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Abstract. We have studied a hybrid model combining the
forest-fire model with the site-percolation model in order to
better understand the earthquake cycle. We consider a square
array of sites. At each time step, a “tree” is dropped on a
randomly chosen site and is planted if the site is unoccu-
pied. When a cluster of “trees” spans the site (a percolating
cluster), all the trees in the cluster are removed (“burned”)
in a “fire.” The removal of the cluster is analogous to a
characteristic earthquake and planting “trees” is analogous
to increasing the regional stress. The clusters are analogous
to the metastable regions of a fault over which an earth-
quake rupture can propagate once triggered. We find that the
frequency-area statistics of the metastable regions are power-
law with a negative exponent of two (as in the forest-fire
model). This is analogous to the Gutenberg-Richter distribu-
tion of seismicity. This “self-organized critical behavior” can
be explained in terms of an inverse cascade of clusters. Small
clusters of “trees” coalesce to form larger clusters. Individ-
ual trees move from small to larger clusters until they are de-
stroyed. This inverse cascade of clusters is self-similar and
the power-law distribution of cluster sizes has been shown to
have an exponent of two. We have quantified the forecast-
ing of the spanning fires using error diagrams. The assump-
tion that “fires” (earthquakes) are quasi-periodic has mod-
erate predictability. The density of trees gives an improved
degree of predictability, while the size of the largest cluster
of trees provides a substantial improvement in forecasting a
“fire.”

1 Introduction

Complexity commonly describes many geophysical systems,
although complexity itself is not simple to define. Com-
plexity describes the nonlinear interactions in systems with
a large or an infinite number of degrees of freedom. Com-
plexity manifests itself in linkages between space and time,
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generally producing patterns on many scales, and often in-
cluding a hierarchy of interactions, cascades—both direct
and inverse—and the emergence of fractal structures. Com-
plex systems are generally sensitive to initial conditions, and
exhibit a transition from order to chaos. Overall, complexity
describes situations where the nature of the nonlinear inter-
actions cause the whole to be greater than the sum of its parts.

Complexity in the earth often possesses other characteris-
tic features. In many situations, we are dealing with systems
that are driven by an external mechanism, e.g., plate tecton-
ics in the case of earthquakes, and that the process is irre-
versible. In many such problems, temperature does not play
an explicit role, so temperature cannot be directly regarded
as a parameter. Commonly, these geophysical problems are
scale-invariant over a large range of scales. Power-law scal-
ing is endemic in such systems. While scale-invariance is
a necessary condition for power-law scaling, it is not suf-
ficient and a profound question that emerges is to explain
why do power-laws emerge,what is the cause of the self-
organization that is manifest. We will refer to such problems
as manifesting self-organized complexity.

Bak et al. (1988) introduced a concept that they termed
“self-organized criticality,” in order to explain the behavior
of their “sandpile” model. Two other models that were found
to exhibit this type of behavior were the slider-block model
(Burridge and Knopoff, 1967; Carlson and Langer, 1989),
and the “forest-fire” model (Bak et al., 1992; Drossel and
Schwabl, 1992). A feature of these models is that they in-
volve “avalanches” with a power-law (fractal) frequency-size
distribution. There is a steady-state “input” and the “output”
occurs in the “avalanches.”

The use of the word “criticality” to describe the behavior
of these models has led to considerable controversy. The for-
mal definition of a critical phenomena when introduced by
physicists concerns Hamiltonian systems where the temper-
ature plays a central role in the calculation of the partition
function in statistical mechanics (from which all thermody-
namic quantities can be calculated), a feature that is absent
from the formulation of the problems which we wish to ad-
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dress. Also, defining a critical point requires the “tuning” of
a control parameter. In the forest-fire model, which had been
cited by some as a paradigm for so-called “self-organized
criticality,” Gabrielov et al. (1999) have shown analytically
that the behavior of the model is the asymptotic outcome
of the evolution of a hierarchical set of ordinary differen-
tial equations. The behavior is that of an inverse cascade
of clusters of trees. Small clusters coalesce to form larger
clusters. Fires terminate the cascade, and there is no tuning
parameter. Accordingly, what has come to be called “self-
organized criticality” by some, we will call without prejudice
“self-organized complexity” to avoid any conflict with physi-
cists’ use of these words. The discovery by Bak et al. (1988)
that simple, discrete models could produce power-law scal-
ing represents an important milestone in scientific inquiry,
but their use of the word “criticality” has caused unnecessary
controversy which we seek to avoid. However, it is note-
worthy that certain probabilistic distribution functions (with
no thermodynamic basis) may asymptotically become step
functions, e.g. site percolation on a lattice; we will confine
our use of the words “criticality” and “critical point” to this
mathematical setting.

