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Abstract. The singular value decomposition (SVD) analy-
sis is used at different stages in this paper in order to extract
useful information concerning the underlying dynamics of
the magnetospheric AE index. As a frame of reference we
use the dynamics of the Lorenz system perturbed by exter-
nal noise, white or colored. One of the critical results is that
the colored noise can be differentiated from the white noise
when we study their perturbation upon the eigenvalue spec-
trum of the trajectory matrix, the SVD reconstructed com-
ponents of the original time series and other characteristics.
This result is used in order to conclude the existence of strong
component of colored noise included in the magnetospheric
AE index time series. Moreover, the study of the SVD recon-
structed components of the original time series can confirm
the low-dimensionality of a dynamical system strongly per-
turbed by external colored noise. Finally, the results of this
study strengthen the hypothesis of the magnetospheric chaos.

1 Introduction

The generalized theory known as singular system analysis or
singular value decomposition (SVD) analysis constitutes a
significant tool for the discrimination of different dynamical
components included in an experimental time series. SVD
analysis was recently developed by Broomhead and King
(1986) in relation with chaotic time series analysis as a frame-
work which allows one to address the problems associated
with the noisy, finite precision sampled data produced by
measuring experimental phenomenon. Broomhead and King
(1986) used the SVD analysis in order to exclude the noisy
component associated with small or vanishing singular val-
ues (σi) corresponding to the principal axes in the embedding
space.

Additionally, in this paper we use SVD analysis in order
to exclude “noisy” components associated with large singular
values, especially theσ1 singular value corresponding to the
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first principal axis and thec1 eigenvector of the SVD analy-
sis, according to the orderingσ1 ≥ σ2 ≥ . . . ≥ σn ≥ 0 (see
the next section). In this direction it has been proved that the
SVD analysis strongly supports the low-dimensional charac-
ter of the internal magnetospheric dynamics as it is revealed
in the AE index time series. Ten years ago we used the con-
cept of strange attractor dynamics as an explicative paradigm
of the magnetospheric substorms (see Pavlos, 1988). Ac-
cording to this concept it is implied that the magnetospheric
substorms can be explained as the effect of nonlinear dynam-
ics of the magnetospheric physical state on a strange attract-
ing subset of the phase-space corresponding to the magne-
tospheric dynamics. Baker et al. (1990) have studied the
solar-wind magnetosphere coupling problem using a nonlin-
ear dripping faucet analogy of the system. This approach
was motivated by using the laboratory study of the dripping
faucet (Shaw, 1984) and also by using the dripping faucet
description of plasmoid formation and release discussed by
Hones (1979). Baker’s model of the magnetospheric dy-
namics is a mechanical analog. Klimas et al. (1991, 1992)
developed the Faraday loop response model. Pavlos et al.
(1994) extended the linear magnetospheric equivalent elec-
tric circuit of Liu et al. (1988) to a nonlinear one. The
above nonlinear modeling of the magnetospheric dynamics
has given strong results supporting the concept of magne-
tospheric chaos which has also been indicated by chaotic
analysis of experimental time series (Vassiliadis et al., 1990;
Shan et al., 1991; Roberts et al., 1991; Prichard and Price,
1992; Pavlos et al., 1992a, b; Vassiliadis et al., 1992; Sharma
et al., 1993; Takalo and Timonen, 1994).

Parallel to these studies a fruitful criticism has been devel-
oped about the hypothesis of the magnetospheric chaos espe-
cially in relation to its experimental evidence. Prichard and
Price (1992, 1993) showed that many of the previous results
supporting experimentally the concept of low-dimensional
magnetospheric dynamics were caused by the long decorre-
lation time of the AE index and therefore were not the re-
sult of low-dimensional dynamics. Osborne and Provenzale
(1989), Provenzale et al. (1992), Theiler (1991), Pavlos et al.
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(1992a, b) used many tests in order to exclude the pseudo-
chaos of colored noises. The term pseudo-chaos was intro-
duced by Pavlos et al. (1992a, b) to discriminate the real low-
dimensional chaotic dynamics contained in aperiodic time
series from the stochastic high dimensional time series (non-
chaotic and aperiodic time series) which can mimic almost
indistinguishably the phenomenology of chaotic time series.
Moreover, Vassiliadis et al. (1992) used the Theiler’s test in
the case of magnetospheric data and showed that, when the
parameterw of Theiler becomes comparable to the decorre-
lation time of the magnetospheric signal, the scaling in the
correlation integral disappears and there is no convergence
of its slopes. Pavlos et al. (1994) extended the chaotic anal-
ysis to the AE index by using SVD analysis according to
Broomhead and King (1986). Sharma et al. (1993) had also
used SVD analysis for the estimation of the eigenvalue spec-
trum of the AE index. The combination of SVD analysis
and the Theiler’s test in the work of Pavlos et al. (1994) has
given strong evidence for the existence of magnetospheric
chaos especially when the Theiler’s parameterw is equal to
the decorrelation time. Prichard (1995), in a short comment,
strongly criticizes the results presented in the work of Pavlos
et al. (1994). In this criticism he uses the method of surrogate
data and the method of Takens (1985) for the estimation of
correlation dimension. The conclusion by Prichard was that
there is no evidence that the AE index can be described by
a low-dimensional strange attractor. An extended review of
studies of nonlinear dynamics of the magnetosphere is given
by Klimas et al. (1996). In two previous studies (Pavlos et
al., 1999a, b) we have ascertained that the detailed statistical
comparison of geometrical and dynamical magnitudes corre-
sponding to the AE index time series and its nonlinear surro-
gate data (Theiler et al., 1992a,b) can reveal significant dis-
crimination between the AE index and the non-linear noises
(nonlinear surrogate data). These results strongly indicate
the non-linearity and low-dimensionality of the AE index.
Furthermore, the comparison of the magnetospheric dynam-
ics with known stochastic and input-output dynamics which
can mimic the magnetosperic system (Pavlos et al., 1999c)
has shown that the low-dimensional chaotic dynamics is the
most appropriate concept for modeling the magnetospheric
system. In the last paper, it was also shown that the study of
the SVD reconstructed components of the AE index can indi-
cate the existence of an external high dimensional dynamical
component.

In this paper we extend the previous results and we com-
pare the SVD spectrum of the reconstructed components of
the AE index time series with the SVD reconstructed com-
ponents of the Lorenz system. In Section 2 we summarize
the theory of SVD analysis concerning the SVD components
of the original time series. In Section 3 we present the re-
sults of the SVD analysis applied to the magnetospheric AE
index time series. In Section 4 we present results of the SVD
analysis applied to the Lorenz system perturbed by external
noise. In the same section we compare the results of the SVD
analysis applied to both cases, the Lorenz and the magneto-
spheric systems and we extract significant conclusions. In

Section 5 we study the two-dimensional phase portraits of
the SVD reconstructed components of the AE index and the
Lorenz system perturbed by external noise. In Section 6 we
compare the cross correlation and the standard deviation of
the original signals and their SVD reconstructed components
in the case of the AE index and the Lorenz system which
is also perturbed by external noise. Finally, in Section 7,
we summarize the new results of this study especially with
the hypothesis of magnetospheric chaos and we raise critical
questions for future study.

2 Theoretical framework

In this section we summarize some theoretical concepts con-
cerning the embedding theory, the method of surrogate data
and the SVD analysis which constitute the main tools of our
analysis.

