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Institute of Oceanography (MIO), France
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Abstract. The Diffusive Back and Forth Nudging (DBFN) is an easy-to-implement iterative data1

assimilation method based on the well-known Nudging method. It consists in a sequence of forward2

and backward model integrations, within a given time window, both of them using a feedback term3

to the observations. Therefore in the DBFN, the Nudging asymptotic behavior is translated into an4

infinite number of iterations within a bounded time domain. In this method, the backward integra-5

tion is carried out thanks to what is called backward model, which is basically the forward model6

with reversed time step sign. To maintain numeral stability the diffusion terms also have their sign7

reversed, giving a diffusive character to the algorithm. In this article the DBFN performance to con-8

trol a primitive equation ocean model is investigated. In this kind of model non-resolved scales are9

modeled by diffusion operators which dissipate energy that cascade from large to small scales. Thus,10

in this article the DBFN approximations and their consequences on the data assimilation system set-11

up are analyzed. Our main result is that the DBFN may provide results which are comparable to12

those produced by a 4Dvar implementation with a much simpler implementation and a shorter CPU13

time for convergence. The conducted sensitivity tests show that the 4Dvar profits of long assimila-14

tion windows to propagate surface information downwards, and that for the DBFN, it is worth using15

short assimilation windows to reduce the impact of diffusion-induced errors.16
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1 Introduction18

The well-known Nudging method is based on the second Newton axiom and consists in adding a19

forcing term in the right hand side of a given system in order to gently push the model toward a20

prescribed value. The first appearance of nudging in the geophysical literature was in 1974 (Anthes,21

1974). In this work the authors proposed the use of nudging to mitigate initialization problems in at-22

mospheric models. However, a similar algorithm had already been developed by Luenberger (1966).23

This algorithm has been called ”Luenberger observer” or ”asymptotic estimator”, since under lin-24

earity and observability hypothesis the estimator error converges to zero for time tending to infinity.25

It is quite interesting to note that there is no mention of the Luenberger observer in the geophysical26

literature except in the recent work of Auroux and Blum (2005). More recently, a comprehensive27

study on the nudging method and its variants was produced by Blum et al. (2008) and Lakshmivara-28

han and Lewis (2012).29

The first appearance of a successful application of nudging to ocean Data Assimilation (DA) was30

in 1992 in a work that assimilated sea surface height derived from satellite measurements into a31

quasi-geostrophic layered model (Verron, 1992). Since then, the method has been successfully ap-32

plied to several oceanographic numerical problems such as the estimation of boundary conditions33

(Marchesiello et al., 2001; Chen et al., 2013), downscaling (Li et al., 2012), and other DA problems34

(Verron, 1992; Haines et al., 1993; Blayo et al., 1994; Lewis et al., 1998; Killworth et al., 2001;35

Thompson et al., 2006). Concerning applications to DA problems, the weights given to the model36

and the observations are generally not based on any optimality condition, but are rather scalars or37

Gaussian-like functions constructed based on physical assumptions or empirical considerations. The38

appeals of this method are the simplicity of implementation in complex numerical models, the low39

computational power required and the time smoothness of the solution.40

The increasing availability of computing power has allowed to use more advanced data assimi-41

lation methods. In general, these methods use information on the model statistics and observations42

errors to weight the model-observations combination. Two of these methods that are widely used by43

prediction centers are the ensemble Kalman filter- EnKF (Evensen, 1994) and its variations (Pham,44

2001; Hunt et al., 2007), and the four dimensional variational method 4Dvar (Le Dimet and Tala-45

grand, 1986; Courtier et al., 1994). For the first, the numerical costs are due to the propagation of the46

ensemble, usually formed by tenths of members, to calculate the forecast. For the second, the costs47

are due to the need of minimizing a cost function in a very large state space (108 variables). This48

requires several iterations of the minimization algorithm, which involves several integrations of the49

direct and adjoint models.50

However, even with the growing interest in these complex techniques built on solid theoretical51

arguments, nudging has not been left aside. Recent works have used nudging along with more52

advanced methods such as Optimal interpolation (Clifford et al., 1997; Wang et al., 2013), EnKF53

(Ballabrera-Poy et al., 2009; Bergemann and Reich, 2010; Lei et al., 2012; Luo and Hoteit, 2012),54
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4Dvar (Zou et al., 1992; Stauffer and Bao, 1993; Vidard et al., 2003; Abarbanel et al., 2010) or55

particle filters (Luo and Hoteit, 2013; Lingala et al., 2013) to extract the best of each method. In56

the particular case of the hybridization with the EnKF proposed by Lei et al. (2012), the resulting57

algorithm takes the advantage of the dynamical propagation of the covariance matrix from the EnKF58

and uses nudging to mitigate problems related to the intermittence of the sequential approach, which59

among other things entails the possible discarding of some observations.60

Recently, Auroux and Blum (2005) revisited the nudging method and proposed a new observer61

called Back and Forth Nudging (BFN). The BFN consists in a sequence of forward and backward62

model integrations, both of them using a feedback term to the observations, as in the direct nudg-63

ing. The BFN integrates the direct model backwards in time avoiding the construction of the adjoint64

and/or tangent linear models needed by 4DVar. Therefore, it uses only the fully non-linear model to65

propagate information forward and backward in time. The nudging gain, which has an opposite sign66

with respect to the forward case, has a double role: push the model toward observations and stabilize67

the backward integration, which is especially important when the model is not reversible.68

The BFN convergence was proved by Auroux and Blum (2005) for linear systems of ordinary69

differential equations and full observations, by Ramdani et al. (2010) for reversible linear partial dif-70

ferential equations (Wave and Schrödinger equations), by Donovan et al. (2010) and Leghtas et al.71

(2011) for the reconstruction of quantum states and was studied by Auroux and Nodet (2012) for72

non-linear transport equations. The BFN performance in numerical applications using a variety of73

models, including non-reversible models such as a Shallow Water (SW) model (Auroux, 2009) and74

a Multi-Layer Quasi-Geostrophic (LQG) model (Auroux and Blum, 2008), are very encouraging.75