Self-organized complexity has been associated with sev-
eral natural hazards (Malamud and Turcotte, 1999). For
earthquakes, the steady-state input is the tectonic stress
accumulation. Thus stress is relieved in earthquakes (i.e.,
avalanches) which satisfy a power-law (Gutenberg-Richter)
frequency-magnitude distribution. For landslides, slope in-
stabilities develop slowly and are relieved in the landslides.
There is accumulating evidence that landslides may be de-
scribed by power-law distributions (Guzzetti et al., 2002).
For forest- and wild-fires, combustible material grows on
long time scales, and is destroyed in fires on short time
scales. The frequency-area distribution of forest and wild
fires is well-approximated by power-law distributions (Mala-
mud et al., 1998).

For the three natural hazards described above, hazard as-
sessment and event forecasting are of great importance. The
applicability of power-law frequency-size distributions can
be directly applied to hazard assessment. The rate of oc-
currence of smaller events can be extrapolated to give the
expectation of larger events. This is routinely done for earth-
quakes (Kossobokov et al., 2000). The forecasting of indi-
vidual events, however, remains extremely controversial.

The purpose of this paper is to examine the forecasting
statistics of a hybrid model in which the events to be fore-
cast are well defined, and the model contains the basic as-
pects of self-organized complexity. The model is a hybrid
between the forest-fire model and the site-percolation model.
Before introducing the details of our model, we briefly re-
view the relevant version of the forest-fire model and the site-
percolation model.

The forest-fire model we consider consists of a square grid
of sites. At each time step, we either attempt to plant a tree
on a randomly chosen site, or we drop a match on the site. A
tree is planted if a site is not occupied by a tree. If a match is
dropped on a site occupied by a tree, that tree and all adjacent

trees are destroyed in a model fire. The sparking frequency
is the inverse of the number of attempted tree drops before
a model match is dropped. It is found that the frequency-
area distribution of fires over a range of sizes is power-law
with a slope near unity. The frequency-area distribution of
trees clusters is also power-law with a slope near two. This
difference in slope follows since the probability that a match
will ignite a cluster is proportional to the area of the cluster.
The site-percolation model can be regarded as the forest-fire
model without fires. This is a transient problem as the num-
ber of trees on the grid increases monotonically until every
site is occupied by a tree. However, there is a well-defined
critical point during this evolution. This critical point occurs
when a cluster of trees spans the grid. Monte Carlo simula-
tions with large grids show that a spanning cluster is formed
when 59.275% of the grid sites are occupied by trees (Stauf-
fer and Aharony, 1992). At this critical point, the frequency-
area distribution of tree clusters is power-law with a slope
of 2.055. This similarity to the forest-fire model only oc-
curs at the critical point. At other times during the transient
planting of trees, the distribution is not power-law (Turcotte,
1999). The tuning parameter in this critical-point problem
is the fraction of sites occupiedρ. The critical value of this
tuning parameter isρc = 0.59275.

2 The model

In this paper, we introduce a model that combines aspects
of both the forest-fire and site-percolation models. We im-
pose the condition that a model fire occurs when a cluster
spans the grid from one side to the other (either horizontally
or vertically). An attempt is made to plant a tree at each time
step. If the randomly chosen site is unoccupied, the tree is
planted. When a tree cluster spans the grid, it then ignites and
all the trees in that cluster are removed from the grid. This
is a quasi steady-state model like the forest-fire model, but it
has only large (characteristic) fires. In the past, substantial
progress in percolation theory was made as a consequence
of the development of special-purpose computational algo-
rithms. Similarly, in order to perform the large number of
Monte Carlo simulations required in our model, we found it
necessary to develop special purpose methods for this prob-
lem based on principles widely used in the computer science
literature, but not well-known in physics-based disciplines.
These algorithms are described in Appendix A.

