave and Schrödinger equations), by Donovan et al. (2010) and Leghtas et al.90

(2011) for the reconstruction of quantum states and was studied by Auroux and Nodet (2012) for91

non-linear transport equations. The BFN performance in numerical applications using a variety of92

3



models, including non-reversible models such as a Shallow Water (SW) model (Auroux, 2009) and93

a Multi-Layer Quasi-Geostrophic (LQG) model (Auroux and Blum, 2008), are very encouraging.94

Moreover, by using a simple scalar gain, it produced results comparable to those obtained with95

4DVar but with lower computational requirements (Auroux, 2009; Auroux et al., 2012).96

In this article we present for the first time a BFN application to control a primitive equation97

ocean model. The numerical model used is NEMO (Madec, 2008), currently used by the French op-98

erational center, Mercator Océan (http://www.mercator-ocean.fr/fre), to produce and deliver ocean99

forecasts. The well-known idealized double gyre configuration at eddy-permitting resolution is used.100

This configuration has the advantage of being simple from the geometry and forcings point of view101

at the same time it reproduces most of features found in a middle latitude ocean basin.102

The BFN application to control a primitive equation ocean model represents a new challenge103

due to the increased model complexity. Among the differences between NEMO and the simplified104

oceanic models used by Auroux and Blum (2008) and Auroux (2009) stand out the more complex105

relationship between the variables in the former since no filtering technique is used in the derivation106

of the physical model (except the Boussinesq approximation which is also considered by the SW107

and LQG models), and the inclusion of an equation for the conservation of the thermodynamical108

properties. The latter requires the use of a nonlinear state equation to couple dynamical and thermo-109

dynamical variables.110

Furthermore, the vertical ocean structure represented by NEMO is more complex than the verti-111

cal ocean structure represented by the SW and LQG used by Auroux and Blum (2008) and Auroux112

(2009). This is because the SW model has no vertical levels and the LQG was implemented with113

only 3 layers, while in this article NEMO is configured with 11 vertical layers. In addition, NEMO114

considers vertical diffusion processes, mostly ignored by the LQG model. Vertical diffusion plays an115

important role in maintaining the ocean stratification and meridional overturning circulation, which116

is directly related to the transport of heat in the ocean. Moreover from the practical point of view,117

the diffusion/viscosity required to keep the NEMO simulations stable is by far greater than for the118

SW or LQG at the same resolution.119

These issues call into question the validity of the approximations made by the BFN under realistic120

conditions. Thus, our primary objective is to study the possibility of applying the BFN in realistic121

models and evaluate its performance compared to the 4Dvar. This appears as being the next logical122

step before using the BFN to assimilate real data.123

This article is organized as follows. In Sect 2 the BFN and the 4Dvar are described. Section 3124

describes the model physics and the model set-up. Section 4 discusses some practical aspects of125

the backwards integration. Section 5 presents the BFN and the 4Dvar set-up and the designed data126

assimilation experiments. Finally, the data assimilation results are presented in the Sect 6, on which127

we discuss the impact of the length of the data assimilation window on the method performances as128

well as the sensitivity of each method to the observation network and the initial condition.129
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2 Data Assimilation Methods130

In this section the Back and Forth Nudging (BFN) is introduced and the 4Dvar used to assess the131

BFN performance is briefly described.132

2.1 The Back and Forth Nudging133

The conventional nudging algorithm consists in adding a forcing term (feedback term) to the model134

equations, proportional to the difference between the data and the model at a given time. More135

generally, given a model described by a set of ordinary equations (or discretized partial differential136

equations), nudging consists in adding to them the forcing term K(xobs−H(x)):137

dx

dt
=F(x)+K(xobs−H(x)) (1)138

where x represents the state vector, F is the model operator, H is the observation operator allow-139

ing one to compare the observations xobs(t) to the corresponding system state H(x), and K is the140

nudging gain matrix. In this algorithm the model appears as a weak constraint. The feedback term141

changes the dynamical equations and is a penalty term that forces the state variables to get closer to142

the observations.143

In the linear case, i.e. when F and H may be written as matrices F and H , and in the absence144

of noise in the system, nudging is nothing else than the Luenberger observer (Luenberger, 1966). In145

this case, and assuming that the observability of the pair (F ,H) holds, there is a class of possible146

matrices K that, thanks to the pole shifting theorem, guarantees the estimator convergence when147

t→∞ (Gelb et al., 1974; Bonnans and Rouchon, 2005). This should be one possible explanation148

why nudging usually works quite well and the converged state is not strongly affected by the choice149

of K. However, when constructing K (which units is s−1), the aim is to obtain an estimator re-150

sponse faster than the time scale of the studied processes.151

The BFN is an iterative algorithm which sequentially solves the forward model equations with a152

feedback term to the observations (Eq. 1) and the backward model equations with an opposite sign153

for the feedback term. The initial condition of the backward integration is the final state obtained154

after integration of the forward nudging equation. At the end of each iteration a new estimation of155

the system’s initial state is obtained. The iterations are carried out until convergence is reached.156

The difference of the BFN with respect to the conventional nudging is the model integration back-157

ward in time. This allows to recover initial conditions as well as to use more than once the same158

observations set. Consequently, the BFN may be seen as a sub-optimal iterative smoother.159

Under the hypothesis of a linear model a variational interpretation is possible. In this case, if we160

choose K = kHTR−1, where R is the observation error covariance matrix, and k is a scalar, the161

solution of the forward nudging is a compromise between the minimization of the system’s energy162

and the minimization of the distance between the data and the model (Auroux and Blum, 2008).163

However, the backward integration is problematic when the model is diffusive or simply not re-164
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versible. In the case of ocean models, there are two main aspects requiring the inclusion of diffusion:165

i) the control of numerical noise, and ii) the modeling of sub grid-scale processes, i.e. to parameter-166

ize the energy transfer from explicitly resolved to non-resolved scales. Indeed, diffusion naturally167

represents a source of uncertainty in ocean forecasts, even for the purely forward model, and has168

been investigated from the point of view of the optimal control theory in Leredde et al. (1999).169

