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Abstract. In this paper we develop analytical and numer-
ical methods for finding special hyperbolic trajectories that
govern geometry of Lagrangian structures in time-dependent
vector fields. The vector fields (or velocity fields) may have
arbitrary time dependence and be realized only as data sets
over finite time intervals, where space and time are dis-
cretized. While the notion of a hyperbolic trajectory is cen-
tral to dynamical systems theory, much of the theoretical
developments for Lagrangian transport proceed under the
assumption that such a special hyperbolic trajectory exists.
This brings in new mathematical issues that must be ad-
dressed in order for Lagrangian transport theory to be appli-
cable in practice, i.e. how to determine whether or not such
a trajectory exists and, if it does exist, how to identify it in a
sequence of instantaneous velocity fields. We address these
issues by developing the notion of a distinguished hyper-
bolic trajectory (DHT). We develop an existence criteria for
certain classes of DHTs in general time-dependent velocity
fields, based on the time evolution of Eulerian structures that
are observed in individual instantaneous fields over the entire
time interval of the data set. We demonstrate the concept of
DHTs in inhomogeneous (or “forced”) time-dependent lin-
ear systems and develop a theory and analytical formula for
computing DHTs. Throughout this work the notion of lin-
earization is very important. This is not surprising since hy-
perbolicity is a “linearized” notion. To extend the analytical
formula to more general nonlinear time-dependent velocity
fields, we develop a series of coordinate transforms includ-
ing a type of linearization that is not typically used in dynam-
ical systems theory. We refer to it as Eulerian linearization,
which is related to the frame independence of DHTs, as op-
posed to the Lagrangian linearization, which is typical in dy-
namical systems theory, which is used in the computation of
Lyapunov exponents. We present the numerical implementa-
tion of our method which can be applied to the velocity field
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given as a data set. The main innovation of our method is
that it provides an approximation to the DHT for the entire
time-interval of the data set. This offers a great advantage
over the conventional methods that require certain regions to
converge to the DHT in the appropriate direction of time and
hence much of the data at the beginning and end of the time
interval is lost.

1 Introduction

Over the past 10 years there has been much work in apply-
ing the approach and methods of dynamical systems theory
to the study of transport in fluids from the Lagrangian point
of view. Suppose one is interested in the motion of a passive
tracer in a fluid (e.g. dye, temperature, or any material that
can be considered as having a negligible effect on the flow);
then, neglecting molecular diffusion, the passive tracer fol-
lows fluid particle trajectories which are solutions of

d

dt
x = u(x, t), (1)

where u(x, t) is the velocity field of the fluid flow,x ∈

IRn, n = 2 or 3. When viewed from the point of view of
dynamical systems theory, the phase space of Eq. (1) is ac-
tually the physical space in which the fluid flow takes place.
Evidently, “structures” in the phase space of Eq. (1) should
have some influence on the transport and mixing properties
of the fluid. Babiano et al. (1994) and Aref and El Naschie
(1994) provide recent reviews of this approach.

To make the connection with the large body of literature
on dynamical systems theory more concrete, let us consider
a less general fluid mechanical setting. Suppose that the fluid
is two-dimensional and incompressible, although our theory
can be applied to compressible as well as viscid flows. Then
we know that the velocity field can be obtained from the



238 K. Ide et al.: Distinguished hyperbolic trajectories in time-dependent fluid flows

derivatives of a scalar valued function,ψ(x1, x2, t), known
as the stream function, as follows

d

dt
x1 =

∂ψ

∂x2
(x1, x2, t),

d

dt
x2 = −

∂ψ

∂x1
(x1, x2, t) . (2)

In the context of dynamical systems theory, Eq. (2) is a time-
dependent Hamiltonian vector field where the stream func-
tion plays the role of the Hamiltonian function. If the flow is
time-periodic, then the study of Eq. (2) is typically reduced
to the study of a two-dimensional area preserving a Poincaré
map. Practically speaking, the reduction to a Poincaré map
means that rather than viewing a particle trajectory as a curve
in continuous time, one views the trajectory only at discrete
intervals of time, where the interval of time is the period of
the velocity field. The value of making this analogy with
Hamiltonian dynamical systems lies in the fact that a vari-
ety of techniques in this area have immediate applications to,
and implications for, transport and mixing processes in fluid
mechanics. For example, the persistence of invariant curves
in the Poincaŕe map (KAM curves) gives rise to barriers to
transport and chaos, and Smale horseshoes provide mecha-
nisms for the “randomization” of fluid particle trajectories.
An analytical technique, Melnikov’s method, allows one to
estimate fluxes as well as describe the parameter regimes
where chaotic fluid particle motions occur. A relatively new
technique, lobe dynamics, enables one to efficiently compute
transport between qualitatively different flow regimes.

Dynamical systems techniques were first applied to La-
grangian transport in the context of two-dimensional, time-
periodic flows. In recent years these techniques have been
extended to include flows having arbitrary time dependence
(see Wiggins, 1992; Malhotra and Wiggins, 1998; Haller and
Poje, 1998). One aspect of our study is to consider the ef-
fect of different types of temporal variability on transport. In
recent years the dynamical systems approach has been ex-
tended to a number of geophysical fluid dynamics settings
(see, for example, Pierrehumbert, 1991a, 1991b; Samelson,
1992; Duan and Wiggins, 1996). These early works mainly
involved kinematically defined velocity fields. Some of the
first attempts to treat dynamically evolving velocity fields
were the works of del Castillo-Negrete and Morrison (1993)
and Ngan and Shepherd (1997). They considered special
kinematic cases that could be argued to be dynamically con-
sistent, and hence complication provided by dynamical con-
sistency was not really present. The treatment of general dy-
namically evolving velocity fields became possible with the
development of computational techniques to treat velocity
fields which only had a numerical representation, i.e. which
were the output of the numerical solution of a partial differ-
ential equation whose solution was a velocity field. Early
work along these lines can be seen in Shariff et al. (1992),
Duan and Wiggins (1997), and Miller et al. (1997). Recent
work of this type in a geophysical fluid dynamics setting is
that of Rogerson et al. (1999), which is concerned with fluid
exchange across a barotropic meandering jet. Recent work of

Coulliette and Wiggins (2000) allows one to treat transport in
basin scale models, such as a wind driven double-gyre sys-
tem.

Lobe dynamics provides a general theoretical framework,
based on invariant manifold ideas from dynamical systems
theory, for discussing, describing and quantifying organized
structures in a fluid flow and determining their influence on
transport. This paper is concerned with issues related to the
numerical implementation of the technique of lobe dynam-
ics. To begin with, one must identify certain hyperbolic tra-
jectories (i.e. “moving saddle points”) whose stable and un-
stable manifolds divide the flow into different flow regimes.
Earlier work of Malhotra and Wiggins (1998) developed the
general mathematical framework. However, implementing
these mathematical ideas for practical problems requires one
to face a number of new issues.

In order to begin applying dynamical systems theory to the
study of transport one needs the right-hand side of Eq. (2),
i.e. the velocity field. Until recently, applications have been
limited to the cases where the velocity field is expressed as an
analytical function of space and time. Then one can compute
velocity explicitly once the position and time are given.

This may not be the case when the velocity field is ob-
tained through the solution of some fluid dynamical nonlin-
ear partial differential equations of motion (e.g. the Navier-
Stokes equations). In general, such nonlinear partial differ-
ential equations cannot be solved analytically, i.e. the right-
hand side of Eq. (2) cannot be represented in the form of
some elementary or special analytical functions. However,
they can often be solved numerically and the velocity field
may be given as output of the model simulation at a discrete
time sequence which may be also spatially discrete. Another
way in which the right-hand side of Eq. (2) can be obtained
is through observation. Modern remote sensing techniques
(such as high frequency radar arrays) have now been devel-
oped to the point where one can measure current fields at a
fairly high resolution in space and time.

Whether one obtains the velocity field through numeri-
cal simulation of a nonlinear partial differential equation or
through observations, the resulting velocity field (i.e. dynam-
ical system) is given as a data file, with gaps in space and
time. Moreover, it will only be known for a finite amount
of time, which may be at odds with many notions from dy-
namical systems theory, since dynamical systems theory is
often concerned with the asymptotic in time behaviour. Con-
sequently, the fact that the velocity field may only be known
for a finite time causes major difficulties with the applica-
tion of dynamical systems techniques. These difficulties are
a central focus of this paper.

The central concern of this paper is to develop the notion
of hyperbolic trajectory in a way that it can be applied to
finite time data sets, and then develop a numerical search
algorithm to find such hyperbolic trajectories for the entire
temporal length of the data set. However, as we will see,
quite general flows may contain an uncountable infinity of
hyperbolic trajectories. In order to clarify this situation, we
introduce the notion of a distinguished hyperbolic trajectory
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Fig. 1. The trajectories of Eq. (3) plotted inx − t space. The DHT
is given byx(t) = t − 1 and the curve of ISPs is plotted as a dashed
line and given byx = t .

(henceforth, DHT). Before going further, we want to con-
sider two examples that illustrate in a concrete manner the
issues that we will face. These examples are one-(space) di-
mensional. This may seem far removed from the fluid me-
chanical applications of interest. However, this is not the
case since in many applications the boundary conditions may
be free slip and then the issue of saddle type trajectories on
one-dimensional boundaries becomes an area of interest.

Example 1. Consider the following example from Szeri et
al. (1991):

d

dt
x = −x + t. (3)

The solution through the pointx0 at t = 0 is given by

x(t) = t − 1 + e−t (x0 + 1) . (4)

A typical way to visualize the trajectories of time-dependent
vector fields is to consider the instantaneous (or “frozen
time”) setting, i.e. one fixes time and then considers the re-
sulting instantaneous direction field, instantaneous stream-
line contours, instantaneous stagnation points (henceforth,
ISPs), etc. However, such information can be very mislead-
ing if one uses it to try to understand Lagrangian transport
issues.

Consider the ISPs for Eq. (3). These are given by

x = t. (5)

At a fixedt , this is the unique point where the velocity is zero.
However,x = t is not a solution of Eq. (3). This is very
different from the case of a steady flow where a stagnation
point is a solution of the velocity field.

t=t*

x=t*x=t*-1

x
x

Fig. 2. The instantaneous (or “frozen time”) velocity field att = t∗.
The DHT and the ISP are indicated by the diamond and the circle,
respectively.

Now let us return to the issue of a hyperbolic trajectory.
We will define this more formally at the end of this section.
Now we will be content with a less mathematically formal
description in order to motivate the ideas. A trajectory is said
to be hyperbolic if the associated linear equations (linearized
about the trajectory in question) haven linearly independent
exponentially growing and decaying solutions (ast → ∞),
i.e. all solutions of the linearized equations exhibit exponen-
tial growth and decay. The linearization of Eq. (3) is given
by

ξ̇ = −ξ, (6)

i.e. the linearization of Eq. (3) is the same for any trajectory.
Clearly, all trajectories of Eq. (3) are hyperbolic. This brings
us to the notion of a DHT. Despite the fact that all trajectories
of Eq. (3) are hyperbolic, upon examining the form of the
general solution given in Eq. (4) we see that all trajectories
decay at an exponential rate to the trajectory

x(t) = t − 1. (7)

This trajectory is our DHT. Note also that it is the only trajec-
tory that does not exhibit exponential growth or decay, which
can be clearly seen for the repelling situation ast → −∞.
It remains for us to give it a precise mathematical definition
in such a way that it lends itself to numerical computation.
However, before doing that let’s return to the issue of ISPs
and their relationship to DHTs.

In Fig. 1 we plot some of the trajectories of Eq. (3). In
particular, we plot the DHT. We show some trajectories con-
verging to it, and we plot the curve of instantaneous stagna-
tion points.

In Fig. 2 we plot the instantaneous velocity field at some
time t = t∗. In this figure we see something that seems
somewhat counterintuitive. Trajectories to the right of the
DHT appear to be moving away from the DHT, towards the
ISP. However, we know from Eq. (4) that all trajectories de-
cay to the DHT at an exponential rate. What we are “seeing”
in Fig. 2 is an artifact of drawing incorrect conclusions from
instantaneous velocity fields. Trajectories to the immediate
right of the DHT are indeed moving to the right (i.e. away
from the DHT). However, the DHT is moving to the right at
a faster speed and it eventually overtakes these trajectories.
Figure 2 might also lead us to believe that trajectories con-
verge to the ISP. But we know this is not true since we have
the exact solutions.

Example 2. The time-dependent inhomogeneous term (or
“forcing”) on the right-hand side of Eq. (3) is unbounded as
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t → ∞. However, we give another example that shows that
the phenomena described above is not a consequence of this
unboundedness.

Consider the equation

d

dt
x = −x + sint. (8)

The general solution through any pointx0 at t = 0 is given
by

x(t) =
1

2
(sint − cost)+ e−t

(
x0 +

1

2

)
. (9)

As in the previous example, all solutions are hyperbolic and
any solution decays exponentially to the solution

x(t) =
1

2
(sint − cost) ,

which is the DHT. One can also verify that the ISPs,x =

sint , is not a solution of Eq. (8).
To summarize, these simple examples illustrate the follow-

ing points:

– A given velocity field can contain an uncountable infin-
ity of hyperbolic trajectories. Indeed, in these examples,
all trajectories are hyperbolic with the same decay rates.

