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Abstract. The Diffusive Back and Forth Nudging (DBFN) is an easy-to-implement iterative data1

assimilation method based on the well-known Nudging method. It consists in a sequence of forward2

and backward model integrations, within a given time window, both of them using a feedback term3

to the observations. Therefore in the DBFN, the Nudging asymptotic behavior is translated into an4

infinite number of iterations within a bounded time domain. In this method, the backward integra-5

tion is carried out thanks to what is called backward model, which is basically the forward model6

with reversed time step sign. To maintain numeral stability the diffusion terms also have their sign7

reversed, giving a diffusive character to the algorithm. In this article the DBFN performance to con-8

trol a primitive equation ocean model is investigated. In this kind of model non-resolved scales are9

modeled by diffusion operators which dissipate energy that cascade from large to small scales. Thus,10

in this article the DBFN approximations and their consequences on the data assimilation system set-11

up are analyzed. Our main result is that the DBFN may provide results which are comparable to12

those produced by a 4Dvar implementation with a much simpler implementation and a shorter CPU13

time for convergence. The conducted sensitivity tests show that the 4Dvar profits of long assimila-14

tion windows to propagate surface information downwards, and that for the DBFN, it is worth using15

short assimilation windows to reduce the impact of diffusion-induced errors. Moreover, the DBFN16

is less sensitive to the first guess than the 4Dvar.17
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1 Introduction19

The well-known Nudging method is based on the second Newton axiom and consists in adding a20

forcing term in the right hand side of a given system in order to gently push the model toward a21

prescribed value. The first appearance of nudging in the geophysical literature was in 1974 (Anthes,22

1974). In this work the authors proposed the use of nudging to mitigate initialization problems in at-23

mospheric models. However, a similar algorithm had already been developed by Luenberger (1966).24

This algorithm has been called ”Luenberger observer” or ”asymptotic estimator”, since under lin-25

earity and observability hypothesis the estimator error converges to zero for time tending to infinity.26

It is quite interesting to note that there is no mention of the Luenberger observer in the geophysical27

literature except in the recent work of Auroux and Blum (2005). More recently, a comprehensive28

study on the nudging method and its variants was produced by Blum et al. (2008) and Lakshmivara-29

han and Lewis (2012).30

The first appearance of a successful application of nudging to ocean Data Assimilation (DA) was31

in 1992 in a work that assimilated sea surface height derived from satellite measurements into a32

quasi-geostrophic layered model (Verron, 1992). Since then, the method has been successfully ap-33

plied to several oceanographic numerical problems such as the estimation of boundary conditions34

(Marchesiello et al., 2001; Chen et al., 2013), downscaling (Li et al., 2012), and other DA problems35

(Verron, 1992; Haines et al., 1993; Blayo et al., 1994; Lewis et al., 1998; Killworth et al., 2001;36

Thompson et al., 2006). Concerning applications to DA problems, the weights given to the model37

and the observations are generally not based on any optimality condition, but are rather scalars or38

Gaussian-like functions constructed based on physical assumptions or empirical considerations. The39

appeals of this method are the simplicity of implementation in complex numerical models, the low40

computational power required and the time smoothness of the solution.41

The increasing availability of computing power has allowed to use more advanced data assimi-42

lation methods. In general, these methods use information on the model statistics and observations43

errors to weight the model-observations combination. Two of these methods that are widely used by44

prediction centers are the ensemble Kalman filter- EnKF (Evensen, 1994) and its variations (Pham,45

2001; Hunt et al., 2007), and the four dimensional variational method 4Dvar (Le Dimet and Tala-46

grand, 1986; Courtier et al., 1994). For the first, the numerical costs are due to the propagation of the47

ensemble, usually formed by tenths of members, to calculate the forecast. For the second, the costs48

are due to the need of minimizing a cost function in a very large state space (108 variables). This49

requires several iterations of the minimization algorithm, which involves several integrations of the50

direct and adjoint models.51

However, even with the growing interest in these complex techniques built on solid theoretical52

arguments, nudging has not been left aside. Recent works have used nudging along with more53

advanced methods such as Optimal interpolation (Clifford et al., 1997; Wang et al., 2013), EnKF54

(Ballabrera-Poy et al., 2009; Bergemann and Reich, 2010; Lei et al., 2012; Luo and Hoteit, 2012),55
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4Dvar (Zou et al., 1992; Stauffer and Bao, 1993; Vidard et al., 2003; Abarbanel et al., 2010) or56

particle filters (Luo and Hoteit, 2013; Lingala et al., 2013) to extract the best of each method. In57

the particular case of the hybridization with the EnKF proposed by Lei et al. (2012), the resulting58

algorithm takes the advantage of the dynamical propagation of the covariance matrix from the EnKF59

and uses nudging to mitigate problems related to the intermittence of the sequential approach, which60

among other things entails the possible discarding of some observations.61

Recently, Auroux and Blum (2005) revisited the nudging method and proposed a new observer62

called Back and Forth Nudging (BFN). The BFN consists in a sequence of forward and backward63

model integrations, both of them using a feedback term to the observations, as in the direct nudg-64

ing. The BFN integrates the direct model backwards in time avoiding the construction of the adjoint65

and/or tangent linear models needed by 4DVar. Therefore, it uses only the fully non-linear model to66

propagate information forward and backward in time. The nudging gain, which has an opposite sign67

with respect to the forward case, has a double role: push the model toward observations and stabilize68

the backward integration, which is especially important when the model is not reversible.69

The BFN convergence was proved by Auroux and Blum (2005) for linear systems of ordinary70

differential equations and full observations, by Ramdani et al. (2010) for reversible linear partial dif-71

ferential equations (Wave and Schrödinger equations), by Donovan et al. (2010) and Leghtas et al.72

(2011) for the reconstruction of quantum states and was studied by Auroux and Nodet (2012) for73

non-linear transport equations. The BFN performance in numerical applications using a variety of74

models, including non-reversible models such as a Shallow Water (SW) model (Auroux, 2009) and75

a Multi-Layer Quasi-Geostrophic (LQG) model (Auroux and Blum, 2008), are very encouraging.76

Moreover, by using a simple scalar gain, it produced results comparable to those obtained with77

4DVar but with lower computational requirements (Auroux, 2009; Auroux et al., 2012).78

In this article we present for the first time a BFN application to control a primitive equation79

ocean model. The numerical model used is NEMO (Madec, 2008), currently used by the French op-80

erational center, Mercator Océan (http://www.mercator-ocean.fr/fre), to produce and deliver ocean81

forecasts. The well-known idealized double gyre configuration at eddy-permitting resolution is used.82

