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Abstract. The thermal conductivity of mantle materials has
two components, the lattice componentklat from phonons
and the radiative componentkrad due to photons. These two
contributions of variable thermal conductivity have a nonlin-
ear dependence in the temperature, thus endowing the tem-
perature equation in mantle convection with a strongly non-
linear character. The temperature derivatives of these two
mechanisms have different signs, with∂klat/∂T negative and
dkrad/dT positive. This offers the possibility for the radia-
tive conductivity to control the chaotic boundary layer insta-
bilities developed in the deep mantle. We have parameterized
the weight factor betweenkrad andklat with a dimension-
less parameterf , wheref = 1 corresponds to the reference
conductivity model. We have carried out two-dimensional,
time-dependent calculations for variable thermal conductiv-
ity but constant viscosity in an aspect-ratio 6 box for sur-
face Rayleigh numbers between 106 and 5× 106. The aver-
aged Ṕeclet〈Pe〉 numbers of these flows lie between 200 and
2000. Along the boundary inf separating the chaotic and
steady-state solutions, the〈Pe〉 number decreases and the
Nusselt number increases with internal heating, illustrating
the feedback between internal heating and radiative thermal
conductivity. For purely basal heating situation, the time-
dependent chaotic flows become stabilized for values off of
between 1.5 and 2. The bottom thermal boundary layer thick-
ens and the surface heat flow increases with larger amounts
of radiative conductivity. For magnitudes of internal heating
characteristic of a chondritic mantle, much larger values of
f , exceeding 10, are required to quench the bottom bound-
ary layer instabilities. By isolating the individual conductive
mechanisms, we have ascertained that the lattice conductiv-
ity is partly responsible for inducing boundary layer insta-
bilities, while the radiative conductivity and purely depth-
dependent conductivity exert a stabilizing influence and help
to control thermal chaos developed in the deep mantle. These
results have been verified to exist also in three-dimensional
geometry and would argue for the need to consider the po-
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tentially important role played by radiative thermal conduc-
tivity in controlling chaotic flows in time-dependent mantle
convection, the mantle heat transfer, the number of hotspots
and the attendant mixing of geochemical anomalies.

1 Introduction

Both the transport properties of momentum and heat in the
Earth’s mantle are dependent on both the temperature and
depth. On the one side, in the past thirty years, since the ad-
vent of plate tectonics much attention has been paid to the
temperature-dependence of mantle viscosity because of the
feedback on the thermal evolution of the mantle (Tozer, 1965,
1972), and the influence of the strong lithosphere on the style
of planetary convection (Richter et al., 1983; Ogawa et al.,
1991; Solomatov and Moresi, 2000; Monnereau and Quéŕe,
2001) and the development of fast narrow plumes (Yuen et
al., 1976; Christensen, 1984; Olson et al., 1988; Larsen and
Yuen, 1997; Thompson and Tackley, 1998). On the other
side, not much attention has been devoted to thermal con-
ductivity.

It is well known from solid-state physics that heat is trans-
ported by conduction in crystalline solids by means of both
phonon and photon propagation (e.g. Ziman, 1962). Re-
cently a semi-empirical theory for mantle thermal conductiv-
ity based on absorption and reflection spectroscopy has been
worked out by Hofmeister (1999, 2001). This conductivity
modelk(T , z), which depends on the temperature(T ) and
depth(z), has contributions from both the phonon and pho-
ton transport mechanisms and has a nonlinear dependence
in the temperature. The temperature equation contains now
three nonlinear terms (e.g. Dubuffet et al., 1999), thus replac-
ing the simple Laplacian terms for linear heat diffusion as in
the case for constant thermal conductivity. The dynamical
effects of these conductivity nonlinearities in mantle convec-
tion are manifold, such as a more focussed plume (Dubuf-
fet and Yuen, 2000) and a hotter interior (Dubuffet et al.,
1999). Because of these nonlinearities, the temperature equa-
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tion changes from a simple advection-diffusion equation to
a more complicated nonlinear advection-diffusion equation
with a mixed parabolic and hyperbolic character, similar to
the Kardar-Parisi-Zhang equation for growing interface (Kar-
dar et al., 1986) and used in geomorphology (Pelletier, 1999).

An outstanding characteristic concerning the temperature-
dependence of thermal conductivity is the distinct difference
between the temperature-dependence of the lattice conduc-
tivity klat (T , z) and that of the radiative conductivitykrad(T )

from the photons. The temperature-dependence ofklat (T , z)

behaves similarly to the viscosity in that∂klat/∂T is nega-
tive, while from local radiative equilibrium (e.g. Siegel and
Howell, 1972) it is well known thatdkrad(T )/dT is positive.
Such a sign difference in the temperature derivatives of the
two components of the conductivity would mean that the two
mechanisms would work against each other in matters con-
cerning the boundary layer stability in mantle convection.

From a simple physical argument, one would expectkrad

to be stabilizing, since an increase in temperature would in-
creasekrad , which would decrease the local Rayleigh num-
ber and also broaden the wavelength of the thermal distur-
bance, thus suppressing small-scale boundary layer instabili-
ties. This stabilizing phenomenon has already been observed
in the finite amplitude convection calculations by Matyska et
al. (1994) in which onlykrad(T ) was employed for the con-
ductivity. Since the distribution of the relative proportions
betweenklat and krad is still a subject of debate (Shank-
land et al., 1979) and also of active study (Hofmeister, 1999;
Hofmeister, 2001), we will investigate the role played by
krad in stabilizing time-dependent convection. We will em-
ploy a simple parameter, calledf , which measures the rel-
ative importance betweenkrad and klat and then vary this
parameter to study the possibility for controlling thermal
chaotic motions in mantle convection by increasing the value
of this parameter. This type of approach is very much akin to
the spirit of controlling spatial-temporal chaos, which today
is one of the central problems in nonlinear dynamics (e.g. Ott
et al., 1994; Kim et al., 2001).