– Despite this fact, we see that there may be certain distin-
guished hyperbolic trajectories. In these examples, this
was the one trajectory that all trajectories are attracted
to exponentially ast → ∞.

– Due to this abundance of hyperbolic trajectories, we see
that a numerical method that is designed just to find hy-
perbolic trajectories may not be sufficiently refined for
applications. For this reason one needs to precisely de-
fine the notion of a DHT for an analytically given veloc-
ity filed. Then one needs to develop a methodology for
numerical identification of the DHT, according to the
refined definition, when the velocity field is given as a
discrete data set, rather than an analytical function.

– ISPs are not necessarily trajectories of the velocity field
and hence are frame dependent. Viewing them in instan-
taneous velocity fields may lead to misleading informa-
tion about fluid particle trajectories. However, when we
are looking for the DHT associated with a Lagrangian
structure with persistent movement, their paths in time
may be used as “markers”, i.e. regions of the flow which
are good (but not certain) candidates for DHTs to exist
(e.g. Example 2).

– Numerical methods for locating hyperbolic trajectories
that utilize the stretching and contraction properties to
allow for certain “test regions” to converge to the hy-
perbolic trajectory are not adequate for time-dependent
velocity fields that are only known for a finite interval
of time. In the process of convergence, we “lose” much
of the velocity field. Moreover, such methods require a

good guess for the “test regions” that somehow bracket
the hyperbolic trajectory, as discussed earlier. We have
seen that the instantaneous stagnation points do not nec-
essarily provide us with a good guess for the location of
the hyperbolic trajectory.

Motivated by the simple examples above, we define two
classes of DHTs. The first class considers a velocity field
whose linear part is independent and constant so that it
closely relates to these examples. The second class considers
a general velocity field as an extention of the first class.

Definition 1. Let us consider a velocity field which has the
form:

d

dt
y = Dy + g(NL)(y, t), (10)

whereD ∈ IRn×n is a constant diagonal matrix for the time-
independent linear part andg(NL)(y, t) ∈ IRn is the nonlinear
time-dependent part. Lety(t) be a trajectory of Eq. (10) that
remains in a bounded region for all time. Theny(t) is said to
be a distinguished hyperbolic trajectory if:

1. it is hyperbolic,

2. there exists a neighborhoodB in the flow domain having
the property that the DHT remains inB for all time, and
all other trajectories starting inB leaveB in finite time,
as time evolves in either a positive or negative sense,

3. it is not a hyperbolic trajectory contained in the chaotic
invariant set created by the intersection of the stable and
unstable manifolds of another hyperbolic trajectory.

If the data spans only a finite time interval, then the DHT
cannot be determined uniquely. Instead, there is a small
region inB where the DHT can exist. We will present a
method to obtain an approximation to the DHT, assuming
that the time dependence of the velocity field persists outside
the time-interval of the data set.

The second part of this definition can also be stated in
terms of the stable and unstable manifolds of the DHT. Points
on the stable manifold can leaveB in negative time, points
on the unstable manifold can leaveB in positive time, and
points on neither manifold leaveB in both positive and neg-
ative time.

In the case where the DHT does not remain in a bounded
region, the definition is more tricky. A definition for lin-
ear inhomogeneous systems can be given (provide one does
not allow exponential growth or decay in the inhomogeneous
term) as in Example 2. Moreover, the linear part of a gen-
eral velocity field is not necessarily independent or constant.
These lead to the second class of DHTs.

Definition 2. Let us consider the general velocity field given
by Eq. (1). Let us assume that there exists an invertible cood-
inate change fromx to y, i.e. from Eq. (1) to Eq. (10), which
is based on the movement of an Eulerian structure inx, such
as a path of an ISP. Lety(t) be a solution that satisfies the
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three conditions given in Definition 1. Then the correspond-
ing x(t) is said to be a distinguished hyperbolic trajectory of
Eq. (1).

If y(t) is a DHT in they coordinates, then the correspond-
ing trajectoryx(t) in the original velocity field is also a DHT,
because DHTs are frame independent. We will discuss ap-
propriate coordinate changes and frame independence inten-
sively in Sect. 3 and the Appendices. However, the focus in
this paper will be mainly on DHTs that remain in bounded
regions.

Our task now will be to show that this definition does in-
deed satisfy the requirement of picking out the important hy-
perbolic trajectories for the application of Lagrangian trans-
port theory using the method of lobe dynamics. This is the
motivation for the third part of Definition 1. If the stable
and unstable manifolds of a hyperbolic trajectory intersect
transversely, then there is an associated lobe dynamics that
describes the motion of trajectories through the homoclinic
tangle. A consequence of the transverse intersection of the
stable and unstable manifold is the formation of an invariant
Cantor set on which the dynamics is chaotic, with all tra-
jectories in the Cantor set being hyperbolic. However, for
our purposes, we would not call the hyperbolic trajectories
in the Cantor set “distinguished” as the transport of trajecto-
ries through this Cantor set is governed by the lobe dynamics
associated with the hyperbolic trajectory whose transversely
intersecting stable and unstable manifolds give rise to the hy-
perbolic Cantor set.

Linearization is such a basic analytical method that it
would seem that little needs to be said about it. However,
there are two types of linearization used throughout this
work, each having a definite fluid dynamical interpretation,
and we want to alert the reader to these two types of lineariza-
tion that are interweaved throughout this paper.

Lagrangian versus Eulerian Linearization

Consider the velocity field given by Eq. (1). Letx̄(t) be
a trajectory of this velocity field and letx0 be a specified
point in the domain. In order to check the stability of the
trajectoryx(t)we consider the velocity field linearized about
the trajectory, i.e.

d

dt
ξ =

∂u

∂x
(x(t), t) ξ .

Of course, this is standard in dynamical systems theory.
From the point of view of fluid mechanics we are looking
at the linearized behaviour around a fluid particle trajectory.
This is the Lagrangian point of view in fluid mechanics,
which is the reason for the term Lagrangian linearization that
we apply in this case.

If instead we were to linearize the velocity field about the
specified point̄x, we would obtain a linear system having the
following form:

d

dt
ξ =

∂u

∂x
(x̄, t) ξ + u (x̄, t) .

This has the form of an inhomogeneous or “forced” linear
system. When we consider fluid mechanical properties in a

fixed region of space (as opposed to following fluid particle
trajectories as they evolve in time), this is referred to as the
Eulerian point of view of fluid mechanics, which is why we
refer to linearization about a specified point as Eulerian lin-
earization.

It will also prove useful to linearize the velocity field about
the ISP,xsp(t). We will refer to this as instantaneous Eulerian
linearization, and the linearized equation in this case takes
the form:

d

dt
ξ =

∂u

∂x

(
xsp(t), t

)
ξ − ẋsp(t).

Both types of Eulerian linearization will be important
when we search the flow for DHTs, and it is the properties
of the inhomogeneous term of the associated linear equation
(i.e. u (x̄, t)) that are crucial for the existence of a DHT in a
given region. However, hyperbolicity of a given trajectory is
a Lagrangian linearization property. Hence, the interplay be-
tween Eulerian and Lagrangian linearization is a key element
in our development of a constructive theory for DHTs.

Finite Time Velocity Fields

Here we want to re-emphasize that time-dependent veloc-
ity fields that are only known for a finite time interval, which
we refer to as finite time velocity fields, are our main con-
cern. For finite time velocity fields this method is simply
not adequate, since it requires certain regions to converge to
the hyperbolic trajectory in the appropriate direction of time.
This procedure can “eat up” much of the data set in the pro-
cess of converging to the hyperbolic trajectory. Moreover, it
requires the integration of many trajectories. Even if the ve-
locity field is time-periodic, convergence of the method can
require integration of many trajectories through many peri-
ods. In the end, this can result in a very complicated geo-
metric object whose complexity may make it difficult to de-
termine the hyperbolic trajectory. The method developed in
this paper eliminates these problems by providing an approx-
imation to the DHT for the entire length of the time interval
of the data set.

The definition of Hyperbolic Trajectory

Consider a velocity field given by Eq. (1) over a finite time
interval t ∈ [t0, tL]. Let x̄(t) be a trajectory of this velocity
field. Hyperbolicity is a “linear property” in the sense that the
hyperbolicity characteristics of a trajectory are determined
from the linearization of the vector field about the trajectory.
The velocity field linearized about the trajectory is given by:

d

dt
ξ =

∂u

∂x
(x(t), t) ξ , t ∈ [t0, tL]. (11)

We letX(t, t0) denote the fundamental solution matrix of this
linear system, i.e. it is the matrix whose columns consist of
linearly independent solutions of the linear system.

In the ordinary differential equations community, a type
of finite time hyperbolicity has been known for some time
as “exponential dichotomy”. Roughly speaking, this means
that trajectories can “separate” at an exponential rate. The
formulation seems to be due to Massera and Schäffer (1966).
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Definition 3. (Exponential Dichotomy). Equation (11) is
said to possess an exponential dichotomy on[t0, tL] if there
exists a projectionP (i.e. P2

= P), and positive constantsK,
L, α, andβ such that:

|X(t, t0)PX−1(s, t0)| ≤ Ke−α(t−s),

for t ≥ s, t, s ∈ [t0, tL],

|X(t, t0)(Id − P)X−1(s, t0)| ≤ Le−β(s−t),

for s ≥ t, t, s ∈ [t0, tL]. (12)

Further references on exponential dichotomies are Coppel
(1978), Henry (1981), and Muldowney (1984).

If the matrix associated with the linearized velocity field
(11) is constant (such would be the case for a steady velocity
field linearized about a stagnation point), then an exponential
dichotomy would be equivalent to the property that none of
the eigenvalues of the matrix had zero real parts.

Appendix A gives an equivalent definition of hyperbolic-
ity that is more computationally oriented. In particular, we
represent the fundamental solution in the form of a singular
value decomposition:

X(t, t0) = B(t, t0)exp
(
6(t, t0)

)
R(t, t0)T ,

where B(t, t0) and R(t, t0) are orthogonal matrices, i.e.
B(t, t0)B(t, t0)T = R(t, t0)R(t, t0)T = I , and6(t, t0) is a
diagonal matrix with6(t0, t0) = 0 so that exp (6(t, t0)) is a
diagonal matrix with exp (6(t0, t0)) = I . We then show that
there exists a time-dependent, linear transformation:

y = A(t)ξ ,

where

A(t) = exp((t − t0)D)R(tL, t0)TR(t, t0)

· exp(−6(t, t0))B(t, t0)T ,

which transforms (11) into the following form:

ẏ = Dy,

where

D =
1

tL − t0
6(tL, t0).

The equivalence of the two definitions of hyperbolicity is es-
tablished in Appendix C where it is shown that exponential
dichotomy is a frame invariant property.

The outline of this paper is as as follows. In Sect. 2 we
develop a quantitative theory for DHTs for inhomogeneous
linear systems. The theory yields an analytical formula, and
is the basis for the numerical method developed in Sect. 4.
It also gives insight into the behaviour of DHTs in nonlinear
systems described in Sect. 3. In Sect. 3 we develop a theory
for the existence of DHTs for one- and two-dimensional non-
linear velocity fields. The conditions for existence are based
on conditions for the instantaneous velocity field (i.e. proper-
ties of ISPs). In Sect. 4 we develop a numerical method that
can be applied to either flows defined as a data set, or flows
that can be expressed in the form of a mathematical formula
involving known functions or quadratures. The key aspect
of this numerical method is that it allows us to compute the
DHT for the entire length of the data set.

2 Theory of distinguished hyperbolic trajectories
for forced linear systems

2.1 Motivation for the linear theory

In this section, we develop a theory of distinguished hyper-
bolic trajectories for forced linear systems when the velocity
field is available only over a finite time interval. It may seem
rather trivial to study such linear systems. However, hyper-
bolicity is a property of linearized behaviour and, therefore,
we feel it is important to understand it first in the purely lin-
ear setting. In particular, the definition of a distinguished
hyperbolic trajectory, as well as finiteness of the time inter-
val of the velocity data set, should be first addressed in this
context. The linear theory will lead to an analytical formula
for the DHT given a finite-time interval of velocity data. This
formula will be used as the basis for our numerical method
developed in a later section, and it plays an important role in
understanding properties of DHTs in nonlinear systems.