This configuration has the advantage of being simple from the geometry and forcings point of view83

at the same time it reproduces most of features found in a middle latitude ocean basin.84

The BFN application to control a primitive equation ocean model represents a new challenge85

due to the increased model complexity. Among the differences between NEMO and the simplified86

oceanic models used by Auroux and Blum (2008) and Auroux (2009) stand out the more complex87

relationship between the variables in the former since no filtering technique is used in the derivation88

of the physical model (except the Boussinesq approximation which is also considered by the SW89

and LQG models), and the inclusion of an equation for the conservation of the thermodynamical90

properties. The latter requires the use of a nonlinear state equation to couple dynamical and thermo-91

dynamical variables.92
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Furthermore, the vertical ocean structure represented by NEMO is more complex than the verti-93

cal ocean structure represented by the SW and LQG used by Auroux and Blum (2008) and Auroux94

(2009). This is because the SW model has no vertical levels and the LQG was implemented with95

only 3 layers, while in this article NEMO is configured with 11 vertical layers. In addition, NEMO96

considers vertical diffusion processes, mostly ignored by the LQG model. Vertical diffusion plays an97

important role in maintaining the ocean stratification and meridional overturning circulation, which98

is directly related to the transport of heat in the ocean. Moreover from the practical point of view,99

the diffusion/viscosity required to keep the NEMO simulations stable is by far greater than for the100

SW or LQG at the same resolution.101

These issues call into question the validity of the approximations made by the BFN under realistic102

conditions. Thus, our primary objective is to study the possibility of applying the BFN in realistic103

models and evaluate its performance compared to the 4Dvar. This appears as being the next logical104

step before using the BFN to assimilate real data.105

This article is organized as follows. In Sect 2 the BFN and the 4Dvar are described. Section 3106

describes the model physics and the model set-up. Section 4 discusses some practical aspects of107

the backwards integration. Section 5 presents the BFN and the 4Dvar set-up and the designed data108

assimilation experiments. Finally, the data assimilation results are presented in the Sect 6, on which109

we discuss the impact of the length of the data assimilation window on the method performances as110

well as the sensitivity of each method to the observation network and the initial condition.111

2 Data Assimilation Methods112

In this section the Back and Forth Nudging (BFN) is introduced and the 4Dvar used to assess the113

BFN performance is briefly described.114

2.1 The Back and Forth Nudging115

The conventional nudging algorithm consists in adding a forcing term (feedback term) to the model116

equations, proportional to the difference between the data and the model at a given time. More117

generally, given a model described by a set of ordinary equations (or discretized partial differential118

equations), nudging consists in adding to them the forcing term K(xobs−H(x)):119

dx

dt
=F(x)+K(xobs−H(x)) (1)120

where x represents the state vector, F is the model operator, H is the observation operator allow-121

ing one to compare the observations xobs(t) to the corresponding system state H(x), and K is the122

nudging gain matrix. In this algorithm the model appears as a weak constraint. The feedback term123

changes the dynamical equations and forces the state variables to fit the observations as well as pos-124

sible.125

In the linear case, i.e. when F and H may be written as matrices F and H , and in the absence126
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of noise in the system, nudging is nothing else than the Luenberger observer (Luenberger, 1966). In127

this case, and assuming that the observability of the pair (F ,H) holds, there is a class of possible128

values of K that guarantees the estimator convergence when t→∞ (Gelb et al., 1974). This should129

be one possible explanation why nudging usually works quite well and the converged state is not130

strongly affected by the choice of K. However, when constructing K (which units is s−1), the aim131

is to obtain an estimator response faster than the time scale of the studied processes.132

The BFN is an iterative algorithm which sequentially solves the forward model equations with a133

feedback term to the observations (Eq. 1) and the backward model equations with an opposite sign134

for the feedback term. The initial condition of the backward integration is the final state obtained135

after integration of the forward nudging equation. At the end of each iteration a new estimation of136

the system’s initial state is obtained. The iterations are carried out until convergence is reached.137

The BFN novelty with respect to conventional nudging methods is the model integration back-138

ward in time. This allows to recover initial conditions as well as to use more than once the same139

observations set. Consequently, the BFN may be seen as a sub-optimal iterative smoother.140

Under the hypothesis of a linear model a variational interpretation is possible. In this case, if we141

choose K = kHTR−1, where R is the observation error covariance matrix, and k is a scalar, the142

solution of the forward nudging is a compromise between the minimization of the system’s energy143

and the minimization of the distance between the data and the model (Auroux and Blum, 2008).144

However, the backward integration is problematic when the model is diffusive or simply not re-145

versible. In the case of ocean models, there are two main aspects requiring the inclusion of diffusion:146

i) the control of numerical noise, and ii) the modeling of sub grid-scale processes, i.e. to parameter-147

ize the energy transfer from explicitly resolved to non-resolved scales. Indeed, diffusion naturally148

represents a source of uncertainty in ocean forecasts, even for the purely forward model, and has149

been investigated from the point of view of the optimal control theory in Leredde et al. (1999).150

To address the problem of the backward model instability in this article the Diffusive Back and151

Forth Nudging-DBFN (Auroux et al., 2011) is used. In this algorithm the sign of the diffusion term152

remains physically consistent and only the reversible part of the model equations are really solved153

backward. Practical consequences of this assumption are analysed in Sect 4. A similar solution was154

proposed by Pu et al. (1997) and Kalnay et al. (2000) to stabilize their Quasi-Inverse Linear model.155

To describe the DBFN algorithm, let us assume that the time continuous model satisfies dynamical156

equations of the form:157

∂x

∂t
=F(x)+ν∆x, for 0<t<T, (2)158

with an initial condition x(0)=x0, where F denotes the nonlinear model operator without diffusive159

terms, ν is a diffusion coefficient and ∆ represents a diffusion operator. If nudging is applied to the160

forward system (2) it gives:161

∂xk

∂t
= F(xk)+ν∆xk+K(xobs−H(xk)) (3)162
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xk(0) = x̃k−1(0), 0<t<T,163

where k ∈ N≥1 stands for iterations and x̃0(0) is a given initial guess. Nudging applied to the164

backward system with the reversed diffusion sign gives:165

∂x̃k

∂t
=F(x̃k)−ν∆x̃k−K′(xobs−H(x̃k)) (4)166

x̃k(T ) =xk(T ), T > t> 0.167

The system composed by equations (3) and (4) is the basis of the DBFN algorithm. They are iterated168

until convergence.169

Therefore, one important aspect of the DBFN algorithm is the convergence criterion. Ideally,170

at convergence the nudging term should be null or small comparable to the other equation terms.171