2.1 Embedding theory and phase-space reconstruction

The earth’s magnetosphere is a system of magnetized plasma,
which microscopically is an infinite dimensional system, the
dynamics of which is mirrored in the ground measured AE
index. Some kind of “self-organization” may give rise to
the system evolution on a low-dimensional manifoldM of
dimensiond. This means that the magnetosphere can be
described macroscopically by a low-dimensional dynamical
system ofn macroscopic degrees of freedom withn ≥ d.
For linear systems, “self-organization” is more an externally
driven process described by the external parameters of the
system. For nonlinear and dissipative systems, however, it is
possible that the system evolves by its internal dynamics in
such a way that the corresponding phase space flow contracts
on sets of lower dimensions which are called attractors.

The embedding theory permits one to study the dynami-
cal characteristics of a physical system by using experimen-
tal observations in the form of time series (Takens, 1981;
Broomhead and King, 1986). Letx(t) = f (t)(x(0)) de-
note the dynamical flow underlying an experimental time
seriesx(ti) = h(x(ti)) where h describes the measure-
ment function. When there is a noisy componentw(ti)

then the observed time series must be given byx(ti) =

h(x(ti), w(ti)). On the other hand, Takens (1981) showed
that for autonomous and purely deterministic systems the de-
lay reconstruction map8, which maps the statesx into m-
dimensional delay vectors

8(x)=[h(x), h(f τ(x)), h(f 2τ(x)),. . ., h(f (m−1)τ(x))] (1)

is an embedding whenm ≥ 2n+1, wheren is the dimension
of the manifoldM of the phase space in which evolves the
dynamics of the system. This means that interested geomet-
rical and dynamical characteristics of the underlying dynam-
ics in the original phase space are preserved invariable in the
reconstructed space as well.

Let Xr = 8(l)(X) be the reconstructed phase space and
xr(ti) = 8(x(ti)) the reconstructed trajectory for the em-
bedding8. Then the dynamics evolved in the original phase
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space is topologically equivalent to its mirror dynamical flow
in the reconstructed phase space according to

f t
r (xr) = 8(x) ◦ f t (x) ◦ 8−1(xr) (2)

of the reconstructed phase spaceXr . In other words, the em-
bedding8 is a diffeomorphism which takes the orbitsf t (x)

of the original phase space to the orbitsf t
r (xr) in the re-

constructed phase in such a way of preserving their orien-
tation and other topological characteristics as eigenvalues,
Lyapunov exponents, or dimensions of the attractors. Ac-
cording to the above theory, in the reconstructed phase space
we can estimate geometrical characteristics as dimensions,
which correspond to the degrees of freedom of the under-
lying dynamics of the experimental time series, as well as
dynamical characteristics as Lyapunov exponent, mutual in-
formation and predictors (Pavlos et al., 1999a,b). Moreover,
is shown elsewhere that the method of reconstructed phase
space conserve its significance even when the observed sig-
nal is derived by a stochastic process. (Argyris et al., 1998;
Pavlos et al., 1999c).

2.2 Correlation dimension

The theoretical concepts described above permit us to use
experimental time series in order to extract useful geomet-
ric characteristics, which provide information about the un-
derlying dynamics. Such a characteristic is the correlation
dimensionD defined as

D = lim
r→0

d[ln C(r)]

d[ln r]
(3)

whereC(r) is the so-called correlation integral for a radius
r in the reconstructed phase space. When an attracting set
exists thenC(r) reveals a scaling profile

C(r) ∼ rd for r → 0. (4)

The correlation integral depends on the embedding dimen-
sionm of the reconstructed phase space and is given by the
following relation

C(r, m) =
2

N(N − 1)

N∑
i=1

N∑
j=i+1

2(r − ‖x(i) − x(j)‖, (5)

where2(a) = 1 if a > 0 and2(a) = 0 if a ≤ 1, and
N is the length of the time series. The scaling exponent
d(m) increases as we increase the embedding dimensionm.
When the time series is related to a low-dimensional dynam-
ical system, thend(m) saturates at a final valueD for a suf-
ficiently large embedding dimensionm0. Theoretically, the
valuem0 is the smallest integer larger thanD according to
Ding et al., (1993), but in practice,m0 may attain larger val-
ues (Kugiumtzis, 1996). That is, an efficient embedding may
require a largerm than the smallest integer larger thanD.

For periodic attractors the correlation dimensionD be-
comes equal to the topological dimensiond of the manifold
M , which includes the attractor. Usually for a strange attrac-
tor, D obtains a fractal value.

When the slopesd(m) of the correlation integrals reveal
plateaus at low values ofr and the plateau converges for in-
creasingm, then this is strong evidence for low-dimensional-
ity of the underlying dynamics to the observed signal. The
stochastic component behaving as noise in the experimental
time series, destroy the plateau and saturation profile at low
values of the radiusr and makes the derivation of reliable
dimension estimates difficult (Pavlos et al., 1999c).

2.3 The method of surrogate data

According to the relation (3) the scaling propertiesC(r) ∼

rd of the correlation integral asr → 0 and the saturation of
the scaling exponent,d(m) → D, asm increases are neces-
sary conditions for the existence of low-dimensional dynam-
ics underlying to the experimental time series. However, it
has been shown that these conditions are not efficient in order
to conclude low-dimensional dynamics from an experimen-
tal time series with broadband power spectrum, as they can
be reached also by stochastic systems (Osborne and Proven-
zale, 1989; Provenzale et al., 1991). Moreover, according
to Theiler (1991), the concept of low correlation dimension
(fractal or integer) can be applied to time series in two dis-
tinct ways. The first one indicates the number of degrees of
freedom in the underlying dynamics and the second quanti-
fies the self-affinity or “crinkliness” of the trajectory through
the phase space. In the first case, the scaling and saturation
profile are caused by the recurrent character of the recon-
structed trajectory, i.e. by uncorrelated in “time” and cor-
related in “space” state points. In the second case, they are
caused by time correlated state points that are uncorrelated
in space. In order to discriminate between the two cases,
known as dynamic and geometric low-dimensionality, we re-
strict the sum in (5) to pairs(x(i), x(j)) with |i−j | > w, for
the Theiler’s parameterw larger than the decorrelation time
of the time series.

When low-dimensionality is persistent as a dynamic char-
acteristic after the application of Theiler’s criterion, then we
have to decide first between linearity and nonlinearity and
then between chaoticity and pure stochasticity. By the term
chaoticity we mean the case that the deterministic compo-
nent of the process is prevalent and reveals low-dimensional
chaos. For a stochastic process, the deterministic compo-
nent may correspond to low-dimensional, even nonlinear and
chaotic dynamics, but its effect can hardly be observed as the
process is driven mainly by noise. Therefore, we focus here
on the solution to the first problem, i.e. determining whether
the AE index time series is linear or nonlinear. This is done
by following the method of “surrogate” data (Theiler et al.,
1992a, 1992b).

The method of “surrogate” data includes the generation of
an ensemble of data sets which are consistent to a null hy-
pothesis. According to Theiler (1992a), the first type of null
hypothesis is the linearly correlated noise which mimics the
original time series in terms of autocorrelation function, vari-
ance and mean. The second and more general null hypoth-
esis takes into account that the observed time series may be
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a nonlinear monotonic static distortion of a stochastic linear
signal.