We begin by considering a velocity field of the form

d

dt
x = F(t)x + h(t), (13)

wherex ∈ IRn, F(t) is an× n matrix, andh(t) is an-vector
forcing function. BothF(t) andh(t) are available only for
t ∈ [t0, tL]. Applying the coordinate transformation con-
structed in Appendix A to Eq. (13) gives

d

dt
y = Dy + g(t), (14)

wherey ∈ IRn, g(t) is an-vector forcing function available
only for t ∈ [t0, tL], andD ∈ IRn×n is a diagonal matrix:

Dij =

{
di, for i = j,

0, for i 6= j,
(15)

with realdi 6= 0. Diagonalization ofF(t) to D decouples the
generaln-dimensional problem inton independent, constant-
coefficient one-dimensional problems. The general solution
of Eq. (14) foryi with initial conditionyi,0 at t0 can be writ-
ten as:

yi(t; yi,0, t0) = yi,dht(t)+ Yii(t, t0)yi,0

+

{
−

∫ t0
−∞

Yii(t, τ )gi(τ )dτ for di > 0,∫
∞

t0
Yii(t, τ )gi(τ )dτ for di < 0,

(16)

whereYii(t, t0) are the diagonal elements of the fundamental
solution matrix:

Yij (t, t0) =

{
exp{di(t − t0)}, for i = j,

0, for i 6= j .
(17)

If we let t0 → −∞ andtL → ∞, then it is straightforward to
show (Henry,1981) that the unique solution that is bounded
for all time is given by:

yi,dht(t) =

{ ∫ t
−∞

Yii(t, τ )gi(τ )dτ for di > 0,
−

∫
∞

t
Yii(t, τ )gi(τ )dτ for di < 0.

(18)

This solution satisfies Definition 1 in Sect. 1 and is the DHT.
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A difficulty arises in computingyi,dht(t) using Eq. (18)
whengi(t) is available only over a finite time interval. A

straightforward approach to estimating the DHT may be to
rewrite Eq. (18) into two parts:

yi,dht(t) =

{ ∫ t
t0
Yii(t, τ )gi(τ )dτ +

∫ t0
−∞

Yii(t, τ )gi(τ )dτ for di > 0,

−
∫ tL
t
Yii(t, τ )gi(τ )dτ −

∫
∞

tL
Yii(t, τ )gi(τ )dτ for di < 0,

(19)

and use only the first term that can be computed from the
available data. However, shortcomings of this approach are
most apparent in two ways. One is the systematic error in-
curred by neglecting the second term. This error corresponds
to a loss of uniqueness caused by a lack of data outside
the time interval. The other is the unrealistic initial value
yi,dht(t0) = 0 for di > 0 and the final valueyi,dht(tL) = 0
for di < 0. It suggests that such an estimate for the DHT
critically depends on the length of the data set.

In this paper, we propose an alternate approach for ob-
taining analytical formulae for the DHT by expressingg(t)

as Fourier representation or power series. This has two ad-
vantages. One is that it allows us to overcome the finiteness
of the data set since expressingg(t) as such a time series is
equivalent to extending the time interval to infinity. The other
advantage is that it provides an analytical formula for the
DHT whose coefficients are determined by the data. How-
ever, there is an additional error associated with the differ-
ence betweeng(t) and its series representation. This issue
is addressed later when we develop a numerical algorithm
based on the linear formula (Sect. 4.3.1) and validate it using
a data set (Sect. 4.3.3).

2.2 Time-independent system matrix with bounded forcing

We consider an-dimensional linear system Eq. (14) whose
velocity data set is available overt ∈ [t0, tL]. In addition to
the hyperbolicity ofD, we make the following assumptions
on the forcingg(t) Eq. (14).

Assumption 2.1 Given the data overt ∈ [t0, tL], g(t) is
bounded and can be expressed in the following form:

g(t) =

K∑
k=0

g(s,k)(t)+ g(c,k)(t), (20)

where

g(s,k)(t) = b(s,k) sinω(k)t, g(c,k)(t) = b(c,k) cosω(k)t,

ω ≡
2π

tL − t0
, ω(k) ≡ kω, (21)

and

(b(s,k), b(c,k)) =
1

2π

∫ tL

t0

g(t)(sinω(k)t, cosω(k)t)dt. (22)

Note that any bounded forcing||g(t)|| < gmax for a time
interval t ⊂ [t0, tL] can be expressed as a Fourier series.
Moreover, this is equivalent to extending the forcing for an
infinite time interval, therefore securing the uniqueness of the
DHT.

2.2.1 Instantaneous Stagnation Point (ISP)

As discussed earlier, ISPs do not necessarily follow fluid par-
ticle trajectories. However, we now show that there is a quan-
titative relationship between DHTs and ISPs that can be ex-
pressed by an analytical formula. This is significant because
computation of ISPs is relatively straightforward, as we shall
see in Sect. 4.

By definition, the ISPs are given by

ysp(t) ≡ −D−1g(t). (23)

The temporal mean of the ISP is given by

ysp ≡ −D−1 1

tL − t0

∫ tL

t0

g(τ )dτ. (24)

For the bounded forcing in the form described above, the ISP
and its temporal mean take the explicit form:

ysp(t) = −D−1
K∑
k=0

(g(s,k)(t)+ g(c,k)(t)) (25)

ysp = −D−1b(c,0). (26)

Based on these expressions, we can make the following
observations:

– The ISP (as a function of time) and the forcing are pro-
portionally related in each variableyi with factordi for
i = 1, . . . , n. Accordingly, if ysp(t) is bounded, so is
g(t). This fact implies that the ISP provides a measure
of the boundedness of forcing, when the forcing is un-
known.

– From Eq. (24), we see that the time mean of the ISP is
directly related to the time mean of the forcing as well.

Example 3. Consider the one-dimensional vector field with
a sinusoidal forcing

d

dt
y = dy + b sinωt, (27)

whered, b, andω are real numbers. It is a generalization
of Example 2 in Sect. 1. The trajectory through an arbitrary
initial conditionx(0) at t = 0 is given by

y(t) = −
b

√
d2 + ω2

sin(ωt + α)

+ edt
(

ωb

d2 + ω2
+ x(0)

)
, (28)
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and one easily verifies that all trajectories are hyperbolic.
The distinguished hyperbolic trajectory is given by

ydht(t) = −
b

√
d2 + ω2

sin(ωt + α) , (29)

where the phase shiftα is given by

tanα =
ω

d
, (30)

with ωα ≥ 0 (with respect to the general notation,ω(k) =

ω(1) = ω) and−
π
2 < α ≤

π
2 . Similar results for the DHT

with a cosine forcing also hold.

2.2.2 The Distinguished Hyperbolic Trajectory and
its relation to the instantaneous stagnation points

Since the forcing Eq. (14) is assumed to be represented as
a Fourier series (recall Eq. (20)), the superposition principle
for linear systems allows us to solve Eq. (18) analytically:

ydht(t) = −D−1
K∑
k=0

(ĝ
(s,k)

(t)+ ĝ
(c,k)

(t)) (31)

where

(ĝ
(s,k)
i (t), ĝ

(c,k)
i (t)) =

r
(k)
i (g

(s,k)
i (t + α

(k)
i ), g

(c,k)
i (t + α

(k)
i )), (32)

and

r
(k)
i ≡

1√
1 + (ω

(k)

di
)2
,

tanα(k)i ≡
ω(k)

di
, (33)

with ω(k)α(k)i ≥ 0 and−
π
2 < α

(k)
i ≤

π
2 . for i = 1, . . . , n; di

andω(k) are defined in Eqs. (15) and (21), respectively.
We now make the following observations:

– We see from Eq. (31) that the DHT is given analytically
with well-known functions. This will also be very ad-
vantageous when we describe our numerical method for
finding DHTs in data sets.

– By comparing Eq. (25) and Eq. (31), we see that there
is a direct relationship between the ISP and the DHT.
This relation between the DHT and ISP is described by
the time-scale ratio between the forced and the unforced
dynamics,ω(k)/di , which controls:

1. phase-shiftα(k)i ,

2. amplitude ratior(k)i .

We will see in the next section that when solving for
the DHT in a nonlinear system, we will choose one of
two localization procedures. The particular choice will
depend on the time-scale ratioω(k)/di .
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Fig. 3. Graphs of the DHT (ydht(t)) and the ISP (ysp(t)) are
shown by solid and thin-dashed lines, respectively, in each panel
for various time-scale ratios (ω(k)/d) with a fixed forcing ampli-
tude (b = 1). The left and right columns correspond to repelling
(d > 0) and attracting (d < 0) cases, respectively; the absolute
value of the time-scale ratios are in decreasing order from the top to
the bottom rows, i.e.|ω(k)/d|=2, 1, 0.5 and 0.2.

Here we present two simple examples in the one- and two-
dimensional cases that will concretely demonstrate some ba-
sic geometrical relations between the DHT and the ISP. We
will see later that these relations also hold for nonlinear ve-
locity fields (Sect. 3) and lie at the foundation of our numer-
ical method (Sect. 4).

Example 4.One Dimension: Time-scale dependence for the
Repelling (d > 0) and Attracting (d < 0) Cases. Equation
(14) in one dimension is:

d

dt
y = dy + g(t), (34a)

where

g(t) = b cosω(k)t. (34b)

The geometrical relation between the DHT and ISP, and
its dependence on parameters is illustrated in Fig. 3. Specific
parameter sets(d, ω(k), b) are chosen for fixed(|d|, b) =

(1, 1), but with four values ofω(k) so that the amplitude
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Fig. 4. DHT and path of ISP in time with the corresponding initial position indicated by the diamond (DHT) andX (ISP) for the two different
phase values;(a1, a2) = (0,0) and(a1, a2) = (0,−0.25) for the left and right panel, respectively. Other parameter values for the saddle are
the same for the two panels with(d1, ω1/d1, b1) = (1,1,1) for the repelling direction and(d2, ω2/d2, b2) = (−1,1, 1) for the attracting
direction, and the trajectories move in a clockwise sense.

of the ISP is the same for all cases but the time-scale ra-
tio ω(k)/d, which governs the relation between the DHT and
ISP, (i.e.r(k) andα(k)) varies.

We make the following observations:

– The DHT has the same harmonic functional form as the
ISP, but with an amplitude factor and a phase shift. Both
the DHT and the ISP have the same periodicity as the
original bounded forcing.

– The amplitude factorr(k) (≤ 1, always) has the follow-

ing behaviour:

r(k)
{

→ 1, for |ω(k)/d| → 0+ (slow forcing),
→ 0+, for |ω(k)/d| → ∞ (fast forcing).

(35a)

The slower the bounded forcing is, the wider the range
of DHT movement. The largest range of the movement
must lie within the range of ISP movement. When the
forcing is fast, the DHT hardly moves.

– The phase shift exhibits the following behaviour:

α(k)



→ π/2, for ω(k)/d → ∞ (fast forcing; divergent dynamics),
= π/4, for ω(k)/d = 1,
→ 0+, for ω(k)/d → 0+ (slow forcing; divergent dynamics),
→ 0−, for ω(k)/d → 0− (slow forcing; convergent dynamics),
= −π/4, for ω(k)/d = −1,
→ −π/2, for ω(k)/d → −∞ (fast forcing; convergent dynamics).

(35b)

When the flow dynamics is divergent (convergent), the
DHT proceeds (follows) the ISP. This is a general phe-
nomenon that will hold for all one-dimensional veloc-
ity fields under general assumptions, as we will show
later. Furthermore, the slower the bounded forcing is,
the lesser the phase shift; this is because the DHT has
more time to adjust to the forcing with which the trace
is in phase. As the forcing becomes faster, the DHT and
ISP become completely out of phase; the amplitude of
the DHT oscillation is nearly zero.

The results in Eqs. (35a) and (35b) can be physically
interpreted as an impedance factor between the ISP and
DHT. Haller and Poje (1998) observed that when the time-
dependence of the velocity field is “slow enough” with re-
spect to the Lagrangian time-scale, the ISP stays near the
hyperbolic trajectory. This corresponds to a special case of
our theory, i.e. forω(k)/d → 0± for a short time interval;
see Eqs. (35a) and (35b) above and also the bottom two pan-
els of Fig. 3. However, as the forcing becomes faster, i.e.
for |ω(k)/d| → ∞, the DHT no longer follows the ISP and
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becomes almost stationary.
Accordingly, there are two approaches to obtain the DHT

in a nonlinear system given an ISP. One is to linearize around
the ISP by moving with it when the forcing is slow. Another
is to linearize around a stationary point in space given by
the time-averaged ISP when the forcing is fast. We will dis-
cuss the nonlinear theory and conditions for the choice of
approach in the next section.

Example 5. Two-Dimensional Saddle Case:Equation (14)
in two dimensions is:

d

dt
y1 = d1y1 + g1(t)

d

dt
y2 = −d2y2 + g2(t), (36)

wheregi(t) = bi cos(ωi t + πai), anddi > 0 for i = 1, 2
where the subscripti relate toxi .

Since this two-dimensional equation has been decoupled
into two one-dimensional equations, the same behaviour
holds for each component as described in the previous one-
dimensional example. However, two-dimensional DHT tra-
jectories can be rather counterintuitive based on the ISP, and
the difference may significantly depend on the phase differ-
ence in the forcing, as illustrated in Fig. 4.

2.3 Time-independent system matrix with
unbounded forcing

Now we will consider the case where the forcing can be un-
bounded. However, it will only be allowed to grow alge-
braically in time.

Assumption 2.2

1. The divergence rate of the forcing is slower than the
exponential so as to not conflict with the exponential di-
chotomy around the DHT. In particular, we assume that
given the data set over a finite timet ∈ [t0, tL], the forc-
ing g(t) can be expressed in the following form:

g(u)(t) =

K∑
k=0

g(u,k)(t) =

K∑
k=0

b(u,k)tk, (37)

whereb(u,k) is the constant coefficient for polynomial
forcing.