Otherwise, when the nudging is switched off, which is the case in the forecast phase, the system172

may return to a state close to the background state or to a state which is not consistent to the one at173

convergence. The convergence is calculated as:174

‖xk(t=0)−xk−1(t=0)‖

‖xk−1(t=0)‖
≤ ǫ, (5)175

where ‖•‖ is the L2 norm, and the choice for ǫ=0.005 is based on sensitivity tests (not presented176

in this article).177

Data Assimilation is the ensemble of techniques combining the mathematical information pro-178

vided by the equations of the model and the physical information given by the observations in order179

to retrieve the state of a flow. In order to show that the DBFN algorithm achieves this double ob-180

jective, let us give a formal explanation of the way DBFN proceeds. If K′ =K and the forward181

and backward limit trajectory are equal, i.e x̃∞ =x∞, then taking the sum between Eqs.(3) and (4)182

shows that x∞ satisfies the model equations without diffusion:183

∂x∞

∂t
=F(x∞) (6)184

while taking the difference between Eqs.(3) and (4) shows that x∞ satisfies the Poisson equation:185

∆x∞ =−
K

ν
(xobs−H(x∞)) (7)186

which represents a smoothing process on the observations for which the degree of smoothness is187

given by the ratio ν
K

(Auroux et al., 2011). Equation (7) corresponds, in the case where H is a matrix188

H and K = kHTR−1, to the Euler equation of the minimization of the following cost-function189

J (x)= k <R−1(xobs−Hx),(xobs−Hx)>+ν

∫

Ω

‖∇x‖2 (8)190

where the first term represents the quadratic difference to the observations and the second one is a191

first order Tikhonov regularisation term over the domain of resolution Ω. The vector x∞, solution192

of (7), is the point where the minimum of this cost-function is reached. It is shown in Sect 6.1 that193

at convergence the forward and backward trajectories are very close, which justifies this qualitative194

justification of the algorithm.195

The description of the used K matrix is given in the Sect (5.1).196
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2.2 Four Dimensional Variational Method - 4DVar197

Variational methods minimize a cost function that measures the distance between the estimated198

state and the available observations. Let us assume that observations are available at every instant199

(ti)1≤i≤N . Given a first guess xb of the initial state, the 4DVar algorithm will find an optimal initial200

condition that minimizes the distance between the model trajectory and the observations in a given201

assimilation window. This optimal state is found by minimizing the following cost function:202

J(x0) =
1

2
(x0−xb)TB−1(x0−xb)203

+
1

2

N
∑

i=0

(Hi[M0,i(x0)]−yi)
TR−1

i (Hi[M0,i(x0)]−yi) (9)204

where B is the background error covariance matrix and M0,i represents the model integration from205

time t0 to time ti. Ri,Hi and yi are the observations error covariance matrix, the observation206

operator and the available observations at time ti, respectively.207

The optimal initial state is found by solving:208

∇J(xa(t0))= 0 (10)209

The calculation of this gradient is done using the adjoint method proposed by Lions (1971) and210

brought to the meteorological context by Le Dimet and Talagrand (1986).211

If H or M are nonlinear, the solution of the problem is not unique, i.e. the functional (9) may212

have multiple local minima, and the minimization procedure may not stop at the global minimum. To213

overcome this problem, Courtier et al. (1994) proposed to solve a sequence of quadratic problems,214

expecting this sequence would converge to the solution of the problem given by (9) and (10). This215

algorithm is called the incremental 4Dvar. In this case, the cost function will not be minimized216

with respect to the initial state but with respect to an increment δx0 defined by x0 =xb+δx0. The217

operators H or M are linearized in a neighborhood of xb as:218

M0,i(x
b+δx0)≈M0,i(x

b)+M0,iδx0 ∀i (11)219

Hi(x
b+δx0)≈Hi(x

b)+Hiδx0 ∀i (12)220

and the new cost function is given by:221

J(δx0)=
1

2
δxT

0 B
−1δx0+

1

2

N
∑

i=0

(HiM0,iδx0−di)
TR−1

i (HiM0,iδx0−di) (13)222

where di =yi−Hi(M0,i(xb)) is called the innovation vector. It is possible that after some iterations223

of the minimizer the increments become too large and a new linearization of H and M should be224

done. This gives rise to what is called the inner loop and outer loop iterations. The algorithm225

implemented in NEMO, called NEMOVAR (Mogensen et al., 2009), uses this technics. It can be226

summarized as follows:227
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–Initialisation : x0
0 =xb

–While k≤ kmax or ‖δxa,k
0 ‖>ǫ (Outer Loop)

Do

•dk
i =yi−Hi(M0,i(x

k
0))

•Search the δxa,k
0 that minimises (Inner Loop):

J(δxk
0) =

1

2
(δxk

0)
TB−1(δxk

0) (14)

+
1

2

N
∑

i=0

(HiM0,iδx
k
0−dk

i )
TR−1

i (HiM0,iδx
k
0−dk

i )

•xk+1
0 =xk

0−δxa,k
0

228

The description of the matrices B and R is given in the Sect (5.2).229

3 Ocean Model and Experimental set-up230

The ocean model used in this study is the ocean component of NEMO (Nucleus for European Mod-231

elling of the Ocean; Madec, 1996). This model is able to represent a wide range of ocean motions,232

from the basin scale up to the regional scale. Currently, it has been used in operational mode by the233

French Mercator Océan group (http://www.mercator-ocean.fr) and the European Center for Medium234

Range Weather Forecast (ECMWF).235

The model solves six prognostic equations, namely the momentum balance, the hydrostatic equi-236

librium, the incompressibility equation, the heat and salt conservation equations and a nonlinear237

equation of state which couples the two tracers to the fluid fields. In this study, a linear free surface238

formulation is used along with the approach developed by Roullet and Madec (2000) to filter out the239

external gravity waves.240

Equations are discretized using spherical coordinates in a Arakawa C grid. The model advances in241

time using a leap-frog scheme for all terms except for the vertical diffusive terms, which are treated242

implicitly. At every time step the model uses a Robert-Asselin (RA) temporal filter to damp the243

computational mode. The leap-frog scheme followed by the RA filter leads to a first order temporal244

scheme (Willians, 2009). Spatial discretization uses a centered second order formulation for both245

the advective and the diffusive terms.246

The double gyre configuration, extensively used to study jet instabilities (Chassignet and Gent,247