In Sect. 2 we will describe the thermal conductivity model,
the scheme of parameterizing the relative importance ofkrad

to klat , and the numerical model for thermal convection with
variable thermal conductivity. In Sect. 3 we will focus pri-
marily on the 2-D results in which the time-dependence in
mantle convection is shown to be controllable by the grow-
ing influence of radiative thermal conductivity. We will also
corroborate with 3-D calculations. In the final section we dis-
cuss the results and the geophysical implications of this new
physical mechanism for stabilizing boundary layer instabili-
ties and influencing global geodynamics.

2 Description of the thermal conductivity and numeri-
cal model

First, we describe the thermal mantle conductivity model,
which comes from Hofmeister (1999, 2001). It has both the
klat (T , z) andkrad(T ). There is a parameter “a” in klat (T , z)

(Eq. 2) which can account for the type of chemical bonding
in mantle minerals (Hofmeister, 1999). These expressions,
based on experimental phonon lifetimes and reflectance data,
take the form:

krad(T ) =

3∑
i=0

biT
i (1)

where the radiative portion has contributions fromT andT 2

as well asT 3, because of the use of the overtone modes
(Hofmeister, 1999).
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We note thatklat (T , z) has two nonlinear dependences
with T , one exponential and the other power-law. The names
and parameter values associated with thermal conductivity
are provided in Table 1.

As discussed above,klat behaves like mantle viscosity in
that it decreases with a hotter temperature and increases with
greater pressure. However,krad acts in the opposite fashion,
it increases with higher temperature. Because of the rapid
rise in the temperature within the boundary layer,krad would
increase a lot locally, whileklat would decrease much lo-
cally. In order to study the influence of an enhanced radiative
contribution to the total thermal conductivity, we have sim-
ply multiplied the radiative thermal conductivity by a weight
factorf . This weight factorf will be regarded in this sta-
bility study as a control variable. Thus the expression of the
thermal conductivity used in this study is:

k(T , z) = f × krad(T ) + klat (T , z) (3)

We will vary f in Eq. 3 and study its influence on the
stability of the global convective dynamics. Let us emphasize
here thatf is not to be regarded as having any strict physical
interpretation in terms of solid-state physics but rather as a
control variable for quantifying the character of the flow. Van
den Berg et al. (2002) have used this type of weight factoring
in f to study the effects of varyingf on the thermal evolution
of the mantle.

We have studied this problem of the influence of radia-
tive conductivity with a simple constant viscosity convection
model in the Boussinesq limit but with variable thermal con-
ductivity. The equations of convection for an infinite Prandtl
number fluid are solved in a 2-D Cartesian geometry. The co-
ordinates arex andz, with z the vertical axis pointing down-
wards. With a variable thermal conductivity, the dimension-
less temperature equation takes the following form:

DT

Dt
= κ(T , z)∇2T

+
∂κ

∂T
(T , z) (∇T )2

+
∂κ

∂z
(T , z)

∂T

∂z
+ R (4)
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Table 1. Values of the conductivity parameters (from Hofmeister, 1999)

Parameter Definition Value unit

b0 Constant associated with radiation 1.753× 10−2 W.m−1.K−1

b1 “ −1.0365× 10−4 W.m−1.K−2

b2 “ 2.2451× 10−7 W.m−1.K−3

b3 “ −3.407× 10−11 W.m−1.K−4

a Power-law index 0.9
κ0 Surface thermal diffusivity 0.91× 10−6 m2.s−1

γ Grüneisen parameter 1.2
K Bulk modulus 265 GPa
K ′ Pressure derivative of the bulk modulus 5

Table 2. Values of the parameters used in the thermal convection model

Parameter Definition Value unit

h Mantle thickness 2.88× 106 m
1T Temperature difference across the mantle 2702 K
α Thermal expansivity 2× 10−5 K−1

H Chondritic abundance of heating 6× 10−12 W.Kg−1

k0 Surface thermal conductivity 3.3 W.K−1.m−1

g Gravity 9.81 m.s−2

where D/Dt is the substantive derivative andκ(T , z) =

k(T , z)/
(
ρCpκ0

)
is the dimensionless thermal diffusivity.

We refer the reader to Table 2 for the definitions and param-
eter values. The dimensionless internal heating parameterR

is given by:

R =
Hd2

k01T
(5)

k0 is given in Table 2. A typical value for radioactive internal
heatingR is around 12 based on the chondritic abundance
from meteorites (Leitch and Yuen 1989). We will study the
effects of varyingf in stabilizing flows for different amounts
of R, varying fromR = 0 (purely base-heated configuration)
to the chondritic value. The particular temperature at the base
of the mantle plays an important role in the radiative heat
transfer. We note that the temperature of 3000 K assumed
at the core-mantle boundary is on the low side (Zerr et al.,
1998).