Moreover, by using a simple scalar gain, it produced results comparable to those obtained with76

4DVar but with lower computational requirements (Auroux, 2009; Auroux et al., 2012).77

In this article we present for the first time a BFN application to control a primitive equation78

ocean model. The numerical model used is NEMO (Madec, 2008), currently used by the French op-79

erational center, Mercator Océan (http://www.mercator-ocean.fr/fre), to produce and deliver ocean80

forecasts. The well-known idealized double gyre configuration at eddy-permitting resolution is used.81

This configuration has the advantage of being simple from the geometry and forcings point of view82

at the same time it reproduces most of features found in a middle latitude ocean basin.83

The BFN application to control a primitive equation ocean model represents a new challenge84

due to the increased model complexity. Among the differences between NEMO and the simplified85

oceanic models used by Auroux and Blum (2008) and Auroux (2009) stand out the more complex86

relationship between the variables in the former since no filtering technique is used in the derivation87

of the physical model (except the Boussinesq approximation which is also considered by the SW88

and LQG models), and the inclusion of an equation for the conservation of the thermodynamical89

properties. The latter requires the use of a nonlinear state equation to couple dynamical and thermo-90

dynamical variables.91
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Furthermore, the vertical ocean structure represented by NEMO is more complex than the verti-92

cal ocean structure represented by the SW and LQG used by Auroux and Blum (2008) and Auroux93

(2009). This is because the SW model has no vertical levels and the LQG was implemented with94

only 3 layers, while in this article NEMO is configured with 11 vertical layers. In addition, NEMO95

considers vertical diffusion processes, mostly ignored by the LQG model. Vertical diffusion plays an96

important role in maintaining the ocean stratification and meridional overturning circulation, which97

is directly related to the transport of heat in the ocean. Moreover from the practical point of view,98

the diffusion/viscosity required to keep the NEMO simulations stable is by far greater than for the99

SW or LQG at the same resolution.100

These issues call into question the validity of the approximations made by the BFN under realistic101

conditions. Thus, our primary objective is to study the possibility of applying the BFN in realistic102

models and evaluate its performance compared to the 4Dvar. This appears as being the next logical103

step before using the BFN to assimilate real data.104

This article is organized as follows. In Sect 2 the BFN and the 4Dvar are described. Section 3105

describes the model physics and the model set-up. Section 4 discusses some practical aspects of106

the backwards integration. Section 5 presents the BFN and the 4Dvar set-up and the designed data107

assimilation experiments. Finally, the data assimilation results are presented in the Sect 6, on which108

we discuss the impact of the length of the data assimilation window on the method performances.109

2 Data Assimilation Methods110

In this section the Back and Forth Nudging (BFN) is introduced and the 4Dvar used to assess the111

BFN performance is briefly described.112

2.1 The Back and Forth Nudging113

The conventional nudging algorithm consists in adding a forcing term (feedback term) to the model114

equations, proportional to the difference between the data and the model at a given time. More115

generally, given a model described by a set of ordinary equations (or discretized partial differential116

equations), nudging consists in adding to them the forcing termK(xobs−H(x)):117

dx

dt
=F(x)+K(xobs−H(x)) (1)118

where x represents the state vector, F is the model operator, H is the observation operator allow-119

ing one to compare the observations xobs(t) to the corresponding system state H(x), and K is the120

nudging gain matrix. In this algorithm the model appears as a weak constraint. The feedback term121

changes the dynamical equations and forces the state variables to fit the observations as well as pos-122

sible.123

In the linear case, i.e. when F and H may be written as matrices F and H , and in the absence124

of noise in the system, nudging is nothing else than the Luenberger observer (Luenberger, 1966). In125
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this case, and assuming that the observability of the pair (F ,H) holds, there is a class of possible126

values ofK that guarantees the estimator convergence when t→∞ (Gelb et al., 1974). This should127

be one possible explanation why nudging usually works quite well and the converged state is not128

strongly affected by the choice of K. However, when constructing K (which units is s−1), the aim129

is to obtain an estimator response faster than the time scale of the studied processes.130

The BFN is an iterative algorithm which sequentially solves the forward model equations with a131

feedback term to the observations (Eq. 1) and the backward model equations with an opposite sign132

for the feedback term. The initial condition of the backward integration is the final state obtained133

after integration of the forward nudging equation. At the end of each iteration a new estimation of134

the system’s initial state is obtained. The iterations are carried out until convergence is reached.135

The BFN novelty with respect to conventional nudging methods is the model integration back-136

ward in time. This allows to recover initial conditions as well as to use more than once the same137

observations set. Consequently, the BFN may be seen as a sub-optimal iterative smoother.138

Under the hypothesis of a linear model a variational interpretation is possible. In this case, if we139

choose K = kHTR−1, where R is the observation error covariance matrix, and k is a scalar, the140

solution of the estimation problem is a compromise between the minimization of the system’s energy141

and the minimization of the distance between the data and the model (Auroux, 2009).142

However, the backward integration is problematic when the model is diffusive or simply not re-143

versible. In the case of ocean models, there are two main aspects requiring the inclusion of diffusion:144

i) the control of numerical noise, and ii) the modeling of sub grid-scale processes, i.e. to parameter-145

ize the energy transfer from explicitly resolved to non-resolved scales. Indeed, diffusion naturally146

represents a source of uncertainty in ocean forecasts, even for the purely forward model, and has147

been investigated from the point of view of the optimal control theory in Leredde et al. (1999).148

To address the problem of the backward model instability in this article the Diffusive Back and149

Forth Nudging-DBFN (Auroux et al., 2011) is used. In this algorithm the sign of the diffusion term150

remains physically consistent and only the reversible part of the model equations are really solved151

backward. Practical consequences of this assumption are analysed in Sect 4. A similar solution was152

proposed by Pu et al. (1997) and Kalnay et al. (2000) to stabilize their Quasi-Inverse Linear model.153