Every Gaussian process is linear while a non-Gaussian
process can be linear or nonlinear. An experimental time se-
ries may show nonlinearity in terms of a non-Gaussian point
distribution, which may be due to a nonlinear measurements
function of a linear underlying dynamics. In this case, the
generated “nonlinear” surrogate data mimic the original time
seriesx(i) in terms of autocorrelation function and propabil-
ity density functionp(x). It is always possible for a nonperi-
odic time series of finite length to be a particular realization
of a noise process or of a low-dimensional deterministic pro-
cess. Therefore, it is a statistical problem to distinguish a
nonlinear deterministic process from a linear stochastic pro-
cess. For this purpose we use as a discriminating statistic
a quantityQ derived by a method sensitive to nonlinearity,
as the correlation dimension estimation. The discriminating
statisticQ is calculated for the original and the surrogate data
and the null hypothesis is verified or rejected according to the
value of “sigmas”S

S ≡
|µobs− µsur|

σsur
(6)

whereµsur andσsur is the mean and standard deviation of
Q on the surrogate data andµobs is the mean ofQ on the
original data. For a single time series,µobs is the singleQ
value (Theiler et al., 1992a).

The significance of the statistics is a dimensionless quan-
tity, but we follow here the common parlance and we report
it in terms of the units ofS “sigmas”. WhenS takes values
higher than 2− 3 then the probability that the observed time
series does not belong to the same family with its surrogate
data is higher than 0.95− 0.99, correspondingly.

For testing the second more general null hypothesis de-
scribed above we can follow the algorithm of Theiler
(Theiler, 1992a), as well as the algorithm of Schreiber and
Schmitz (Schreiber and Schmitz, 1996). Both algorithms
create stochastic signals which have the same autocorrelation
and amplitude distribution as the original time series.

According to the first algorithm, a white Gaussian noise is
reordered to match the rank of the original time series (this is
to make the original time series Gaussian). Then the phases
of this signal are randomized (to destroy any possible non-
linear structure). Finally, the original signal is reordered to
match the rank of the above constructed coloured noise (to
regain the original amplitude distribution). The derived shuf-
fled time series is the surrogate time series.

The algorithm of Theiler was improved by Schreiber and
Schmitz by a simple iteration scheme in order to strengthen
the ability of the surrogate data to fit more exactly the auto-
correlation and power spectrum of the original time series.
Starting with a white noise signal, its Fourier amplitudes
are replaced by the corresponding amplitudes of the origi-
nal data. The rank order of the derived stochastic signal is
used to reorder the original time series. By this reordering,
the matching of amplitude distribution is succeeded, but the

matching of power spectrum achieved in the first step is al-
tered. Therefore, the two step process is repeated several
times until the change in the matching of power spectrum is
sufficiently small. In this paper we follow the algorithm of
Schreiber and Schmitz as it is more efficient to produce sur-
rogate data which mimics the original data. For a comparison
of the two algorithms see Pavlos et al. (1999a).

2.4 Singular value analysis (SVD) and SVD reconstructed
components of the original time series

Singular value analysis has been proved to be a strong and ef-
fective method for modern time series analysis. It was used
by Broomhead and King (1986) for first time and comes from
the generalized theory of information. In this study we use
the above analysis in two cases: (i) as a time series filter and
(ii) to decompose a time series in its SVD reconstructed com-
ponents which can be used for the detection of the underlying
dynamics. Singular value analysis is applied to the trajectory
matrix which is constructed by an experimental time series
as follows:

X =


x(t1), x(t1 + τ ), . . . , x(t1 + (n − 1)τ )

x(t2), x(t2 + τ ), . . . , x(t2 + (n − 1)τ )

. . .

x(tN ), x(tN + τ ), . . . , x(tN + (n − 1)τ )



=


xT

1
xT

2
. . .

xT
N

 (7)

wherex(ti) is the observed time series andτ is the delay
time for the phase space reconstruction. The rows of the
trajectory matrix constitute the state vectorsxT

i on the re-
constructed trajectory in the embedding space Rn. As we
have constructedN state vectors in embedding space Rn the
problem is how to use them in order to find a set of linearly
independent vectors in Rn which can describe efficiently the
attracting manifold within the phase space according to the
theoretical concepts of paragraph 2.1. These vectors consti-
tute part of a complete orthonormal basis{ei, i = 1, 2, ..n}

in Rn and can be constructed as a linear combination of vec-
tors on the reconstructed trajectory in Rn by using the rela-
tion

sT
i X = σic

T
i . (8)

According to singular value decomposition (SVD) theorem
it can be proved that the vectorssi andci are eigenvectors of
the structure matrixXXT and the covariance matrixXT X of
the trajectory according to the relations

XXT si = σ 2
i si , XT Xci = σ 2

i ci (9)

(Brogan, 1982). The vectorssi , ci are the singular vectors of
X andσi are its singular values, while the SVD analysis ofX
can be written as

X = S6CT (10)
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whereS = [s1, s2, . . . , sn], C = [c1, c2, . . . , cn] andS =

diag[σ1, σ2, . . . , σn]. The orderingσ1 ≥ σ2 ≥ . . . ≥ σn ≥ 0
is assumed. Moreover according to the SVD theorem the
non-zero eigenvalues of the structure matrix are equal to non-
zero eigenvalues of the covariance matrix. This means that
if n′ (wheren′

≤ n) is the number of the non-zero eigen-
values, then rankXXT

= rank XT X = n′. It is obvious
that then′-dimensional subspace of RN spanned by{si, i =

1, 2, . . . , n′
} is mirrored to the basis vectorci which can be

found as the linear combination of the delay vectors by us-
ing the eigenvectorssi according to (8). The complemen-
tary subspace spanned by the set{si, i = n′

+ 1, . . . , N} is
mirrored to the origin of the embedding space Rn according
to the same relation (8). That is, according to SVD analy-
sis, the number of the independent eigenvectorsci that are
efficient for the description of the underlying dynamics is
equal to the numbern′ of the non-zero eigenvaluesσi of
the trajectory matrix. The same numbern′ corresponds to
the dimensionality of the subspace containing the attracting
manifold. The trajectory can be described in the new basis
{ci, i = 1, 2, . . . , n} by the trajectory matrix projected on
the basis{ci} given by the productXC of the old trajectory
matrix and the matrixC of the eigenvectors{ci}. The new
trajectory matrixXC is described by the relation

(XC)T (XC) = 62 . (11)

This relation corresponds to the diagonalization of the new
covariance matrix so that in the basis{ci} the components of
the trajectory are uncorrelated. Also, from the same relation
(11) we conclude that each eigenvalueσ 2

i is the mean square
projection of the trajectory on the correspondingci , so that
the spectrum{σ 2

i } includes information about the extending
of the trajectory in the directionsci as it evolves in the recon-
structed phase space. The explored phase space by the tra-
jectory corresponds on the average to ann-dimensional ellip-
soid for which{ci} gives the directions and{σi} the lengths of
its principal evolves in the subspace spanned by eigenvectors
{ci} corresponding to non-zero eigenvalues. However, when
the system is perturbed by external noise or deterministic ex-
ternal input, then the trajectory begins to be diffused also in
directions corresponding to zero eigenvalues where the ex-
ternal perturbation dominates. As we show in the following,
the replacement of the old trajectory matrixX with the new
XC works as a linear low pass filter for the entire trajectory.
Moreover, the SVD analysis permits one to reconstruct the
original trajectory matrix by using theXC matrix as follows

X =

n∑
i=1

(Xci)c
T
i . (12)

The part of the trajectory matrix which contains all the in-
formation about the deterministic trajectory as it can be ex-
tracted by observations corresponds to the reduced matrix

Xd =

n′∑
i=1

(Xci)c
T
i (13)

which is obtained by summing only for the eigenvectorsci

with non-zero eigenvalues. From the relation (12) we can
reconstruct the original time seriesx(t) by usingn new time
seriesV (ti) according to relation

x(t) =

n∑
i=1

Vi(t) (14)

where everyVi(t) is given by the first column of the matrix
(Xci)c

T
i . The Vi(t) time series are known as SVD recon-

structed components (Elsner and Tsonis, 1996). This is a
kind of n-dimensional spectral analysis of a time series.