We note that the three terms on the right hand side of
the temperature equation are non-linear because of the vari-
able thermal conductivity, instead of the linear diffusion term
in the constant conductivity case. An alternating-direction-
implicit (ADI) scheme (e.g. Morton and Mayers, 1994) and
the finite difference method are used to solve the tempera-
ture (Eq. 4). This implicit scheme is of second order of ac-
curacy in space and time. The constant viscosity momentum
(Eq. 6), which is unaffected by the introduction of variable
conductivity, is solved in the spectral domain, using a Fast
Fourier Transform along the horizontal and a second-order
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Fig. 1. Temperaturefield (panela),streamfunction(panelb), andthermalconductivity field (panelc), for a
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Fig. 1. Temperature field(a), stream function(b), and thermal
conductivity field (c), for a model with a Rayleigh number of
Ra = 106, a dimensionless internal heating rate ofR = 0, and
a weight factorf = 1.0. 1025× 512 grid points are used in a box
with an aspect ratio 6.

finite-difference scheme in the vertical directionfor each hor-
izontal wave number.

∇
4φ = −Ras

∂T

∂x
(6)

φ is the stream function, the other parameters are defined in
Table 2, whereRas is the surface Rayleigh number.
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Fig. 2. Evolution with time of the surface Nusselt number(a),
horizontally averaged temperature profile〈T (z)〉 (b), and the hori-
zontally averaged conductivity profiles〈krad 〉 (dashed-dotted line),
〈klat 〉 (dashed line) and〈k〉 (solid line) (c), for a model with a
Rayleigh number ofRa = 106, a dimensionless internal heating
rate ofR = 0, and a weight factorf = 1.0. For simplicity, the
surface Nusselt number is defined asNu = 〈∂T /∂z〉

. The brackets denote horizontal average.

The thermal and free-slip boundary conditions are im-
posed at the top and bottom boundaries, where the temper-
atures are specified, and the horizontal boundaries are imper-
meable. We note that the particular value of the temperature
assumed at the bottom boundary or the core-mantle boundary
(CMB) will exert a definite dynamical influence, because of
the intrinsic temperature-dependent nonlinearity in the ther-
mal conductivity. In order to resolve correctly the tempera-
ture and thermal conductivity gradients in the boundary lay-
ers, more grid points are necessary in the numerical exper-
iments involving variable thermal conductivity than in the
constant conductivity cases (Dubuffet et al., 1999). We have
used a grid consisting of 1025×257 points in a box of aspect
ratio 6 for all models presented in this study.

3 Results

The values of the parameter “a” in the lattice conductivity,
the bulk modulusK, and the derivative of the bulk modulus
K ′, in klat , are all functions of the composition of mantle
rocks. We have chosen values (see Table 1) suitable for the
lower mantle (Hofmeister, 1999). In Figs. 1 to 8, we present
the temperature, stream function conductivity fields, the hor-
izontally averaged temperature and thermal conductivity pro-
files for different values of the parameterf , different dimen-
sionless heating rateR but for the same Rayleigh number of
106. Figure 1 displays the results for the casef = 1 and
R = 0. The temperature field (Fig. 1a) shows clearly an un-
steady flow with thermal boundary layers instabilities in the
top and bottom boundary layers. Plume branching(x = 4.6),
resulting from the growth of secondary instabilities in the

plume, appears at this Rayleigh number. Such kind of plume
branching is present in convective flows with constant ther-
mal conductivity at higher Rayleigh number,Ra greater than
109 (Vincent and Yuen, 2000). This type of behaviour has
already been observed in convection modeling with a non-
Newtonian viscosity for effective Rayleigh numbers of the
same order of magnitude (Malevsky et al., 1992). The en-
hancement of plume branching at lower Rayleigh number
comes from the non-linearities introduced by the variable
viscosity in the momentum equation (Malevsky et al., 1992)
and here by the variable thermal conductivity in the energy
equation. Three cells (Fig. 1b) are present in this model.
Even though the flow is unsteady due to boundary layer in-
stabilities, a large scale flow exists (Hansen and Ebel, 1988).
The conductivity field (Fig. 1c) shows a strong decrease of
the conductivity in the top thermal boundary layer due to
the strong increase of the temperature, leading to a decrease
of the lattice thermal conductivity(klat ). The conductivity
slightly increases with depth due to the hydrostatic pressure
effects inklat (T , z). The conductivity is greater than the am-
bient value in downwellings and smaller in the plumes lo-
cated near the bottom boundary layer. The smaller conduc-
tivity inside the plumes traps the heat inside. After being
trapped, the hot anomaly is released close to the surface, thus
creating a hot and thin layer beneath the top boundary layer
(Fig. 1a). A low conductivity layer is associated with this hot
layer under the surface. The conductivity field clearly shows
that the variations of the thermal conductivity are essentially
due to the variations ofklat . In a previous study (Dubuffet et
al., 1999), we have shown that forf = 1, krad is smaller
than klat in an horizontally averaged sense. In Fig. 2 we
show the evolution of the surface Nusselt number with time
(Fig. 2a), the horizontally averaged temperature profile〈T 〉

and the horizontally averaged conductivity〈k〉 with the ra-
diative component〈krad〉 (dashed-dotted line) and the lattice
component〈klat 〉 (dashed line). The Nusselt number is de-
fined here to be〈∂T /∂z〉, the horizontally averaged value of
the vertical temperature gradient, as we have not solved the
nonlinear two-point boundary value problem for the back-
ground temperature in the presence of variable thermal con-
ductivity. We note that the〈krad〉 mimicks the〈T 〉 profile and
increases at the bottom, while both the〈klat 〉 and〈k〉 develop
a low conductivity zones at the base of the top boundary layer
and at the bottom. In spite of the pressure-dependence of
conductivity the value of〈k〉 in the lower mantle is smaller
than the surface value because of the strong decrease of the
thermal conductivity with depth fromklat (T ).