To describe the DBFN algorithm, let us assume that the time continuous model satisfies dynamical154

equations of the form:155

∂x

∂t
=F(x)+ν∆x, for 0<t<T, (2)156

with an initial condition x(0) =x0, where F denotes the nonlinear model operator without diffusive157

terms, ν is a diffusion coefficient and ∆ represents a diffusion operator. If nudging is applied to the158

forward system (2) it gives:159

∂xk
∂t

= F(xk)+ν∆xk+K(xobs−H(xk)) (3)160

xk(0) = x̃k−1(0), 0<t<T,161
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where k ∈N≥1 stands for iterations. Nudging applied to the backward system with the reversed162

diffusion sign gives:163

∂x̃k
∂t

=F(x̃k)−ν∆x̃k−K′(xobs−H(x̃k)) (4)164

x̃k(T ) =xk(T ), T > t> 0.165

The system composed by equations (3) and (4) is the basis of the DBFN algorithm. They are iterated166

until convergence.167

Therefore, one important aspect of the DBFN algorithm is the convergence criterion. Ideally,168

at convergence the nudging term should be null or small comparable to the other equation terms.169

Otherwise, when the nudging is switched off, which is the case in the forecast phase, the system170

may return to a state close to the background state or to a state which is not consistent to the one at171

convergence. The convergence is calculated as:172

‖xk(t= 0)−xk−1(t= 0)‖
‖xk−1(t= 0)‖

≤ ε, (5)173

where ‖•‖ is the L2 norm, and the choice for ε= 0.005 is based on sensitivity tests (not presented174

in this article).175

IfK′ =K and the forward and backward limit trajectory are equal, i.e x̃∞=x∞, then taking the176

sum between Eqs.(3) and (4) shows that x∞ satisfies the model equations without diffusion:177

∂x∞
∂t

=F(x∞) (6)178

while taking the difference between Eqs.(3) and (4) shows that x∞ satisfies the Poisson equation:179

∆x∞=−K
ν

(xobs−H(x∞)) (7)180

which represents a smoothing process on the observations for which the degree of smoothness is181

given by the ratio ν
K (Auroux et al., 2011). We call attention to the fact that the convergence of the182

BFN algorithm for transport equations exists only for the linear viscous transport equation and for183

the non-linear inviscid transport equation under strong observability conditions (Auroux and Nodet,184

2012). Therefore, we have no guarantee that the iterations are convergent and that the forward and185

backward trajectory are the same at convergence for a Primitive Equation model. Nevertheless,186

Eqs.(6) and (7) give an idea about how the DBFN works and about a possible relationship between187

the solution at convergence and the observations.188

The description of the usedK matrix is given in the Sect (5.1).189

2.2 Four Dimensional Variational Method - 4DVar190

Variational methods minimize a cost function that measures the distance between the estimated191

state and the available observations. Let us assume that observations are available at every instant192

(ti)1≤i≤N . Given a first guess xb of the initial state, the 4DVar algorithm will find an optimal initial193
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condition that minimizes the distance between the model trajectory and the observations in a given194

assimilation window. This optimal state is found by minimizing the following cost function:195

J(x0) =
1

2
(x0−xb)TB−1(x0−xb)196

+
1

2

N∑
i=0

(Hi[M0,i(x0)]−yi)TR−1i (Hi[M0,i(x0)]−yi) (8)197

whereB is the background error covariance matrix andM0,i represents the model integration from198

time t0 to time ti. Ri,Hi and yi are the observations error covariance matrix, the observation199

operator and the available observations at time ti, respectively.200

The optimal initial state is found by solving:201

∇J(xa(t0)) = 0 (9)202

The calculation of this gradient is done using the adjoint method proposed by Lions (1971) and203

brought to the meteorological context by Le Dimet and Talagrand (1986).204

If H or M are nonlinear, the solution of the problem is not unique, i.e. the functional (8) may205

have multiple local minima, and the minimization procedure may not stop at the global minimum. To206

overcome this problem, Courtier et al. (1994) proposed to solve a sequence of quadratic problems,207

expecting this sequence would converge to the solution of the problem given by (8) and (9). This208

algorithm is called the incremental 4Dvar. In this case, the cost function will not be minimized209

with respect to the initial state but with respect to an increment δx0 defined by x0 =xb+δx0. The210

operatorsH orM are linearized in a neighborhood of xb as:211

M0,i(x
b+δx0)≈M0,i(x

b)+M0,iδx0 ∀i (10)212

Hi(xb+δx0)≈Hi(xb)+Hiδx0 ∀i (11)213

and the new cost function is given by:214

J(δx0) =
1

2
δxT0B

−1δx0 +
1

2

N∑
i=0

(HiM0,iδx0−di)TR−1i (HiM0,iδx0−di) (12)215

where di =yi−Hi(M0,i(xb)) is called the innovation vector. It is possible that after some iterations216

of the minimizer the increments become too large and a new linearization of H andM should be217

done. This gives rise to what is called the inner loop and outer loop iterations. The algorithm218

implemented in NEMO, called NEMOVAR (Mogensen et al., 2009), uses this technics. It can be219

summarized as follows:220
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–Initialisation : x0
0 =xb

–While k≤ kmax or ‖δxa,k0 ‖>ε (Outer Loop)

Do

•dki =yi−Hi(M0,i(x
k
0))

•Search the δxa,k0 that minimises (Inner Loop):

J(δxk0) =
1

2
(δxk0)TB−1(δxk0) (13)

+
1

2

N∑
i=0

(HiM0,iδx
k
0−dki )TR−1i (HiM0,iδx

k
0−dki )

•xk+1
0 =xk0−δx

a,k
0

221

The description of the matricesB andR is given in the Sect (5.2).222

3 Ocean Model and Experimental set-up223

The ocean model used in this study is the ocean component of NEMO (Nucleus for European Mod-224

elling of the Ocean; Madec, 1996). This model is able to represent a wide range of ocean motions,225

from the basin scale up to the regional scale. Currently, it has been used in operational mode by the226