To address the problem of the backward model instability in this article the Diffusive Back and170

Forth Nudging-DBFN (Auroux et al., 2011) is used. In this algorithm the sign of the diffusion term171

remains physically consistent and only the reversible part of the model equations are really solved172

backward. Practical consequences of this assumption are analysed in Sect 4. A similar solution was173

proposed by Pu et al. (1997) and Kalnay et al. (2000) to stabilize their Quasi-Inverse Linear model.174

To describe the DBFN algorithm, let us assume that the time continuous model satisfies dynamical175

equations of the form:176

∂x

∂t
=F(x)+ν∆x, for 0<t<T, (2)177

with an initial condition x(0)=x0, where F denotes the nonlinear model operator without diffusive178

terms, ν is a diffusion coefficient and ∆ represents a diffusion operator. If nudging is applied to the179

forward system (2) it gives:180

∂xk

∂t
= F(xk)+ν∆xk+K(xobs−H(xk)) (3)181

xk(0) = x̃k−1(0), 0<t<T,182

where k ∈ N≥1 stands for iterations and x̃0(0) is a given initial guess. Nudging applied to the183

backward system with the reversed diffusion sign gives:184

∂x̃k

∂t
=F(x̃k)−ν∆x̃k−K′(xobs−H(x̃k)) (4)185

x̃k(T ) =xk(T ), T > t> 0.186

The system composed by equations (3) and (4) is the basis of the DBFN algorithm. They are iterated187

until convergence.188

Therefore, one important aspect of the DBFN algorithm is the convergence criterion. Ideally,189

at convergence the nudging term should be null or small comparable to the other equation terms.190

Otherwise, when the nudging is switched off, which is the case in the forecast phase, the system191

may return to a state close to the background state or to a state which is not consistent to the one at192

convergence. The convergence is calculated as:193

‖xk(t=0)−xk−1(t=0)‖

‖xk−1(t=0)‖
≤ ǫ, (5)194

where ‖•‖ is the L2 norm, and the choice for ǫ=0.005 is based on sensitivity tests (not presented195

in this article).196

Data Assimilation is the ensemble of techniques combining the mathematical information pro-197

vided by the equations of the model and the physical information given by the observations in order198
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to retrieve the state of a flow. In order to show that the DBFN algorithm achieves this double ob-199

jective, let us give a formal explanation of the way DBFN proceeds. If K′ =K and the forward200

and backward limit trajectory are equal, i.e x̃∞ =x∞, then taking the sum between Eqs.(3) and (4)201

shows that x∞ satisfies the model equations without diffusion:202

∂x∞

∂t
=F(x∞) (6)203

while taking the difference between Eqs.(3) and (4) shows that x∞ satisfies the Poisson equation:204

∆x∞ =−
K

ν
(xobs−H(x∞)) (7)205

which represents a smoothing process on the observations for which the degree of smoothness is206

given by the ratio ν
K

(Auroux et al., 2011). Equation (7) corresponds, in the case where H is a matrix207

H and K = kHTR−1, to the Euler equation of the minimization of the following cost-function208

J (x)= k <R−1(xobs−Hx),(xobs−Hx)>+ν

∫

Ω

‖∇x‖2 (8)209

where the first term represents the quadratic difference to the observations and the second one is a210

first order Tikhonov regularisation term over the domain of resolution Ω. The vector x∞, solution211

of (7), is the point where the minimum of this cost-function is reached. It is shown in Sect 6.1 that212

at convergence the forward and backward trajectories are very close, which justifies this qualitative213

justification of the algorithm.214

The description of the used K matrix is given in the Sect 5.1.215

2.2 Four Dimensional Variational Method - 4DVar216

Variational methods minimize a cost function that measures the distance between the estimated217

state and the available observations. Let us assume that observations are available at every instant218

(ti)1≤i≤N . Given a first guess xb of the initial state, the 4DVar algorithm will find an optimal initial219

condition that minimizes the distance between the model trajectory and the observations in a given220

assimilation window. This optimal state is found by minimizing the following cost function:221

J(x0) =
1

2
(x0−xb)TB−1(x0−xb)222

+
1

2

N
∑

i=0

(Hi[M0,i(x0)]−yi)
TR−1

i (Hi[M0,i(x0)]−yi) (9)223

where B is the background error covariance matrix and M0,i represents the model integration from224

time t0 to time ti. Ri,Hi and yi are the observations error covariance matrix, the observation225

operator and the available observations at time ti, respectively.226

The optimal initial state is found by solving:227

∇J(xa(t0))= 0 (10)228

The calculation of this gradient is done using the adjoint method proposed by Lions (1971) and229

brought to the meteorological context by Le Dimet and Talagrand (1986).230

7



Since for ocean applications M and H are nonlinear, we used the incremental approach proposed231

by Courtier et al. (1994) which consists in solving a sequence of linearized quadratic problems,232

expecting this sequence would converge to the solution of the problem given by (9) and (10). In this233

case, the cost function will not be minimized with respect to the initial state but with respect to an234

increment δx0 defined by x0 =xb+δx0. The operators H or M are linearized in a neighborhood235

of xb as:236

M0,i(x
b+δx0)≈M0,i(x

b)+M0,iδx0 ∀i (11)237

Hi(x
b+δx0)≈Hi(x

b)+Hiδx0 ∀i (12)238

and the new cost function is given by:239

J(δx0)=
1

2
δxT

0 B
−1δx0+

1

2

N
∑

i=0

(HiM0,iδx0−di)
TR−1

i (HiM0,iδx0−di) (13)240

where di = yi−Hi(M0,i(xb)) is called the innovation vector. To take advantage of the nonlin-241

earities it is a common practice to re-linearise H and M around a new model trajectory after some242

iterations of the minimizer. This new model trajectory is computed by integrating the nonlinear243

model forward in time using xk
0 =xb+ δxk

0 as initial condition, where k refers to the new run of244

the nonlinear model and δxk
0 is the increment previously obtained through the minimization of (13).245