Six typical grid-spanning fires are shown in Fig. 1. These
simulations were run on a 128× 128 grid. The red grid
sites represent the fires that destroy the spanning clusters,
the green grid sites are occupied by trees that are not part
of the spanning cluster, and the white sites are unoccupied.
The fire in Fig. 1a spans the grid horizontally, while the other
five examples in the figure span the grid vertically. The span-
ning cluster can be formed in two ways. A tree is planted
that connects a cluster to the boundary, as in the example in
Fig. 1a. Usually, however, the spanning cluster is formed
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Fig. 1. Six examples of typical grid-spanning (percolating) fires on
a 128× 128 grid. The red sites represent trees burned in the fire,
green sites unburned trees, and white sites are unoccupied.

when the gap between two relatively large clusters is bridged
by a planted tree, the other examples in Fig. 1.

The evolution of the model between two typical fires is il-
lustrated in Fig. 2. A typical grid-spanning fire is illustrated
in Fig. 2a. The distribution of unburned trees immediately
after the fire is given in Fig. 2b. A few isolated small clus-
ters within the fire zone have survived the fire. The distribu-
tion of trees at approximately 25% of the time until the next
fire is shown in Fig. 2c. The burned area is being filled by
small clusters of trees. The distribution of trees at approxi-
mately 50% of the time until the next spanning fire is shown
in Fig. 2d and the distribution at approximately 75% is shown
in Fig. 2e. The burned area is gradually filled with clusters
of trees. The next grid-spanning fire is shown in Fig. 2f. This
fire burns principally in the area that was not burned during
the previous fire.

The percentage of fires with areas smaller than a speci-
fied value is given in Fig. 3. The mean size of the span-
ning fires is 4180 or 25.5% of the 16 384 grid sites. This
compares with the 59.275% or 9712 grid sites that would be

(a) (b)

(c) (d)

(e) (f)

Fig. 2. Evolution of the model between two grid-spanning fires.(a)
The initial spanning fire is illustrated;(b) Distribution of unburned
trees just after the fire;(c) Distribution of trees≈ 25% of the time
until the next spanning fire;(d) Distribution of trees≈ 50% of the
time until the next fire;(e) Distribution of trees≈ 75% of the time
until the next fire; and(f) The next spanning fire is illustrated.

found for a spanning cluster in the site percolation model.
Put another way, a grid-spanning fire is initiated when the
overall number of occupied sites is near 59.275% of the to-
tal available but only 25.5% of the total available are in the
particular cluster that is consumed by the fire. The spanning
fires also have considerable variability of size ranging from
about 2000 to 8000 burned trees whereas in the site percola-
tion model the spanning clusters have little variability about
the critical value of 9712 grid sites. The smaller mean span-
ning cluster and the variability of cluster sizes in our model
relative to the site percolation model is easily explained. In
the site percolation model, the density of occupied sites is
nearly uniform across the grid, while in our model there are
considerable variations in density as illustrated in Fig. 2. The
reason for this variability is the residual memory of previous
fires.

The noncumulative distribution of cluster sizes is given in
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Fig. 3. The percentage of fires smaller than a specified value is
shown. The mean size of all fires is 4180 grid sites.
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Fig. 4. The noncumulative distribution of cluster sizes. The mean
number of clusters of integer sizes is given as a function of cluster
size. A time average has been taken. Dashed line has slope of−2.

Fig. 4. The mean number of clusters of integer sizesNc is
given as a function of the cluster areaA, number of trees in a
cluster. A time average over many fire cycles has been taken.
The distribution of cluster sizes given in Fig. 4 correlates very
well with the power-law distribution

Nc = CA−α (1)

takingC = 105 andα = 2. This distribution of cluster sizes
is the same as that found for the forest-fire model (Turcotte
et al., 1999).