Now we have increased the valuef gradually from 1 to
1.2 and so on in an incremental manner. In Fig. 3, we dis-
play the results for the same values of parameters as in Fig. 1
(Ra = 106 andR = 0) but now, we have multiplied the
radiative component(krad) by a factorf = 1.5. The flow
shows a more quiescent behaviour (Fig. 3a). Thermal bound-
ary layer instabilities are found only in the bottom boundary
layer. As in the previous case (Fig. 1), we note the pres-
ence of a hot thermal layer under the top cold boundary layer
(Dubuffet et al., 2000b). Increasing the parameterf from 1
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Fig. 3. Temperature field(a), stream function(b), and thermal
conductivity field (c), for a model with a Rayleigh number of
Ra = 106, a dimensionless internal heating rate ofR = 0, and
a weight factorf = 1.5.
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Fig. 4. Evolution with time of the surface Nusselt number(a),
horizontally temperature profile〈T 〉(z) (b), and the horizontally
averaged conductivity profiles〈krad 〉 (dashed-dotted line),〈klat 〉

(dashed line) and〈k〉 (solid line) (c), for a model with a Rayleigh
number ofRa = 106, a dimensionless internal heating rate of
R = 0, and a weight factorf = 1.5.

(Fig. 1b) to 1.5 (Fig. 3b) leads to a slight increase the num-
bers of cells. The convective flow is now composed of 4
cells, with 2 cells that have the same size 1.5 (located be-
tweenx = 0 andx = 3) . Thus the number of upwellings is
changed by an enhanced radiative conductivity. We note that
the size of the cells is more similar than in the casef = 1
(Fig. 1b). The conductivity (Fig. 3c) decreases in the top
boundary layer. This conductivity is smaller than the sur-
rounding one, in the downwelling flows. But now the value
of the conductivity in the center of downwellings located in
the center of the box (z = 0.5) is around 2.2 W.K−1.m−1,
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Fig. 5. Temperature field(a), stream function(b), and the conduc-
tivity field (c), for a model with a Rayleigh number ofRa = 106,
a dimensionless internal heating rate ofR = 5, and a weight factor
f = 1.

whereas the value was around 2.6 W.K−1.m−1 in the case
f = 1 (Fig. 1c). Although these changes in the conduc-
tivity are small, they do exert a great deal of influence on
the boundary layer stability. In the center of the plumes, in
the lower part of the box (seez = 0.6), the conductivity is
slightly higher (around 2 W.K−1.m−1) than the conductivity
in the plume near the center (around 1.9 W.K−1.m−1). At
this depth (z = 0.6), the surrounding flow, has a conductivity
of around 2 W.K−1.m−1. At a shallower depth, the conduc-
tivity becomes more uniform inside the plume and is higher
than the surrounding (seez = 0.2). In the lower mantle,
there exists a high conductivity layer due to the increase in
krad(T ). The value off = 1.5 appears to be a critical value
above which the flow is steady. The resolution offc for this
Ra is 0.5, i.e. solutions atf = 2.0 appear quite similar to
f = 1.5. Further increase inf to f = 3.0 would bring about
a steady state. From now on, we will designate the critical
value off for this transition to befc. In Fig. 4 we plot the
associated Nusselt number evolution,〈T 〉, 〈krad〉, 〈klat 〉 and
〈k〉. The Nusselt number and〈krad〉 both increase withf .

As is well known, internal heating causes a greater time-
dependence in mantle convection (McKenzie et al., 1974).
Therefore, we have put in a moderate amount of internal-
heatingR = 5, around half the chondritic value in order
to determine the critical value off required for stabilizing
flows with only a small amount of radioactive heating. We
show in the next four figures (Fig. 5 to Fig. 8) the results of
the numerical modeling, for two cases withR = 5 and a
Rayleigh number ofRa = 106. The parameterf is set to
1 in Fig. 5. The flow produces a chaotic behaviour (Fig. 5a)
more so than withR = 0 andf = 1. There are more up-
wellings and downwelling than in the pure-basal heating case
(R = 0) (Fig. 1a). Both internal heating and variable ther-
mal conductivity drive a greater asymmetry between the top
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Fig. 6. Evolution with time of the surface Nusselt number(a),
horizontally averaged temperature〈T 〉(z) (b), and the horizontally
averaged conductivity profiles〈krad 〉 (dashed-dotted line),〈klat 〉

(dashed line) and〈k〉 (solid line) (c), for a model with a Rayleigh
number ofRa = 106, a dimensionless internal heating rate of
R = 5, and a weight factorf = 1.

and bottom boundary layers. The downwelling currents are
stronger than the upwelling plumes. The flow with internal
heating consists of 12 cells (Fig. 5b), much more numerous
than the purely basal-heating case (Fig. 1b). The conductiv-
ity field (Fig. 5c) shows the same behaviour than in the case
with R = 0 andf = 1. This results in a strong decrease
of the conductivity in the upper boundary layer, a smaller
conductivity than the surrounding in the plumes, a higher
conductivity in the downwellings, a low conductivity layer
under the top thermal boundary layer and an increase in the
conductivity with depth outside the boundary layers. These
changes represent then the characteristic properties of the
variable thermal conductivity withf = 1. But with internal
heating, the value of the conductivity is smaller in the down-
wellings (around 1.6 W.K−1.m−1) than in the case without
heating(R = 0). The conductivity is now slightly higher
at the base of the plumes (atz = 0.8) than in the down-
wellings. These new effects are caused by the higher interior
temperature induced by the internal heating. The increase
of the interior temperature leads to a decrease in the lattice
component of the conductivity(klat ), and an increase in the
radiative component(krad). Figure 6 displays the associated
Nusselt number evolution,〈T 〉, 〈klat 〉, 〈krad〉 and〈k〉 profiles.
Internal heating decreases the trough in the conductivity near
the CMB.