French Mercator Océan group (http://www.mercator-ocean.fr) and the European Center for Medium227

Range Weather Forecast (ECMWF).228

The model solves six prognostic equations, namely the momentum balance, the hydrostatic equi-229

librium, the incompressibility equation, the heat and salt conservation equations and a nonlinear230

equation of state which couples the two tracers to the fluid fields. In this study, a linear free surface231

formulation is used along with the approach developed by Roullet and Madec (2000) to filter out the232

external gravity waves.233

Equations are discretized using spherical coordinates in a Arakawa C grid. The model advances in234

time using a leap-frog scheme for all terms except for the vertical diffusive terms, which are treated235

implicitly. At every time step the model uses a Robert-Asselin (RA) temporal filter to damp the236

computational mode. The leap-frog scheme followed by the RA filter leads to a first order temporal237

scheme (Willians, 2009). Spatial discretization uses a centered second order formulation for both238

the advective and the diffusive terms.239

The double gyre configuration, extensively used to study jet instabilities (Chassignet and Gent,240

1991; Primeau, 1998; Chang et al., 2001), meso and submeso-scale dynamics (Levy et al., 2010)241

and data assimilation methods (Molcard et al., 2004; Krysta et al., 2011; Cosme et al., 2010), is used242

for the present study. The double gyre configuration simulates the ocean middle latitude dynamics243

and has the advantage of being simple, when compared to real applications, but still considering full244

dynamics and thermodynamics.245

In our experiments we use a homogeneous horizontal grid with a 25km resolution and a verti-246
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cal resolution ranging from 100m near the upper surface to 500m near the bottom. The bottom247

topography is flat and the lateral boundaries are closed and frictionless. The only forcing term248

considered is a constant wind stress of the form τ =
(
τ0cos

(
2π(y−y0)

L

)
,0
)

, where y is the lati-249

tude geographic coordinate with y0 = 24o and y0≤ y≤ 44o, L= 20o and τ0 =−0.1N/m2 . Hori-250

zontal diffusion/viscosity are modeled by a bilaplacian operator meanwhile a laplacian operator is251

used in the vertical. They all use constant coefficients in time and space: νu,vh =−8×1010m4/s252

and νu,vv = 1.2× 10−4m2/s for the momentum equations and νt,sh =−4× 1011m4/s and νt,sv =253

1.2×10−5m2/s for temperature and salinity. The initial condition is similar to that used by Chas-254

signet and Gent (1991) and consists of a homogeneous salinity field of 35psu and a temperature field255

created to provide a stratification which has a first baroclinic deformation radius of 44.7km. Velocity256

and sea surface height (SSH) fields are initially set to zero.257

This double gyre configuration is currently used as the NEMO data assimilation demonstrator and258

as the experimentation and training platform for data assimilation activities (Bouttier et al., 2012).259

For the present work, the model was integrated for 70 years, in order to reach the statistical steady260

state. Afterwards, ten years of free model run were performed, that were used to calculate the re-261

gression models which are used to calculate the nudging matrix K (see Sect 5.1), and then two262

additional years were finally completed to be used as the truth, from which the observations were263

extracted.264

4 The backward integration without Nudging: Practical aspects265

The backward model uses exactly the same numerical scheme as the forward model. Since most266

of the model is solved using centered finite differences, the inverse version of the discretized model267

is similar to the discrete version of the inverse continuous model. The only distinction between268

the forward and the backward model is the change in the sign of the diffusive terms when stepping269

backwards, this making the backward integration stable. If this is not taken into account the model270

blows up after a few days.271

Reversing the diffusion sign in the backward model is a numerical artifact and being so its effects272

should be carefully analysed. In this section, the backward integration accuracy is studied, as well273

as its sensitivity with respect to the choice of the diffusion coefficient. The errors are analysed274

calculating the L2 error norm at the end of one forward-backward integration relative to a typical275

one day model variation:276

Rerr =
‖x(0)− x̃(0)‖

< ‖x(t+∆t)−x(t)‖>
(14)277

where ∆t= 1day and the brackets represent the empirical mean.278

Figure 1 shows the global error, Rerr, for different window sizes. The errors grow linearly with279

the window size for all variables. Temperature is the most affected variable, followed by sea level280

and velocities. Temperature errors exceed 18 times a typical one-day variation for the 30 days exper-281

9



Fig. 1. Errors on the initial condition after one forward-backward model integration perfectly initialized and

without nudging. Red curves were obtained using the same diffusion coefficients as in the reference experi-

ment (νu,vh =−8×1010m4/s and νt,sh =−4×1011m4/s) and magenta curves were obtained using reduced

diffusion (νu,vh =−8×109m4/s and νt,sh =−8×1010m4/s). The abscissa represents the length of the time

window.

iment and 1.2 times for the 2 days. The use of reduced diffusion/viscosity coefficients reduces the282

errors to 6.8 and 0.16 times the one-day variation for 30 and 2 days experiments, respectively. Ve-283

locities errors were reduced by 50% for 30 days and 85% for 2 days, while ssh errors were reduced284

by 60% and 88% for 30 and 2 days, respectively.285

As shown on Fig. 2 velocity and temperature errors are depth-dependent. Whereas for velocity286

they are larger at the surface and decrease with depth, for temperature they are larger in the ther-287

mocline. In the cases for which the forward-backward integrations use the same diffusion/viscosity288

coefficients as in the reference simulation, the temperature errors at thermocline depths exceed 3289

times the typical one day variation for the 5 days experiments and reaches 15 times for 20 days ex-290

periments. Considering the velocities, errors are proportional to 4 one-day variations for the 5 days291

experiment and to 8 one-day variations for the 20 days experiments. For time windows of 10, 20 and292

30 days, velocities at the thermocline depths start to be influenced by temperature errors.293

Reduction of the diffusion/viscosity coefficients greatly reduced the errors especially in the ther-294

mocline for the temperature and at the surface for the velocity. It can be noted that when the diffusion295

coefficient is decreased the errors converge to a limit. This limit changes with respect to the window296

length and should be related to the diffusion required to stabilize the numerical method, which is of297

second order in our case, and hence oscillatory. Therefore, there is a compromise between the errors298

induced by the extra diffusion and errors due to spurious oscillations.299

Numerical errors were assessed by changing the model time step from 900s to 90s. The resulting300

errors (not shown) do not change, suggesting that the errors induced by the diffusion are domi-301
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Fig. 2. Vertical profiles of relative errors on the initial condition after one forward-backward model integration

without nudging. Each color refers to an experiment performed using the diffusion coefficient indicated in the

figures legend. Red curves were obtained using the same diffusion coefficients as in the reference experiment.