This power-law distribution of cluster sizes can be explain-
ed by the inverse cascade model introduced by Turcotte et al.
(1999), Turcotte (1999), and Gabrielov et al. (1999), as well
as Newman and Knopoff (1982, 1983, 1990), and Knopoff
and Newman (1983). In this cascade model, smaller tree
clusters coalesce to form larger clusters. On average, indi-
vidual trees found in small clusters which evolve into larger
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Fig. 5. Dependence of the number of clusters of a specified size
upon time for the time-intervals between four fires. The vertical
dashed lines are when the fires occurred. The distribution of cluster
areas has been logarithmically binned in bins of size 2n.

and larger clusters until they burn and are destroyed in the
large spanning clusters. The inverse cascade model predicts
the inverse slope of 2 shown in Fig. 4.

The populations of clusters of various sizes as a function
of time are given in Fig. 5. We have used a logarithmic bin-
ning of the distribution of cluster sizes. We consider bins
of size 2n, wheren is an integer. The binn = 0 contains
clusters with 20 = 1 tree,n = 1 contains clusters with 2
and 3 trees, andn = 2 contains clusters with 4, 5, 6, and
7 trees. In general, thenth cluster in the hierarchy can have[
2n

]
,
[
2n

+ 1
]
, ...,

[
2n+1

− 1
]

trees. The binned populations
for n = 0 through 6 are given in Fig. 5 for the time intervals
between four fires. Consider the time dependence after the
second fire. There is a rapid increase in single tree clusters,
as planted trees fill in the burned areas. As the burned area
fills with tree clusters, the number of single tree clusters de-
creases. A similar behavior is seen for the larger clusters but
with a time delay. This behavior is explained by the inverse
cascade described above. As the burned area fills in, the tree
clusters coalesce to form large clusters, and individual trees
migrate from small to large clusters. The behavior illustrated
in Fig. 5 is also found (Turcotte, 1999) for both the forest-
fire model and the transient forest-fire model without fires
(i.e. site-percolation model).

3 Forecasting events

The spanning fires in this model occur at quasi-periodic time
intervals. There is certainly a stochastic component since
the selection of sites is random. However, repeated runs of
the site-percolation model leads to a sequence of percolating
clusters that are, to a good approximation, periodic. Because
of memory, however, there is considerable variability in the
intervals between events in our model.
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If the forest-fire events were periodic, then the events
could be forecast exactly based on the time when the pre-
vious event occurred. This is not the case when there is a
stochastic component in the site-selection process. We will
consider a number of ways of forecasting the occurrence of
spanning fires in our model. It is also necessary to evaluate
the value or the effectiveness of the forecasts. At a speci-
fied time, a forecast of a future event will be made. If the
event occurs prior to the forecast, it is deemed a failure to
predict. If the event occurs after the forecast time, the pre-
diction is deemed a success. One measure of the value of
a forecast is the fraction of events that are successfully pre-
dicted. If 90% of the events can be successfully forecast, this
approach would be quite good for many applications, includ-
ing the forecasting of an earthquake, assuming that the “cost”
associated with the forecast is not excessive.

However, there is an important second measure of success.
This is the fraction of time during which an “alarm” is in ef-
fect prior to the occurrence of a forecast event; we refer to
this as the fraction of the total time that the forecast is in
effect or, simply, the alarm time. If a forecast is made im-
mediately after an event, each and every subsequent event is
forecast, but the forecasts have no value since the alarm is
activated at all times, i.e. the fraction of alarm time would be
1. Successful forecasts would be made very shortly before
the occurrence of an event, and would be made before essen-
tially all events. For earthquakes a challenging goal would
be to forecast 90% of events with the fraction of alarm time
10% or less.

A quantitative measure of the success of a forecasting al-
gorithm is the “error diagram.” This is a plot of the fraction
of alarm time versus the fraction of failures to forecast. The
error diagram was introduced to earthquake forecasting by
Molchan (1991, 1997). We illustrate the use of the error dia-
gram by considering a specific example.