2. Still, realistically speaking in geophysical flows, the
fastest unbounded forcing is linear, i.e.k = 1. It corre-
sponds to a translating coherent structure system with
quasi-uniform velocity.

The ISPs are given by

ysp(t) = −D−1
K∑
k=0

b(u,k)tk. (38)

The distinguished hyperbolic trajectory is obtained by solv-
ing Eq. (18) analytically:

ydht(t) =

K∑
k=0

ĝ
(u,k)

(t), (39)

where

ĝ
(u,k)
i (t) = −b

(u,k)
i

k∑
m=0

k!

d
(m+1)
i (k −m)!

tk. (40)

Example 6: Consider the general case of Example 1 dis-
cussed in Sect. 1.

d

dt
y = dy + bt (41a)

y(u)sp (t) = −
b

d
t (41b)

y
(u)
dht(t) = −

b

d
t −

b

d2
. (41c)

Note that the DHT is always a constant distance−b/d2 away
from the ISP, as illustrated in Fig. 1.

2.4 Time-dependent system matrix

We now consider the more general case of a system with
time-dependent coefficients:

d

dt
x = F(t)x + h(t), (42)

whereF(t) is the time-dependent Jacobian of the linear sys-
tem, which is not necessarily diagonal. The ISP is given by:

xsp(t) ≡ −F(t)−1h(t). (43)

where it is assumed thatF(t) is invertible over the time inter-
val of interest,t ∈ [t0, tL].

This linear system has no analytical solution in general,
even whenh(t) can be expressed as a Fourier series or al-
gebraic function oft . The difficulty in computing the DHT
arises from two main sources associated withF(t), as we
shall see in an example. One is dimensionality. Unlike the
case of a one-dimensional system, the stability type of a tra-
jectory can be not only hyperbolic or neutral, but also el-
liptic. Another is time dependence. Unlike the case with a
time-independent coefficient matrix, the instantaneous eigen-
values ofF(t), or the instantaneous geometry of the linear
velocity field may no longer reflect the stability type over the
time intervalt ∈ [t0, tL].

To overcome the difficulty and compute the DHTxdht(t)

of Eq. (42), we carry out the following steps:

Step 1. Seek a time-dependent coordinate transform:

y(t) = A(t)x(t), (44)

so that the resulting linear system fory(t) is a de-
coupled, time-independent coefficient system as in
Eq. (14).
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Step 2. Determine the stability type in they system
based on the time-independent Jacobian matrixD.

Step 3. If the stability type is hyperbolic iny, then com-
pute the DHTydht(t) for the y system using the
methodology described in Sects. 2.2 or 2.3. If the
stability type is elliptic, then our method fails.

Step 4. Invert the coordinate transformation given by
Eq. (44) to obtain the DHTxdht(t) in thex system:

xdht(t) = A(t)−1ydht(t). (45)

We show in Appendix A how to accomplish Step 1, i.e.
we develop a methodology to computeA(t) and the resulting

system defined byD andg(t), given a time-dependent coef-
ficient system defined byF(t) andh(t). In Appendix B, we
prove thatA(t) obtained in this way indeed takes a trajectory
y(t) of Eq. (14) into a trajectoryx(t) of Eq. (42); and hence
xdht(t) of Eq. (45) is indeed a DHT in thex system. In other
words, DHTs are frame-independent (Haller, 2001). On the
contrary, the ISPs are generally frame-dependent; and hence
xsp(t) and ysp(t) do not need to correspond to each other
under this transformation, i.e. they are frame-dependent:

xsp(t) 6= A(t)−1ysp(t). (46)

Example 7: Consider the velocity field given by:

d

dt

(
x1
x2

)
=

(
δ1 + δ2 cos 2βt δ2 sin 2βt − β

δ2 sin 2βt + β δ1 − δ2 cos 2βt

) (
x1
x2

)
+

(
b1 cos(ω1t + a1)

b2 cos(ω2t + a2)

)
(47a)

whereF(t) depends on the parametersβ, (δ1, δ2) andh(t)

depends on the parameters(ω1, ω2), (a1, a2) and (b1, b2).
Here the subscriptsi are related toxi for i = 1, 2. We as-
sume thatδ2

1 − δ2
2 + β2

6= 0 so that an ISP exists:

xsp(t) = −
1

δ2
1 − δ2

2 + β2

(
b1(δ1 − δ2 cos 2βt) cos(ω1t + a1)+ b2(δ2 sin 2βt + β) cos(ω2t + a2)

b1(δ2 sin 2βt − β) cos(ω1t + a1)+ b2(δ1 + δ2 cos 2βt) cos(ω2t + a2)

)
. (47b)

The two instantaneous eigenvaluesλ±

F of F(t) are time-
independent:

λ±

F = δ1 ±

√
δ2

2 − β2, (48)

and hence the instantaneous flow structure aroundxsp(t) ap-
pears to be hyperbolic forδ1 = 0, δ2

2 > β2 and elliptic for
δ1 = 0, δ2

2 < β2 for anyt .
The stability type of the trajectories over a time interval

t ∈ [t0, tL] in a linear velocity field can be graphically exam-
ined by the evolution of a circle put into the velocity field. If
the stability type is hyperbolic, then a circle will deform to
an ellipse at exponential rates, where exponential growth of
the semi-major axis and exponential decay of the semi-minor
axis correspond to twice the finite-time Lyapunov exponents
along the principle axis (Appendix A). If the stability type
is elliptic, then a circle will remain near a circle and rotate

without exponential deformation. The area of the circle re-
mains constant if and only if the trace of the JacobianF(t) is
zero.

Here we consider the caseδ1 = 0, δ2
2 < β2 (Fig. 5a)

where the instantaneous velocity has an elliptic type struc-
ture aroundxsp(t) at any timet . However, a unit circle put
aroundx = (0, 0) at timet = 0 undergoes a counterclock-
wise rotation and it deforms at an exponential rate in time
(Fig. 5b), suggesting that the trajectories are hyperbolic and
the DHT may hence exist. We therefore apply the 4-step pro-
cedure described above.

Using the methodology in Appendix A, we compute the
coordinate change (Step 1):

A(t) =

(
cosβt sinβt

− sinβt cosβt

)
(49)

and the time-independent coefficient system:

d

dt
y1 = d1y1 + b1 cos(ω1t + a1) cosβt + b2 cos(ω2t + a2) sinβt ,

d

dt
y2 = d2y2 + b2 cos(ω2t + a2) cosβt − b1 cos(ω1t + a1) sinβt , (50)

where(d1, d2) = (δ1 + δ2, δ1 − δ2).

For δ1 = 0, δ2
1 < δ2

2, the two eigenvalues for they system
are real and of opposite signs and the trajectories are hyper-
bolic (Step 2). In fact, the instantaneous velocity field in the

y system has a hyperbolic type structure, as shown in Fig. 6a
(compare with Fig. 5a). A unit circle put aroundy = (0,0)
at t = 0 deforms to an ellipse at an exponential rate (Fig. 6b).
However, the semi-major and semi-minor axes of the ellipse
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Fig. 5. Time-dependent coefficient system inx for a δ1 = 0, δ2
2 < β2 case, with a parameter setβ = 2.34, (δ1, δ2) = (0.0,−0.4),

(ω1, ω2) = (3.23, 3), (a1, a2) = (0,0), (b1, b2) = (0.8,0.9) a) instantaneous velocity field inx with a red cross forxsp(0); b) evolution of
a set of trajectories starting att = 0 on a unit circle around the origin fort ∈ [0,3], where the square on each ellipse is at the semi-major
axis.

are aligned with the axes of they system at anyt , and the
ellipse does not rotate (compare with Fig. 5b). This is one
of the two roles played by the coordinate transformA(t): to
suppress the rotation of the principle axis, and to regulate the

exponential behaviour to be uniform in time.

Using the methodology described in Sect. 2.2, we obtain
the DHTydht(t) (Step 3):

y1,dht(t) = −
1

2d1
{b1[r

+

11 cos(ω+

1 t + α+

11 + a1)+ r−11 cos(ω−

1 t + α−

11 + a1)]

+b2[r
+

12 sin(ω+

2 t + α+

12 + a2)− r−12 sin(ω−

2 t + α−

12 + a2)]} , (51a)

y2,dht(t) = −
1

2d2
{b2[r

+

22 cos(ω+

2 t + α+

22 + a2)+ r−22 cos(ω−

2 t + α−

22 + a2)]

− b1[r
+

21 sin(ω+

1 t + α+

21 + a1)− r−21 sin(ω−

1 t + α−

21 + a1)]} , (51b)

where

ω±

j = ωj ± β , r±ij =
1√

1 +

(
ω±

j

di

)2
, α±

ij = tan−1
ω±

j

di
. (51c)

Figure 7 shows the time evolution ofydht(t) andysp(t) for
t ∈ [0, 3], whereysp(t) is the ISP of Eq. (50). As discussed
in Sect. 3.1 for the nonlinear case for eachi = 1, 2, yi,dht(t)

lies within the range defined by the minimum and maximum
of yi,sp(t). Also, yi,dht(t) changes direction only when it in-
tersects withyi,sp(t).

Finally, the DHTxdht(t) is obtained through the inverse
coordinate transformA(t)−1 (Step 4). A straightforward
substitution confirms thatxdht(t) is a solution of Eq. (47a)
and hence the DHT is frame-independent. Figure 8 shows the

time evolution ofxdht(t) andxsp(t). In the time-dependent
coefficient system,xdht(t) andxsp(t) no longer need to sat-
isfy the relation discussed in Sect. 3.1 and hence it is quite
possible thatxdht(t) does not necessarily lie within the region
wherexsp(t) is observed over the time interval.

3 Nonlinear theory of DHTs and their relation to ISPs

In this section we will obtain some results for the existence
of DHTs for nonlinear velocity fields with emphasis on their
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Fig. 6. Time-independent coefficient system iny corresponding to Fig. 5.

relation to ISPs. This is critical in the numerical identifi-
cation of DHTs, because ISPs are observable in the veloc-
ity field but DHTs are not. We will also show how these
results are related to the linear results in the previous sec-
tion, so that these results can be used to develop a numerical
method based on there results in the next section. An im-
portant theme of our approach is that we are able to deduce
information about time varying Lagrangian structures from
a sequence of the instantaneous (or “frozen time”) velocity
field. This will be apparent in the assumptions that we make
about the instantaneous velocity field. For one-dimensional
velocity fields these assumptions will be manifested in the
form of assumptions on the ISPs.

We will first treat one-dimensional velocity fields which
is relevant for finding DHTs on the boundaries of two-
dimensional flows with free-slip boundary conditions, and
then two-dimensional velocity fields.

3.1 One-dimensional velocity fields

We consider a one-dimensional velocity field of the form
Eq. (1) defined fort ∈ [tL− , tL+ ], i.e.

d

dt
x = u(x, t), x ∈ IR. (52)

The velocity field should be (at least) continuous in time, and
we will require it to be differentiable in space (so that lin-
earization makes sense). In addition, we make the following
assumptions on the ISPs.
Existence of an ISP:For t ⊂ [t0, tL] there exists an ISP, de-
noted byxsp(t), i.e. a function satisfying

u(xsp(t), t) ≡ 0. (53)

Note that, in general,xsp(t) is not a particle trajectory. In par-
ticular, if xsp(t) were a particle trajectory, then it must satisfy
the equation

d

dt
xsp(t) = u(xsp(t), t) = 0,

which would imply thatxsp(t) is constant in time. In the
applications that we will consider,xsp(t) generally changes
position ast varies.
Isolated ISP:Let

(xmin
sp , x

max
sp ) =

(
minxsp(t),maxxsp(t)

)
,

where the maximum and minimum is taken overt ∈ [t0, tL],
and we assume thatxmin

sp andxmax
sp are bounded. We assume

that in the box in thex − t plane defined by

xmin
sp ≤ x ≤ xmax

sp , t0 ≤ t ≤ tL, (54)

there are no other ISPs.
Hyperbolicity of the box containing the ISP:We will assume
that that∂u/∂x does not vanish in the whole box as defined
above.
Hence, there are two cases:

repelling:
∂u

∂x
(x, t) > 0,

attracting:
∂u

∂x
(x, t) < 0.

(55)

We remark that the assumption that the ISPs are isolated
and hyperbolic rule out the subject of bifurcation of ISPs and
the consequences of this for DHTs. This is an important topic
for applications but is outside the scope of this work.

We are now ready to state and prove the theorem.
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Fig. 7. The DHT and ISP fort ∈ [0,3] in x: (a) phase space plot where the initial locations are indicated by a square forxdht(0) and a cross
for xsp(0) (see Fig. 6a);(b) time series.

Theorem 3.1 1. For tL = ∞ there exists a DHT,xdht(t),
having the same stability properties asxsp(t). This DHT
satisfies the bounds

xmin
sp ≤ xdht(t) ≤ xmax

sp , t0 ≤ t < ∞,

and is unique in the sense that it is the only DHT satis-
fying these bounds.