This gives rise to what is called the inner loop and outer loop iterations. The algorithm implemented246

in NEMO, called NEMOVAR (Mogensen et al., 2009), uses this technics. It can be summarized as247

follows:248

–Initialisation : x0
0 =xb

–While k≤ kmax or ‖δxa,k
0 ‖>ǫ (Outer Loop)

Do

•dk
i =yi−Hi(M0,i(x

k
0))

•Search the δxa,k
0 that minimises (Inner Loop):

J(δxk
0) =

1

2
(δxk

0)
TB−1(δxk

0) (14)

+
1

2

N
∑

i=0

(HiM0,iδx
k
0−dk

i )
TR−1

i (HiM0,iδx
k
0−dk

i )

•xk+1
0 =xk

0−δxa,k
0

249

The description of the matrices B and R is given in the Sect 5.2.250

3 Ocean Model and Experimental set-up251

The ocean model used in this study is the ocean component of NEMO (Nucleus for European Mod-252

elling of the Ocean; Madec, 1996). This model is able to represent a wide range of ocean motions,253

from the basin scale up to the regional scale. Currently, it has been used in operational mode by the254
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French Mercator Océan group (http://www.mercator-ocean.fr) and the European Center for Medium255

Range Weather Forecast (ECMWF).256

The model solves a system of five prognostic equations, namely the momentum balance for the257

horizontal velocities, an equation describing the evolution of the free surface, and the heat and salt258

conservation equations. A nonlinear equation of state couples the two tracers to the fluid fields. In259

this study, a linear free surface formulation is used along with the approach developed by Roullet260

and Madec (2000) to filter out the external gravity waves.261

Equations are discretized using spherical coordinates in a Arakawa C grid. The model advances in262

time using a leap-frog scheme for all terms except for the vertical diffusive terms, which are treated263

implicitly. At every time step the model uses a Robert-Asselin (RA) temporal filter to damp the264

computational mode. The leap-frog scheme followed by the RA filter leads to a first order temporal265

scheme (Willians, 2009). Spatial discretization uses a centered second order formulation for both266

the advective and the diffusive terms.267

The double gyre configuration, extensively used to study jet instabilities (Chassignet and Gent,268

1991; Primeau, 1998; Chang et al., 2001), meso and submeso-scale dynamics (Levy et al., 2010)269

and data assimilation methods (Molcard et al., 2004; Krysta et al., 2011; Cosme et al., 2010), is used270

for the present study. The double gyre configuration simulates the ocean middle latitude dynamics271

and has the advantage of being simple, when compared to real applications, but still considering full272

dynamics and thermodynamics.273

In our experiments we use a homogeneous horizontal grid with a 25km resolution and a verti-274

cal resolution ranging from 100m near the upper surface to 500m near the bottom. The bottom275

topography is flat and the lateral boundaries are closed and frictionless. The only forcing term276

considered is a constant wind stress of the form τ =
(

τ0cos
(

2π(y−y0)
L

)

,0
)

, where y is the lati-277

tude geographic coordinate with y0 =24o and y0 ≤ y≤ 44o, L=20o and τ0 =−0.1N/m2 . Hori-278

zontal diffusion/viscosity are modeled by a bilaplacian operator meanwhile a laplacian operator is279

used in the vertical. They all use constant coefficients in time and space: νu,vh =−8×1010m4/s280

and νu,vv = 1.2× 10−4m2/s for the momentum equations and νt,sh =−4× 1011m4/s and νt,sv =281

1.2×10−5m2/s for temperature and salinity. The initial condition is similar to that used by Chas-282

signet and Gent (1991) and consists of a homogeneous salinity field of 35psu and a temperature field283

created to provide a stratification which has a first baroclinic deformation radius of 44.7km. Velocity284

and sea surface height (SSH) fields are initially set to zero.285

This double gyre configuration is currently used as the NEMO data assimilation demonstrator and286

as the experimentation and training platform for data assimilation activities (Bouttier et al., 2012).287

For the present work, the model was integrated for 70 years, in order to reach the statistical steady288

state. Afterwards, ten years of free model run were performed, that were used to calculate the re-289

gression models which are used to calculate the nudging matrix K (see Sect 5.1), and then two290

additional years were finally completed to be used as the truth, from which the observations were291
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extracted.292

4 The backward integration without Nudging: Practical aspects293

The backward model uses exactly the same numerical scheme as the forward model. Since most294

of the model is solved using centered finite differences, the inverse version of the discretized model295

is similar to the discrete version of the inverse continuous model. The only distinction between296

the forward and the backward model is the change in the sign of the diffusive terms when stepping297

backwards, this making the backward integration stable. If this is not taken into account the model298

blows up after a few days.299

Reversing the diffusion sign in the backward model is a numerical artifact and being so its effects300

should be carefully analysed. In this section, the backward integration accuracy is studied, as well301

as its sensitivity with respect to the choice of the diffusion coefficient. The errors are analysed302

calculating the L2 error norm at the end of one forward-backward integration relative to a typical303

one day model variation:304

Rerr =
‖x(0)− x̃(0)‖

< ‖x(t+∆t)−x(t)‖>
(15)305

where ∆t=1day and the brackets represent the empirical mean.306

Figure 1 shows the global error, Rerr, for different window sizes. The errors grow linearly with307

the window size for all variables. Temperature is the most affected variable, followed by sea level308

and velocities. Temperature errors exceed 18 times a typical one-day variation for the 30 days exper-309

iment and 1.2 times for the 2 days. The use of reduced diffusion/viscosity coefficients reduces the310