The simplest forecasting algorithm for quasi-periodic
events is to make a forecast of the future event at a specified
time intervalτ after the previous event. The results of this
forecasting algorithm for our model are given in Fig. 6. The
curve gives the trade-off between the fraction of alarm time
and the fraction of failures-to-predict as a function of the in-
terval time. If a forecast is made immediately after an event,
the fraction of alarm time is 1 but the fraction of failures to
forecast is zero. The best forecast using this method would
have the fraction of alarm time near 0.3 and the fraction of
failures to forecast also near 0.3. The diagonal line in this
diagram gives the result of this prediction algorithm if the
occurrence of events is completely random. This behavior is
derived in Appendix B.

The second forecasting algorithm is based on the density
of trees on the grid,Nt/Ng, whereNg is the number of sites
andNt is the number of trees. The results of this forecasting
algorithm are given in Fig. 7. The best forecast would have
the fraction of alarm time near 0.3, and the fraction of failure
to forecast near 0.2. The forecasts using this algorithm are
somewhat better than the interval forecasts given in Fig. 6.
The explanation is that some fires leave more residual trees

Fig. 6. Error diagram for event forecasts based on the time of pre-
vious events. Forecasts are made at various timesτ after an event.
The fraction of alarm time is given as a function of the fraction of
failures to predict. The dashed diagonal line gives the result of this
prediction algorithm if the occurrence of events is completely ran-
dom, i.e. Poissonian.

Fig. 7. Error diagram for event forecasts based on the density of
trees on the grid. The fraction of alarm time is given as a function
of the fraction of failures to predict.

than other fires, on average the time interval times after se-
vere fires are greater than interval times after smaller fires.

The final forecasting algorithm is based on the fractional
size of the largest cluster,Nct/Ng whereNct is the number of
trees in the largest cluster. This is shown in Fig. 8. The best
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Fig. 8. Error diagram for event forecasts based on the fractional
size of the largest cluster.The fraction of alarm time is given as a
function of the fraction of failures to predict.

forecast would have the fraction of alarm time near 0.2 and
the failures to forecast near 0.1. This is the best forecasting
algorithm with quite good forecasts.

4 Conclusions

We have studied the behavior of a model that combines as-
pects of the forest-fire model and the site-percolation model.
In our model, trees are randomly planted until a cluster of
trees “percolates,” that is the cluster spans the grid from one
side to the other. The trees in the spanning cluster are imme-
diately destroyed in a model “fire” and the planting sequence
is continued until the next fire occurs.

If trees are planted randomly on a large empty grid, the
site-percolation model is recovered. If all trees were removed
in a model fire when a cluster spans the grid, the fires would
be nearly periodic and the number of trees “burned” in each
fire would be nearly equal. In our model, the variations in the
number of residual trees after a fire results in a memory that
influences the occurrence of future fires. There is consider-
able variability in fire sizes and the intervals between fires.

We believe that the fires in our model are somewhat anal-
ogous to characteristic earthquakes on a major fault or fault
segment. The planting of trees corresponds to the tectonic
increase in stress. The variations in cluster structure corre-
spond to stress variations in the crust. The variability of the
sizes is analogous to the variability in characteristic earth-
quakes and the associated variability in the intervals between
characteristic earthquakes. In our model, there is a memory
of the structure of previous fires in any given fire, each char-

acteristic earthquake is influenced by the structure of previ-
ous characteristic earthquakes.

Spanning clusters are created by the coalescence of
smaller clusters. This coalescence process is a self-similar
inverse cascade in which the power-law distribution of clus-
ter sizes has been shown to have an exponent of two. The
clusters of trees are analogous to the metastable regions on
a fault over which our earthquake will propagate once trig-
gered.

In our analogy with earthquakes, we are considering char-
acteristic earthquakes on a single fault or fault segment,
not regional seismicity. The Gutenberg-Richter frequency-
magnitude distribution of earthquakes is associated with
earthquakes on many faults. We are considering the behavior
of a single fault or fault segment that experiences characteris-
tic earthquakes. Examples would be the northern and south-
ern segments of the San Andreas Fault in California. There
are very few earthquakes occurring on these fault segments
but future characteristic earthquakes similar to the 1906 and
1857 events are expected.