2. For tL finite, essentially the same result as 1 holds.
However, in this case, uniqueness of the DHT does not
necessarily hold. Rather, there exists an interval of ini-
tial conditions,I, satisfying

xmin
sp ≤ I ≤ xmax

sp ,

such that trajectories in this interval att0 satisfy these
bounds fort ∈ [t0, tL] and have the same stability prop-
erties asxsp(t).

Proof of 1: We prove 1 for the repelling case. The proof for
the attracting case is similar.

Sincexsp(t) is assumed to be isolated in the box defined
by {(x, t) | xmin

sp ≤ x ≤ xmax
sp , t0 ≤ t < ∞}, we can choose

an ε > 0 such thatxsp(t) is isolated in the box defined by
{(x, t) | xmin

sp − ε ≤ x ≤ xmax
sp + ε, t0 ≤ t < ∞}, see

Fig. 9. Moreover, sincexsp(t) is repelling and there are no
other ISPs to reverse the direction of the instantaneous veloc-
ity than xsp(t) itself, points on the left vertical boundary of
the box move off the boundary to the left and points on the
right vertical boundary move off the boundary to the right.

Let x(t, t0, x0) denote the solution of Eq. (52) through the
point x = x0 at t = t0. Let It0 denote the spatial interval
xmin

sp − ε ≤ x ≤ xmax
sp + ε. ThenIt ≡ x(t, t0, It0), t ≥ t0,

denotes the time evolution of the intervalIt0 under the trajec-
tories of Eq. (52).

Choose someT > 0 and consider the spatial intervals at
time t0 + jT

It0+jT ≡ x(t0 + jT , t0, It0), j = 0, 1, 2, . . . ,

and

I−j ≡
{
x0 ∈ It0 | x(t0 + jT , t0, x0) ∈ It0+jT ∩ It0

}
.

Since the points ofIt0+jT intersecting the left and right ver-
tical boundaries of the box for a fixedj leave the box and
move to the left and right, respectively, asj is increased, we
have:

I0 ⊃ I−1 ⊃ I−2 ⊃ · · · .

All the trajectories whose initial condition is in
⋂

∞

j=0 I−j
stay in the box for both positive and negative time. We now
want to prove that there is only one trajectory staying in this
box, or equivalently that

∞⋂
j=0

I−j = a point. (56)

The proof is by contradiction. Suppose limj→∞ I−j is not
a point, but an interval. First, we note that every trajectory
with initial condition in this interval must be hyperbolic and
repelling. This is seen as follows. Letx̃(t) denote a trajectory
with initial condition in limj→∞ I−j . Then stability of this
trajectory is determined by the Lyapunov exponent, which is
given by:

lim
t→∞

1

t

∫ t

t0

∂u

∂x
(x̃(τ ), τ )dτ,



K. Ide et al.: Distinguished hyperbolic trajectories in time-dependent fluid flows 251

x1

x 2

-4 -3 -2 -1 0 1 2 3 4-4

-3

-2

-1

0

1

2

3

4

xdht
xsp

a)

t
x

0 1 2 3-4

-3

-2

-1

0

1

2

3

4
x1,dht
x2,dht
x1,sp
x2,sp

b)

x

Fig. 8. Similar to Fig. 7, except for thex system.

which must be positive since we have assumed∂u
∂x
> 0.

Returning to our proof by contradiction, if limj→∞ I−j is
not a point, but an interval, then the endpoints of the interval
are the initial conditions for trajectories that stay in the box
for all t ≥ t0. These trajectories are repelling by the argu-
ment given above. Then there must be an initial condition
between these two endpoints corresponding to an attracting
trajectory. However, this is impossible since we are assuming
that ∂u

∂x
> 0 everywhere in the box, and as we argued above,

all trajectories with initial conditions in this interval must be
repelling. Hence, our assumption that limj→∞ I−j is an in-
terval gives rise to a contradiction. As a result we must have
Eq. (56).

This point is the initial condition att = t0 for a hyper-
bolic, repelling trajectory that is our DHT. By construction it
satisfies the bounds of the theorem.
Proof of 2: Choosej andT such thatt0 + jT = tL. Then we
can takeI−j = I since, by the construction above,I−j = I
is the (unique) set of initial conditions that remain in the box
until time tL. ut

Therefore, the one-dimensional nonlinear provides us the
geometrical relation between the ISP and DHT. Accordingly,
the ISPs can be used as a marker for DHT identification.

3.2 Two-dimensional velocity fields

Now we develop the theory for the existence of DHTs in
two-dimensional velocity field of the form Eq. (1) defined
for t ∈ [tL− , tL+], i.e.

d

dt
x = u(x, t), x = (x1, x2) ∈ IR2. (57)

By taking tL− → −∞ and/ortL+ → ∞, the results below
can be applied to the bi- or semi-infinite time interval.

Our goal here is to provide a theoretical background for
the two classes of definitions for the DHT (Definitions 1 and
2 in Sect. 1), and to develop a numerical algorithm for com-
puting the DHT. We accomplish this goal by taking a series
of coordinate changes as follows: (1) fromx to x′, which
localizes the velocity field near the ISP; (2) fromx′ to w,
which results in a velocity field with an orthogonal, time-
independent linear part, so that the linear results developed
in Sect. 2 can be applied to the corresponding linearized ve-
locity field; (3) fromw toy for additional localization, so that
the existence can be proven for the nonlinear velocity field;
and then analytically identify the DHT inx by (4) reversing
these coordinate changes fromw (or y) to x.

In the one-dimensional case, three assumptions are made
concerning the ISPs of the instantaneous velocity field, i.e.
existence Eq. (53), uniqueness Eq. (54), and hyperbolicity
Eq. (55) in thex − t box. In the two-dimensional case, we
first assume only the existence of ISPs inx. Additional as-
sumptions will be made later in thew andy coordinates as
necessary.
Existence of an ISP:For t ∈ [tL− , tL+ ], there exists an ISP,
denoted byxsp(t) =

(
xsp,1(t), xsp,2(t)

)
, i.e.

u(xsp(t), t) ≡ 0. (58)

Note that the same argument as in the one-dimensional case
applies to show thatxsp(t) is a particle trajectory only if it is
constant in time.

Once such axsp(t) is observed in the velocity field, we
use it as a marker to begin a series of coordinate changes as
carried out below.

1. Localization near the ISP (from x to x′)

In order to prove the existence of a DHT, we must first
transform to a coordinate system that is localized about
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Fig. 9. Graph of the one-dimensional ISPxsp(t) and initial time
intervalIt0.

an appropriate structure in the instantaneous velocity
field:

x = x′
+ xsp. (59a)

The resulting velocity field forx′ can be represented as
a sum of linear, forcing (i.e. purely time-dependent) and
nonlinear terms:

d

dt
x′

= F(t)x′
+ h(FORCE)(t) (59b)

+ h(NL)(x′
+ xsp, t) (59c)

by substituting Eq. (59a) to Eq. (57) and separating
the linear part. Note that the superscript “(NL)” de-
notes nonlinearity in thex′ variable. There are two ap-
proaches forxsp that we will pursue below. The choice
between the two will be discussed later, and is based on
the linear theory such that the next coordinate change
fromx′ to w results in the most suitable system for DHT
identification.

(i) Transformation to a Coordinate System Localized
about the Mean Stagnation Point: Eulerian Local-
ization

We localize the velocity field about the mean stag-
nation point:

xsp = xsp ≡
1

tL+ − tL−

∫ tL+

tL−

xsp(τ )dτ. (60a)

The three terms in the right-hand side of velocity
field Eq. (59b) are:

F(t) = J [u, x]|(xsp,t) =


∂u1

∂x1

∂u1

∂x2
∂u2

∂x1

∂u2

∂x2

 ∣∣∣∣
(xsp,t)

,(60b)

h(FORCE)(t) = u(xsp, t), (60c)

h(NL)(x′
+ xsp, t) = u(x′

+ xsp, t)

− F(t)x′
− u(xsp, t). (60d)

(ii) Transformation to a Coordinate System Localized
about the Curve of Instantaneous Stagnation
Points: Instantaneous Eulerian Localization

We localize by moving with the ISP

xsp = xsp(t). (61a)

The three terms of the velocity field are:

F(t) = J [u, x]|(xsp(t),t)

=


∂u1

∂x1

∂u1

∂x2
∂u2

∂x1

∂u2

∂x2

 ∣∣∣∣
(xsp(t),t)

, (61b)

h(FORCE)(t) = −ẋsp(t), (61c)

h(NL)(x′
+ xsp(t), t) = u(x′

+ xsp(t), t)

− F(t)x′. (61d)

1. Transformation to a system with constant (in time)
linear part (from x′ to w)

Once the appropriate type of the localization has been
carried out, then we perform a coordinate transforma-
tion to make the coefficients of the linear part of the
equation constant in time. We now apply the coordinate
transformation defined by:

w(t) = A(t)x′(t), (62)

whereA(t) is valid for t ∈ [tL− , tL+ ] as it is derived in
Appendix A to Eq. (59b). Note that this transformation
is applicable to Eq. (59b), independent of the choice for
xsp given by Eq. (60a) and Eq. (61a). After this coor-
dinate transformation, the velocity field then takes the
form:

d

dt
w = Dw + g(FORCE)(t)+ g(NL) (w, t) , (63a)

whereD is a constant matrix and

g(FORCE)(t) = Ah(FORCE)(t), (63b)

g(NL) (w, t) = Ah(NL)
(
A−1w, t

)
. (63c)
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Neglecting the nonlinear terms of Eq. (63a) gives the
associated linear, inhomogeneous system:

d

dt
w = Dw + g(FORCE)(t). (64)

We now impose the second assumption on hyperbolicity
so that the corresponding DHT is saddle-type in stabil-
ity for both nonlinear Eq. (63a) and linearized Eq. (64)
systems.

Hyperbolicity:We assume that the matrixD has the fol-
lowing form:

D =

(
λ̄+ 0
0 λ̄−

)
=

(
d1 0
0 d2

)
, (65)

where

d2 = λ̄− < −λ < 0< λ < d1 = λ̄+.

The system Eq. (64) consists of two independent lin-
ear inhomogeneous systems. Therefore, we can imme-
diately write down a formula for the associated linear
DHT for each system using the theory from Sect. 2,
without the third assumption concerning the uniqueness
of the ISP. We will denote such a DHT bywdht.

Moreover, there are two approaches to the coordinate
transformation fromx to x′ effected by localization
about: (i) the mean ISP̄xsp Eq. (60a), or (ii) the ISP
xsp(t) Eq. (61a). The results from the linear theory pro-
vide a criterion for the choice between the two as we
now describe.

The time-scale ratio and the choice of Eulerian local-
ization: Let us denote the most dominant character-
istic time scale of the forcingg(FORCE)(t) by the fre-
quency vectorω(FORCE) and the eigenvector of the lin-
ear dynamics byd = (d1, d2). From the linear the-
ory (Sect. 2.2), the time-scale ratio|ω(FORCE)

|/|d| de-
termines whether the DHT is (i) nearly stationary near
x̄sp or (ii) moves closely with the ISPxsp(t). Therefore,
we localize about (i)̄xsp when|ω(FORCE)

|/|d| ≥ 1, and
(ii) xsp(t) when|ω(FORCE)

|/|d| ≤ 1.

2. Localization of the velocity field aboutwdht(t)

(from w to y)

To prove the existence of the corresponding DHT for-
mally in the nonlinear velocity field, we introduce a fi-
nal coordinate transformation. Let

w = wdht(t)+ y.

Then the nonlinear velocity field Eq. (63a) takes the
form:

d

dt
y = Dy + g(NL) (wdht(t)+ y, t) . (66)

This is equivalent to the velocity field Eq. (10) for Def-
inition 1. Therefore, we have the following theorem for
the DHT of the first class.

Theorem 3.2 (Existence and Uniqueness of DHT)
Suppose that‖ g(NL)

‖∞, ‖ g
(NL)
y ‖∞< ∞ and

‖ g(NL)
y ‖∞

(
1

d1
−

1

d2

)
< 1.

whereg
(NL)
y ≡

∂g(NL)

∂y
∈ IRN×n is the Jacobian matrix

Then Eq. (66) has a unique bounded DHT, denoted by
ydht(t).

Proof: This proof of this theorem can be obtained
through standard iteration or fixed point methods, but
it is a bit cumbersome and lengthy to set up and carry
out (see Ju et al., 2002).

3. DHT in the original coordinate x

Tracing back through the original coordinates, the DHT
is given by:

xdht(t) = xsp + A(t)−1 (
wdht(t)+ ydht(t)

)
, (67)

wherexsp is either i)xsp for fast forcing or ii)xsp(t)

for slow forcing. Using Theorem 3.2 along with Ap-
pendix C, suchxdht(t) is indeed the DHT of Defini-
tion 2.