errors to 6.8 and 0.16 times the one-day variation for 30 and 2 days experiments, respectively. Ve-311

locities errors were reduced by 50% for 30 days and 85% for 2 days, while ssh errors were reduced312

by 60% and 88% for 30 and 2 days, respectively.313

As shown on Fig. 2 velocity and temperature errors are depth-dependent. Whereas for velocity314

they are larger at the surface and decrease with depth, for temperature they are larger in the ther-315

mocline. In the cases for which the forward-backward integrations use the same diffusion/viscosity316

coefficients as in the reference simulation, the temperature errors at thermocline depths exceed 3317

times the typical one day variation for the 5 days experiments and reaches 15 times for 20 days ex-318

periments. Considering the velocities, errors are proportional to 4 one-day variations for the 5 days319

experiment and to 8 one-day variations for the 20 days experiments. For time windows of 10, 20 and320

30 days, velocities at the thermocline depths start to be influenced by temperature errors.321

Reduction of the diffusion/viscosity coefficients greatly reduced the errors especially in the ther-322

mocline for the temperature and at the surface for the velocity. It can be noted that when the diffusion323

coefficient is decreased the errors converge to a limit. This limit changes with respect to the window324

length and should be related to the diffusion required to stabilize the numerical method, which is of325

second order in our case, and hence oscillatory. Therefore, there is a compromise between the errors326

10



Fig. 1. Errors on the initial condition after one forward-backward model integration perfectly initialized and

without nudging. Red curves were obtained using the same diffusion coefficients as in the reference experi-

ment (νu,v

h =−8×1010m4/s and νt,s

h =−4×1011m4/s) and magenta curves were obtained using reduced

diffusion (νu,v

h =−8×109m4/s and νt,s

h =−8×1010m4/s). The abscissa represents the length of the time

window.

induced by the extra diffusion and errors due to spurious oscillations.327

Numerical errors were assessed by changing the model time step from 900s to 90s. The resulting328

errors (not shown) do not change, suggesting that the errors induced by the diffusion are domi-329

nant. On the one hand, this is important because the complete rewriting of the model’s code can be330

difficult, similarly to the adjoint model programming used by the 4Dvar, but on the other hand if331

the assimilation cannot control the diffusion errors it may represent a fundamental problem of the332

method when it is applied to non-reversible geophysical systems such as the ocean.333

Figure 3 shows the spatial structures of the sea level error for the 10 days experiment. The errors334

are highly variable in space, being larger along the main jet axis. This is probably due to the fact that335

the backward integration smooths the gradients and so the largest errors are found near the fronts.336

Therefore, the errors structures may be of high variability in space and time since they are state337

dependent.338

Figure 4 shows the surface kinetic energy spectrum calculated from the experiment employing339

the reference diffusion coefficient and a reduced diffusion coefficient. The backward integration340

introduces an extra diffusion, coarsening the effective model resolution, which is defined as the por-341

tion of the spectra for which there is a change in the spectrum slope. In the reference simulation the342

effective model resolution is estimated to be 190km, which is coherent with the ≈ 7×∆x estimation343

of Skamarock (2004).344

The longer the time window the greater the portion of the spectra affected. For the experiment345

employing the reference diffusion coefficient, the divergence between the true spectra and the spec-346
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Fig. 2. Vertical profiles of relative errors on the initial condition after one forward-backward model integration

without nudging. Each color refers to an experiment performed using the diffusion coefficient indicated in the

figures legend. Red curves were obtained using the same diffusion coefficients as in the reference experiment.

Top panel: temperature errors; bottom panel: zonal velocity errors. The length of the time window is indicated

in the title of each figure.
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Fig. 3. Sea level errors after one forward-backward model integration. The time window is of 10 days.

tra obtained from the backward integration is observed at 126, 314 and 627km for 5, 10 and 20 days347

experiments, while for the experiments considering a reduced diffusion coefficient there is almost348

no differences for the 5 days experiment, and the divergence is observed at 126 and 314km for the349

10 and 20 days experiments. If on the one hand using the reduced diffusion helps to keep the en-350

ergy distribution coherent with the true distribution, on the other hand it creates noise in the range351

of 126km to 25km. This confirms that there is a trade-off between the errors due to the excessive352

smoothing and the errors due to high frequency numerical modes.353

In this section we have seen that there are large backward-errors induced by over-diffusion.354

Therefore, short time windows with reduced diffusion coefficients would be preferable to be used355

in DA experiments. Two regions have to be cautiously analyzed: the surface and the thermocline.356

Surface layers are prone to feature errors due to their role on the wind energy dissipation while at357

the thermocline strong density gradients contribute to high diffusion rates.358

5 Data Assimilation experiments359

5.1 Prescription of the DBFN gain360

In this study the increments corresponding to the term K(xobs−H(x)) are calculated in two op-361

erations: first the increments of the observed variables are calculated using a prescribed weight and362

subsequently the increments of the other state variables are calculated using linear regression. More363

precisely, defining y=H(x) as the observed part of the state vector, the first step may be written as:364

δy=Θ(xobs−yb) (16)365

where the superscript b denotes the background field or the model field available from the last time366

step. The prescribed weight is given by:367

Θ=
σ2
m

σ2
m+γσ2

o

(17)368

where σ2
m is the mean spatial value of SSH variance calculated from the free model run, σ2

o is the369

observation error variance and γ is a parameter used to adjust the variance of the observation errors.370
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Fig. 4. Kinetic energy mean power spectra calculated using the first layer velocity fields. Black curves represent

the “true“ initial condition power spectra; Red curves represent the power spectra calculated after one forward-

backward iteration without the nudging term and employing the reference diffusion coefficient; Magenta curves

represent the power spectra calculated after one forward-backward iteration without the nudging term and

employing a reduced diffusion coefficient. Top left: 5 days assimilation window. Top right: 10 days assimilation

window. Bottom: 20 days assimilation window. In the bottom abscissa the ticklabels stand for longitudinal

wave-number (rad/m) while in the top abscissa the ticklabels stand for the corresponding wavelengths in km

units.
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When γ=1 the Eq.(17) for the weight Θ has the same form of the scalar Kalman gain (Gelb et al.,371

