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Abstract. One of the interesting observations from the FAST
satellite is the detection of strong spiky waveforms in the par-
allel electric field in association with ion cyclotron oscilla-
tions in the perpendicular electric fields. We report here an
analytical model of the coupled nonlinear ion cyclotron and
ion-acoustic waves, which could explain the observations.
Using the fluid equations for the plasma consisting of warm
electrons and cold ions, a nonlinear wave equation is derived
in the rest frame of the propagating wave for any direction
of propagation oblique to the ambient magnetic field. The
equilibrium bulk flow of ions is also included in the model
to mimic the field-aligned current. Depending on the wave
Mach numberM defined byM = V/Cs with V andCs be-
ing the wave phase velocity and ion-acoustic speed, respec-
tively, we find a range of solutions varying from a sinusoidal
wave form for small amplitudes and lowM to sawtooth and
highly spiky waveforms for nearly parallel propagation. The
results from the model are compared with the satellite obser-
vations.

1 Introduction

The electrostatic ion cyclotron (EIC) mode is one of the low
frequency eigen modes of a magnetized plasma (D’Angelo
and Motley, 1962). These waves are studied due to their im-
portance in the heating of plasmas (Kelley et al., 1975). The
EIC waves are found to be unstable to current-driven insta-
bilities in the auroral region (Kindel and Kennel, 1971). The
measurements performed by the S3-3 (Mozer et al., 1977),
ISEE-1 (Cattell et al., 1991), Viking (Andre et al., 1987), Po-
lar (Mozer et al., 1997) and FAST (Ergun et al., 1998) satel-
lites have shown that EIC waves are frequently observed in
the auroral magnetosphere at altitudes between 3000 km to
8000 km and beyond.

The nonlinear steepening of the time domain perpendic-
ular electric field structures in an EIC wave has been stud-
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ied by Temerin et al. (1979). In their model, they observed
spiky structures in the perpendicular electric field for large
Mach numbers. The nonlinear EIC and ion acoustic waves
in a lowβ magnetized plasma were studied by Lee and Kan
(1981). They have presented a unified formulation for the
nonlinear electrostatic ion cyclotron and ion acoustic waves.
In an earlier study, Shukla and Yu (1978) have investigated
the oblique propagation of finite amplitude ion acoustic soli-
tons in a magnetized plasma. Their model was extended to
include the effects of the nonlinear ion polarization drift by
Yu et al. (1980). Recently, Jovanovic and Shukla (2000) have
presented a nonlinear model for coherent electric field struc-
tures in the magnetosphere by taking into account the low
frequency ion dynamics.

From the Polar data, Mozer et al. (1997) have observed
that the perpendicular electric field exhibits spiky structures
with amplitudes about 400 mV/m and repetition rates in the
range of the local ion cyclotron frequency. In addition, bipo-
lar structures and wave packets were observed in the paral-
lel electric field. Recently, wave observations by the FAST
satellite (Ergun et al., 1998) also revealed the existence of
nonlinear, time-domain structures associated with parallel
electric fields. These parallel electric field structures carry
large potentials and are associated with ion cyclotron waves.
In Fig. 1, we show an event from the FAST satellite taken
from Ergun et al. (1998), which exhibits the time develop-
ment of nonlinear ion cyclotron wave. The upper curve in
Fig. 1 shows bipolar electric field structures along the am-
bient magnetic field direction with amplitude∼ 700 mV/m.
The lower part of Fig. 1 displays the perpendicular elec-
tric field structures of the ion cyclotron (f ∼ 200 Hz) wave,
which do not contain the bipolar structures. From Fig. 1, we
infer that the frequency of the parallel propagating electric
field structure is∼ 50 Hz and is four times less than the fre-
quency of electric field structure of the perpendicularly prop-
agating ion cyclotron wave.