In the next section we present a numerical method that
gives an approximation of the DHT for the entire length
of the data set. In particular, it provides an expression
for:

xdht(t) = xsp + A(t)−1wdht(t). (68)

4 A numerical algorithm for computing Distinguished
Hyperbolic Trajectories in two-dimensional flow

In this section we describe a numerical algorithm for com-
puting DHTs in flows defined by data sets. The algorithm is
based on the linear theory of DHTs developed in the previous
section. We consider a flow field defined on a Cartesian co-
ordinate grid,{xi,j } = (xi, yj ) for i = 1, . . . , Nx andj =

1, . . . , Nj , and at a sequence of times,tl , l = 1, . . . , Nt .
The “discrete” velocity field has the form,u(xi,j , tl). Note
that spatial and temporal interpolation provides a “smooth”
velocity field,u(x, t). For convenience in a two-dimensional
flow, we use(x, y) instead of(x1, x2) in this section.

4.1 Outline of the numerical approach for finding and
tracking DHTs

In order to apply the theory developed in Sect. 2 to a ve-
locity field defined by a data set, we must construct a time-
dependent linear approximation to the velocity field. For this
linear model to calculate the DHT we must linearize about a
good estimate for the DHT. As discussed in Sect. 3.2 there
are two approaches:
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(i) For “fast” forcing, the DHT remains near the time aver-
aged position of the ISP.

(ii) For “slow” forcing, the DHT follows the path of the ISP.

The difference between these approaches given by
Eq. (60) and Eq. (61) is only apparent in the forcing term
h(FORCE)(t). We therefore use the same notation for both
cases in order to simplify the discussion. Letxsp be the
(possibly time-dependent) path of our a priori estimate of the
DHT path (see Sect. 3.2). We seek to linearize the velocity
field around this path and solve the resulting system for the
DHT.

We thus take the following steps:
Step 1: Search for a DHT candidate and its neighborhood:
Since the pathxsp is based on the behaviour of an ISP, we
first look for persistent and bounded ISPs in the entire data
set so as to find neighborhoods where DHTs may exist. De-
tails of each procedure will be discussed in Sect. 4.2.

a. At each time slicetl for l = 1, . . . , Nt , examine the
velocity field and identify all ISPs (an efficient method
will discussed in Sect. 4.2.1).

b. Identify each ISP that persists continuously in a
bounded area isolated from any other ISPs throughout
the entire time series.

c. Define a path,xsp, around which to linearize. As dis-
cussed above, this may either be the path of an ISP,
xsp(t), or the time-averaged path of an ISP,x. The local
coordinate systemx′ has its origin atxsp:

x = xsp + x′. (69)

Step 2: Construction of a time-dependent linear model:Each
of the possible linearization strategies discussed above de-
fines for each time slice a(i, j) cell which we may use to
develop a linear local velocity field:

u(x, tl) = ux(xsp, tl)x
′
+ uy(xsp, tl)y

′
+ h(FORCE)(t), (70)

whereux(xsp, tl) anduy(xsp, tl) are to be determined later.
Step 3: Application of the Fourier (linear) DHT theory:This
is accomplished in the following steps according to Sect. 2.

a. Construct the coordinate change,vecw(t) = A(t)x′(t),
so that the resulting system inw has a time-independent
system matrixD (this procedure is discussed in Ap-
pendix A).

b. Examine the eigenvalues ofD for hyperbolicity.

c. Solve for the DHT in thew system,wdht(t), according
to the procedure discussed in Sect. 2.2, which immedi-
ately leads to the DHT in thex′ coordinates,x′

dht(t) =

A(t)−1wdht(t).

d. Convert the result into the originalx coordinates

xdht(t) = xsp + x′

dht(t).

4.2 Construction of the instantaneous linear model from
the data

In order to find the ISPs of the flow, we must consider the
linearization of the flow velocities within a cell. Let us
define the(i, j) rectangle as{x|xi ≤ x ≤ xi+1, yj ≤

y ≤ yj+1}, defined by the four adjacent grid points
{xi,j , xi+1,j , xi,j+1, xi+1,j+1}. If x lies within the (i, j)
cell, then we approximate the velocity within this cell by
means of bilinear interpolation

u(x, t) =
1

4xi4yj
{(4xi − ξ)(4yj − η) ui,j (t)

+ (4yj − η) ui+1,j (t)+ (4xi − ξ) ui,j+1(t)

+ ξη ui+1,j+1(t)}, (71a)

where we have used the notation

ui,j (t) = u(xi,j , t), (71b)

(4xi,4yj ) = (xi+1 − xi, yj+1 − yj ), (71c)

ξ = (ξ, η) = (x − xi, y − yj ). (71d)

4.2.1 Efficient search for ISPs

An efficient search for ISPs is conducted by first looking for
any(i, j) rectangle which satisfies a necessary condition, and
then examining a sufficient condition only for those(i, j)
rectangles that satisfy the necessary condition. By definition,
bilinear velocity in any(i, j) rectangle velocity satisfies the
relation:

umin
i,j (tl) ≤ u(x, tl) ≤ umax

i,j (tl),

vmin
i,j (tl) ≤ v(x, tl) ≤ vmax

i,j (tl), (72a)

where

(umin
i,j (tl), u

max
i,j (tl)) ≡ (min, max){ui,j (tl),

ui+1,j (tl), ui,j+1(tl), ui+1,j+1(tl)}, (72b)

(vmin
i,j (tl), v

max
i,j (tl)) ≡ (min, max){vi,j (tl),

vi+1,j (tl), vi,j+1(tl), vi+1,j+1(tl)}. (72c)

Necessary condition:If there exists an ISP in an(i, j) rect-
angle at timetl , then the following condition must hold:

umin
i,j (tl) ≤ 0 ≤ umax

i,j (tl), vmin
i,j (tl) ≤ 0 ≤ vmax

i,j (tl). (73)

Sufficient condition:The bilinear system given by Eq. (71a)
leads to a quadratic equation forξsp(tl) that can be solved
analytically. A sufficient condition is, therefore, that the so-
lution indeed lies in(i, j) rectangle, i.e.

0 ≤ ξsp(tl) ≤ 4xi, 0 ≤ ηsp(tl) ≤ 4yj . (74)

4.2.2 Optimal linear model within a cell

At each time slicetl , we construct a linear model by opti-
mally eliminating the nonlinear term from the bilinear model
Eq. (71a) which can be rewritten as follows:
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u(x, tl) = ua(tl)
ξ

4xi

η

4yj
+ ub(tl)

ξ

4xi
+ uc(tl)

η

4yj
+ ud(tl), (75a)

where

ua(tl) = ui,j (tl) + ui+1,j+1(tl) − ui+1,j (tl) − ui,j+1(tl),

ub(tl) = − ui,j (tl) + ui+1,j (tl),

uc(tl) = − ui,j (tl) + ui,j+1(tl),

ud(tl) = ui,j (tl).

(75b)

Hence for this model to be linear, the following condition
must hold:

ua(tl) ≡ 0. (76)

If the local flow is truly linear, then this condition is automat-
ically satisfied. Therefore, condition Eq. (76) can be used as
the linearity test of the local flow, so as to apply the Fourier
(linear) DHT theory developed in Sect. 2.

We may develop the optimal linear model of Eq. (75) by
eliminating the velocity at the grid point furthest away from
xsp, using the condition Eq. (76). The resulting linear model
leads to Eq. (70), whose time-dependent coefficient vectors
ux(tl), uy(tl) andu0(tl) are given in Table 1. Note that the
use of this linear model implies that the Jacobian of the ve-
locity field is constant everywhere within the cell, so that we
can construct the coefficients in Table 1 without using the
local coordinates ofxsp within the(i, j) cell.

4.2.3 The forcing term

In developing a linear model we seek an equation of the form

dx′

dt
= F(t)x′(t)+ h(t). (77)

For the case where our initial estimatexsp(t) of the loca-
tion of the DHT is constant, then we may linearize around
the lower left-hand coordinate of the cell containingxsp, us-
ing the cell coordinatesξ = (ξ, η). The forcing termu0 is
that given in Table 1:

d

dt
ξ =

(
ux(t) uy(t)

vx(t) vy(t)

)
ξ +

(
u0(t)

v0(t)

)
. (78)

Whenxsp(t) is the path of the ISP, we must linearize in
terms ofx′, giving:

d

dt
x′

=

(
ux(t) uy(t)

vx(t) vy(t)

)
x′

−
d

dt
xsp(t), (79)

where the coefficients of the Jacobian are deduced from Ta-
ble 1, which are valid throughout the cell, and the velocity of
the ISP path must be calculated numerically.

Finally, a linear, time-dependent system inξ or x′ is ob-
tained by temporal interpolation of each coefficient.

4.3 Numerical reconstruction of DHTs

4.3.1 One-dimensional case

Step 3 of the algorithm described in Sect. 4.1 requires solv-
ing for the DHT in thew system. In practice this gives rise to
a choice of methods; we may either use a frequency-domain
or a time-domain solution. This section outlines both meth-
ods in the context of a one-dimensional problem and the next
discusses the choice between them. We begin by considering
the one-dimensional problem

dy

dt
− dy = beiωt . (80)

This can readily be rewritten as

edt
d

dt

(
e−dty

)
= beiωt . (81)

A particular integral (which has no exponential behaviour
and is therefore the DHT) for this equation is

y =
b

−d + iω
eiωt . (82)

So, if we represent a forcing function by its Fourier de-
composition

f (t) =

∫
∞

−∞

F(ω)eiωt dt

then the DHT is determined by

ĝ(t) =
1

2π

∫
∞

−∞

Q(ω)F(ω)eiωt dω, (83)

where

Q(ω) =
1

−d + iω
.

The multiplication in the frequency domain in Eq. (83) is
equivalent to a convolution in the time domain, so we can
rewrite this as

ĝ(t) =

∫
∞

−∞

f (t)q(t − τ) dτ, (84)

whereq(t) is the transform of

Q(ω) =
1

−d − iω
,

the complex conjugate ofQ(ω).
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Table 1. Linear model on(i, j) grid from data. Nearest grid is one of the four edge points of(i, j) base-grid which is nearest to the ISP.
Time variable is omitted for simplicity

nearest grid 4xi ux 4yj uy u0
(i, j) −ui,j +ui+1,j -ui,j +ui,j+1 ui,j

(i + 1, j) −ui,j +ui+1,j -ui+1,j +ui+1,j+1 ui,j
(i, j + 1) −ui,j+1 +ui+1,j+1 -ui,j +ui,j+1 ui,j

(i + 1, j + 1) −ui,j+1 +ui+1,j+1 -ui+1,j +ui+1,j+1 ui+1,j +ui,j+1 −ui+1,j+1

In order to proceed we need a functional representation
for q(t). In fact, two such representations are needed; one
for each possible sign ofd, so that the integrals involved in
calculating the Fourier transform ofq(t) converge.

Ford > 0 we have

q(t) =

{
0 for t > 0,

−edt for t < 0,
(85)

while for d < 0 we have

q(t) =

{
edt for t > 0,

0 for t < 0.
(86)

This representation of the DHT corresponds to Eq. (17) and
Eq. (18) using Fourier decomposition.

4.3.2 A choice of methods

The numerical implementation of the DHT algorithm re-
quires us to choose between the use of Eq. (83), which
we call the frequency-domain reconstruction, and that of
Eq. (84), which we call the time-domain reconstruction.

In practice the time-domain reconstruction has the consid-
erable advantage of being less affected by the time interval
over which data is available. It is clear from Eq. (83) that
the DHT is essentially a “low-pass filter” on the spectrum
of the forcing functionf (t). If f (t) is periodic, theng(t)
should also be periodic. However, if the period off (t) is not
known a priori, then the Fourier series representation off (t)

will have high-frequency components (arising from aliasing).
Applying Eq. (83) will filter these components out, so that
the reconstructed DHT cannot capture the periodicity ofg(t)

since this would require that the high-frequency components
are preserved.

Essentially the frequency-domain reconstruction uses the
FFT to represent the functionf (t) as a Fourier series over an
arbitrary interval, which may require high-frequency compo-
nents, while simultaneously using it as an approximation to
the Fourier transform off (t), from which the high-frequency
components are an undesirable artifact. Using Eq. (84) as
the basis for a numerical implementation of the DHT recon-
struction allows us to avoid the numerical problems associ-
ated with this ambiguity of the FFT, and accordingly gives
significantly better results.

4.3.3 Applying the method

In this section we consider the application of the above
method.

Example 8: The rotating Duffing equation can be written as:

d

dt
x =

(
sin 2βt β + cos 2βt

−β + cos 2βt − sin 2βt

)
x

+ [−(cosβt x − sinβt y)3 + ε sinωt]

(
sinβt
cosβt

)
. (87)

Using a system given by an explicit formula, but applying
methods which use only a discrete data set derived from it,
allows us to assess the accuracy (and validity) of our numer-
ical methods.

Equation (87) was discretized on a 40-by-40 grid spatially,
with eachx andy ranging from -3 to 3. The time discretiza-
tion used 100 points ranging from 0 to 10.