1974). For values greater than one, γ is an inflation factor, i.e. it increases the variance of the372

observation errors resulting in more weight given to the model in the Eq.(16).373

The use of the inflation factor is theoretically justified in the linear Kalman filtering context. In this374

case, it is well-known that the Kalman Filter provides the best linear unbiased estimator. Therefore,375

there is no need to use more than once the observations. Consequently, when one is iterating the376

Kalman Filter the inflation parameter should be used to avoide overfitting and the introduction of377

correlated errors in the system (Kalnay and Yang, 2010). In this study γ = 18, which means that378

theoretically the best solution would be reached in 9 iterations. However, since in this study the379

Kalman Filter equations are not fully used and the system is not linear, the γ parameter is used380

as a guide on how strong the model is nudge toward the observations. Indeed, the iterations are not381

limited to 9. The used values for the other parameters are σm =0.017m and σo =0.03m consistently382

with the perturbations added to the observations (see Sect 5.4).383

Then, the increments of the non-observed variables, δx, are calculated by using a regression384

equation of the form:385

δx= B̂
PLS

δy (18)386

where B̂
PLS

is the Partial Least Squares (PLS) regression coefficients which are described below.387

It is worth noting that in Sect 6 we also apply this update scheme to an ordinary direct nudging388

experiment (ONDG). In this case γ is equal to one.389

The PLS can be seen as an improvement to the Ordinary Least Square (OLS) regression. The most390

important difference between OLS and PLS is that the later assumes that the maximum information391

about the non-observed variables is in those directions of the observed space which simultaneously392

have the highest variance and the highest correlation with the non-observed variables.393

In the PLS description (Tenenhaus, 1998), Y ∈R
n×M is considered as the observed or predictor394

variables and X ∈R
n×N as the non-observed or response variables. In our notation n is the sample395

size and M and N are respectively the size of the state space of Y and X . Besides, Y and X are396

centered and have the same units. The PLS regression features two steps: a dimension reduction step397

in which the predictors from matrix Y are summarized in a small number of linear combinations398

called ”PLS components”. Then, that components are used as predictors in the ordinary least-square399

regression.400

The PLS as well as the principal component regression can be seen as methods to construct a401

matrix of p mutually orthogonal components t as linear combinations of Y :402

T =Y W , (19)403

where T ∈R
n×p is the matrix of new components ti =(t1i,...,tni)

T , for i=1,...,p, and W ∈R
M×p

404

is a weight matrix satisfying a particular optimality criterion.405
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The columns w1,...,wp of W are calculated according to the following optimization problem:406

wi = argmaxw{cov(Y w,X)2} (20)407

subject to wT
i wi =1 and wT

i Y
TY wj =0 for j=1,...,i−1.408

The PLS estimator B̂
PLS

is given by:409

B̂
PLS

=W (W TY TY W )−1W TY TX (21)410

An immediate consequence of Eq. (21) is that when W = I the Ordinary Least Squares solution is411

obtained.412

The number of components p is chosen from cross-validation. This method involves testing a413

model with objects that were not used to build the model. The data set is divided in two contiguous414

blocks; one of them is used for training and the other to validate the model. Then the number of415

components giving the best results in terms of mean residual error and estimator variance is sought.416

The weight Θ and the regression model B̂
PLS

are kept constant over the assimilation cycles417

and the correction steps (16) and (17) are applied at the end of the loop of time. Thus, our updat-418

ing scheme can be seen as a rough approximation of the two steps update for EnKF presented by419

Anderson (2003).420

5.2 The 4Dvar background term configuration421

The 4Dvar considers a background term of the form:

Jb =
1

2
(δxk

0)
TB−1(δxk

0)

where B is the background error covariance matrix. This term is also known as a regularization term422

in the sense of Tikhonov. It is specially important when there is not enough observation to determine423

the problem.424

The B matrix is supposed to model the spatial covariance of the background errors of a given vari-425

able as well as the cross-covariance between the errors of different variables. Since the state space is426

too big, it is impossible to store the entire covariance matrix. Therefore, Derber and Bouttier (1999)427

have proposed the decomposition of the multivariate problem into a sequence of several univariate428

problems. This is accomplished by decomposing the variables into a balanced component and an429

unbalanced component. This is done to all variables but one should be kept without decomposition430

so as we can define the balanced and unbalanced components of the other variables. We used the431

decomposition proposed by Weaver et al. (2005) for which the temperature is the “seed“ variable and432

then thanks to some physical constraints such as the geostrophic balance, the hydrostatic balance and433

the principle of water mass conservation all other state variables may be decomposed into a balanced434

(B) component and an unbalanced (U) component. Thus, each model variable, namely temperature435

(temp), salinity (salt), sea surface height (η), zonal velocity (u) and meridional velocity (v), may436
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be written as:437

temp = temp (22)438

salt = saltB+saltU =Gsalt,temp(temp)+saltU (23)439

η = ηB+ηU =Gη,ρ(ρ)+ηU (24)440

u = uB+uU =Gu,ρ(ρ)+uU (25)441

v = vB+vU =Gv,ρ(ρ)+vU (26)442

(27)443

where444

ρ = Gρ,temp(temp)+Gρ,salt(salt) (28)445

p = Gp,p(ρ)+Gp,η(η) (29)446

with ρ the density and p the pressure.