The new time seriesVi(t) constitutes the reconstructed
time series components of the SVD spectrum, correspond-
ing to the spectrum of the singular vectorsci . The depen-
dence of SVD analysis upon the existence of external noise
is described by Broomhead and King (1986) for white noise
and by Elsner and Tsonis (1996) for colored noise. In the
case of white noise the singular values{σ̄i} of X are shifted
uniformly according to the relation

σ 2
i = σ̄ 2

i + 〈ξ2
〉 (15)

whereσ̄i are the eigenvalues of the unperturbed signal and
〈ξ2

〉 is the perturbation of the covariance matrixXT X. Re-
lation (15) indicates that in a simple case of white noise the
existence of a non-zero constant background or noise floor in
the spectrum{σi} can be used to distinguish the determinis-
tic component. In this way we can obtain the deterministic
component of the observed time series

Xd =

∑
σi>noise

(Xci)c
T
i (16)

whereσi corresponds to singular values above the noise back-
ground. Also the above relation (15) shows that in the case of
white noise the perturbation of the singular valuesσi is inde-
pendent of them. In contrast, as we show in the following, in
the case of colored noise the perturbation of the singular val-
ues is much stronger for the first singular value{σ1} than the
others. This result could be expected as the colored noise in-
cludes finite dimensional determinism while the white noise
is an infinite dimensional signal. The above difference be-
tween white and colored noise is significant because it makes
the SVD analysis efficient to discriminate between different
dynamical components of the original signal.

3 SVD analysis of the AE index

In this section we present the results of SVD analysis ap-
plied to the AE index in two different levels. First we use
the SVD method as a filter of noise. In this case we estimate
the correlation dimension of the AE index by transforming
the original trajectory matrix. At this level we apply the
method of surrogate data in order to decide between static
and dynamic nonlinearity. In a second level we estimate the
correlation dimensions and the singular values spectra of the
SVD reconstructed components of the original time series.
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This permits one to distinguish between a high dimensional
component and a low-dimensional component in the original
time series of the AE index. The results of this study are used
for a deeper understanding of the underlying AE time series
dynamical process.

3.1 SVD filtering of the AE index time series and estima-
tion of correlation dimension

The AE index describes the Auroral-zone magnetic activity
which is related with the global magnetospheric dynamics
through a complex system of currents. The magnetospheric
dynamics during substorms is manifested as strong variabil-
ity of the magnetospheric and ionospheric electric currents,
especially the auroral electrojets (McPherron, 1995). Distur-
bances in the Earth’s magnetic field produced by currents in
the magnetosphere and ionosphere are commonly described
by a number of magnetic activity indices, which are derived
from certain physical parameters connected to the dominant
phenomena causing the disturbance. The indices AU, AL,
and AE give a measure of the strength of the auroral elec-
trojets and are defined with the use of traces of the hori-
zontal component (H) of the geomagnetic field measured by
a world-wide chain of auroral-zone magnetic observatories
(Davis and Sugiura, 1966). AU is the maximum positive
disturbance (upper envelope) recorded by any station in the
chain. AL is the minimum disturbance defined by the lower
envelope of the traces of the chain. AE is defined by the sep-
aration of the envelopes (AE = AU–AL) in order to obtain a
better measure of the strength of the auroral electrojets.

Fig. 1a shows measurements of AE index which corre-
spond to the second half of the year 1978. The sampling rate
of the original signal was one minute while the time series
used in this paper containsNT = 32768 data points that are
the eight minute averages of the entire time series, rounded
to the nearest power of two. That is, the original time series
containsN ∼= 250.000 data points. This time series has a
much longer length than the time series used in our previous
work (Pavlos et al., 1992b; 1994) as well as in the works of
other scientists. The stationarity of the time series is tested by
estimating the amplitude distribution for the first half of the
data set and for the second half of it (see Fig. 1b). The ampli-
tude distributions are the normalized ones as we subtract the
mean and we have divided by the standard deviation. From
the same figure it is obvious that the AE index time series
reveals non-Gaussian amplitude distribution.

The random character of the AE time series is revealed by
the decaying shape of the autocorrelation function (Fig. 1c)
showing an abrupt decay during the first 100–200 minutes
and a slow long decay afterwards. This profile of the auto-
correlation function could be caused by two different mech-
anisms: a dynamical one, which corresponds to the abrupt
decay, and a stochastic one (coloured noise), which is re-
sponsible for the slow decay. The two discontinuous lines
in Fig. 1c reveal the two different mechanisms. Of course
the abrupt decay cannot be explained solely as a chaotic be-
haviour as it is possible to be caused by a static nonlinear
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Fig. 1. (a)AE index measurements with eight minute time resolu-
tion corresponding to the second half of the year 1978. The burst-
ing character of the AE index is obvious and indicates the strong
coupling of the magnetosphere with the solar wind.(b) Amplitude
distribution for the first and second half of the AE index time series.
It is apparent the stationarity of AE index.(c) The autocorrelation
coefficient for the first 2000 units of lag time indicates two different
processes. The first corresponds to an abrupt decay of the autocor-
relation coefficient and the second to a slow decay.

distortion of a linear stochastic system.
Fig. 2a shows the slopesD of the correlation integrals

estimated for embedding dimensionsm = 4 − 20. In this
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Fig. 2. (a) The slopes of the correlation integrals as a function of
the radiusr estimated for embedding dimensionsm = 4−20, delay
time τ = 60 units of sampling time and the Theiler’s parameter
w = 100. (b) The same with (a) forτ = 5, m = 5 − 20 and
w = 500 estimated by using the SVD filtering of the original signal
and the same trajectory matrix for all embedding.(c) The same as
(b) but now we have used independent trajectory matrices for every
embedding.

estimation the Theiler’s parameter takes the valuew = 100,
while the slopes remain invariable forw > 100, and forτ =

10− 70. An apparent plateau in a long region1 ln r ∼= 5 −

6.5 of the distancer and a tendency for low value saturation

of the slopes at the levelD ∼= 5 is also observed in Fig.
2a. The above low-dimensional profile is destroyed for lower
distancesr (ln r < 5), something which indicates the strong
component of the experimental perturbation of the system
(see next sections).