In order to determine the critical value off , above which
we can stabilize the flow with an dimensionless internal heat-
ing rate ofR = 5, we have carried out numerical simulations
at incremental steps off up to 12. In Fig. 7, we show the
results for a value off = 8 andR = 5. The tempera-
ture field (Fig. 7a) and the stream function (Fig. 7b) reveal
a much more stable flow with fewer upwellings than in the
case withf = 1 (Fig. 5). It consists of 3 plumes and 4 down-
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Fig. 7. Temperature field(a), stream function(b), and conductiv-
ity field (c), for a model with a Rayleigh number ofRa = 106, a
dimensionless internal heating rate ofR = 5, and a weight factor
f = 8.
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Fig. 8. Evolution with time of the surface Nusselt number(a),
horizontally averaged temperature profile〈T 〉(z) (b), and the hori-
zontally averaged conductivity profiles〈krad 〉 (dashed-dotted line),
〈klat 〉 (dashed line) and〈k〉 (solid line) (c), for a model with a
Rayleigh number ofRa = 106, a dimensionless internal heating
rate ofR = 5, and a weight factorf = 8.

wellings. The number of convective cells is 6. By increasing
the weight factorf to 8, we observe a decrease in the number
of cells. The conductivity field (Fig. 7c) shows much larger
variations of the conductivity, between 2 W.K−1.m−1 and
9 W.K−1.m−1, than in the case withf = 1 where the con-
ductivity varies between 1 W.K−1.m−1 and 3.2 W.K−1.m−1.
In the model withR = 5 andf = 8 (Fig. 7c), the conductiv-
ity increases in both thermal boundary layers whereas in the
model withR = 5 andf = 1 (Fig. 5c), the conductivity de-
creases in the upper thermal boundary layer and it becomes
nearly constant in the bottom boundary layer. This results in
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Fig. 9. Maps showing the ratio between the radiative thermal con-
ductivity krad and the lattice componentklat . (a) and(b) show this
ratio for the model withR = 5 andf = 1 (Fig. 5),(c) and(d) for
the model withR = 5 andf = 8 (Fig. 7). We show this ratio in the
small boxes located at the bottom fifth of the box in the panels (a)
and (c) in panels (b) and (d), respectively.

a decrease of the local Rayleigh number in the boundary lay-
ers associated with the model havingR = 5 andf = 8, thus
leading to a general degree of stabilization of the global flow.
These variations of the thermal conductivity in the boundary
layers are caused by the variations of the radiative component
krad(T ). We have found thatf = 8 is around the characteris-
tic value of above which the flow becomes quasi-steady. We
can thus claim forR = 5 that the critical valuefc is around 8.
Figure 8 shows the associated Nusselt number evolution, the
〈T 〉, 〈klat 〉, 〈krad〉 and the〈k〉 profiles. Because of the high
interior temperature,〈krad〉 now becomes much larger than
〈klat 〉. Thus the〈k〉 profile resembles the〈T 〉 profile. This
change in the〈k〉 profile with increasingf is responsible for
the stabilization of the plumes.

We will now demonstrate that an increase in the local ra-
diative thermal conductivity(krad(T )) versus the lattice con-
ductivity klat (T , z) would lead to a stabilization of the global
flow, as shown previously in Fig. 8. This phenomenon is il-
lustrated in Fig. 9, which shows a 2-D map showing the ratio
of krad/klat for the model withR = 5 andf = 1 (Fig. 9a and
b), and for the more radiatively pacified model withR = 5
and f = 8 (Fig. 9c and d). The model withR = 5 and
f = 1 has a radiative conductivity smaller than the lattice
conductivity in the thermal boundary layers, in the down-
wellings and in the plumes at the bottom. The ratiokrad/klat

is smaller in the downwellings than in the plumes because of
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Fig. 10. Temperature field(a), stream function(b), and thermal
conductivity field(c), for the model with the expression for thermal
conductivityk(z) = klat (z) (Eq. 7),Ra = 106 andR = 0.

a high radiative conductivity and a small lattice conductiv-
ity resulting from the high temperature in the plumes. The
hot patch (Dubuffet et al., 2000b) beneath the surface dis-
played previously in Fig. 5a, corresponding to a low conduc-
tivity layer, shows a distinctly higher radiative conductivity
than the lattice conductivity. This is caused by a rather high
temperature at this shallow depth. For the model withR = 5
andf = 8, the ratiokrad/klat shows greater variations than
the model withR = 5 andf = 1. This ratio ranges from
0.3 to 14.3 for the model withf = 8, whereas it ranges from
0.03 to 1.5 for the model withf = 1. The lattice conductiv-
ity is smaller than the radiative conductivity only in the upper
part of the top boundary layer. The radiative conductivity is
greater than the lattice conductivity elsewhere. The greatest
values of the ratio lie in the hot patch beneath the top bound-
ary layer, where the radiative conductivity is more than 10
times greater than the lattice conductivity. The stabilization
of the flow results from an enhancement in the radiative con-
ductivity of the boundary layers. For this value off = 8, the
radiative conductivity is everywhere greater than the lattice
conductivity, in particular within the bottom boundary layer.