The implementation closely followed the description in
Sect. 4.1; only differences between the code and that section
are described here.
Step 1: Instantaneous stagnation points which were not hy-
perbolic in character in the instantaneous velocity field were
discarded. This left no more than one ISP for each time slice.
For values ofε of 0.3 or greater in Eq. (87), it was common
for there to be no hyperbolic ISP for some time slices. In
these cases the method was considered to have failed.
Step 3a: In solving the differential equations Eq. (B4) a
fourth order Runge-Kutta solver was used, with 20 time-steps
between the time slices of the discretized field. Linear inter-
polation was used to estimate the velocity field between time
slices.
Step 3c: The convolution-in-time method described in
Sect. 4.3.1 was used to calculate the DHT inη coordinates.

The quadrature in Eq. (84) may be written as

I (t) =

∫ t1

t0

ed(t−τ )f (τ) dτ.

Using the change of variable,s = −e−dτ /d, this may be
written

I (t) = e−dt
∫ s1

s0

ĝ(s) ds.

The integrals of this form were evaluated using the trapezium
rule.
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In the convolution at each time in the discretized system
the range of integration was truncated to the time domain of
available data; attempts to “wrap around” from the end to the
beginning showed the same problems that arose from using
the frequency-domain form of the convolution.

4.3.4 Validation of the method

Clearly it is desirable to have some way of validating the
method described here for calculating DHTs. The rotating
Duffing system withβ = 0, ω = 1 and smallε makes this
possible; it is straightforward to check that

−
ε

2

(
sint
cost

)
is a trajectory, to first order inε. Since this trajectory is peri-
odic it must be the DHT.

Figure 10 shows the first-order analytical DHT and the re-
sults of the numerical DHT reconstruction using both time-
domain and frequency-domain methods. It is clear that the
time-domain method is more faithful to the known behaviour
at the end-points of the trajectory, although the inaccuracy
here is still greater than elsewhere. This end-point effect is
clearly due to the finiteness of the data set, as discussed in
Sect. 2.1.

Behavior of ISP and DHT resembles that observed in
Fig. 4a. While a path of persistent ISP can be used to identify
the region where a DHT may exist, ISP at any given instance
does not offer any direct information concerning DHT.

4.3.5 Blob tracking and non-periodic systems

The method described in this paper was developed specifi-
cally to compute DHTs for non-periodic systems. However,
such cases are more difficult to validate since neither analyt-
ical solutions nor Poincaré map techniques are available. In
this case we rely on the circle method; a ring of particles is
placed around the position of the candidate DHT and tracked
through the time interval. Another ring of particles is placed
around the candidate DHT at the end of the time interval and
tracked backwards to the beginning of the time interval. If
the DHT is within the circles at either end of the time in-
terval, then it will remain within the (increasingly distorted)
ring as it evolves. We can thus deduce that the DHT lies
within the intersection of the two curves at all times. If the
DHT is of saddle-type in stability, then a circle placed around
it and evolving forwards in time will contract in the direction
of the stable manifold and elongate in the direction of the un-
stable manifold; the opposite will happen to a circle evolving
backward in time. This provides an additional confirmation
that the DHT is located inside the evolving blobs.

Animations of this process have been developed for the
rotating Duffing system. The particle trajectories were com-
puted using a fourth-order Runge-Kutta scheme with adap-
tive step doubling, using the explicit formula for the rotating
Duffing velocity field. To maintain resolution as the contour
deforms additional points were inserted half-way between
neighboring points when they moved too far apart.
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Time-domain reconstruction
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Analytical solution
Path of ISP

Fig. 10. A comparison of the DHT reconstruction algorithms for
a rotating Duffing system withε = 0.1, β = 0 andω = 1. It is
clear that the time-domain algorithm gives better results than the
frequency-domain algorithm. The analytical solution is the first-
order solution inε.

Animations for the casesε = 0.1, β = 0.1, ω = 1.0 and
ε = 0.2, β = 0.3, ω = 0.1 are available on the World Wide
Web at http://lacms.maths.bris.ac.uk. In these animations the
blobs evolving “backwards in time” from a circle at the end
of the time interval are shown in black, the circle evolving
forward is in cyan, and the numerically reconstructed DHT
is in magenta. It may be seen from these animations that
there is good agreement between the numerical reconstruc-
tion of the DHT and the real DHT, defined by the intersec-
tion of the evolving circles. The circles used are relatively
large compared to the region through which the DHT moves,
since they evolve from the ends of the time interval where
the accuracy of the reconstruction is lowest.

Figures 11 and 12 show the forwards and backwards blobs
at the beginning and end of the time interval for the case
with ω = 1, β = 0, ε = 0.1. The forward blob begins (at
t = 0) as a circle of radius 0.1 around the position of the
computed DHT at timet = 0 and evolves forward in time;
the backwards blob begins (att = 10) as a circle of radius
0.1 around the position of the computed DHT at timet = 10
and evolves backwards in time. Figures 13 and 14 show the
two blobs at the middle of the time interval, together with
the analytically derived DHT for this case. Figure 14 shows
clearly that the DHT passes through the intersection of the
blobs.
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Fig. 11 The forward and backward blobs superimposed at
time t = 0, for the rotating Duffing problem withω = 1,
β = 0, ε = 0.1.
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Fig. 12 The forward and backwards blobs superimposed at
time t = 10, for the same case as Fig. 11.
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Fig. 13 The forward and backwards blobs superimposed at
time t = 5.05, for the same case as Fig. 11, together with
the analytical DHT for this case.
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Fig. 14 An expanded version of Fig. 13 showing the DHT
and the intersection of the blobs.
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Appendix A Derivation of the transformation
to a linear system with constant coefficients

The goal of this Appendix is to construct the coordinate
transformationA(t) of Eq. (44) from a time-dependent co-
efficient system defined byF(t) and h(t) in Eq. (42) to a

time-independent coefficient system defined byD andg(t)

in Eq. (14), so that these two linear systems have the same
hyperbolicity over a time intervalt ∈ [t0, tL].

Differentiating Eq. (44) with respect tot , substituting
Eq. (14) and comparing with Eq. (42) gives:

d
dt

y =
(
d
dt

A(t)
)
x + A(t) d

dt
x =

(
d
dt

A(t)+ A(t)F(t)
)
x + A(t)h(t)

= Dy + g(t) = DA(t)x + g(t),

from which it follows that:

d

dt
A(t) = DA(t)− A(t)F(t) , (A1a)

Ah(t) = g(t) . (A1b)

The problem therefore reduces to determiningD andA(t) for
time t ∈ [t0, tL].

At first glance it may appear that this problem is not solve-
able since Eq. (A1a) is four equations in six unknowns. How-
ever, knowledge ofD clearly requires information from the
homogeneous dynamics based onF(t). Therefore, we must
also consider the fundamental solution matrices of the two
systems:

d

dt
X(t, t0) = F(t) X(t, t0) , (A2a)

d

dt
Y(t, t0) = D Y(t, t0) , (A2b)

with initial conditionX(t0, t0) = Y(t0, t0) = I . The funda-
mental solution matrixX(t, t0) can be represented by a sin-
gular value decomposition as follows:

X(t, t0) = B(t, t0)exp(6(t, t0))R(t, t0)T , (A3)

where B(t, t0) and R(t, t0) are orthogonal matrices, i.e.
B(t, t0)B(t, t0)T = R(t, t0)R(t, t0)T = I , and6(t, t0) is a
diagonal matrix with6(t0, t0) = 0 so that exp (6(t, t0)) is a
diagonal matrix with exp (6(t0, t0)) = I .

SinceD will be chosen to be a constant matrix the funda-
mental solution matrix of Eq. (A2b) can be given analytically
by Eq. (17).

We leave the choice ofD for the moment, and derive a
relationship betweenA(t) and the fundamental solution ma-
trices. Given initial conditions related byy0 = A(t0)x0, the
solutions of the homogeneous equations satisfy:

x(t; x0, t0) = X(t, t0)x0 , (A4a)

y(t; y0, t0) = Y(t, t0)y0 , (A4b)

with

y(t; y0, t0) = A(t)x(t; x0, t0) (A5)

from the definition ofA(t). Using Eq. (A4) and the initial
condition relation leads to:

[Y(t, t0)A(t0)− A(t)X(t, t0)]x0 = 0 , (A6)

for anyx0. Hence, we have

A(t) = Y(t, t0)A(t0)X(t, t0)−1. (A7)

Equation (A7) provides a relation between the transforma-
tion A(t) and the fundamental solution matrices, provided
we specifyA(t0).

Evaluating Eq. (A7) att = tL, and rearranging terms,
gives:

X(tL, t0) = A(tL)−1Y(tL, t0)A(t0). (A8)

It is convenient to chooseA(t0) so that theX andY sys-
tems are aligned att = tL (we cannot align the systems at
t = t0 a priori, sinceX(t0, t0) = I , and this has no “natural”
alignment). This motivates choosing

A(t0) = R(tL, t0)T , (A9)

so that we have

A(tL) = B(tL, t0)T . (A10)

Then Eq. (A8) becomes:

X(tL, t0) = B(tL, t0)Y(tL, t0)R(tL, t0)T

= B(tL, t0) exp((tL − t0)D)R(tL, t0)T . (A11)

Now evaluating Eq. (A3) att = tL gives:

X(tL, t0) = B(tL, t0)exp(6(tL, t0))R(tL, t0)T , (A12)

It now follows by comparing Eq. (A11) and Eq. (A12) that:

D =
1

tL − t0
6(tL, t0). (A13)

This defines the diagonal matrixD. Furthermore, by substi-
tuting Eq. (A9), Eq. (A3), and Eq. (17) into Eq. (A7) gives
the following formula forA(t):

A(t) = exp((t − t0)D)R(tL, t0)TR(t, t0)

· exp(−6(t, t0))B(t, t0)T . (A14)

Hence, we see thatD andA(t) are completely determined by
the singular value decomposition of the fundamental solution
matrix X(t, t0).

In theory, ifX(t, t0) can be computed from Eq. (A2a), then
we can take the singular value decomposition ofX(tL, t0)
once to obtainA(t0) from Eq. (A9) andD from Eq. (A13).
The coordinate changeA(t) follows from Eq. (A7) with



260 K. Ide et al.: Distinguished hyperbolic trajectories in time-dependent fluid flows

Eq. (17). However, a naive numerical integration of
Eq. (A2a) in order to computeX(t, t0) generally leads to an
exponential blowup of the solution. In order to avoid this nu-
merical problem, we computeB(t, t0), R(t, t0) and6(t, t0)

using the algorithm presented in the following Appendix.
Hence, the algorithm for transforming the linear time-

dependent system to a linear time-independent system pro-
ceeds as follows.

Step 1. ComputeB(t, t0), R(t, t0) and6(t, t0) using the
algorithm described in Appendix B.

Step 2. ComputeD using Eq. (A13).

Step 3. ComputeA(t) using Eq. (A14).

Step 4. Computeg(t) using Eq. (A1b).

B An alternative dynamical system for X

For simplicity, we drop the arguments(t, t0) from the ma-
trices and use˙{·} for the time derivative in this Appendix.
We wish to solve Eq. (A2a) forX numerically. However, so-
lutions of this equation may experience exponential growth
and a naive implementation risks overflowing machine arith-
metic. In order to avoid this we solve Eq. (A2a) in terms of
the singular value decomposition given by Eq. (A3). Substi-
tuting these relations into Eq. (A2a) gives

Ḃ exp(6)RT + B6̇ exp(6)RT + B exp(6)ṘT

= FB exp(6). (B1)

Pre-multiplying byBT and post-multiplying byR exp(-6)
we have

BT Ḃ + 6̇ + exp(6)ṘTR exp(−6) = H, (B2)

whereH = BT FB. SinceB andR are orthogonal we may
parameterise them as

B =

(
cosθ sinθ

− sinθ cosθ

)
(B3a)

R =

(
cosφ sinφ

− sinφ cosφ

)
. (B3b)

This parameterisation leads to the system

σ̇1 = H11 (B4a)

σ̇2 = H22 (B4b)

θ̇ =
1

2
(H12 −H21)+

1

2
coth(σ2 − σ1) (B4c)

φ̇ =
1

2
cosech(σ2 − σ1), (B4d)

whereHij represents, the components ofH, andσ1 andσ2
are the diagonal elements of6.

A singularity for θ̇ and φ̇ occurs atσ1 = σ2. This is an
artifact of the coordinate transform and may be dealt with by
using the original Eq. (A2a) for a short time interval initially.
Once they grow apart to becomeσ1 6= σ2, Eq. (B4) can be
used.

C Some relations between particle trajectories,
instantaneous stagnation points, and
coordinate transformations

Consider the following time-dependent velocity field:

d

dt
x = u(x, t), x ∈ IRn. (C1)

We consider a time-dependent transformation of coordinates
of the following form:

x = b(y, t), y ∈ IRn, (C2a)

which can be nonlinear iny and/ort . We will assume that
for each fixedt , this coordinate transformation is invertible.
In particular, for eacht , and for ally, we assume that

det
(
by(y, t)

)
6= 0,

whereby ≡
∂b
∂y

∈ IRn×n denotes the Jacobian matrix ofb

with respect to the spatial coordinatey. We define the in-
verse of Eq. (C2a) as

y = a(x, t) = b−1(x, t) , (C2b)

then it follows that:

b(a(x, t), t) = x . (C2c)

A special case of Eq. (C2a) is given by the linear
time-dependent coordinate transformation in Eq. (44) with
b(y, t) = A(t)−1y, with Eq. (C2b) corresponding to
a(x, t) = A(t)x.