Then, since a covariance matrix may be written as the product of variances and correlations, B may

be expressed as:

B=GΛ
TCΛGT

where Λ is a diagonal matrix of error standard deviation, for which the climatological standard447

deviation are the entries, and C is an univariate correlation matrix modeled using the generalized448

diffusion equation (Weaver and Courtier, 2001; Weaver et al., 2005). In this method the user should449

chose typical decorrelation lengths. In this study the horizontal decorrelation length is set to 400km450

and the vertical decorrelation length is set to 1500m. In addition, the 4Dvar is configured to perform451

one outer-loop and a maximum of thirty inner-loop for each assimilation cycle.452

453

5.3 Assimilation cycle454

One assimilation cycle is defined as the process of identifying an initial condition through the it-455

erative process followed by a forecast spanning the assimilation window, which provides a new456

background to the next assimilation cycle.457

The objective of cycling is to provide a background state for the next assimilation window that458

is closer to the true state than the very first background field. This usually reduces the number of459

iterations needed by the algorithms to reach convergence.460

The length of the Data Assimilation window (DAw) used in the reference experiments (Sect 6.1) is461

10 days. For the sensitivity experiments presented in the Sect 6.2 the lengths of the the assimilation462

window are 5 days and 30 days.463
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5.4 Observation network464

In this article, every four days an observation network simulating Jason-1 satellite density sample is465

available. The data is perturbed with white Gaussian noise with standard deviation equals to 3cm.466

With this observation network a new set of 5000 observations is available every four days.467

The data assimilation problem we proposed to solve is to recover the full model state at the begin-468

ning of the assimilation window. The model state space is composed of five variables: sea surface469

height (η), meridional and zonal velocities (u and v), temperature and salinity (temp and salt).470

Since we have a horizontal mesh of size 81 x 121 and 11 vertical layers the total size of the state471

space is 441045. Therefore, the problem is undetermined, since the observations represent only a472

1.1% of the total state space. This means that the background term, and accordingly the B matrix473

for the 4Dvar and the regression model B̂
PLS

for the DBFN, have quite a strong importance on the474

method performances since they project the increments of the observed variables onto the numerous475

non-observed variables.476

To study at which extent the results are depend on the amount of assimilated observations and on477

the first guess, in Sect 6.2.2 two additional experiments assimilating complete daily fields of SSH478

are conducted: one using the same first guess of the experiments of Sect 6.1, and another using a479

perturbed initial condition. In despite of the fact that the problem continues to be underestimated,480

in this case the SSH analysis is no more dependent on the SSH spatial covariance, and the unstable481

modes associated with the SSH dynamics are certainly observed. The analysis produced for the482

other state vector variables remains dependent on the matrices B for the 4Dvar case and B̂PLS for483

the DBFN case.484

6 Data Assimilation Results485

6.1 Reference experiment486

In this section the results produced by the DBFN, the 4Dvar method, the Ordinary Nudging (ONDG)487

and the control experiment are presented. All assimilation methods include the five prognostic vari-488

ables in the state vector. This is possible thanks to the PLS regression method in the case of the489

DBFN and ONDG and thanks to the multivariate balance operator G in the case of the 4Dvar ex-490

periments. The diffusion and viscosity coefficients used in the DBFN experiments are those which491

produced the smaller errors in the experiments without Nudging, as reported in Sect 4.492

First the minimization performance of the 4Dvar implementation is analysed. Figure 5 shows the493

reduction of the cost function gradient for the 4Dvar and the reduction of the relative error of the494

zonal velocity for the DBFN, both of them for the first assimilation cycle. 4Dvar takes 26 iterations495

to approximately achieve the optimality condition ∇J =0. This represents 3 times the number of it-496

erations required by the DBFN to converge, i.e., after which the errors cease to decrease. Moreover,497

18



Fig. 5. Figure shows the gradient of the cost function after each inner iteration (left) and the reduction of the

relative error for zonal velocity for the DBFN experiment (right).

the 4Dvar numerical cost is more than 3 times the DBFN cost since one execution of the adjoint498

model costs four times the cost of the direct model in terms of CPU time.499

We note that the minimum error for the DBFN is reached after 9 iterations. This is quite consis-500

tent with our choice γ=18, since theoretically it allows the use of the same set of observations for501

18 times.502

At this point we find appropriate to present the fact that the trajectories of the forward and back-503

ward nudging are very close to each other at convergence, which justifies the qualitative explanation504

of the DBFN algorithm given by Eqs. (6) and (7). This fact can be seen in the Fig 6 that shows the505

forward and backward mean surface zonal velocity trajectories at convergence as well as the surface506

zonal velocity trajectories for a point located on the unstable jet, at 34o North and 52.6o West.507

508
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Fig. 6. Black curves represent the forward and backward mean surface zonal velocity trajectories at convergence

and red curves the forward and backward surface zonal velocity trajectories at convergence for a point located

at 34o North and 52.6o West, which is located on the unstable jet.

Figure 7 shows the root mean squared (rms) error for the control experiment (without assimi-509

lation), the experiment using the direct nudging with PLS regression (ONDG), the DBFN and the510

4Dvar. The DBFN errors for the velocity and SSH converge to their asymptotic values after the511

first assimilation cycle while for ONDG and 4Dvar errors stop decreasing after 100 and 200 days,512

respectively. This is a benefit of the iterations performed by the DBFN when model and data are513

quite different. Among the experiments conducted, the DBFN produced the smallest errors for all514

variables, except for the zonal velocity, for which the 4Dvar has slightly smaller errors. The ONDG515

also showed good performance, but with errors larger than the DBFN and 4Dvar errors.516

With respect to the vertical error (Fig. 8), the DBFN and the ONDG performed better for the517

upper ocean than 4Dvar. Clearly, the PLS also corrects the deep ocean velocity, but less accurately518

than 4Dvar. The first error mode is the barotropic one, i.e. it has the same sign over all depths, and519

accounts for 97% of the error variability for 4Dvar, 96% and 93% for DBFN and ONDG, respec-520

tively. Although the first mode is the barotropic one for all methods, the 4Dvar barotropic mode of521

error is out of phase with respect to the PLS barotropic mode. This reflects the better performance522

of the 4Dvar for the deep ocean and the better performance of the DBFN and ONDG for the upper523

ocean.524

The second mode, which accounts for almost all the remaining variability, has a sign inversion525

with depth and is found especially over the main axis of the jet. In this region the deep ocean veloc-526
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Fig. 7. The figure shows errors of the SSH (top panel), the zonal velocity (middle panel) and the temperature