In order to demonstrate the stabilizing effects on the flow
from a purely depth-dependent conductivity, we have con-
ducted one experiment with a thermal conductivity in which
we have removed both the radiative component and the
temperature-dependence of the lattice conductivity. Other
types of depth-dependent thermal conductivities, based on
a seismic equation of state, have been proposed by Ander-
son (1987) and were used in numerical modelling (Yuen and
Zhang, 1989; Leitch et al., 1991; Tackley, 1996a). The
purely depth-dependent thermal conductivity has the follow-
ing expression:

k2(z) = k0

(
1 + ρg

K ′z

K

)
(7)
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Fig. 11. Evolution with time of the surface Nusselt number(a),
horizontally temperature profile〈T 〉(z) (b), and the horizontally
averaged conductivity profiles〈krad 〉 (dashed-dotted line),〈klat 〉

(dashed line) and〈k〉 (solid line)(c), for the model with the expres-
sion for thermal conductivityk(z) = klat (z) (Eq. 7),Ra = 106 and
R = 0.

The thermal conductivity increases only with depth. We
note that the non-linear term with(∇T )2 is now no longer
present in the right hand side of the temperature Eq. (4). Fig-
ure 10 shows the results for a convective model with the ex-
pression of the conductivity given by Eq. (7),Ra = 106 and
R = 0. The flow (Fig. 10a) is more stable than in the case
with the expression of the reference variable conductivity
(Hofmeister, 1999) withf = 1 (Fig. 1). The flow consists
of 3 large cells plus a smaller one. Some instabilities are
present in the thermal boundary layers. The stabilization of
the flow results from the large increase in depth of the con-
ductivity (Fig. 10c). We show that the increase in the conduc-
tivity with depth does exert a stabilizing effect on the global
flow. Figure 11 show the associated evolution of the surface
Nusselt number,〈T 〉 and〈k〉 profiles. We see that without the
decreasing influence ofklat (T ) the conductivity increases by
a factor of 3 across the mantle, as in the conductivity model
based on seismic velocities by Anderson (1987).

The influence of internal heating on the purely depth-
dependent thermal conductivity is shown in Fig. 12, where
the temperature and stream function fields in addition to
the thermal conductivity field are displayed. The time-
dependence is stronger with internal heating, as evidenced
by the growing complexity of the plume structures, and the
cell sizes have increased. The larger aspect-ratio flow causes
a reduction in the surface Nusselt number to 19.4 (Fig. 13b).
Other panels of Fig. 13 include the time-history of the sur-
face Nusselt number, the horizontally averaged temperature
〈T 〉, which has increased because of the internal heating, and
the conductivity〈k〉 profile.

The lattice conductivity(klat ) is both temperature- and
depth-dependent. We have studied the effects on the flow,
of the depth-dependence and the temperature-dependence of
the lattice conductivity. First, we have removed the tempera-
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Fig. 12. Temperature field(a), stream function(b), and the thermal
conductivity field(c), for the model with the expression for thermal
conductivityk(z) = klat (z) (Eq. 7),Ra = 106 andR = 5.
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Fig. 13. Evolution with time of the surface Nusselt number(a),
horizontally averaged temperature〈T 〉(z) (b), and the horizontally
averaged conductivity profiles〈krad 〉 (dashed-dotted line),〈klat 〉

(dashed line) and〈k〉 (solid line)(c), for the model with the expres-
sion for thermal conductivityk(z) = klat (z) (Eq. 7),Ra = 106 and
R = 5.

ture dependence form the lattice conductivity. We have used
in our convective model, the following expression forklat (z):

klat (z) = k0

(
1 + ρg

K ′z

K

)
(8)

This is the same as Eq. (7) used in Figs. 12 and 13. The ex-
pression of the thermal conductivity becomes now:

k3(T , z) = f × krad(T ) + klat (z) (9)

We note that∂k3/∂T is positive now. Figure 14 shows the
results for a model with the expression of the thermal con-
ductivity given by Eq. (9),f = 1, Ra = 106 andR = 5.
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Fig. 14. Temperature field(a), stream function(b), and the thermal
conductivity field(c), for the model with the expression fork3(T , z)

given by Eq. 8 and Eq. 9,f = 1, Ra = 106 andR = 5.
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Fig. 15. Evolution with time of the surface Nusselt number(a),
horizontally averaged temperature profile〈T 〉(z) (b), and the hori-
zontally averaged conductivity profiles〈krad 〉 (dashed-dotted line),
〈klat 〉 (dashed line) and〈k〉 (solid line) (c), for the model with the
expression fork3(T , z) given by Eq. 8 and Eq. 9,f = 1, Ra = 106

andR = 5.

The flow withk3(T , z) is now much stable than in the model
with the same values of the parameters (f = 1, Ra = 106

andR = 5) and the inclusion of the temperature-dependent
lattice conductivity (Fig. 5). Some small instabilities persist
in the thermal boundary layers (Fig. 14a). The flow con-
sists of 4 cells (Fig. 14b). The conductivity field (Fig. 14c)
shows larger variations of the conductivity than in the case
with the temperature-dependence ofklat (Fig. 5c). The man-
tle conductivity is always greater than the surface conductiv-
ity. This results in the stabilization of the global flow, much
more so than the case withk2(z) in Fig. 12. The lateral vari-
ations of the conductivity are quite not visible at the bottom.
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Fig. 16. Domain diagram delineating the chaotic (C) and the quasi-
steady (Q) regimes. The weight factorf is the ordinate and the
dimensionless internal heating rateR is the abscissa. The criticalfc

values are marked by points, with the upper set representingRa =

5 × 106, and the lower setRa = 106. Values offc are determined
up tofc +0.5 for 106 andfc +2 for Ra = 5×106. We note that the
solutions more thanfc + 2 are locked on to a steady-state solution
with hardly any signs of time-dependence.