Now we transform Eq. (C1) into they coordinates using
Eq. (C2a). Towards this end, we have:

d

dt
x = bt (y, t)+ by(y, t)

d

dt
y = u (b(y, t), t) , (C3)

wherebt ∈ IRn denotes the partial differentiation ofb with
respect to timet , and hence the corresponding velocity field
in they coordinates is

d

dt
y =

(
by(y, t)

)−1
(u (b(y, t), t)− bt (y, t)) . (C4)

Now we can ask and answer the first question.

Question C.1 Supposex(t) is a trajectory of Eq. (C1). Is
y(t) = a(x(t), t) a trajectory of Eq. (C4)?

The answer is “yes”, as we now show. First, we need a
lemma.

Lemma C.1 at (x, t) = −
(
by(y, t)

)−1
bt (y, t)
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Proof: Nowx = b(y, t) by definition Eq. (C2a). Differ-
entiating this expression with respect tot gives Eq. (C3).
Also, y = a(x, t) by definition Eq. (C2b). Differentiating
this equation with respect tot gives:

d

dt
y = at (x, t)+ ax(x, t)

d

dt
x , (C5)

whereat ∈ IRn denotes a differentiation ofa with respect
to t andax ≡

∂a
∂x

∈ IRn×n denotes the Jacobian matrix ofa

with respect tox. Substituting Eq. (C5) into Eq. (C3) gives:

d

dt
x = bt (y, t)+ by(y, t) at (x, t) (C6)

+ by(y, t) ax(x, t)
d

dt
x . (C7)

Finally, b(a(x, t), t) = x by Eq. (C2c). Differentiating this
expression with respect tox and using the chain rule gives:

by(y, t) ax(x, t) = Id , (C8)

whereId denotes the identity matrix. Substituting Eq. (C8)
into Eq. (C7) gives the result after cancelling thed

dt
x terms

on both sides.
Now we return to our original Question C.1. Supposex(t)

is a trajectory of Eq. (C1). To prove thaty(t) = a(x(t), t)

is a trajectory of Eq. (C4), it suffices to show that Eq. (C5)
represents the same velocity field as Eq. (C4). Rewriting
Eq. (C5) using the fact thatx(t) is the trajectory of Eq. (C1)
leads to:

d

dt
y = at (x, t)+ ax(x, t)u(b(y, t), t) . (C9)

If we apply Lemma C.1, along withax(x, t) = by(y, t)
−1

from Eq. (C8), Eq. (C9) becomes Eq. (C4). Soy(t) =

a(x(t), t) is a trajectory of Eq. (C4) whenx(t) is a trajec-
tory of Eq. (C1).

Next we consider the question concerning the behaviour
of ISPs under time-dependent coordinate transformations.

Question C.2 Supposexsp(t) is a curve of ISPs of
Eq. (C1). Is y(t) = a(xsp(t), t) a curve of ISPs of
Eq. (C4)?

Substitutingy(t) = a(xsp(t), t) into Eq. (C4) gives:

d

dt
y

∣∣∣∣
y=a(xsp(t),t)

=

− by(a(xsp(t), t))
−1bt (a(xsp(t), t), t). (C10)

In order for the right-hand side to be zero,bt (a(xsp(t), t), t)

must be zero. Therefore, we conclude that ISPs are not pre-
served under time-dependent coordinate transformation in
general. However, note that if the coordinate transforma-
tion is independent of time, ISPs are preserved under time-
independent coordinate transformations.

Finally, we consider the question of the behaviour of
DHTs under time-dependent coordinate transformations.

Question C.3 Supposexdht(t) is a DHT of Eq. (C1). Is
y(t) = a(xdht(t), t) a DHT of Eq. (C4)?

By knowing thaty(t) = a(xdht(t), t) is a trajectory from
Question C.1, we now show that suchy(t) indeed satis-
fies the definition of a DHT. To do so, we have to consider
Eq. (C1) linearized aboutxdht(t) and Eq. (C4) linearized
abouty = a(xdht(t), t). These equations are given by:

d

dt
ξ =

∂u

∂x
(xdht(t), t)ξ , (C11)

and

d

dt
η =

∂

∂y

((
by(y, t)

)−1
(u (b(y, t), t)

−bt (y, t)))

∣∣∣∣
y=a(xdht(t),t)

η, (C12)

respectively. LetX(t, t0) denote the fundamental solution
matrix of Eq. (C11) andY(t, t0) denotes the fundamental so-
lution matrix of Eq. (C12).

First we must derive a relationship between the fundamen-
tal solution matrices of these two linear systems. We evalu-
ate (C2a) on trajectoriesx(t; t0, x0), y(t; t0, y0), and then
differentiate with respect toy0 to obtain:

∂x

∂y0
=
∂x

∂x0

∂x0

∂y0
=

∂

∂y0
b(y, t) = by(y, t)

∂y

∂y0
, (C13)

where we leave out the arguments of the trajectories for no-
tational simplicity. Now, using (C2a) and evaluating the ar-
guments of the trajectories att = t0 gives:

∂x0

∂y0
= by0(y0, t0). (C14)

Now for x(t; t0, x0) a trajectory of (C1) andy(t; t0, y0) a
trajectory of (C4), ∂x

∂x0
(t; t0, x0) = X(t, t0) is the fundamen-

tal solution matrix of (C11) and∂y
∂y0
(t; t0, y0) = Y(t, t0) is

the fundamental solution matrix of (C12). Combining these
relations with (C14), (C13) becomes:

X(t, t0)by0(y0, t0) = by(y, t)Y(t, t0), (C15)

and from this equation we easily obtain the following rela-
tions:

Y(t, t0) =
(
by(y, t)

)−1 X(t, t0)by0(y0, t0),

Y−1(t, t0) =
(
by0(y0, t0)

)−1 X−1(t, t0)by(y, t). (C16)

First we describe the general idea why this result should
be true; then we provide the rigorous argument. We know
thatX(t, t0) has an exponential dichotomy sincexdht(t) is a
DHT. Therefore, since Eq. (C15) is an equality,Y(t, t0)must
have an exponential dichotomy sinceby (y, t) is bounded in
y and exhibits no exponential growth or decay int . There-
fore,y = a(xdht(t), t) is hyperbolic.

We can make this argument rigorous as follows. Ifxdht(t)

is hyperbolic, then Eq. (C11) has an exponential dichotomy,
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i.e. there exists a projection operatorP (i.e. P2
= P), and

positive constantsKX, LX, αX andβX such that:∣∣X(t, t0)PX−1(s, t0)
∣∣ ≤ KXe

−αX(t−s),

for t ≥ s, (C17a)∣∣X(t, t0)(Id − P)X−1(s, t0)
∣∣ ≤ LXe

−βX(s−t),

for s ≥ t. (C17b)

Now we argue that Eq. (C12) also has an exponential di-
chotomy by showing that there exists a projection operatorP̂
(i.e. P̂2

= P̂) and positive constantsKY ,LY , αY andβY such
that:

∣∣Y(t, t0)P̂Y−1(s, t0)
∣∣ ≤ KY e

−αY (t−s),

for t ≥ s, (C18a)∣∣Y(t, t0)(Id − P̂)Y−1(s, t0)
∣∣ ≤ LY e

−βY (s−t),

for s ≥ t. (C18b)

We define the projection operator in they coordinates as:

P̂ ≡
(
by0(y0, t0)

)−1 Pby0(y0, t0), (C19)

and a simple calculation shows thatP̂2
= P̂.

Next we make an important assumption of the growth of
the spatial derivative of the coordinate transformation with
respect to time.

Assumption C.1 We assume that for ally, by(y, t) and(
by(y, t)

)−1
satisfy the following bounds:∣∣ (by(y, t)

)−1 X(t, t0)PX−1(s, t0)by(y, s)
∣∣

≤ KY e
−αY (t−s), for t ≥ s, (C20)∣∣ (by (y, t)

)−1 X(t, t0)(Id − P)X−1(s, t0) by (y, s)
∣∣

≤ LY e
−βY (s−t), for s ≥ t, (C21)

whereKY , LY , αY , andβY are positive constants.

Substituting Eq. (C16) and Eq. (C19) into Eq. (C18a), and
using Eq. (C20), gives rise to the following estimate:∣∣Y(t, t0)P̂Y−1(s, t0)

∣∣
≤

∣∣ (by(y, t)
)−1 X(t, t0)PX−1(s, t0)by(y, s)

∣∣
≤ KY e

−αY (t−s), for t ≥ s. (C22)

The second condition follows similarly. Substituting
Eq. (C16) and Eq. (C19) into Eq. (C18b), and using
Eq. (C21)∣∣Y(t, t0)(Id − P̂)Y−1(s, t0)

∣∣
≤

∣∣ (by (y, t)
)−1 X(t, t0)(Id − P)X−1(s, t0) by (y, s)

∣∣
≤ LY e

−βY (s−t), for s ≥ t. (C23)

For the case of the time-dependent linear coordinate
change discussed in Appendix A, we have

by(y, t)
−1

= A(t), by(y, s) = A(s)−1.

By construction, the determinant ofA(t) > 0 is bounded
over the time intervalt ∈ [t0, tL] of the coordinate change.
Therefore, if we define

detAmax = max {detA(t)} > 0,

detAmin = min {detA(t)}) > 0,

over t ∈ [t0, tL], then a postive constantK ′ can be chosen
such that

K ′ >
detAmax

detAmin
. (C24)

Acknowledgement.We would like to thank the referees for the in-
terest they have taken in this work and the care they have taken in
reading the manuscript.

We would also like to acknowledge discussions with Francois
Lekien in the early stages of this work.

The work of Kayo Ide was supported by ONR Grant No. N00014-
99-1-0020. The work of Des Small and Stephen Wiggins was sup-
ported by ONR Grant No. N00014-01-1-0769.

References

Aref, H. and El Naschie, M. S.: (Eds) Chaos Applied to Fluid Mix-
ing, Chaos, Solitons, and Fractals, 4, 6, 1–380 1994.

Babiano, A., Provenzale, A., and Vulpiani, A.: (Eds), Chaotic Ad-
vection, Tracer Dynamics, and Turbulent Dispersion. Proceed-
ings of the NATO Advanced Research Workshop and EGS Topi-
cal Workshop on Chaotic Advection, Conference Centre Sereno
di Gavo, Italy, 24–28 May 1993. Physica D76, 1–329, 1994.

Coppel, W. A.: Dichotomies in Stability Theory, Springer Lecture
Notes in Mathematics, 629, Springer-Verlag, New York, Heidel-
berg, Berlin, 1978.

Coulliette, C. and Wiggins, S.: Intergyre Transport in a Wind-
Driven, Quasigeostrophic Double Gyre: An Application of Lobe
Dynamics, Non. Proc. Geophys., 7, 59–85, 2000.

del-Castillo-Negrete, D. and Morrison, P. J.: Chaotic transport of
Rossby waves in shear flow, Phys. Fluids A, 5(4), 948–965, 1993.

Dijkstra, H. A. and Katsman, C. A.: Temporal variability of the
wind-driven quasi-geostrophic double gyre ocean circulation:
basic bifurcation diagram, Geophys. Astrophys. Fluid Dynam-
ics, 85, 195–232, 1997.

Duan, J. and Wiggins, S.: Fluid exchange across a meandering jet
with quasiperiodic variability, J. Phys. Oceanogr., 26, 7, 1176–
1188, 1996.

Duan, J. and Wiggins, S.: Lagrangian transport and chaos in the
near wake of the flow around an obstacle: a numerical imple-
mentation of lobe dynamics, Non. Proc. Geophys., 4, 125–136,
1997.

Haller, G.: Lagrangian structures and the rate of strain in a partition
of two-dimensional turbulence, Physics of Fluids A, accepted,
2001.

Haller, G. and Poje, A.: Finite time transport in aperiodic flows,
Physica D, 119, 3/4, 352–380, 1998.

Henry, D.: Geometric theory of semilinear parabolic equations,
Lecture Notes in Mathematics, 840, Springer-Verlag, New York,
Heidelberg, Berlin, 1981.



K. Ide et al.: Distinguished hyperbolic trajectories in time-dependent fluid flows 263

Ju, N., Small, D., and Wiggins, S.: Existence and computation
of hyperbolic trajectories of aperiodically time dependent vec-
tor fields and their approximations, Int. J. Bifurcation and Chaos,
accepted, 2002.

Lozier, M. and Riser, S.: Potential vorticity sources and sinks in a
quasi-geostrophic ocean: beyond western boundary currents, J.
Phys Oceanogr., 20, 1608–1627, 1989.

Malhotra, N. and Wiggins, S.: Geometric Structures, Lobe Dynam-
ics, and Lagrangian Transport in Flows with Aperiodic Time De-
pendence, with Applications to Rossby Wave Flow, J. Nonlinear
Sci., 8, 401–456, 1998.
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