The existence of spiky parallel electric field oscillations
at the ion cyclotron frequency have also been reported from
numerical simulations in which diverging and converging



26 R. V. Reddy et al.: Spiky parallel electrostatic ion cyclotron and ion acoustic waves

Fig. 1. Parallel and perpendicular electric field structures observed
by FAST satellite (taken from Ergun et al., 1998).

electrostatic shocks were generated by field-aligned current
sheets (Singh et al., 1987). In the simulationE‖ was spiky
as in Fig. 1, without any such spiky structure in the per-
pendicular component of the field. Despite the observa-
tions from FAST (Ergun et al., 1998) and simulation results
(Singh et al., 1987) on the spiky parallel electric fields with-
out spikes inE⊥, no satisfactory attempt has been made to
explain such structures. The theoretical work of Temerin
et al. (1979) is limited to explaining the spiky nature inE⊥ as
observed from S3-3 (Mozer et al., 1977). However, the ob-
servation of parallel oscillations at the ion acoustic frequency
(or less than ion cyclotron frequency) with a signature of ion
cyclotron oscillations in the perpendicular field (see Fig. 1)
has remained unexplained. The linear analysis shows that
for parallel propagation, electrostatic ion wave dispersion re-
lation can support both ion acoustic and ion cyclotron waves
(Nicholson, 1983). We show here that the nonlinear coupling
between the ion acoustic mode and ion cyclotron oscillations
lead to the generation of parallel electric fields which can be
highly spiky and these spikes have various periods ranging
from ion cyclotron to ion acoustic. The equilibrium flow of
ions is included in the model to account for the field-aligned
current.

2 Model

For our model, we consider a homogeneous magnetized
plasma system consisting of cold ions and electrons. The
finite amplitude ion cyclotron/ion acoustic waves are propa-
gating in thex direction at an angleθ to the magnetic field
B0, which is assumed to be in the(x, z)-plane. The basic set
of fluid equations for this system is given by
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whereni is the ion density,vix, viy and viz are the com-
ponents of the ion velocity along thex, y, andz directions,
respectively,�i is the ion cyclotron frequency andφ is the
electrostatic potential of the waves. Ion thermal pressure is
neglected (Te � Ti). Since we are studying low frequency
phenomena (ω � �e), the electrons are assumed to be in
electrostatic equilibrium. Their density is then given by the
Boltzmann distribution,ne = n0 exp(eφ/Te), wheren0 is
the ambient density. Our system of equations is closed with
the quasi-neutrality conditionni = ne, which is valid for low
frequency studies.

We look for solutions of Eqs. (1)–(4) that depend onx and
t through a variableη = (x − V t)(�i/V ), whereV is the
phase velocity of the wave. Integrating Eq. (1) and using the
conditionsni = n0 andvx = v0 atη = 0 yield
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The quasi-neutrality condition gives

v′
x = −(V − v0)e

(−eφ/Te). (8)

By eliminatingvx andvz from Eqs. (6)–(8) and introduc-
ing the dimensionless quantitiesψ = eφ/Te, M = V/Cs
andδ = v0/Cs , whereCs = (Te/mi)

1/2 is the ion acoustic
speed, we obtain
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whereMA = M − δ.
Integrating Eq. (9) and using the conditionsψ = 0,

dψ/dη = E0 andd2ψ/dη2
= 0 atη = 0, we obtain
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Fig. 2. Numerical solution of the normalized parallel electric field
(= ∂ψ/∂η) of nonlinear electrostatic ion cyclotron and ion acoustic
waves for the parametersθ = 2o,M = 0.2, δ = 0 andE0 = 0.1 (a),
0.5 (b), and 0.7065 (c)
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In Eq. (10),dψ/dη is the normalized electric field.
Equation (10) describes the nonlinear evolution of both ion

cyclotron and ion acoustic waves. Forθ = 90o, v0 = 0 and
E0 = 0, we recover from Eq. (10) the perpendicularly prop-
agating EIC wave (Temerin et al., 1979), as a special case.
When the bulk ion flowv0 = 0 andE0 = 0, Eq. (10) reduces
to Eq. (10) of Lee and Kan (1981), which corresponds to the
oblique propagation of ion cyclotron and ion aoustic modes.

In the linear regime, we find that Eq. (2) decouples from
Eqs. (3) and (4), giving the ion acoustic wave and local (non-
propagating) ion cyclotron oscillations whenθ = 0. But
when the nonlinear effects are significant, then Eqs. (2),(3)
and (4) are no longer decoupled and the ion acoustic and ion
cyclotron modes are coupled through the convective terms
vix(∂viy/∂x) andvix(∂viz/∂x).