We have introduced several algorithms for forecasting
when a model fire will occur. We have quantified the fore-
casting success of an algorithm in terms of an error diagram.
The fraction of alarm time is given as a function of the frac-
tion of failures to forecast. A successful forecast should have
a small fraction of alarm time – ideally less than 0.1 – and a
small fraction of failures to forecast – again ideally less than
0.1.

Our first forecasting algorithm issues an alarm at a spec-
ified time after the previous event, say at the mean interval
time for events. If the events were periodic, this forecasting
algorithm would give perfect results. This algorithm is only
modestly successful on our model. It gives 30% failures to
forecast, with 30% alarm time. If the events were randomly
spaced, then the method would have 50% failure to forecast,
with 50% alarm time.

This algorithm is analogous to the seismic gap approach
to earthquake forecasting. The essential question is how one
characteristic earthquake is related to previous characteristic
earthquakes. If they are random (i.e. Poissonian), then there
can be no forecasting. If they are periodic, then there can
be perfect forecasting. Actual earthquakes fall somewhere in
between, just as our model does.

Our second forecasting algorithm issues an alarm based
on the density of trees on the grid. This is an improved algo-
rithm, because the residual number of fires varies from fire
to fire. The final forecasting algorithm issues an alarm based
on the size of the largest cluster on the grid. This algorithm
is quite successful because the size of the largest cluster is
closely related to the development of a percolating cluster.
This algorithm gives 10% failure to predict with a 20% alarm
time.
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Fig. A1. Flowchart for the algorithm employed in the dynamic simulation of our modified forest-fire model.

Appendix A Computational algorithms

The physics community has appreciated the need for special-
purpose algorithms for percolation problems for many years.
In the case of site-percolation, Hoshen and Kopelman (1976)
developed a scheme that made it possible to identify the
size of the largest cluster in a square array where the sites
had been occupied according to a random number generator,
while Leath (1976) employed a rather different methodology.
Stauffer and Aharony (1992) present a summary of many of
the ideas employed in such schemes. Our problem, however,
is distinctly different from those treated above in that our lat-
tice is undergoing continuous updating, through the planting
of trees. While the ideas described by Hoshen and Kopel-
man (1976) and Stauffer and Aharony (1992) were helpful,
we found it necessary to develop special-purpose algorithms
to meet our computational needs and to reduce the cost of a
single Monte Carlo simulation from nearly a day to less than
a minute.

Subsequent to the work of Hoshen and Kopelman (1976),
computer scientists have introduced a number of concepts
that are central to our algorithm, including the use of data
structures, pointers, flags, and linked lists (Cormen et al.,
1990). What we required was a methodology that, with ev-
ery planting event, would allow us to update our knowledge
of the clustering present on our array. Following the recom-
mendation of Stauffer and Aharony (1992), we label all sites

consecutively, rather than by a square array, utilizing a single
index i to reduce computation time. The overall logic em-
ployed is displayed in the accompanying Fig. A1. With the
successful planting of a tree, we ask whether the tree is in
isolation. If so, we establish a new cluster, check whether it
is on the boundary, update relevant information stored in ar-
rays, and return to tree planting. Otherwise, we identify the
cluster(s) with which the new tree is associated, and merge
the tree into the cluster. If the tree is on a boundary, we up-
date certain array information, and ask whether the tree has
another neighbor, i.e. does it bridge two clusters. If so, we
merge the relevant clusters, update all array information, in-
cluding that pertinent to the boundaries. If criticality (i.e. site
percolation) has been achieved, we clear away the new clus-
ter, update array and boundary information, and return to tree
planting.