1991; Primeau, 1998; Chang et al., 2001), meso and submeso-scale dynamics (Levy et al., 2010)248

and data assimilation methods (Molcard et al., 2004; Krysta et al., 2011; Cosme et al., 2010), is used249

for the present study. The double gyre configuration simulates the ocean middle latitude dynamics250

and has the advantage of being simple, when compared to real applications, but still considering full251

dynamics and thermodynamics.252

In our experiments we use a homogeneous horizontal grid with a 25km resolution and a verti-253
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cal resolution ranging from 100m near the upper surface to 500m near the bottom. The bottom254

topography is flat and the lateral boundaries are closed and frictionless. The only forcing term255

considered is a constant wind stress of the form τ =
(

τ0cos
(

2π(y−y0)
L

)

,0
)

, where y is the lati-256

tude geographic coordinate with y0 =24o and y0 ≤ y≤ 44o, L=20o and τ0 =−0.1N/m2 . Hori-257

zontal diffusion/viscosity are modeled by a bilaplacian operator meanwhile a laplacian operator is258

used in the vertical. They all use constant coefficients in time and space: νu,vh =−8×1010m4/s259

and νu,vv = 1.2× 10−4m2/s for the momentum equations and νt,sh =−4× 1011m4/s and νt,sv =260

1.2×10−5m2/s for temperature and salinity. The initial condition is similar to that used by Chas-261

signet and Gent (1991) and consists of a homogeneous salinity field of 35psu and a temperature field262

created to provide a stratification which has a first baroclinic deformation radius of 44.7km. Velocity263

and sea surface height (SSH) fields are initially set to zero.264

This double gyre configuration is currently used as the NEMO data assimilation demonstrator and265

as the experimentation and training platform for data assimilation activities (Bouttier et al., 2012).266

For the present work, the model was integrated for 70 years, in order to reach the statistical steady267

state. Afterwards, ten years of free model run were performed, that were used to calculate the re-268

gression models which are used to calculate the nudging matrix K (see Sect 5.1), and then two269

additional years were finally completed to be used as the truth, from which the observations were270

extracted.271

4 The backward integration without Nudging: Practical aspects272

The backward model uses exactly the same numerical scheme as the forward model. Since most273

of the model is solved using centered finite differences, the inverse version of the discretized model274

is similar to the discrete version of the inverse continuous model. The only distinction between275

the forward and the backward model is the change in the sign of the diffusive terms when stepping276

backwards, this making the backward integration stable. If this is not taken into account the model277

blows up after a few days.278

Reversing the diffusion sign in the backward model is a numerical artifact and being so its effects279

should be carefully analysed. In this section, the backward integration accuracy is studied, as well280

as its sensitivity with respect to the choice of the diffusion coefficient. The errors are analysed281

calculating the L2 error norm at the end of one forward-backward integration relative to a typical282

one day model variation:283

Rerr =
‖x(0)− x̃(0)‖

< ‖x(t+∆t)−x(t)‖>
(15)284

where ∆t=1day and the brackets represent the empirical mean.285

Figure 1 shows the global error, Rerr, for different window sizes. The errors grow linearly with286

the window size for all variables. Temperature is the most affected variable, followed by sea level287

and velocities. Temperature errors exceed 18 times a typical one-day variation for the 30 days exper-288
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Fig. 1. Errors on the initial condition after one forward-backward model integration perfectly initialized and

without nudging. Red curves were obtained using the same diffusion coefficients as in the reference experi-

ment (νu,v

h =−8×1010m4/s and νt,s

h =−4×1011m4/s) and magenta curves were obtained using reduced

diffusion (νu,v

h =−8×109m4/s and νt,s

h =−8×1010m4/s). The abscissa represents the length of the time

window.

iment and 1.2 times for the 2 days. The use of reduced diffusion/viscosity coefficients reduces the289

errors to 6.8 and 0.16 times the one-day variation for 30 and 2 days experiments, respectively. Ve-290

locities errors were reduced by 50% for 30 days and 85% for 2 days, while ssh errors were reduced291

by 60% and 88% for 30 and 2 days, respectively.292

As shown on Fig. 2 velocity and temperature errors are depth-dependent. Whereas for velocity293

they are larger at the surface and decrease with depth, for temperature they are larger in the ther-294

mocline. In the cases for which the forward-backward integrations use the same diffusion/viscosity295

coefficients as in the reference simulation, the temperature errors at thermocline depths exceed 3296

times the typical one day variation for the 5 days experiments and reaches 15 times for 20 days ex-297

periments. Considering the velocities, errors are proportional to 4 one-day variations for the 5 days298

experiment and to 8 one-day variations for the 20 days experiments. For time windows of 10, 20 and299

30 days, velocities at the thermocline depths start to be influenced by temperature errors.300

Reduction of the diffusion/viscosity coefficients greatly reduced the errors especially in the ther-301

mocline for the temperature and at the surface for the velocity. It can be noted that when the diffusion302

coefficient is decreased the errors converge to a limit. This limit changes with respect to the window303

length and should be related to the diffusion required to stabilize the numerical method, which is of304

second order in our case, and hence oscillatory. Therefore, there is a compromise between the errors305

induced by the extra diffusion and errors due to spurious oscillations.306

Numerical errors were assessed by changing the model time step from 900s to 90s. The resulting307

errors (not shown) do not change, suggesting that the errors induced by the diffusion are domi-308
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Fig. 2. Vertical profiles of relative errors on the initial condition after one forward-backward model integration

without nudging. Each color refers to an experiment performed using the diffusion coefficient indicated in the

figures legend. Red curves were obtained using the same diffusion coefficients as in the reference experiment.

Top panel: temperature errors; bottom panel: zonal velocity errors. The length of the time window is indicated

in the title of each figure.
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Fig. 3. Sea level errors after one forward-backward model integration. The time window is of 10 days.

nant. On the one hand, this is important because the complete rewriting of the model’s code can be309

difficult, similarly to the adjoint model programming used by the 4Dvar, but on the other hand if310

the assimilation cannot control the diffusion errors it may represent a fundamental problem of the311

method when it is applied to non-reversible geophysical systems such as the ocean.312

Figure 3 shows the spatial structures of the sea level error for the 10 days experiment. The errors313

are highly variable in space, being larger along the main jet axis. This is probably due to the fact that314

the backward integration smooths the gradients and so the largest errors are found near the fronts.315