This results from a sharp increase in the lattice conductivity
with depth. This combination of both radiative and depth-
dependent thermal conductivity results in the greatest stabi-
lization of all flows examined up to now, since the destabi-
lizing influence of the lattice conductivity has now been re-
moved. In Fig. 15 we show the associated evolution of the
surface Nusselt number, the horizontally averaged tempera-
ture and the profiles for the〈krad〉, 〈klat 〉 and 〈k〉. With a
higher temperature at the CMB, like 4000 K,〈krad〉 can ap-
proach values close to 1, the surface value of the conductiv-
ity.

We have carried out a series of time-dependent calcula-
tion using a high resolution of 1025× 257 points for locat-
ing the locus of points separating the chaotic (C) regime and
the quasi-steady (Q) regime. Each run has been integrated
for 30 000 timesteps to insure that we have gone beyond the
transient regime. Several runs are needed for each point dis-
played in Fig. 16, where we have constructed a domain dia-
gram delineating the values offc for different values of inter-
nal heating fromR = 0 toR = 10. Thus this undertaking is
quite computationally intensive. Values offc are determined
up to 2 units inf for the higherRa. Hence a non-trivial
amount of computational resources is required for construct-
ing Fig. 16. Larger values offc are needed to stabilize the
flow with an increasing amount of internal heating (largerR)
and increasing convective vigor (largerRa). Number of up-
wellings increases with bothRa andR for the solutions dis-
played in Fig. 16. An increase inf leads to fewer upwellings.
Let us remark here that flows with values off in excess of
fc + 2 are rendered to be steady states. The trend forfc
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Fig. 17. Volumetrically averaged value of the local Peclet number
(〈Pe〉), and the horizontally averaged surface Nusselt number (Nu),
as a function of the dimensionless internal heating (R), for models
with Ra = 106 (a), andRa = 5 × 106 (b). All values displayed in
this figure are given by the models displayed in Fig. 16, which gives
the values offc for each case. These values have been averaged
over the last 200 time steps. The local Péclet number is calculated
at each grid point by the square root of the velocity components.

displays an asymptotic character with increasingR. It tends
toward around 14 forRa = 106 and 20 forRa = 5 × 106.
The values offc increase somewhat with a largerRa, but the
relative gain infc is smaller than the increase inRa.

We show in Fig. 17 that these stabilizing phenomena are
operating in a regime very far from a weakly convective
regime. In this figure we plot as a function ofR for the
points shown in Fig. 16 the corresponding volumetrically av-
eraged value of the local Péclet number ,〈Pe〉, and the hor-
izontally averaged surface Nusselt number,Nu. These val-
ues, with〈Pe〉, between 200 and 2000, andNu greater than
20, demonstrate overwhelmingly that the nonlinear control
wielded by variable thermal conductivity still lingers on in
spite of the presence of strong convective motions. Inspec-
tion of Fig. 17 shows the somewhat paradoxical trend that
with greater radiative participation due to higherf values,
smaller values of〈Pe〉 are produced with increasingR but
also greater heat transport, as evidenced by the higher val-
ues ofNu with larger values ofR. This same phenomenon
was also found in the steady-state calculations (van den Berg
et al., 2001) for a radiatively dominated thermal conductiv-
ity model, in which the largestNu was found for a givenRa.
But these parameter values for radiative conductivity fall out-
side the geophysically relevant range.

The results shown in Figs. 16 and 17 support the previous
findings of Dubuffet et al. (2000a) that the influence of vari-
able thermal conductivity is very much still present in the
high Rayleigh number regime, contrary to the conventional
conjecture that diffusion effects can only operate effectively
in the weakly nonlinear convective regime.

Fig. 18. � È Ì������ÏÊ of thehorizontalgradientof thetemperature(top surface)on theentireplanelocated

underthetop surfaceat a depthof
ì ¼¬¾6Â ¾�Ä , andthetemperaturefield (bottomsurface)in thesameplane,

for a 3-D modelof convectionwith a Rayleighnumberof ºz»9¼¬ÄGÆ±½7¾ Ø , a dimensionlessinternalheating

rateof º�¼�¾ , andthreedifferentvaluesof theweightfactor è , ½ , Å and Ä . ÐªÄªÃÒÆ$ÐªÄªÃÒÆ$ÐªÄªÃ grid pointsare

usedin a boxwith dimensionsof Ñ9Æ´Ñ9Æ�½ . 42

Fig. 18. L2 − norm of the horizontal gradient of the temperature
(top surface) on the entire plane located under the top surface at
a depth ofz = 0.05, and the temperature field (bottom surface)
in the same plane, for a 3-D model of convection with a Rayleigh
number ofRa = 5 × 106, a dimensionless internal heating rate of
R = 0, and three different values of the weight factorf , 1, 3 and 5.
257× 257× 257 grid points are used in a box with dimensions of
4 × 4 × 1.