In the following we estimate the slopes of the correla-
tion integral by using the SVD method described in Sec-
tion 2.4 for filtering the external noise. Fig. 2b shows the
slopesD(r, m) of the correlation integralsC(r,m) for em-
bedding dimensionsm = 5 − 20 as a function estimated
by using the trajectory matrixXC projected onto the ba-
sis {ci}. For this estimation we used columns included in
the original trajectory matrixXC constructed for embedding
dimensionm = 20. That is, for the embedding dimen-
sion m = 5, the slope corresponds to the trajectory recon-
structed by the first 5 columns of theN × 20 matrix corre-
sponding to the transformed matrixXC estimated form =

20. The same happens for the next values ofm. Now it
is obvious that there is a clear scaling of the correlation in-
tegralC(r, m) ∼ rd(m) and a clear low value saturation of
the slopesd(r, m) = d[ln C(r, m)]/d ln r, in a long region
1 ln r ∼= 4 − 6 of the distancer. In this estimation the
Theiler’s parameter takes the valuew = 500 and the delay
time was taken to beτ = 5. The dashed line indicates the
low value saturation of the slopes and scaling exponents at
the levelD ∼= 2.5. This result remains the same for dimen-
sionsm > 15 in the case that the slopes are estimated for
independent trajectory matrices. Fig. 2c is the same as Fig.
2b, but now we have reconstructed an independent matrix
XC for each embedding which was used for the reconstruc-
tion of the corresponding trajectory. As we can see in Fig.
2c the saturation profile appears form > 15. The delay time
τ for the construction of the trajectory matrixX was chosen
appropriately for each embedding dimension. According to
the embedding theory the numberd of degrees of freedom
of the underlying dynamics corresponding to the AE index
process is in the regionD + 1 ≤ d ≤ 2D + 1 with D ∼= 2.5.
The above saturation valueD ∼= 2.5 is sensibly lower than
the valueD ∼= 5 estimated in Fig. 2a and in our previous
study (Pavlos et al., 1999a) where no SVD filter was used.

3.2 Statistical test of the null hypothesis

The non-Gaussian amplitude distribution of the AE index
(shown in Fig. 1b) may imply the nonlinearity of the signal
under appropriate conditions. However, the nonlinearity of a
signal can be static or dynamic. As discussed in Section 2.3
a random like and non-Gaussian signal could be caused by a
deterministic nonlinear and even chaotic underlying process
or by a linear stochastic process observed through a nonlin-
ear static distortion. Fig. 3a presents the slope of the corre-
lation integral estimated in a 20-dimensional state space for
the AE index and surrogate data. As in Section 3.1 we have
used theXC trajectory matrix for the above estimation. Fig.
3b presents the significance (S) of the statistics as a func-
tion of lnr. We observe that for small values of the distance
(r) 1 ln r ∼= 4.5−5.5 the significance stays within the region
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Fig. 3. (a)Slopes of the correlation integrals estimated for the orig-
inal signal and its first 10 surrogate data as function of lnr. (b) The
significance of the statistics as function of lnr, shown in (a).

∼ 2 − 4. This permits one to reject the null hypothesis with
high confidence (> 95%). Comparing the above results with
similar results obtained previously for the AE index (Pavlos
et al., 1999a) we can conclude that the SVD filter is very
helpful and strengthens the algorithm for uncovering low-
dimensionality and dynamic nonlinearity of the underlying
dynamical process to the original time series. In our previ-
ous paper (Pavlos et al., 1999a) we have estimated the same
characteristics of the AE index but without applying the SVD
filtering. There the significance of the statistics was found to
take sensibly lower values than the ones found here.

3.3 Correlation dimension and singular values for the SVD
reconstructed components of the AE index time series

In this subsection we study the slopes of the correlation in-
tegral and the singular values spectrum for the SVD recon-
structed componentsVi(t) according to the theoretical con-
cepts presented in Section 2.4. Figs. 4(b-d) show the recon-
structed componentsV1(t), V4(t), V10(t) and Figs. 4(f-h)
show the corresponding autocorrelation coefficients in com-
parison with the original time series and its autocorrelation
coefficient (Figs. 4a, 4e). As we can see in this figure the

Table 1. This shows the ratioσ2/σ1 of the first two singular values
of the AE index time series and itsV1, V2−10 SVD reconstructed
components.

σ2/σ1
AE Index 0.10
AE−V1 0.10

AE−(V2−10) 0.57

amplitude of the values of the components are decreasing
for the increasing values of the indexi. The decorrelation
times of the signals are also decreasing for increasing values
of i. This reveals that the deterministic character of the com-
ponentsVi(t) weakens as the indexi increases. The above
characters of the componentsVi(t) are in accordance with
the fact that according to SVD analysis, every time series
Vi(t) corresponds to the projection of the trajectory on the
eigenvectorsci related to theσi respectively (see relation 9).
The eigenvaluesσi also decrease passing from low to high
values of the indexi, so that the amplitude of the extension
of the trajectory along the axisci decreases as we go through
from low to high values ofi. By comparing Figs. 4a, 4b and
Figs. 4e, 4f we conclude that the first SVD componentV1
corresponds approximately to the trend of the original time
series. At first glance the difference betweenV1 and the other
components is similar to the difference of a low and a high
pass filter. However the relation betweenV1 and the other
components is more complicated as we show in the follow-
ing. Fig. 5a shows the spectrum of the singular valuesσi for
the original time series. Fig. 5b is the same as Fig. 5a but
estimated for the componentV1(t) of the original time series
and for embedding dimensionsm = 10 − 25. Figs. 5(a-b)
reveal apparent similarity between the singular value spectra
for both time series, the AE index and its first SVD compo-
nentV1(t). Also we can notice the high difference between
the value of the first eigenvalueσ1 and the value of the next
eigenvaluesσi, i = 2 − 25. Fig. 5c shows the spectrum of
the singular values estimated for the time series

V2−10 =

10∑
i=2

Vi(t) (17)

corresponding to the sum of ten first SVD reconstructed com-
ponents except the componentV1. We can observe that the
spectrum of the singular values is normal for theV2−10 com-
ponent without any asymmetry in values ofσi observed for
the AE index and itsV1 component. As Fig. 5c reveals
clearly the existence of a noise background after the first
7−10 singular values. Fig. 5c reveals that approximately the
deterministic components of the SVD spectrum are the first
7−10 componentsVi , corresponding to nontrivial eigenvec-
tors. Also Figs. 5(a-c) indicate a strong difference between
the first componentV1 and the next SVD components of the
AE index as we can conclude by studying the ratioσ2/σ1 of
the first two singular values estimated for the AE index and
its SVD components as shown in Table 1. The ratioσ2/σ1
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Fig. 4. (a) The AE index time series corresponding to the second semester of the year 1978.(b-d) The time series corresponding to the
Vi , i = 1, 4, 10, components of the SVD analysis of the signal shown in (a).(e-h)The autocorrelation coefficients estimated for the signals
shown in (a-d) respectively. The dotted lines indicate when the autocorrelation function in (g,h) become zero for first time.
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Fig. 5. (a-c)The spectra of singular valuesσi , i = 1−25 estimated
for the AE index and its SVD reconstructed componentsV1, V2−10.

takes small values (∼ 0.1) both for the AE index and its
V1(t) component but increases significantly for the case of
theV2−10 SVD components obtaining the value 0.57. To un-
derstand the physical meaning of the above characteristics
concerning the singular value spectrum of the AE index is
a central point of this paper. In the following, we study the
slopes of the correlation integrals estimated forV1 andV2−10
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Fig. 6. (a)The slopes of the correlation integrals estimated for the
V1 SVD reconstructed component of the AE index form = 5 −

8, τ = 100 and Theiler’s parameterw = 0. (b) The same as (a)
estimated forw = 100. (c) The same as (a) for AE index and its
surrogate data and for parametersm = 10, τ = 200, w = 500. (d)
The significance of the statistics shown in (c).
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Fig. 7. (a)The time series corresponding to summarized SVD re-
constructed componentV2−10 =