Therefore, the errors structures may be of high variability in space and time since they are state316

dependent.317

Figure 4 shows the surface kinetic energy spectrum calculated from the experiment employing318

the reference diffusion coefficient and a reduced diffusion coefficient. The backward integration319

introduces an extra diffusion, coarsening the effective model resolution, which is defined as the por-320

tion of the spectra for which there is a change in the spectrum slope. In the reference simulation the321

effective model resolution is estimated to be 190km, which is coherent with the ≈ 7×∆x estimation322

of Skamarock (2004).323

The longer the time window the greater the portion of the spectra affected. For the experiment324

employing the reference diffusion coefficient, the divergence between the true spectra and the spec-325

tra obtained from the backward integration is observed at 126, 314 and 627km for 5, 10 and 20 days326

experiments, while for the experiments considering a reduced diffusion coefficient there is almost327

no differences for the 5 days experiment, and the divergence is observed at 126 and 314km for the328

10 and 20 days experiments. If on the one hand using the reduced diffusion helps to keep the en-329

ergy distribution coherent with the true distribution, on the other hand it creates noise in the range330

of 126km to 25km. This confirms that there is a trade-off between the errors due to the excessive331

smoothing and the errors due to high frequency numerical modes.332

In this section we have seen that there are large backward-errors induced by over-diffusion.333

Therefore, short time windows with reduced diffusion coefficients would be preferable to be used334

in DA experiments. Two regions have to be cautiously analyzed: the surface and the thermocline.335
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Fig. 4. Kinetic energy mean power spectra calculated using the first layer velocity fields. Black curves represent

the “true“ initial condition power spectra; Red curves represent the power spectra calculated after one forward-

backward iteration without the nudging term and employing the reference diffusion coefficient; Magenta curves

represent the power spectra calculated after one forward-backward iteration without the nudging term and

employing a reduced diffusion coefficient. Top left: 5 days assimilation window. Top right: 10 days assimilation

window. Bottom: 20 days assimilation window. In the bottom abscissa the ticklabels stand for longitudinal

wave-number (rad/m) while in the top abscissa the ticklabels stand for the corresponding wavelengths in km

units.
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Surface layers are prone to feature errors due to their role on the wind energy dissipation while at336

the thermocline strong density gradients contribute to high diffusion rates.337

5 Data Assimilation experiments338

5.1 Prescription of the DBFN gain339

In this study the increments corresponding to the term K(xobs−H(x)) are calculated in two op-340

erations: first the increments of the observed variables are calculated using a prescribed weight and341

subsequently the increments of the other state variables are calculated using linear regression. More342

precisely, defining y=H(x) as the observed part of the state vector, the first step may be written as:343

δy=Θ(xobs−yb) (16)344

where the superscript b denotes the background field or the model field available from the last time345

step. The prescribed weight is given by:346

Θ=
σ2
m

σ2
m+γσ2

o

(17)347

where σ2
m is the mean spatial value of SSH variance calculated from the free model run, σ2

o is the348

observation error variance and γ is a parameter used to adjust the variance of the observation errors.349

When γ=1 the Eq.(17) for the weight Θ has the same form of the scalar Kalman gain (Gelb et al.,350

1974). For values greater than one, γ is an inflation factor, i.e. it increases the variance of the351

observation errors resulting in more weight given to the model in the Eq.(16).352

The use of the inflation factor is theoretically justified in the linear Kalman filtering context. In this353

case, it is well-known that the Kalman Filter provides the best linear unbiased estimator. Therefore,354

there is no need to use more than once the observations. Consequently, when one is iterating the355

Kalman Filter the inflation parameter should be used to avoide overfitting and the introduction of356

correlated errors in the system (Kalnay and Yang, 2010). In this study γ = 18, which means that357

theoretically the best solution would be reached in 9 iterations. However, since in this study the358

Kalman Filter equations are not fully used and the system is not linear, the γ parameter is used359

as a guide on how strong the model is nudge toward the observations. Indeed, the iterations are not360

limited to 9. The used values for the other parameters are σm =0.017m and σo =0.03m consistently361

with the perturbations added to the observations (see Sect 5.4).362

Then, the increments of the non-observed variables, δx, are calculated by using a regression363

equation of the form:364

δx= B̂
PLS

δy (18)365

where B̂
PLS

is the Partial Least Squares (PLS) regression coefficients which are described below.366

It is worth noting that in Sect 6 we also apply this update scheme to an ordinary direct nudging367
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experiment. In this case γ is equal to one.368

The PLS can be seen as an improvement to the Ordinary Least Square (OLS) regression. The most369

important difference between OLS and PLS is that the later assumes that the maximum information370

about the non-observed variables is in those directions of the observed space which simultaneously371

have the highest variance and the highest correlation with the non-observed variables.372

In the PLS description (Tenenhaus, 1998), Y ∈R
n×M is considered as the observed or predictor373

variables and X ∈R
n×N as the non-observed or response variables. In our notation n is the sample374

size and M and N are respectively the size of the state space of Y and X . Besides, Y and X are375

centered and have the same units. The PLS regression features two steps: a dimension reduction step376

in which the predictors from matrix Y are summarized in a small number of linear combinations377

called ”PLS components”. Then, that components are used as predictors in the ordinary least-square378

regression.379

The PLS as well as the principal component regression can be seen as methods to construct a380

matrix of p mutually orthogonal components t as linear combinations of Y :381

T =Y W , (19)382

where T ∈R
n×p is the matrix of new components ti =(t1i,...,tni)

T , for i=1,...,p, and W ∈R
M×p

383

is a weight matrix satisfying a particular optimality criterion.384

The columns w1,...,wp of W are calculated according to the following optimization problem:385

wi = argmaxw{cov(Y w,X)2} (20)386

subject to wT
i wi =1 and wT

i Y
TY wj =0 for j=1,...,i−1.387

The PLS estimator B̂
PLS

is given by:388

B̂
PLS

=W (W TY TY W )−1W TY TX (21)389

An immediate consequence of Eq. (21) is that when W = I the Ordinary Least Squares solution is390

obtained.391

The number of components p is chosen from cross-validation. This method involves testing a392

model with objects that were not used to build the model. The data set is divided in two contiguous393

blocks; one of them is used for training and the other to validate the model. Then the number of394

components giving the best results in terms of mean residual error and estimator variance is sought.395

The weight Θ and the regression model B̂
PLS

are kept constant over the assimilation cycles396

and the correction steps (16) and (17) are applied at the end of the loop of time. Thus, our updat-397

ing scheme can be seen as a rough approximation of the two steps update for EnKF presented by398

Anderson (2003).399
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5.2 The 4Dvar background term configuration400

The 4Dvar considers a background term of the form:

Jb =
1

2
(δxk

0)
TB−1(δxk

0)

where B is the background error covariance matrix. This term is also known as a regularization term401

in the sense of Tikhonov. It is specially important when there is not enough observation to determine402

the problem.403

The B matrix is supposed to model the spatial covariance of the background errors of a given vari-404

able as well as the cross-covariance between the errors of different variables. Since the state space is405

too big, it is impossible to store the entire covariance matrix. Therefore, Derber and Bouttier (1999)406

have proposed the decomposition of the multivariate problem into a sequence of several univariate407

problems. This is accomplished by decomposing the variables into a balanced component and an408

unbalanced component. This is done to all variables but one should be kept without decomposition409

so as we can define the balanced and unbalanced components of the other variables. We used the410

decomposition proposed by Weaver et al. (2005) for which the temperature is the “seed“ variable and411

then thanks to some physical constraints such as the geostrophic balance, the hydrostatic balance and412

the principle of water mass conservation all other state variables may be decomposed into a balanced413

(B) component and an unbalanced (U) component. Thus, each model variable, namely temperature414

(temp), salinity (salt), sea surface height (η), zonal velocity (u) and meridional velocity (v), may415

be written as:416

temp = temp (22)417

salt = saltB+saltU =Gsalt,temp(temp)+saltU (23)418

η = ηB+ηU =Gη,ρ(ρ)+ηU (24)419

u = uB+uU =Gu,ρ(ρ)+uU (25)420

v = vB+vU =Gv,ρ(ρ)+vU (26)421

(27)422

where423

ρ = Gρ,temp(temp)+Gρ,salt(salt) (28)424

p = Gp,p(ρ)+Gp,η(η) (29)425

with ρ the density and p the pressure.

Then, since a covariance matrix may be written as the product of variances and correlations, B may

be expressed as:

B=GΛ
TCΛGT
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where Λ is a diagonal matrix of error standard deviation, for which the climatological standard426

deviation are the entries, and C is an univariate correlation matrix modeled using the generalized427

diffusion equation (Weaver and Courtier, 2001; Weaver et al., 2005). In this method the user should428

chose typical decorrelation lengths. In this study the horizontal decorrelation length is set to 400km429

and the vertical decorrelation length is set to 1500m. In addition, the 4Dvar is configured to perform430

one outer-loop and a maximum of thirty inner-loop for each assimilation cycle.431

432

5.3 Assimilation cycle433

One assimilation cycle is defined as the process of identifying an initial condition through the it-434

erative process followed by a forecast spanning the assimilation window, which provides a new435

background to the next assimilation cycle.436

The objective of cycling is to provide a background state for the next assimilation window that437

is closer to the true state than the very first background field. This usually reduces the number of438

iterations needed by the algorithms to reach convergence.439

The length of the Data Assimilation window (DAw) used in the reference experiments (Sect 6.1) is440

10 days. For the sensitivity experiments presented in the Sect 6.2 the lengths of the the assimilation441

window are 5 days and 30 days.442

5.4 Observation network443

In this article, every four days an observation network simulating Jason-1 satellite density sample is444

available. The data is perturbed with white Gaussian noise with standard deviation equals to 3cm.445

With this observation network a new set of 5000 observations is available every four days.446

The data assimilation problem we proposed to solve is to recover the full model state at the begin-447

ning of the assimilation window. The model state space is composed of five variables: sea surface448

height (η), meridional and zonal velocities (u and v), temperature and salinity (temp and salt).449

Since we have a horizontal mesh of size 81 x 121 and 11 vertical layers the total size of the state450

space is 441045. Therefore, the problem is undetermined, since the observations represent only a451

1.1% of the total state space. This means that the background term, and accordingly the B matrix452

for the 4Dvar and the regression model B̂
PLS

for the DBFN, have quite a strong importance on the453

method performances since they project the increments of the observed variables onto the numerous454

non-observed variables.455

To study at which extent the results are depend on the amount of assimilated observations and on456

the first guess, in Sect 6.2.2 two additional experiments assimilating complete daily fields of SSH457

are conducted: one using the same first guess of the experiments of Sect 6.1, and another using a458

perturbed initial condition. In despite of the fact that the problem continues to be underestimated,459

in this case the SSH analysis is no more dependent on the SSH spatial covariance, and the unstable460
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Fig. 5. Figure shows the gradient of the cost function after each inner iteration (left) and the reduction of the

relative error for zonal velocity for the DBFN experiment (right).

modes associated with the SSH dynamics are certainly observed. The analysis produced for the461

other state vector variables remains dependent on the matrices B for the 4Dvar case and B̂PLS for462

the DBFN case.463

6 Data Assimilation Results464

6.1 Reference experiment465

In this section the results produced by the DBFN, the 4Dvar method, the Ordinary Nudging (ONDG)466

and the control experiment are presented. All assimilation methods include the five prognostic vari-467

ables in the state vector. This is possible thanks to the PLS regression method in the case of the468

DBFN and ONDG and thanks to the multivariate balance operator G in the case of the 4Dvar ex-469

periments. The diffusion and viscosity coefficients used in the DBFN experiments are those which470

produced the smaller errors in the experiments without Nudging, as reported in Sect 4.471

First the minimization performance of the 4Dvar implementation is analysed. Figure 5 shows the472

reduction of the cost function gradient for the 4Dvar and the reduction of the relative error of the473

zonal velocity for the DBFN, both of them for the first assimilation cycle. 4Dvar takes 26 iterations474

to approximately achieve the optimality condition ∇J =0. This represents 3 times the number of it-475

erations required by the DBFN to converge, i.e., after which the errors cease to decrease. Moreover,476

the 4Dvar numerical cost is more than 3 times the DBFN cost since one execution of the adjoint477

model costs four times the cost of the direct model in terms of CPU time.478

We note that the minimum error for the DBFN is reached after 9 iterations. This is quite consis-479

tent with our choice γ=18, since theoretically it allows the use of the same set of observations for480

18 times.481
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At this point we find appropriate to present the fact that the trajectories of the forward and back-482

ward nudging are very close to each other at convergence, which justifies the qualitative explanation483

of the DBFN algorithm given by Eqs. (6) and (7). This fact can be seen in the Fig 6 that shows the484

forward and backward surface zonal velocity mean trajectories at convergence as well as the surface485

zonal velocity trajectories for a point located on the unstable jet, at 34o North and 52.6o West.486

487
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Fig. 6. Black curves represent the forward and backward surface zonal velocity mean trajectories at convergence

and red curves the forward and backward surface zonal velocity trajectories at convergence for a point located

at 34o North and 52.6o West, which is located on the unstable jet.