3 Numerical results

We have numerically solved the nonlinear evolution Eq. (10).
In view of the observations of spiky parallel electric fields
shown in Fig. 1, here we focus the analysis on nearly parallel
propagating nonlinear ion acoustic and ion cyclotron waves.
However, we point out that our model can also be used to
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Fig. 3. HereM = 1.25 andE0 = 0.05(a), 0.10(b), 0.5(c), and 1.1
(d). All other fixed parameters are as in Fig. 2.

deduce the propagating modes for any arbitrary direction of
propagation including the perpendicular spiky electric field
structures of the nonlinear ion cyclotron waves reported by
Temerin et al. (1979). In Fig. 1, the period of oscillation
of the wave propagating nearly parallel toB0 is found to be
about four times the period of the perpendicularly propagat-
ing mode. The frequency of the parallel spikes in Fig. 1 is
found to be∼ 50 Hz, while the ion cyclotron frequency is
about 200 Hz.

Our numerical studies show that the nonlinear wave
Eq. (10) has a strong dependence on the driving amplitude,
E0, Mach number,M, and the bulk flow velocity,v0. In our
analysis, we perform a parametric study by varying the Mach
number, the driving amplitude and the bulk flow velocity on a
nearly parallel propagating wave (θ = 2o). In Fig. 2, we keep
v0 = 0 and consider a small Mach number, that isM = 0.2
and varied the driver,E0. The figure displays the normalized
electric fieldE, given byE = ∂ψ/∂η. Sinceθ = 2o, this
field is essentially the parallel electric field.

The period of oscillations is given by1η = (�i/V )1x−

�i1t , typically for 1x = 0, 1η =| �i1t |. For the rel-
atively small driving amplitude of 0.1 (Fig. 2a), we observe
that the model exhibits ion cyclotron oscillations; these oscil-
lations have a period of1η ∼= 6.3 or1t ∼= 6.3�−1

i = 1τci ,
whereτci = 2π/�i is the ion cyclotron period. As the driv-
ing amplitude increases, we finally obtain a sawtooth wave-
form with a periodicity of1η ∼= 10 whenE0 ∼= 0.71, which
yields a period of about one and half times the ion cyclotron
period (Fig. 2c). Since the period of these spiky structures is
larger than the ion cyclotron period, we interpret this wave-
form to be the driven ion acoustic mode.

Figure 3 shows the variation of the parallel electric field
for Mach number,M = 1.25,v0 = 0 and for different driver
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Fig. 4. Variation of the normalized electric field forE0 = 0.44 and
M = 0.2 (a), 0.5 (b), 1.25(c) and 4.5(d). Other fixed parameters
are as in Fig. 2.

strengths. Here we observe that theE‖ shows ion cyclotron
oscillations for smallE0 with a period1η ∼= 6.3 or1t ∼= τci
(Fig. 3a) and with increasing driver strength the cyclotron os-
cillations tend to steepen (Fig. 3b). As the driving amplitude
increases, we obtain a driven ion acoustic mode which ex-
hibits waveforms somewhat similar to a sawtooth type with
a period,1η ∼= 12 (Fig. 3c). Further increase in driver
strength yields a driven ion acoustic oscillation with highly
spiky bipolar structure in the waveform with a periodicity,
1η ∼= 24, which yields a period of about four times the ion
cyclotron period (Fig. 3d) and has a great deal of similarity
with the observed structure shown in Fig. 1a.

In Fig. 4, we have varied the Mach number,M by keep-
ing v0 = 0 and the driver strength constant. WhenM is
small,E‖ exhibits the oscillations in the ion cyclotron period
range and the waveform of these oscillations tends to be of
the sawtooth type. With an increase in Mach number, theE‖

shows a sawtooth structure with a period of approximately
1t ∼= 1η �−1

i ' 10�−1
i ≈ 1.7 τci . Figure 4 shows that as

M increases further, i.e. whenM > 1, the normalized period
(1η) of the spiky fields decreases (Figs. 4c and 4d).