∑
Vi (i = 2 − 10), of the AE in-

dex signal.(b) The autocorrelation coefficient of the signal shown
in (a). (c) The slopes of the correlation integral estimated for the
V2−10 SVD reconstructed component (shown in a) estimated for
parametersτ = 10, m = 6 − 10, w = 50. (d) The same as (c)
corresponding to theV4 DVD reconstructed component of the AE
index.
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Fig. 8. (a,b) The slopes of the correlation integrals estimated for
theV2−10, V4 SVD reconstructed components of the AE index and
their corresponding surrogate data.(c,d) The significance of the
statistics shown in (a,b) respectively.
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time series.
Figs. 6(a-b) show the slopes of the correlation integrals

estimated for the first SVD componentV1(t) of the AE time
series. Fig. 6a corresponds to Theiler’s parameterw = 0
and Fig. 6b tow = 100. The first figure indicates a pro-
file corresponding to low correlation dimension which, how-
ever, is destroyed when time correlated points of the recon-
structed trajectory are excluded. This characteristic reveals
that there is no low-dimensional deterministic process un-
derlying to the first SVD component of the AE index. This
point of view is strengthened by Figs. 6(c-d) which present
the comparison with surrogate data. Fig. 6c shows the slopes
of nonlinear surrogate data constructed for theV1 time series
in comparison with the slope of theV1 component. As we
can see in Fig. 6d the significance of the statistics indicates
a small possibility for the discrimination between dynamic
nonlinearity and static nonlinearity, taking values lower than
two sigmas at the main part of the region of values of distance
r.

Figs. 7(a-b) show theV2−10 SVD component and its auto-
correlation coefficient. The decorrelation time of this time
series is 30− 40 lags. Fig. 7c shows the slopes of the
correlation integrals for theV2−10 time series, estimated for
m = 6−10 andw = 50. This figure reveals a scaling charac-
ter in the region1 ln r = 4−5 and a saturation of the scaling
exponents at the valueD ∼= 2.5. Fig. 7d shows the slopes
of the correlation integrals estimated for theV4 component
of the SVD spectrum of the AE index, form = 7 − 10 and
w = 100. This figure also reveals a scaling profile and low
value saturation of the scaling exponents.

Figs. 8(a-b) show the slopes of the nonlinear surrogates
estimated for theV2−10 and theV4 components, in compari-
son with the slope of the original time series, for embedding
dimensionm = 8 andm = 6 respectively. The significance
of the statistics coresponding to the Figs 8(a-b) is shown on
Figs. 8(c-d). Figures 8(c-d) clearly indicate the possibility
for the rejection of the null hypothesis in both cases as the
significance takes high values.

The previous results of the SVD analysis of the AE index
reveal that the original time series includes a strong linear
and high dimensional stochastic component which is related
with the first componentV1 of the SVD spectrum of the re-
constructed components. Moreover, the next SVD compo-
nentsVi, i > 1 indicate a low-dimensional and nonlinear
underlying dynamical process.

4 SVD analysis of the Lorenz system

In this section we repeat the SVD analysis of the Section 3
applied to the Lorenz system in three stages: a) the Lorenz
system without external noise b) the Lorenz system perturbed
by white noise and c) the Lorenz system perturbed by colored
noise. The result of the SVD analysis applied to a known
dynamical system will help to understand at a deeper level
the previous results of the SVD analysis for the AE index.

4.1 Purely deterministic time series

Fig. 9a shows thex-component time series of the Lorenz
system obtained by arithmetic solution according to Abar-
banel (1993). Figs. 9(b-c) show theV1 andV4 component
of the spectrum of the SVD reconstructed components of the
original time series shown in Fig. 9a and Fig. 9d shows
the V2−10 component corresponding to the sum

∑
Vi for

i = 2 − 10. Figs. 9(e-h) show the autocorrelation coeffi-
cients corresponding to the time series shown in Figs. 9(a-
d). We can notice here that theV1 component includes high
determinism with long decorrelation time. As the indexi in-
creases the determinism decreases as we can conclude from
the autocorrelation coefficient shown in Fig. 9g correspond-
ing to theV4 component. The componentV1 corresponds to
the trend of the original time series (see Fig. 9b) while the
next components correspond to the high frequencies. The
componentV2−10 approximates efficiently the original time
series as we can conclude from Fig. 9a and Fig. 9d.

Figs. 10(a-d) show the slopes of the correlation integrals
corresponding to the time series shown in Figs. 9(a-d). The
slopes of the surrogate data corresponding to the original
time series and its SVD components are shown in Figs. 10(e-
h). From Figs. 10(a-d) we conclude that for the Lorenz
system every SVD reconstructed component reveals a scal-
ing and saturation profile similar to that shown by the origi-
nal time series, as the correlation dimension of all the SVD
components is almost equal to the correlation dimension of
the original time series of the Lorenz system. That is the
estimated correlation dimension for thex(t) time series of
the Lorenz system and the correlation dimension of its SVD
component is∼ 2.1 − 2.5 as it can be concluded by Figs.
10(a-d). On the other hand, Figs. 10(e-h) indicate clearly
the possibility for the discrimination of the linear stochastic
data transformed by nonlinear static distortion and the origi-
nal time series. This happens both for the Lorenz system as
well as for its SVD components. Here we can notice strong
dissimilarity between the Lorenz system and the system cor-
responding to the AE index especially concerning the first
SVD componentV1(t). As we have shown in Figs. 6(b-c) in
the case of the AE index theV1 component reveals a strong
difference from the original time series concerning the slopes
of the correlation integral. That is, for theV1 component of
the AE index there is no significant low-dimensional profile
and no significant discrimination from the surrogate data.

Similar results we have also found in the case of the sin-
gular value spectrum. Figs. 11(a-c) show the normalized
singular values{σi} for the x(t) time series of the Lorenz
system and itsV1, V2−10 SVD components. The result here
is similar to that of the slopes, as there is no significant dif-
ference between the{σi} spectra estimated for the original
time series and its SVD components. Contrary to the Lorenz
system for the AE index system we observe a strong differ-
ence between the singular values spectra{σi} corresponding
to the AE index and itsV1 component compared to the SVD
components of the AE index time series (see Figs. 5(a-c)).
However, we have observed a strong similarity between the
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 Fig. 9. The same with Fig. 4 corresponding to the Lorenz time seriesx(t) and its SVD reconstructed components.
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Fig. 10. (a-d)the slopes of the correlation integrals estimated for the Lorenz time seriesx(t) and its SVD reconstructed componentsV1, V4,
andV2−10. (e-h)The slopes of the correlation integrals estimated for the surrogate data corresponding to thex(t) Lorenz time series and its
SVD components and for embeddingm = 6.
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Fig. 11. Singular value spectra estimated for thex(t) Lorenz time
series and its SVD components.

spectrum{σi} corresponding to the original AE index time
series and the spectrum{σi} estimated for theV1 SVD com-
ponent of the AE index. The above comparison of the spectra
estimated for the AE index system and the Lorenz system be-
comes more evident by comparing Table 2 and Table 1. Table
2 shows the ratioσ2/σ1 estimated for the Lorenz signal and
its SVD components and indicates that the ratioσ2/σ1 is al-
most invariable passing from the original signal to its SVD
components. However, for the AE index, the ratioσ2/σ1 was

Table 2. The same as Table 1 corresponding to the deterministic
x(t) Lorenz signal.

σ2/σ1
Lorenz 0.54

Lorenz−V1 0.68
Lorenz−(V2−10) 0.63

found to be invariable passing from the original signal to its
V1 component and increases sensibly passing fromV1 to the
V2−10 SVD component.