Top panel: temperature errors; bottom panel: zonal velocity errors. The length of the time window is indicated

in the title of each figure.
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Fig. 3. Sea level errors after one forward-backward model integration. The time window is of 10 days.

nant. On the one hand, this is important because the complete rewriting of the model’s code can be302

difficult, similarly to the adjoint model programming used by the 4Dvar, but on the other hand if303

the assimilation cannot control the diffusion errors it may represent a fundamental problem of the304

method when it is applied to non-reversible geophysical systems such as the ocean.305

Figure 3 shows the spatial structures of the sea level error for the 10 days experiment. The errors306

are highly variable in space, being larger along the main jet axis. This is probably due to the fact that307

the backward integration smooths the gradients and so the largest errors are found near the fronts.308

Therefore, the errors structures may be of high variability in space and time since they are state309

dependent.310

Figure 4 shows the surface kinetic energy spectrum calculated from the experiment employing311

the reference diffusion coefficient and a reduced diffusion coefficient. The backward integration312

introduces an extra diffusion, coarsening the effective model resolution, which is defined as the por-313

tion of the spectra for which there is a change in the spectrum slope. In the reference simulation the314

effective model resolution is estimated to be 190km, which is coherent with the≈ 7×∆x estimation315

of Skamarock (2004).316

The longer the time window the greater the portion of the spectra affected. For the experiment317

employing the reference diffusion coefficient, the divergence between the true spectra and the spec-318

tra obtained from the backward integration is observed at 126, 314 and 627km for 5, 10 and 20 days319

experiments, while for the experiments considering a reduced diffusion coefficient there is almost320

no differences for the 5 days experiment, and the divergence is observed at 126 and 314km for the321

10 and 20 days experiments. If on the one hand using the reduced diffusion helps to keep the en-322

ergy distribution coherent with the true distribution, on the other hand it creates noise in the range323

of 126km to 25km. This confirms that there is a trade-off between the errors due to the excessive324

smoothing and the errors due to high frequency numerical modes.325

In this section we have seen that there are large backward-errors induced by over-diffusion.326

Therefore, short time windows with reduced diffusion coefficients would be preferable to be used327

in DA experiments. Two regions have to be cautiously analyzed: the surface and the thermocline.328
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Fig. 4. Kinetic energy mean power spectra calculated using the first layer velocity fields. Black curves represent

the “true“ initial condition power spectra; Red curves represent the power spectra calculated after one forward-

backward iteration without the nudging term and employing the reference diffusion coefficient; Magenta curves

represent the power spectra calculated after one forward-backward iteration without the nudging term and

employing a reduced diffusion coefficient. Top left: 5 days assimilation window. Top right: 10 days assimilation

window. Bottom: 20 days assimilation window. In the bottom abscissa the ticklabels stand for longitudinal

wave-number (rad/m) while in the top abscissa the ticklabels stand for the corresponding wavelengths in km

units.
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Surface layers are prone to feature errors due to their role on the wind energy dissipation while at329

the thermocline strong density gradients contribute to high diffusion rates.330

5 Data Assimilation experiments331

5.1 Prescription of the DBFN gain332

In this study the matrix K is composed by the two operations: first the observed variables are333

updated using a prescribed weight and subsequently the other state variables are calculated using334

linear regression. More precisely, defining y=H(x) as the observed part of the state vector, the335

first step may be written as:336

ya =yb+Θ(xobs−yb) (15)337

where the superscripts a and b denote the analysed field and the background field, respectively. The338

prescribed weight is given by:339

Θ=
σ2
m

σ2
m+γσ2

o

(16)340

where σ2
m is the mean spatial value of SSH variance calculated from the free model run, σ2

o is the341

observation error variance and γ is an inflation factor which should be considered since each set of342

observations is used more than once in the DBFN iterations. The used values for these parameters343

are σm = 0.017m and σo = 0.03m consistently with the perturbations added to the observations (see344

Sect. 5.4) and γ= 18.345

Then, the non-observed variables are updated by using a regression equation of the form:346

xa =xb+B̂
PLS

(ya−yb) (17)347

where B̂
PLS

is the Partial Least Squares (PLS) regression coefficients which are described below.348

It is worth noting that in Sect.(6) we also apply this update scheme to an ordinary direct nudging349

experiment. In this case γ is equal to one.350

The PLS can be seen as an improvement to the Ordinary Least Square (OLS) regression. The most351

important difference between OLS and PLS is that the later assumes that the maximum information352

about the non-observed variables is in those directions of the observed space which simultaneously353

have the highest variance and the highest correlation with the non-observed variables.354

In the PLS description (Tenenhaus, 1998), Y ∈Rn×M is considered as the observed or predictor355

variables andX ∈Rn×N as the non-observed or response variables. In our notation n is the sample356

size and M and N are respectively the size of the state space of Y and X . Besides, Y and X are357

centered and have the same units. The PLS regression features two steps: a dimension reduction step358

in which the predictors from matrix Y are summarized in a small number of linear combinations359

called ”PLS components”. Then, that components are used as predictors in the ordinary least-square360
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regression.361