The effects of increasingf on stabilizing planforms are
also observed in 3-D configurations. This phenomenon is il-
lustrated in Fig. 18, where we have shown that the stabiliza-
tion of the platforms also takes place with increasing value
of f . Three values off ranging from 1, 3, and 5 have been
considered forRa = 5 × 106 and R = 0 in an aspect-
ratio 4× 4 × 1 box. We have shown both theL2 − norm
of the horizontal gradient of the temperature superimposed
upon the surface temperature field. With the increase off

much sharper∇T gradients are developed along with the
formation of coherent horizontal platforms as manifested by
formation of the narrow boundary-layer structure on the sur-
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face. This pattern is similar to those found in Soret-driven
convection with nonlinear diffusion coefficient (Cerbino et
al., 2002), whose mass diffusivity derivative with respect to
the composition has the same positive sign asdkrad/dT . We
suggest that the stability of the 3-D planform against chaotic
fluctuations is caused by the nonlinear focusing due to the
temperature-dependence of the radiative thermal conductiv-
ity.

4 Discussion

In this work we have employed a current model of mantle
thermal conductivity which has some very interesting non-
linear properties in the temperature. We have focussed here
on constant viscosity because variable viscosity would cause
other nonlinear feedback processes between the momentum
and energy equations. Contrary to traditional thinking, we
have found that the influence of the nonlinear diffusive na-
ture of the temperature equation extends out to the con-
vection regime with relatively high Ṕeclet number or high
Rayleigh number. These far-reaching effects of temperature-
dependent conductivity on mantle convection have already
been demonstrated by Dubuffet et al. (2000a) for Rayleigh
numbers as high as 7× 106 in a Cartesian 3-D geome-
try, where the sinking cold currents with higher conductiv-
ity were found to be assimilated thermally much more read-
ily than those with a constant conductivity. We can explain
this somewhat counter-intuitive behaviour on the basis of a
nonlinear interaction between the boundary type flow with a
huge contribution in∇T and the variable conductivity, which
provides a feedback for sustaining the pervasive influence of
nonlinear conductivity at high Rayleigh number. A similar
kind of feedback has also been found in the nonlinear diffu-
sion equation in two-phase flow within a geothermal context
(Woods, 1999).

We have demonstrated that there is a sharp transition, sim-
ilar to a phase change, in the time-dependent behaviour with
f , which delineates the relative importance between the ra-
diative and the lattice components of the conductivity. This
critical valuefc is very close to the reference valuef = 1
present in Hofmeister’s model (Hofmeister, 1999) for purely
basally-heated configuration and does not change much with
higher Rayleigh number. However, with the inclusion of
mantle internal heating of even half of the chondritic value,
the value offc increases by a factor of nearly an order in
magnitude, thus illustrating another feedback effect arising
between internal heating, and temperature-dependent con-
ductivity (van den Berg et al., 2002). This notion of the sta-
bilizing influence of radiative thermal conductivity was first
discovered by the time-dependent simulations by Matyska
et al. (1994), who employed a purely radiative thermal con-
ductivity, with the exactly same formulation as used by Mac
Donald (1959). We have also lent support to this idea of the
ability of radiative conductivity to suppress time-dependent
flows in the lower mantle by carrying out two separate nu-
merical experiments in which the nonlinear temperature de-

pendent components of the conductivity are switched off in
a systematic manner, leaving finally a linear thermal conduc-
tivity with only depth-dependence. Therefore, the radiative
component of thermal conductivity now joins the ranks of
other mantle properties, such as depth-dependent thermal ex-
pansivity (Hansen et al., 1993), depth-dependent viscosity
(Hansen et al., 1993; Zhang and Yuen 1995; Bunge et al.,
1996; Dubuffet et al., 2000c; Forte and Mitrovica, 2001), and
endothermic phase transition (Tackley, 1996b), which are all
mechanisms responsible for inducing mantle flow to a less
chaotic environment with fewer plumes and longer horizon-
tal wavelengths . This tendency is caused by the formation of
strong thermal attractors in the solution space, whose phys-
ical manifestations are the recurrent plume-plume merging
events (Vincent and Yuen, 1988) occurring at nearly the same
place in the bottom boundary layer. The value offc will un-
doubtedly be lowered by depth-dependent thermal expansiv-
ity, as the thermal buoyancy is reduced locally in the bottom
boundary layer. We have furthermore demonstrated that this
stabilization effect from radiative thermal conductivity also
works in 3-D, similar to the effects played by nonlinear diffu-
sion coefficient in colloidal convection (Cerbino et al., 2002).
Higher temperatures for the deep mantle than the value as-
sumed here with a temperature of 3000K at the core-mantle
boundary would causefc to be lower, because of the greater
stabilizing influence ofkrad(T ) at higher temperatures.

What are then the geophysical implications of this work?
Our results would suggest that in order to have relatively sta-
tionary deep mantle plumes with variable thermal conduc-
tivity, the lower mantle should contain very little radioactive
heating (Anderson, 1979) for a reference conductivity model
(Hofmeister, 1999) withf = 1. For internal heating of the
amount proposed by Kellogg et al. (1999) for the deep lower
mantle, which was two times the chondritic value (R around
25), there would be a very strong agitation of the mantle
flow. However, enhanced thermal conductivity from a D′

′

layer with a high temperature at the CMB, enriched by iron
infiltration from the outer core (Manga and Jeanloz, 1996),
would indeed help to stabilize the deep mantle plumes and
may influence the number of plumes in both the upper and
lower mantle (Malamud and Turcotte, 1999). Mixing of geo-
chemical anomalies in the deep mantle would also be influ-
enced by the relative contribution of radiative component in
the conductivity, since the intrinsic time-dependence of man-
tle convection and the number of hotspots are linked to the
particular value offc, which depends on many factors, such
as the amount of radioactive heating, the temperature at the
core-mantle boundary, the depth-dependent properties of the
lower mantle.
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