Summarizing the results of the SVD analysis applied to the
Lorenz system, we can conclude the following:For purely
dynamical systems the correlation dimension estimated
by the slopes of the correlation integrals and the singu-
lar value spectrum remains invariable as we pass from
the original time series to its SVD reconstructed compo-
nents. However, in the case of an experimental time series
corresponding to an unknown underlying process, it is pos-
sible to show strong differences as we pass from the original
time series to its first SVD component and then to the its next
components.

In order to go deeper for a physical explanation of these
characteristics we repeat the above SVD analysis for the
Lorenz system perturbed by external noise.

4.2 Perturbation by external white noise

In this section we study thex-time series of the stochastic
Lorenz system perturbed by external additive white noise ac-
cording to the relation

x(t) = xL(t) + exwn(t) (18)

where thexwn(t) time series was obtained to have mean value
zero and standard deviation one.

We use time series corresponding to the parameterse =

0.1, 0.3, 0.5, 1.0, 5.0. The respective percentages of the
white noise to the above values are: 0.78%, 2.34%, 3.9%,
7.8%, 39%.

Fig. 12a shows thex-Lorenz time series obtained for 39%
external white noise. Comparing this figure with Fig. 9a
we notice that, although the perturbation is strong enough,
the stochastic time series conserves the general profile of the
original time series. Fig. 12b shows the autocorrelation coef-
ficient for the purely deterministic Lorenz time series and for
the corresponding stochastic Lorenz time series. As we no-
tice in this figure the white noise does not perturbs strongly
the autocorrelation coefficient. Especially at high values of
lag the white noise leaves invariant the autocorrelation coef-
ficient even for 39%(e = 5) percentage of noise. Fig. 12c
presents the slopes of the correlation integrals estimated for
the stochastic Lorenz time series(e = 0.1 − 5.0) and the
original Lorenz time series(e = 0) for embedding dimen-
sionm = 6, delayτ = 10 and Theiler’s parameterw = 100.
In this figure we notice a significant characteristic that has
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Fig. 12. (a) The x(t) Lorenz signal perturbed by external ad-
ditive white noise corresponding to the value parametere = 5
(see the text). (b) Autocorrelation coefficient of the purely de-
terministic Lorenz signal as well as of the two stochastic Lorenz
signals(e = 0.5, 5) (c,d) Slopes of the correlation integrals of
thex(t) deterministic Lorenz signal and ofx(t) stochastic Lorenz
signals corresponding to different levels of white noise perturba-
tion. The percentage of white noise for every parametere value is
0.78% (e = 0.1), 2.34% (e = 0.3), 3.9% (e = 0.5), 7.8% (e =

1), 39%(e = 5).

been analyzed extensively in our previous paper (Pavlos et
al., 1999c). As we can see in Fig. 12c the slope of the corre-
lation integral is destroyed gradually from low to high values
of ln r as we increase the percentage of the stochastic exter-
nal perturbation. Fig. 12d shows the slopes for embedding
dimensionsm = 5 − 8 estimated also for the case of 3.9%
(e = 0.5) of external white noise perturbation. For distance
r: ln r < 1 there is no scaling and no saturation profile of
the slopes. However, for higher values of the distancer in
the reconstructed phase space, the slopes remain invariable
revealing the same scaling and saturation profile with the un-
perturbed and purely deterministic original time seriesx(t)

of the Lorenz system.
Fig. 13a shows the stochasticx(t) Lorenz time series per-

turbed by 7.8% (e = 1) external additive white noise, while
Figs. 13(b-d) correspond to theV1, V4 andV2−15 SVD com-
ponents of the original signal shown in Fig. 13a. TheV2−15
component corresponds to the sum

∑
Vi, i = 2 − 15. The

slopes of the correlation integrals corresponding to the time
series shown in Figs. 13(a-d), are presented in Figs. 13(e-h).
The slopes of the original stochastic Lorenz(e = 1) time se-
ries, shown in Fig. 13e reveal scaling and saturation profile
only at high values of the lnr, in the region1 ln r = 2 − 3.
The saturation value isD ∼= 2.0 − 2.1 and is approximately
equal to the correlation dimension of the purely deterministic
x-Lorenz time series. This characteristic remains the same
for the first(V1) SVD component of the stochastic(e = 1)

Lorenz time series as we can see in Fig. 13f. However, the
scaling and saturation profiles are now observed at the re-
gion 1 ln r = 0 − 1 of the distancer. The same result was
obtained for theV4 andV2−15 components but now the sat-
uration valueD of the scaling exponents was found to take
little higher values, as shown in Fig. 13g and Fig. 13h.

Figs. 14(a-b) show the autocorrelation coefficient of the
SVD componentsV1, V4 and V2−15 corresponding to the
purely deterministicx-Lorenz time series and the stochastic
x-Lorenz time series corresponding to the strong perturba-
tion by percentage 39%(e = 5) of external additive white
noise. It is apparent here that the strong component of the
external white noise leaves invariant the autocorrelation co-
efficients in all the cases of the original time series (see Fig.
12b) as well as of its SVD components (Figs. 14(a-b)). Fig.
14c shows a comparison of the autocorrelation coefficients
corresponding to the stochastic(e = 1) x-Lorenz time series
and its SVD components. This figure reveals that the decor-
relation time of theV1 component is longer than that of the
original signal, while the decorrelation time of theV4 com-
ponent is shorter than that of theV2−15 component. Also,
the decorrelation time of the original signal is longer than its
V2−15 andV4 SVD components. These characteristics are
similar to those of the AE index and the purely deterministic
x-Lorenz signal (see Figs. 4(e-h), 9(e-h)).

Figs. 15(a-b) show the spectrum of the singular values
{σi}, i = 1 − 20 estimated for the purely deterministic(e =

0) x-Lorenz system and the two stochastic Lorenz time se-
ries(e = 1, 5) caused by external additive white noise per-
turbation as well as for their SVD componentsV1 andV2−15.
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Fig. 13. (a-d)The stochastic Lorenz signal corresponding to the white noise perturbation 7.8% (e = 1) and its SVD reconstructed compo-
nentsV1, V4, V2−15. The last signalV2−15 corresponds to the summarized SVD component

∑
Vi , i = 2 − 15. (e-h) The slopes of the

correlation integrals estimated for the signals shown in (a-d) correspondingly embeddingm = 5 − 8 andw = 100.
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Fig. 14. (a)The autocorrelation coefficient of theV1 SVD com-
ponent of the stochasticx(t) Lorenz component corresponding to
the levele = 0.5 (7.8%) of the external white noise perurbation
compared to the autocorrelation coefficient of the original signal
(e = 0). (b) The same as (a) for theV4, V2−15 SVD compo-
nents of the stochasticx(t) Lorenz signal corresponding to the ex-
ternal white noise perturbation levele = 5 (39%). (c) The au-
tocorrelation coefficient of thex(t) stochastic Lorenz signal and its
V1, V4, V2−15 SVD component corresponding to the external white
noise perturbation levele = 1 (7.8%).

This figure reveals that the perturbation of dynamic system
by white noise leaves invariant the nontrivial eigenvalues of
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Fig. 15. (a,b)The spectra of the singular valuesσi , i = 1 − 25
corresponding to the purely deterministicx(t) Lorenz signal, the
x(t) stochastic Lorenz signal and itsV1, V2−15 SVD components
estimated for the two levelse = 1 (7.8%) ande = 5 (39%) of the
external white noise perturbation.

the original time series and its SVD components, raising only
the noise background. This is in accordance with the theo-
retical concepts presented in Section 2.4 of this paper.