The PLS as well as the principal component regression can be seen as methods to construct a362

matrix of p mutually orthogonal components t as linear combinations of Y :363

T =YW , (18)364

where T ∈Rn×p is the matrix of new components ti = (t1i,...,tni)
T , for i= 1,...,p, andW ∈RM×p365

is a weight matrix satisfying a particular optimality criterion.366

The columns w1,...,wp ofW are calculated according to the following optimization problem:367

wi = argmaxw{cov(Y w,X)2} (19)368

subject to wT
i wi = 1 and wT

i Y
TY wj = 0 for j= 1,...,i−1.369

The PLS estimator B̂
PLS

is given by:370

B̂
PLS

=W (W TY TYW )−1W TY TX (20)371

An immediate consequence of Eq. (20) is that when W = I the Ordinary Least Squares solution is372

obtained.373

The number of components p is chosen from cross-validation. This method involves testing a374

model with objects that were not used to build the model. The data set is divided in two contiguous375

blocks; one of them is used for training and the other to validate the model. Then the number of376

components giving the best results in terms of mean residual error and estimator variance is sought.377

The weight Θ and the regression model B̂
PLS

are kept constant over the assimilation cycles378

and the correction steps (15) and (16) are applied at the end of the loop of time. Thus, our updat-379

ing scheme can be seen as a rough approximation of the two steps update for EnKF presented by380

Anderson (2003).381

5.2 The 4Dvar background term configuration382

The 4Dvar considers a background term of the form:

Jb =
1

2
(δxk0)TB−1(δxk0)

whereB is the background error covariance matrix. This term is also known as a regularization term383

in the sense of Tikhonov. It is specially important when there is not enough observation to determine384

the problem.385

TheB matrix is supposed to model the spatial covariance of the background errors of a given vari-386

able as well as the cross-covariance between the errors of different variables. Since the state space is387

too big, it is impossible to store the entire covariance matrix. Therefore, Derber and Bouttier (1999)388

have proposed the decomposition of the multivariate problem into a sequence of several univariate389

problems. This is accomplished by decomposing the variables into a balanced component and an390
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unbalanced component. This is done to all variables but one should be kept without decomposition391

so as we can define the balanced and unbalanced components of the other variables. We used the392

decomposition proposed by Weaver et al. (2005) for which the temperature is the “seed“ variable and393

then thanks to some physical constraints such as the geostrophic balance, the hydrostatic balance and394

the principle of water mass conservation all other state variables may be decomposed into a balanced395

(B) component and an unbalanced (U) component. Thus, each model variable, namely temperature396

(temp), salinity (salt), sea surface height (η), zonal velocity (u) and meridional velocity (v), may397

be written as:398

temp = temp (21)399

salt = saltB+saltU =Gsalt,temp(temp)+saltU (22)400

η = ηB+ηU =Gη,ρ(ρ)+ηU (23)401

u = uB+uU =Gu,ρ(ρ)+uU (24)402

v = vB+vU =Gv,ρ(ρ)+vU (25)403

(26)404

where405

ρ = Gρ,temp(temp)+Gρ,salt(salt) (27)406

p = Gp,p(ρ)+Gp,η(η) (28)407

with ρ the density and p the pressure.

Then, since a covariance matrix may be written as the product of variances and correlations,B may

be expressed as:

B=GΛTCΛGT

where Λ is a diagonal matrix of error standard deviation, for which the climatological standard408

deviation are the entries, and C is an univariate correlation matrix modeled using the generalized409

diffusion equation (Weaver and Courtier, 2001; Weaver et al., 2005). In this method the user should410

chose typical decorrelation lengths. In this study the horizontal decorrelation length is set to 400km411

and the vertical decorrelation length is set to 1500m. In addition, the 4Dvar is configured to perform412

one outer-loop and a maximum of thirty inner-loop for each assimilation cycle.413

414

5.3 Assimilation cycle415

One assimilation cycle is defined as the process of identifying an initial condition through the it-416

erative process followed by a forecast spanning the assimilation window, which provides a new417

background to the next assimilation cycle.418

The objective of cycling is to provide a background state for the next assimilation window that419
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is closer to the true state than the very first background field. This usually reduces the number of420

iterations needed by the algorithms to reach convergence.421

The length of the Data Assimilation window (DAw) used in the reference experiments (Sect. 6.1)422

is 10 days. For the sensitivity experiments presented in the Sect 6.2 the lengths of the the assimilation423

window are 5 days and 30 days.424

5.4 Observation network425

In this article, every four days an observation network simulating Jason-1 satellite density sample is426

available. The data is perturbed with white Gaussian noise with standard deviation equals to 3cm.427

With this observation network a new set of 5000 observations is available every four days.428

The data assimilation problem we proposed to solve is to recover the full model state at the begin-429

ning of the assimilation window. The model state space is composed of five variables: sea surface430

height (η), meridional and zonal velocities (u and v), temperature and salinity (temp and salt).431

Since we have a horizontal mesh of size 81 x 121 and 11 vertical layers the total size of the state432

space is 116640. Therefore, the problem is undetermined, since the observations represent only a433

4% of the total state space. This means that the background term, and accordingly the B matrix434

for the 4Dvar and the regression model B̂
PLS

for the DBFN, have quite a strong importance on the435

method performances since they project the increments of the observed variables onto the numerous436

non-observed variables.437

6 Data Assimilation Results438

6.1 Reference experiment439

In this section the results produced by the DBFN, the 4Dvar method, the Ordinary Nudging (ONDG)440

and the control experiment are presented. All assimilation methods include the five prognostic vari-441

ables in the state vector. This is possible thanks to the PLS regression method in the case of the442

DBFN and ONDG and thanks to the multivariate balance operator G in the case of the 4Dvar ex-443

periments. The diffusion and viscosity coefficients used in the DBFN experiments are those which444

produced the smaller errors in the experiments without Nudging, as reported in Sect 4.445