Figure 7 shows the root mean squared (rms) error for the control experiment (without assimi-488

lation), the experiment using the direct nudging with PLS regression (ONDG), the DBFN and the489

4Dvar. The DBFN errors for the velocity and SSH converge to their asymptotic values after the490

first assimilation cycle while for ONDG and 4Dvar errors stop decreasing after 100 and 200 days,491

respectively. This is a benefit of the iterations performed by the DBFN when model and data are492

quite different. Among the experiments conducted, the DBFN produced the smallest errors for all493

variables, except for the zonal velocity, for which the 4Dvar has slightly smaller errors. The ONDG494

also showed good performance, but with errors larger than the DBFN and 4Dvar errors.495

With respect to the vertical error (Fig. 8), the DBFN and the ONDG performed better for the496

upper ocean than 4Dvar. Clearly, the PLS also corrects the deep ocean velocity, but less accurately497

than 4Dvar. The first error mode is the barotropic one, i.e. it has the same sign over all depths, and498

accounts for 97% of the error variability for 4Dvar, 96% and 93% for DBFN and ONDG, respec-499
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Fig. 7. The figure shows errors of the SSH (top panel), the zonal velocity (middle panel) and the temperature

(bottom panel).
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Fig. 8. Vertical profiles of rms error in zonal velocity (Left panel) and first (middle panel) and second (right

panel) eof error modes calculated using forecast from day 200 to day 720.

tively. Although the first mode is the barotropic one for all methods, the 4Dvar barotropic mode of500

error is out of phase with respect to the PLS barotropic mode. This reflects the better performance501

of the 4Dvar for the deep ocean and the better performance of the DBFN and ONDG for the upper502

ocean.503

The second mode, which accounts for almost all the remaining variability, has a sign inversion504

with depth and is found especially over the main axis of the jet. In this region the deep ocean veloc-505

ities are overestimated due to spurious covariances between the SSH and the deep ocean velocities.506

The way both methods correct the model depends on the B matrix in the 4Dvar algorithm and507

on the regression model B̂PLS in the DBFN. It means that results may be different if another ap-508

proximation of B and another model regression model are used. Perhaps the main conclusion of509

this comparison is that the DBFN, which is easier to implement and cheaper to execute, can produce510

results similar to 4Dvar. Also, it is shown that iterations is an important aspect of the method. Iter-511

ations compensate for the lack of a priori information on the model errors as well as filter out noise512

in observations. The latter must be connected to the diffusive character of the algorithm. Moreover,513

the iterations allows us to put information from the observations into the model, without causing514

initialization problems since the nudging gain can be taken smaller than the one used for the direct515

nudging due to the possibility of using more than once the same set of observations.516

517
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6.2 Sensitivity experiments518

6.2.1 Length of the DAw519

Sensitivity tests with respect to the length of the DAw are presented. As we have shown in Sect 4,520

the accuracy of the backward model is inversely proportional to the length of the DAw. Therefore,521

in this section we present experiments using a DAw of five days and thirty days. The experiments522

configuration is similar to those presented in the previous section.523

Figure 9 shows the evolution of the rms errors for the zonal velocity and temperature during the524

DBFN iterations over the first assimilation cycle, for three DAw (including the ten day-window used525

previously). When considering only one iteration, the best results were obtained with the 30 days-526

window experiment. This is a consequence of the asymptotic character of the Nudging method: the527

longer the assimilation window, the more observations accounted for, the smaller the error. This528

changes when several iterations are considered. The observed divergence for the 30 days-window is529

due to the errors induced by the over-diffusion that induce great increments, which by their nature,530

are not modelled by the ensemble of model states used to construct the regression model.531

532

Fig. 9. Evolution of the rms errors for the zonal velocity and temperature during the DBFN iterations over the

first assimilation cycle, for three DAw: 5, 10 and 30 days.

Figure 10 shows the rms error for the DBFN and 4Dvar experiments for three DAw: 5, 10 and533

30 days. The methods exhibited comparable performance depending on the length of the DAw. For534

the DBFN the 5 and 10 days DAw provided better results than the 30 days window, while for the535

4Dvar the 30 days window provided the best estimation in terms of rms error. The DBFN and 4Dvar536

experiments using the 30 and 5 days DAw, respectively, failed to identify the initial conditions since537

their SSH rms errors are greater than the observation error standard deviation. The poor performance538

of the 4Dvar for the 5 days DAw is related to spurious increments due to the fact that in one assim-539

ilation window there is only one set of observation available. If this set is at the end of the window540

this can complicate the minimization process and the iterations may stop before convergence.541

Figure 11 shows the time evolution of vertical profiles of horizontally layer-wise averaged rms542
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error of zonal velocities for the DBFN and 4Dvar experiments. The 4Dvar profits of the longer DAw543

to spread the observation to the 3-dimensional variables. This is done by the iterations of the direct544

model and by the B matrix. For the DBFN experiments, after one year of data assimilation the545

errors in the deep ocean start to grow. This is due to the high variance of the PLS estimator for deep546

layers. The problem becomes more evident on the second year because at this stage the observa-547

tions are farther from the model states used to construct the regression coefficients. Therefore, this548

mean that this behavior is not intrinsic to the DBFN algorithm and its diffusive aspects, but due to549

our implementation. Ideally, the regression model should evolve in time, similarly to the Kalman550

Filter scheme. The 4Dvar has good performance at the deep ocean thanks to the use of a vertical551

localization with a length scale of 1500m.552

553
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Fig. 10. RMS errors on SSH (top panel), zonal velocity (middle panel) and temperature (bottom panel) from

DBFN and 4Dvar experiments with DAw of 5, 10 and 30 days.
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Fig. 11. Time evolution of vertical profiles of horizontally layer-wise averaged rms error of zonal velocities for

the DBFN (top panels) and 4Dvar (bottom panels) experiments. Units are in (m/s).

Next we investigate which scales are better represented by each assimilation method. This is done554

by comparing the surface kinetic energy spectrum and the deep ocean kinetic spectrum produced by555

each method. The Fig.(12) shows that the effective resolution of the model is not affected by the556

diffusive character of the DBFN algorithm. It is clear that there is a reduction of the energy for the557

scales close to the grid scale, but the energy contained in scales greater than 7×∆x is not affected.558

It means that the diffusion-induced errors presented in Sect 4 are ”controlled“ by the assimilation of559

sea surface height observations.560

There is no great difference between the DBFN and 4Dvar surface spectrum for the assimilation561

windows shorter than 30 days, which once more proves the reliability of the DBFN for the assim-562

ilation of oceanic observations. The energy spectra for the deep ocean velocities produced by the563

DBFN contains more energy than the true spectrum independently of the used DAw. This confirms564

that the deep ocean velocity errors are due to the high variance of the PLS regression model.565

566
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Fig. 12. Kinetic energy mean power spectra calculated using the first layer (top) and a layer at 2660m (bottom)

and using the 650 days of the assimilation experiments using the DBFN (left) and the 4Dvar (right). Blue

curves represent the “true“ power spectra; Green curves represent the power spectra calculated for the 5 days

DAw; Red curves represent the power spectra calculated for the 10 days DAw and Black curves represent the

power spectra calculated for the 30 days DAw. In the bottom abscissa the tick-labels stand for longitudinal

wave-number (rad/m) while in the top abscissa the tick-labels stand for the corresponding wavelengths in km

units.