Figure 5 shows the variation of the parallel electric field for
M = 1.25,E0 = 1.1 and for differentδ. Here we notice that
the period of the spiky structures decreases asδ varies from
−0.2 to 0.2. Therefore, the ion flow parallel (antiparallel) to
B0 would decrease (increase) the period of the driven spiky
structure.

We infer from our calculations that to obtain highly spiky
ion acoustic parallel electric field structures, the system must
be driven quite strongly. In the above discussion we have
mainly shown that the fluid equationsdo permithighly spiky
solutions even fornearly parallel propagation. We compare
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Fig. 5. The normalized electric field forE0 = 1.1,M = 1.25 and
δ = −0.2 (a), −0.1 (b), 0.0 (c), 0.1 (d), 0.2 (e). All other fixed
parameters are as in Fig. 2.

now the strength of the spiky fields obtained from our calcu-
lations and that measured by satellites, as shown, for exam-
ple, in Fig. 1a. The unnormalized electric field can be written
as

E = −
∂φ

∂x
= −(�i/Cs)(Te/e)

(
1

M
∂ψ/∂η

)
= (Te/eρis)

(
1

M
∂ψ/∂η

)
, (14)

whereρis = Cs/�i is the ion Larmor radius at the ion-
acoustic speedCs , andTe is in energy units. The energy of
electrons in the upward current region just before the event
of Fig. 1 can be roughly estimated asTe = 10− 100eV (Er-
gun et al., 1998). This would give an ion acoustic speed,
Cs ∼= 50 − 150 km/s, and the wave phase velocityV =

MCs = 10 − 600 km/s for the range ofM considered in
this paper. Also the value of the ambient magnetic field
B0 ≈ 13 000 nT, gives�i = 200 × 2π rad/s. The scale
size of the spiky structures from our model are estimated as
∼ (1.5 − 15)ρis ∼= 75 − 1800 m. Our model predicts that
the repetition frequency of the spiky parallel electric fields
is such that generallyωr < �i , and it is possible to have
ωr ∼ �i/4 in accordance with the FAST observations. Fur-
thermore, for the above parameters, we find thatE‖ as cal-
culated from Eq. (14) can range from∼ 50 mV/m to a few
V/m. In Fig. 1 the measured value is about 700 mV/m, which
is within the predicted range of values.

4 Conclusions

FAST and Polar observations in the auroral magnetosphere
have shown that the nonlinear, time domain structures as-
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sociated with the parallel electric field exhibit spiky wave
forms. These quasi-static, parallel electric field structures are
thought to be responsible for particle acceleration in the au-
roral acceleration region. The model presented in this study
could explain the generation mechanism of these parallel
propagation structures which show sawtooth or spiky wave
forms. Observations by FAST (as shown in Fig. 1) can be
explained naturally by assuming a mixture of near parallel
and near perpendicular propagating wave modes. The free
energy source for these waves could be either electron/ion
beams or the field-aligned currents. The present model can
generate various wave-forms ranging from ion cyclotron to
ion acoustic modes, depending on the initial driver and the
Mach number. We have not considered growth or damping of
these waves. It would be interesting to study the stability of
these structures. We have neglected the ion temperature ef-
fects and treated ions as cold fluid. The inclusion of finite ion
temperature will give rise to a dispersive effect, which may
tend to broaden the structures. Therefore, the present model
can be applied whereTe � Ti , such as the auroral accel-
eration region. From our model the estimated length scales
of the nonlinear structures are of the order of 1.5 − 15ρis .
This implies that the length scales are much larger than the
ion gyro radius and hence the finite Larmor radius effects are
not expected to be important, and the use of uniform mag-
netized plasma fluid model is justified. However, the finite
Larmor radius effect of ions could introduce dispersion and
a new nonlinear term which may lead to cylindrically sym-
metric electron hole as discussed by Jovanovic and Shukla
(2000). We have presented a simple model for the auroral
plasma which takes care of the field-aligned current. The
model can be generalized to include a background plasma
and multi-beams to make it even closer to the observations.
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