First the minimization performance of the 4Dvar implementation is analysed. Figure 5 shows the446

reduction of the cost function gradient for the 4Dvar and the reduction of the relative error of the447

zonal velocity for the DBFN, both of them for the first assimilation cycle. 4Dvar takes 26 iterations448

to approximately achieve the optimality condition∇J = 0. This represents 3 times the number of it-449

erations required by the DBFN to converge, i.e., after which the errors cease to decrease. Moreover,450

the 4Dvar numerical cost is more than 3 times the DBFN cost since one execution of the adjoint451

model costs four times the cost of the direct model in terms of CPU time.452

We note that the minimum error for the DBFN is reached after 9 iterations. This is quite consis-453
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Fig. 5. Figure shows the gradient of the cost function after each inner iteration (left) and the reduction of the

relative error for zonal velocity for the DBFN experiment (right).

tent with our choice γ= 18, since theoretically it allows the use of the same set of observations for454

18 times.455

Figure 6 shows the root mean squared (rms) error for the control experiment (without assimi-456

lation), the experiment using the direct nudging with PLS regression (ONDG), the DBFN and the457

4Dvar. The DBFN errors for the velocity and SSH converge to their asymptotic values after the458

first assimilation cycle while for ONDG and 4Dvar errors stop decreasing after 100 and 200 days,459

respectively. This is a benefit of the iterations performed by the DBFN when model and data are460

quite different. Among the experiments conducted, the DBFN produced the smallest errors for all461

variables, except for the zonal velocity, for which the 4Dvar has slightly smaller errors. The ONDG462

also showed good performance, but with errors larger than the DBFN and 4Dvar errors.463

With respect to the vertical error (Fig. 7), the DBFN and the ONDG performed better for the464

upper ocean than 4Dvar. Clearly, the PLS also corrects the deep ocean velocity, but less accurately465

than 4Dvar. The first error mode is the barotropic one, i.e. it has the same sign over all depths, and466

accounts for 97% of the error variability for 4Dvar, 96% and 93% for DBFN and ONDG, respec-467

tively. Although the first mode is the barotropic one for all methods, the 4Dvar barotropic mode of468

error is out of phase with respect to the PLS barotropic mode. This reflects the better performance469

of the 4Dvar for the deep ocean and the better performance of the DBFN and ONDG for the upper470

ocean.471

The second mode, which accounts for almost all the remaining variability, has a sign inversion472

with depth and is found especially over the main axis of the jet. In this region the deep ocean veloc-473

ities are overestimated due to spurious covariances between the SSH and the deep ocean velocities.474

The way both methods correct the model depends on the B matrix in the 4Dvar algorithm and475

on the regression model B̂PLS in the DBFN. It means that results may be different if another ap-476
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Fig. 6. The figure shows errors of the SSH (top panel), the zonal velocity (middle panel) and the temperature

(bottom panel).
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Fig. 7. Vertical profiles of rms error in zonal velocity (Left panel) and first (middle panel) and second (right

panel) eof error modes calculated using forecast from day 200 to day 720.

proximation of B and another model regression model are used. Perhaps the main conclusion of477

this comparison is that the DBFN, which is easier to implement and cheaper to execute, can produce478

results similar to 4Dvar. Also, it is shown that iterations is an important aspect of the method. Iter-479

ations compensate for the lack of a priori information on the model errors as well as filter out noise480

in observations. The latter must be connected to the diffusive character of the algorithm. Moreover,481

the iterations allows us to put information from the observations into the model, without causing482

initialization problems since the nudging gain can be taken smaller than the one used for the direct483

nudging due to the possibility of using more than once the same set of observations.484

485

6.2 Sensitivity experiments486

Sensitivity tests with respect to the length of the DAw are presented. As we have shown in Sect. 4,487

the accuracy of the backward model is inversely proportional to the length of the DAw. Therefore,488

in this section we present experiments using a DAw of five days and thirty days. The experiments489

configuration is similar to those presented in the previous section.490

Figure 8 shows the evolution of the rms errors for the zonal velocity and temperature during the491

DBFN iterations over the first assimilation cycle, for three DAw (including the ten day-window used492

previously). When considering only one iteration, the best results were obtained with the 30 days-493

window experiment. This is a consequence of the asymptotic character of the Nudging method: the494

longer the assimilation window, the more observations accounted for, the smaller the error. This495
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changes when several iterations are considered. The observed divergence for the 30 days-window is496

due to the errors induced by the over-diffusion that induce great increments, which by their nature,497

are not modelled by the ensemble of model states used to construct the regression model.498

Figure 9 shows the rms error for the DBFN and 4Dvar experiments for three DAw: 5, 10 and

Fig. 8. Evolution of the rms errors for the zonal velocity and temperature during the DBFN iterations over the

first assimilation cycle, for three DAw: 5, 10 and 30 days.

499

30 days. The methods exhibited comparable performance depending on the length of the DAw. For500

the DBFN the 5 and 10 days DAw provided better results than the 30 days window, while for the501

4Dvar the 30 days window provided the best estimation in terms of rms error. The DBFN and 4Dvar502

experiments using the 30 and 5 days DAw, respectively, failed to identify the initial conditions since503

their SSH rms errors are greater than the observation error standard deviation. The poor performance504

of the 4Dvar for the 5 days DAw is related to spurious increments due to the fact that in one assim-505

ilation window there is only one set of observation available. If this set is at the end of the window506

this can complicate the minimization process and the iterations may stop before convergence.507

Figure 10 shows the time evolution of vertical profiles of horizontally layer-wise averaged rms508

error of zonal velocities for the DBFN and 4Dvar experiments. The 4Dvar profits of the longer DAw509

to spread the observation to the 3-dimensional variables. This is done by the iterations of the direct510

model and by the B matrix. For the DBFN experiments, after one year of data assimilation the511

errors in the deep ocean start to grow. This is due to the high variance of the PLS estimator for deep512

layers. The problem becomes more evident on the second year because at this stage the observa-513

tions are farther from the model states used to construct the regression coefficients. Therefore, this514

mean that this behavior is not intrinsic to the DBFN algorithm and its diffusive aspects, but due to515

our implementation. Ideally, the regression model should evolve in time, similarly to the Kalman516