(bottom panel).
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Fig. 8. Vertical profiles of rms error in zonal velocity (Left panel) and first (middle panel) and second (right

panel) eof error modes calculated using forecast from day 200 to day 720.

ities are overestimated due to spurious covariances between the SSH and the deep ocean velocities.527

The way both methods correct the model depends on the B matrix in the 4Dvar algorithm and528

on the regression model B̂PLS in the DBFN. It means that results may be different if another ap-529

proximation of B and another model regression model are used. Perhaps the main conclusion of530

this comparison is that the DBFN, which is easier to implement and cheaper to execute, can produce531

results similar to 4Dvar. Also, it is shown that iterations is an important aspect of the method. Itera-532

tions compensate for the lack of a priori information on the model background errors as well as filter533

out noise in observations. The latter must be connected to the diffusive character of the algorithm.534

Moreover, the iterations allows us to put information from the observations into the model, without535

causing initialization problems since the nudging gain can be taken smaller than the one used for the536

direct nudging due to the possibility of using more than once the same set of observations.537

538

6.2 Sensitivity experiments539

6.2.1 Length of the DAw540

Sensitivity tests with respect to the length of the DAw are presented. As we have shown in Sect 4,541

the accuracy of the backward model is inversely proportional to the length of the DAw. Therefore,542

in this section we present experiments using a DAw of five days and thirty days. The experiments543

configuration is similar to those presented in the previous section.544

Figure 9 shows the evolution of the rms errors for the zonal velocity and temperature during the545
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DBFN iterations over the first assimilation cycle, for three DAw (including the ten day-window used546

previously). When considering only one iteration, the best results were obtained with the 30 days-547

window experiment. This is a consequence of the asymptotic character of the Nudging method: the548

longer the assimilation window, the more observations accounted for, the smaller the error. This549

changes when several iterations are considered. The observed divergence for the 30 days-window is550

due to the errors induced by the over-diffusion that induce great increments, which by their nature,551

are not modelled by the ensemble of model states used to construct the regression model.552

553

Fig. 9. Evolution of the rms errors for the zonal velocity and temperature during the DBFN iterations over the

first assimilation cycle, for three DAw: 5, 10 and 30 days.

Figure 10 shows the rms error for the DBFN and 4Dvar experiments for three DAw: 5, 10 and554

30 days. The methods exhibited comparable performance depending on the length of the DAw. For555

the DBFN the 5 and 10 days DAw provided better results than the 30 days window, while for the556

4Dvar the 30 days window provided the best estimation in terms of rms error. The DBFN and 4Dvar557

experiments using the 30 and 5 days DAw, respectively, failed to identify the initial conditions since558

their SSH rms errors are greater than the observation error standard deviation.559

Figure 11 shows the time evolution of vertical profiles of horizontally layer-wise averaged rms560

error of zonal velocities for the DBFN and 4Dvar experiments. The 4Dvar profits of the longer DAw561

to spread the observation to the 3-dimensional variables. This is done by the iterations of the direct562

model and by the B matrix. For the DBFN experiments, after one year of data assimilation the563

errors in the deep ocean start to grow. This is due to the high variance of the PLS estimator for deep564

layers. The problem becomes more evident on the second year because at this stage the observa-565

tions are farther from the model states used to construct the regression coefficients. Therefore, this566

mean that this behavior is not intrinsic to the DBFN algorithm and its diffusive aspects, but due to567

our implementation. Ideally, the regression model should evolve in time, similarly to the Kalman568

Filter scheme. The 4Dvar has good performance at the deep ocean thanks to the use of a vertical569

localization with a length scale of 1500m.570

571
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Fig. 10. RMS errors on SSH (top panel), zonal velocity (middle panel) and temperature (bottom panel) from

DBFN and 4Dvar experiments with DAw of 5, 10 and 30 days.
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Fig. 11. Time evolution of vertical profiles of horizontally layer-wise averaged rms error of zonal velocities for

the DBFN (top panels) and 4Dvar (bottom panels) experiments. Units are in (m/s).

Next we investigate which scales are better represented by each assimilation method. This is done572

by comparing the surface kinetic energy spectrum and the deep ocean kinetic spectrum produced by573

each method. The Fig.(12) shows that the effective resolution of the model is not affected by the574

diffusive character of the DBFN algorithm. It is clear that there is a reduction of the energy for the575

scales close to the grid scale, but the energy contained in scales greater than 7×∆x is not affected.576

It means that the diffusion-induced errors presented in Sect 4 are ”controlled“ by the assimilation of577

sea surface height observations.578

There is no great difference between the DBFN and 4Dvar surface spectrum for the assimilation579

windows shorter than 30 days, which once more proves the reliability of the DBFN for the assim-580

ilation of oceanic observations. The energy spectra for the deep ocean velocities produced by the581

DBFN contains more energy than the true spectrum independently of the used DAw. This confirms582

that the deep ocean velocity errors are due to the high variance of the PLS regression model.583

584
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Fig. 12. Kinetic energy mean power spectra calculated using the first layer (top) and a layer at 2660m (bottom)

and using the 650 days of the assimilation experiments using the DBFN (left) and the 4Dvar (right). Blue

curves represent the “true“ power spectra; Green curves represent the power spectra calculated for the 5 days

DAw; Red curves represent the power spectra calculated for the 10 days DAw and Black curves represent the

power spectra calculated for the 30 days DAw. In the bottom abscissa the tick-labels stand for longitudinal

wave-number (rad/m) while in the top abscissa the tick-labels stand for the corresponding wavelengths in km

units.