6.2.2 Observations density and first guess567

Finally, two new experiments similar to the one presented in the Sect 6.1 and assimilating complete568

daily fields of SSH are presented. The first one uses the same initial condition of the previously569

presented experiments and its goal is to investigate the role of the amount of assimilated observa-570

tions on the results. In despite of the fact that the problem continues to be underestimated, in this571

case the SSH analysis is no more dependent on the SSH spatial covariance, and the unstable modes572

associated with the SSH dynamics are certainly observed. The analysis produced for the other state573

vector variables remains dependent on the matrices B for the 4Dvar case and B̂PLS for the DBFN574

case.575

Fig.13 shows the rms error for the SSH and zonal velocity. The results are quite similar to the576

results presented in Sect 6.1 with a lower rms error for all variables for both methods. Fig.14 shows577

the initial condition error for the zonal velocity produced by both methods for the satelite-like obser-578
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vations and the complete observations experiments. The figure reveals that while in some places the579

inclusion of more observations helps to reduce the error in other places it increases the error. This580

means that although much more information could be extracted from the new set of observations,581

which decreases the global rms errors, the solution remains dependent on the covariance structures582

contained on B and B̂PLS .583

584

Fig. 13. RMS errors of SSH (top panel) and zonal velocity (bottom panel) from the DBFN and 4Dvar exper-

iments with DAw of 10 days and assimilating complete daily fields of SSH. Dashed lines concern the results

from the perturbed experiments.
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Fig. 14. Zonal velocity error (analysis - truth) for the first assimilation cycle from DBFN experiments (top pan-

els) and 4Dvar experiments (bottom panels). Right panels show the results obtained by assimilating complete

daily fields of SSH and the left panels the results from the experiments presented in the Sect 6.1.

The second experiment is initialized with an initial condition that is different from the one used585

previously. We call this experiment as perturbed experiment. In this case, the objective is to analyze586

the sensitivity of the solution to the choice of the first guess. Thus, only one assimilation cycle is587

performed.588

Fig.15 shows the initial condition error for the SSH produced by both methods for the perturbed589

and non-perturbed experiments. Since the perturbed initial condition is not much different from the590

unperturbed one, the analysis errors have the same structure in both cases, but they differ from one591

method to another.592

The DBFN produced smaller differences between the perturbed and non-perturbed experiences593

than the 4Dvar for the entire domain. A remarkable difference between the errors produced by the594

4Dvar and the DBFN is the error structure in the western boundary that is produced by the DBFN,595

which is positive northward 34oN and negative southward 34oN . The presence of this structure is596

related to the fact that the DBFN analysis is the final condition produced by the backward model. The597

same pattern was also observed in the Fig. 3 that shows the backward error for the SSH variable.598

Since this region is a stable region, e.g. there are no meanders and vortices produced there, this599

suggests that the remaining errors produced by the DBFN project mostly onto the stable manifold600

as suggested by Auroux (2009). This should partially explain the other differences between the601

remaining errors produced by both methods as well as the better performance of the DBFN in the602

first assimilation cycle since the DBFN naturally corrects the forward unstable errors during the603

backward integration. The rms error of the identified trajectory for the perturbed experiment may be604
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seen in Fig. 13 as the green (4Dvar) and black (DBFN) dashed curves. The results clearly show that605

for the configured experiments the DBFN is much less sensitive to the first guess than the 4Dvar.606

The small sensitivity of the DBFN to the first guess is in accordance with the theoretical result607

about the BFN presented by Auroux and Blum (2005) that states that for a linear system and under608

complete observation condition the identified trajectory is independent of the first guess. To what609

extent this theoretical result may be extended to nonlinear systems assimilating an incomplete set of610

observations, as the one studied in this article, we do not know. The results presented here suggest611

that the use of the DBFN may be advantageous in situations in which the system passes by strong612

changes resulting in a background (first guess) that is far from the true state.613

Fig. 15. SSH error (analysis - truth) from DBFN experiments (top panels) and 4Dvar experiments (bottom

panels). Right panels show the results obtained from the perturbed experiment.

7 Conclusions and perspectives614

This study used the NEMO general circulation model in a double gyre configuration to investigate615

the Diffusive Back and Forth Nudging performance under different configurations of the data assim-616

ilation window, observation network and initial conditions, and to compare it with 4Dvar.617

It has been shown that the reliability of the backward integration should be carefully examined618

when the BFN/DBFN is applied to non-reversible systems. This should support the choice of the619

assimilation window and identify whether the available observations are sufficient to control the er-620

rors induced by the non-reversible terms of the model equations. In this article we have shown that621

the DBFN might be used for the assimilation of realistically distributed ocean observations, despite622

the limited accuracy of the backward integration. Improving the backward integration would further623

improve the DBFN performance and make possible the use of longer assimilation windows.624

Our results show that the DBFN can produce results comparable to 4Dvar using lower computa-625
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tional power. This is because DBFN demands less iterations to converge and because one iteration626

of 4Dvar corresponds to one integration of the tangent linear model, one integration of the adjoint627

model, which costs four times more than one standard model integration, plus the cost of minimizing628

the cost function, while the DBFN costs twice the integration of the nonlinear model.629

The sensitivity tests show that for the 4Dvar long assimilation windows should be preferably used630

because it favors the propagation of the sea surface height information to the deep layers. For the631

DBFN, short windows are preferable because it reduces the effect of the diffusion-induced errors. In632

future works it would be beneficial to account for this errors when constructing the nudging gain.633

Moreover, the results show that for assimilation systems assimilating a much reduced number of634

observations with respect to the size of the state space, such as ocean data assimilation systems usu-635

ally do, the set-up of the covariance matrix is a key step since this matrix propagates the information636

from the observed variables to the non-observed variables. In addition, although in this study the637

methods have been configured with different covariance matrices, the results show that the DBFN is638

less sensitive to the background field than the 4Dvar.639

Finally, it appears that the DBFN algorithm is worth being further explored both on theoretical640

and practical aspects, especially those related to the optimization of the matrix K and applications641

to a more realistic configuration.642
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