Filter scheme. The 4Dvar has good performance at the deep ocean thanks to the use of a vertical517

localization with a length scale of 1500m.518

Next we investigate which scales are better represented by each assimilation method. This is done519

by comparing the surface kinetic energy spectrum and the deep ocean kinetic spectrum produced by520

each method. The Fig.(11) shows that the effective resolution of the model is not affected by the521

diffusive character of the DBFN algorithm. It is clear that there is a reduction of the energy for the522
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Fig. 9. RMS errors on SSH (top panel), zonal velocity (middle panel) and temperature (bottom panel) from

DBFN and 4Dvar experiments with DAw of 5, 10 and 30 days.
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Fig. 10. Time evolution of vertical profiles of horizontally layer-wise averaged rms error of zonal velocities for

the DBFN (top panels) and 4Dvar (bottom panels) experiments. Units are in (m/s).

scales close to the grid scale, but the energy contained in scales greater than 7×∆x is not affected.523

It means that the diffusion-induced errors presented in Sect 4 are ”controlled“ by the assimilation of524

sea surface height observations.525

There is no great difference between the DBFN and 4Dvar surface spectrum for the assimilation526

windows shorter than 30 days, which once more proves the reliability of the DBFN for the assim-527

ilation of oceanic observations. The energy spectra for the deep ocean velocities produced by the528

DBFN contains more energy than the true spectrum independently of the used DAw. This confirms529

that the deep ocean velocity errors are due to the high variance of the PLS regression model.530

531

7 Conclusions and perspectives532

This study used the NEMO general circulation model in a double gyre configuration to investigate533

the Diffusive Back and Forth Nudging performance under different configurations of the data assim-534

ilation window and to compare it with 4Dvar.535

It has been shown that the reliability of the backward integration should be carefully examined536

when the BFN/DBFN is applied to non-reversible systems. This should support the choice of the537
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Fig. 11. Kinetic energy mean power spectra calculated using the first layer (top) and a layer at 2660m (bottom)

and using the 650 days of the assimilation experiments using the DBFN (left) and the 4Dvar (right). Blue

curves represent the “true“ power spectra; Green curves represent the power spectra calculated for the 5 days

DAw; Red curves represent the power spectra calculated for the 10 days DAw and Black curves represent the

power spectra calculated for the 30 days DAw. In the bottom abscissa the tick-labels stand for longitudinal

wave-number (rad/m) while in the top abscissa the tick-labels stand for the corresponding wavelengths in km

units.

assimilation window and identify whether the available observations are sufficient to control the er-538

rors induced by the non-reversible terms of the model equations. In this article we have shown that539

the DBFN might be used for the assimilation of realistically distributed ocean observations, despite540

the limited accuracy of the backward integration. Improving the backward integration would further541

improve the DBFN performance and make possible the use of longer assimilation windows.542

Our results show that the DBFN can produce results comparable to 4Dvar using lower computa-543

tional power. This is because DBFN demands less iterations to converge and because one iteration544

of 4Dvar corresponds to one integration of the tangent linear model, one integration of the adjoint545

model, which costs four times more than one standard model integration, plus the cost of minimizing546

the cost function, while the DBFN costs twice the integration of the nonlinear model.547

The sensitivity tests show that for the 4Dvar long assimilation windows should be preferably used548

because it favors the propagation of the sea surface height information to the deep layers. For the549

DBFN, short windows are preferable because it reduces the effect of the diffusion-induced errors. In550
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future works it would be beneficial to account for this errors when constructing the nudging gain.551

Finally, it appears that the DBFN algorithm is worth being further explored both on theoretical552

and practical aspects, especially those related to the optimization of the matrix K and applications553

to a more realistic configuration.554
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Thompson, K. R., Wright, D. G., Lu, Y., and Demirov, E.: A simple method for reducing seasonal bias and685

drift in eddy resolving ocean models, Ocean Modelling, 13, 109 – 125, doi:10.1016/j.ocemod.2005.11.003,686

http://www.sciencedirect.com/science/article/pii/S1463500305000910, 2006.687

Verron, J.: Nudging satellite altimeter data into quasi-geostrophic ocean models, Journal of Geophysical Re-688

search: Oceans, 97, 7479–7491, doi:10.1029/92JC00200, http://dx.doi.org/10.1029/92JC00200, 1992.689

Vidard, P. A., Le Dimet, F.-X., and Piacentini, A.: Determination of optimal nudging coefficients, Tellus A,690

55, 1–15, doi:10.1034/j.1600-0870.2003.201317.x, http://dx.doi.org/10.1034/j.1600-0870.2003.201317.x,691

2003.692

Wang, K., Debernard, J., Sperrevik, A. K., Isachsen, E., and Lavergne, T.: A combined optimal interpolation693

and nudging scheme to assimilate OSISAF sea-ice concentration into ROMS, Annals of Glaciology, 54,694

8–12, 2013.695

Weaver, A. and Courtier, P.: Correlation modelling on the sphere using a generalized diffusion equation,696

Quarterly Journal of the Royal Meteorological Society, 127, 1815–1846, doi:10.1002/qj.49712757518,697

http://dx.doi.org/10.1002/qj.49712757518, 2001.698

Weaver, A. T., Deltel, C., Machu, E., Ricci, S., and Daget, N.: A multivariate balance operator for variational699

ocean data assimilation, Q. J. R. Meteorol. Soc, 131, 3605–3625, 2005.700

Willians, P. D.: A Proposed Modification to the Robert Asselin Time Filter., Month. Weather Rev., 137, 2538–701

2546, 2009.702

Zou, X., Navon, I. M., and Le Dimet, F. X.: An Optimal Nudging Data Assimilation Scheme Using Param-703

eter Estimation, Quarterly Journal of the Royal Meteorological Society, 118, 1163–1186, doi:10.1002/qj.704

49711850808, http://dx.doi.org/10.1002/qj.49711850808, 1992.705

29