In order to perform these tasks most efficiently, we estab-
lish data structures through a set of three arrays. The first
array α has a one-to-one correspondence with the sites in
the lattice. If a site locationi is unoccupied, we setα (i) to
zero; if it is occupied, then we setα (i) = j wherej is the
identification number for that cluster. We number clusters
consecutively, beginning with the first cluster – consisting
of only one tree – that forms. When a cluster is eliminated
through a grid-spanning forest-fire or when it merges with a
larger cluster, its identification numberj is returned to the
pool of available cluster identification numbers. The second
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arrayβ is associated with the clusters; each of its columns
has seven elements and corresponds to a cluster identifica-
tion numberj = 1, . . ., N × N . (The number of columns
required is far fewer than this in practice.) The first row of
theβ array identifies the number of members in each of the
clusters; if the cluster with identification numberj is not in
use, thatβ (1, j) = 0. If β (1, j) 6= 0, then we setβ (2, j)

to the first site in that cluster. Similarly, ifβ (1, j) 6= 0,
then we setβ (3, j) to the last site location in that cluster.
Finally, the fourth through seventh rows ofβ correspond to
whether a given cluster extends to the “north,” “east,” “west,”
or “south” boundary. The relevantβ array element is set to 0
if that cluster does not extend to that boundary, and to a pos-
itive integer indicating the number of sites on that boundary
occupied by that cluster. The third arrayγ is associated with
cluster pointers. There are two ways that a cluster can grow.
In the most common, a cluster grows by the addition of a new
tree. Hence, when a new cluster is created at a sitei, we set
γ (i) to zero, since there are no other trees associated with
that cluster. When a new tree is added to that cluster at a site
k, we setγ (i) = k andγ (k) = 0. In other words, theγ array
allows us to go from each member of a cluster to the next (in
order of their addition) until we have run out of cluster mem-
bers. If two clusters merge via a bridging tree and, assuming
that we have merged the bridging tree with the larger of the
two clusters, then we re-assign theγ pointer of the bridging
tree with the first site of the smaller cluster. Loosely speak-
ing, this exploits an important idea in Hoshen and Kopelman
(1976). This has the immediate advantage of eliminating the
need for doing substantial renumbering of indices and point-
ers. Renumbering is only significant for theα array when
clusters merge, and only the smaller cluster is renumbered.
The updating of the different rows ofβ is straightforward
and, in the context of the flowchart presented, this algorithm
permits 107 planting events – including all relevant book-
keeping, the source of almost all of the computational cost –
on a 128× 128 lattice in a matter of minutes.

Appendix B Forecasting evaluation diagram for ran-
dom events

ConsiderN events that occur randomly during a time interval
NT . In particular, we assume that the probability density
distribution at timet for an eventf (t) is given by

f (t) =
1

T
exp

(
−

t

T

)
(B1)

whereT is the mean interval between events. Assume that
an event alarm is issued at a timeτ after the previous event.
We first determine the cumulative distribution functionF (t)

for the probability that the event will occurafter the alarm
has been issued

F (τ) =

∫
∞

τ

f (t) dt . (B2)

Substituting Eq. (B1) into the latter, we have

F (τ) =
1

T

∫
∞

τ

exp

(
−

t

T

)
dt . (B3)

Making the substitutiont ′ = t − τ , we obtain

F (τ) = exp
(
−

τ

T

) ∫
∞

0
exp

(
−

t ′

T

)
d

(
t ′

T

)
= exp

(
−

τ

T

)
. (B4)

Moreover, the fraction of events that occur prior to the alarm
being issuedG (τ) is given by

G (τ) = 1 − F (τ) = 1 − exp
(
−

τ

T

)
. (B5)

This is the fraction of failures to predict.
The mean length of time between an alarm and an event

that occurs after an alarm has been issued〈t − τ 〉 is given by

〈t − τ 〉 =

∫
∞

τ

(t − τ) f (t) dt .

But this is also the fraction of time that alarms are in effect,
which we will callA, thus yielding

A =
1

T

∫
∞

τ

(t − τ) exp

(
−

t

τ

)
dt , (B6)

having substituted Eq. (B1). Again making the substitution
t ′ = t − τ , we have

A = exp
(
−

τ

T

) ∫
∞

0

t ′

T
exp

(
−

t ′

T

)
d

(
t ′

T

)
= exp

(
−

τ

T

)
. (B7)

Eliminating exp(−τ/T ) from Eq. (B5) and (B7), we obtain

G = 1 − A . (B8)

In the forecasting evaluation diagrams, this is the straight line
from G = 1, A = 0 toG = 0, A = 1 shown in Fig. 6.
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