6.2.2 Observations density and first guess585

Finally, two new experiments similar to the one presented in the Sect 6.1 and assimilating complete586

daily fields of SSH are presented. The first one uses the same initial condition of the previously587

presented experiments and its goal is to investigate the role of the amount of assimilated observa-588

tions on the results. In despite of the fact that the problem continues to be underestimated, in this589

case the SSH analysis is no more dependent on the SSH spatial covariance, and the unstable modes590

associated with the SSH dynamics are certainly observed. The analysis produced for the other state591

vector variables remains dependent on the matrices B for the 4Dvar case and B̂PLS for the DBFN592

case.593

Fig.13 shows the rms error for the SSH and zonal velocity. The results are quite similar to the594

results presented in Sect 6.1 with a lower rms error for all variables for both methods. Fig.14 shows595

the initial condition error for the zonal velocity produced by both methods for the satelite-like obser-596
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vations and the complete observations experiments. The figure reveals that while in some places the597

inclusion of more observations helps to reduce the error in other places it increases the error. This598

means that although much more information could be extracted from the new set of observations,599

which decreases the global rms errors, the solution remains dependent on the covariance structures600

contained on B and B̂PLS .601

602

Fig. 13. RMS errors of SSH (top panel) and zonal velocity (bottom panel) from the DBFN and 4Dvar exper-

iments with DAw of 10 days and assimilating complete daily fields of SSH. Dashed lines concern the results

from the perturbed experiments.
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Fig. 14. Zonal velocity error (analysis - truth) for the first assimilation cycle from DBFN experiments (top pan-

els) and 4Dvar experiments (bottom panels). Right panels show the results obtained by assimilating complete

daily fields of SSH and the left panels the results from the experiments presented in the Sect 6.1.

The second experiment is initialized with an initial condition that is 20 days apart from the one603

used previously, and is closer in terms of rms error to the observations. We call this experiment as604

perturbed experiment. In this case, the objective is to analyze the sensitivity of the solution to the605

choice of the first guess. Thus, only one assimilation cycle is performed.606

Fig.15 shows the initial condition error for the SSH produced by both methods for the perturbed607

and non-perturbed experiments. Since the perturbed initial condition is not much different from the608

unperturbed one, the analysis errors have the same structure in both cases, but they differ from one609

method to another.610

The DBFN produced smaller differences between the perturbed and non-perturbed experiences611

than the 4Dvar for the entire domain. A remarkable difference between the errors produced by the612

4Dvar and the DBFN is the error structure in the western boundary that is produced by the DBFN,613

which is positive northward 34oN and negative southward 34oN . The presence of this structure is614

related to the fact that the DBFN analysis is the final condition produced by the backward model.615

The same pattern was also observed in the Fig. 3 that shows the backward error for the SSH variable.616

The rms error of the identified trajectory for the perturbed experiment may be seen in Fig. 13 as the617

green (4Dvar) and black (DBFN) dashed curves. The results clearly show that for the configured618

experiments the DBFN is much less sensitive to the first guess than the 4Dvar.619

The small sensitivity of the DBFN to the first guess is in accordance with the theoretical result620

about the BFN presented by Auroux and Blum (2005) that states that for a linear system and under621

complete observation condition the identified trajectory is independent of the first guess. To what622
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extent this theoretical result may be extended to nonlinear systems assimilating an incomplete set of623

observations, as the one studied in this article, we do not know. The results presented here suggest624

that the use of the DBFN may be advantageous in situations in which the system passes by strong625

changes resulting in a background (first guess) that is far from the true state.626

Fig. 15. SSH error (analysis - truth) from DBFN experiments (top panels) and 4Dvar experiments (bottom

panels). Right panels show the results obtained from the perturbed experiment.

7 Conclusions and perspectives627

This study used the NEMO general circulation model in a double gyre configuration to investigate628

the Diffusive Back and Forth Nudging performance under different configurations of the data assim-629

ilation window, observation network and initial conditions, and to compare it with 4Dvar.630

It has been shown that the reliability of the backward integration should be carefully examined631

when the BFN/DBFN is applied to non-reversible systems. This should support the choice of the632

assimilation window and identify whether the available observations are sufficient to control the er-633

rors induced by the non-reversible terms of the model equations. In this article we have shown that634

the DBFN might be used for the assimilation of realistically distributed ocean observations, despite635

the limited accuracy of the backward integration. Improving the backward integration would further636

improve the DBFN performance and make possible the use of longer assimilation windows.637

Our results show that the DBFN can produce results comparable to 4Dvar using lower computa-638

tional power. This is because DBFN demands less iterations to converge and because one iteration639

of 4Dvar corresponds to one integration of the tangent linear model, one integration of the adjoint640

model, which costs four times more than one standard model integration, plus the cost of minimizing641

the cost function, while the DBFN costs twice the integration of the nonlinear model.642

The sensitivity tests show that for the 4Dvar long assimilation windows should be preferably used643
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because it favors the propagation of the sea surface height information to the deep layers. For the644

DBFN, short windows are preferable because it reduces the effect of the diffusion-induced errors. In645

future works it would be beneficial to account for this errors when constructing the nudging gain.646

Moreover, the results show that for assimilation systems assimilating a much reduced number of647

observations with respect to the size of the state space, such as ocean data assimilation systems usu-648

ally do, the set-up of the covariance matrix is a key step since this matrix propagates the information649

from the observed variables to the non-observed variables. In addition, although in this study the650

methods have been configured with different covariance matrices, the results show that the DBFN is651

less sensitive to the background field than the 4Dvar.652

Finally, it appears that the DBFN algorithm is worth being further explored both on theoretical653

and practical aspects, especially those related to the optimization of the matrix K and applications654

to a more realistic configuration.655
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