4.3 Perturbation by external colored noise

In this section we apply the SVD analysis to the Lorenz sys-
tem perturbed by external additive colored noise. The exter-
nal colored noise is obtained by the equation

X(ti) =

M/2∑
i=1

Ck cos(ωkti + φk) , i = 1, . . . ,M (19)

where the phasesφk are randomly distributed on the interval
[0, 2π ] andCk are constants related to the power spectrum
P(ωk) by

Ck =

[
P(ω)

2π

M

1

1

]1/2

(20)

These random time series have power spectraP(ω) of the
form ω−α and show low-dimensional chaos, with correlation
dimensionD related toα through the relationD = 2/(α−1),
according to Osborne and Provenzale (1989).
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Fig. 16. The same as Fig. 13 but for the levele = 0.1 (37%) of the external colored noise perturbation.
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Fig. 17. (a)The autocorrelation coefficient of the deterministic x(t)
Lorenz signal, the stochasticx(t) Lorenz signal and itsV1 SVD
component corresponding to the two levelse = 0.1 (37%) and
e = 0.5 (185%) of the external additive colored noise perturbation.
(b) The autocorrelation coefficients of theV2−15 SVD component
of the stochasticx(t) Lorenz signal corresponding to the two levels
e = 0.1 (37%) ande = 0.5 (185%) of the external additive col-
ored noise perturbation.(c) The same as (b) but for theV4 SVD
component.

In this section we use two levels of colored noise corre-
sponding to percentage 37%(e = 0.1) and 185%(e = 0.5)

according to equation

x(t) = xL(t) + excn(t) (21)

0 5 10 15 20 25 30 35 40
i

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Lorenz,                  (e = 0)

Lorenz,                  (e = 0.1)

Lorenz-V1,            (e = 0.1)

Lorenz-(V2-15),     (e = 0.1)

(a)

 
 

0 5 10 15 20 25 30 35 40
i

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Lorenz,                  (e = 0)

Lorenz,                  (e = 0.5)

Lorenz-V1,            (e = 0.5)

Lorenz-(V2-15),     (e = 0.5)

(b)

 
 
 
 

Fig. 18. The same with Fig. 15 but for the colored noisex(t)

stochastic Lorenz signal.

where thexcn(t) time series was obtained to have mean value
38 and standard deviation 47.

Fig. 16a shows the stochasticx-Lorenz time series in-
cluding 37% of external colored noise. Fig. 16b shows the
first SVD componentV1 of the stochastic signal shown in
Fig. 16a. The SVD componentsV4 andV2−15 are shown in
Figs. 16(c-d). The componentV2−15 approximates the orig-
inal time series (shown in Fig. 16a) while the componentV1
approximates the typical profile of a nonstationary colored
noise. The componentV4 includes noticeable information
from the original signal shown in Fig. 16a. Figs. 16(e-h)
present the corresponding slopes of the correlation integrals
estimated for the time series of Figs. 16(a-d). The slopes
shown in the Fig. 16e correspond to the original stochastic
signal and the slopes shown in Figs. 16(f-h) correspond to
the slopes of the SVD componentsV1, V4 andV2−15 of the
original Lorenz colored noise stochastic signal. The slopes
of the original stochastic signal (Fig. 16e) reveal a small ten-
dency for scaling and saturation of the scaling exponents at
the valuesD = 3 − 4 in the range1 ln r = 1 − 3 of the dis-
tancer in the reconstructed phase space. However, this weak
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Table 3. The same as Table 2 but for the two levelse = 0.1 (37%), e = 0.5 (185%) of the external additive colored noise perturbation.

Lorenz with colored noise
e Noise % σ2/σ1 e Noise % σ2/σ1

Lorenz (stochastic) 0.1 37 0.33 0.5 185 0.04
V1 0.1 37 0.12 0.5 185 0.02

V2−15 0.1 37 0.45 0.5 185 0.41

Table 4. The same as Table 3 but for the two levelse = 1 (7.8%), e = 5 (39%) of the external white noise perturbation.

Lorenz with white noise
e Noise % σ2/σ1 e Noise % σ2/σ1

Lorenz (stochastic) 1 7.8 0.50 5 39 0.50
V1 1 7.8 0.45 5 39 0.45

V2−15 1 7.8 0.47 5 39 0.47

profile of scaling and saturation is entirely destroyed passing
to theV1 component, as we can see in Fig. 16f.

A significant profile of scaling and low value saturation of
the slopes reappears passing to the next SVD componentsV4
andV2−15 as we can see in Figs. 16(g-h). The correlation
dimension estimated forV4 andV2−15 time series was found
to be∼ 2.5. This value is not much different from the corre-
lation dimensions of the purely deterministic Lorenz system.
The above results reveal three significant characters concern-
ing the colored noise:

a) The colored noise causes sensitive raising of the satura-
tion valueD of the scaling exponents.

b) The colored noise perturbation is absorbed mainly by
theV1 SVD component destroying the scaling and low
value saturation profile of the slopes corresponding to
theV1 SVD component.

c) The higher SVD components(V4, V2−15) absorb much
lower percentage of the noise. The correlation dimen-
sion of these SVD components is not much different
from the correlation dimension of the purely determin-
istic system.

The above characteristics reveal strong differences between
the behavior of the colored and the white noise as we perturb
a dynamical system concerning the correlation dimension.
The case of the white noise leaves invariant the correlation
dimension passing from the original stochastic signal to its
SVD components. However, the colored noise leaves invari-
ant only the high SVD components.

In the following we present results concerning the auto-
corelation coefficient and the singular value spectrum of the
Lorenz system perturbed by colored noise. Fig. 17a shows
the autocorrelation coefficient estimated for the original(e =

0) Lorenz system and for the Lorenz system perturbed by ex-
ternal colored noise corresponding to amplitudes (e = 0.1,
e = 0.5). In the same figure we present the autocorrela-
tion coefficient of the first SVD componentV1 of the origi-

nal stochastic signal. Here it is important to notice the clear
difference between the original signal and itsV1 SVD com-
ponent concerning the decorrelation time. This characteris-
tic is similar for the colored and white noise. On the other
hand, the behavior of the colored noise is different from that
of the white noise passing from one level of noise to the
next for both cases of the original signal and itsV1 com-
ponent. That is, in the case of the colored noise the decor-
relation time increases as we increase the amplitude of the
external perturbation for both the original signal and its first
SVD componentV1. This is opposite to the behavior of the
white noise perturbation as we concluded by using Figs. 12b
and 14a. The autocorreletion coefficients for the next SVD
components(V4, V2−15) of the original stochastic signal are
shown in Figs. 17(b-c). These figures reveal similar behav-
ior for the colored noise and the white noise (see Fig. 14b),
as the decorrelation time of theV4, V2−15 SVD components
remains invariant passing from weak to strong external per-
turbation.

Figs. 18(a-b) show the singular values spectrum estimated
for the colored noise stochastic Lorenz system and its SVD
componentsV1, V2−15. Fig. 18a corresponds to the first level
(e = 0.1) of the colored noise perturbation and Fig. 18b to
the second level(e = 0.5). As we can conclude by these
figures the colored noise destroys the normal character of
the nontrivial eigenvalues for the stochastic signal and itsV1
SVD component causing the ratioσ2/σ1 of the second to first
eigenvalue to increase passing from the purely deterministic
to the stochastic signal. However, this effect is not observed
for the V2−15 SVD component. Table 3 presents the ratio
σ2/σ1 estimated for the original Lorenz system, the stochas-
tic (colored noise) Lorenz system and the SVD components
of the stochastic Lorenz system. For both levels of pertur-
bation (e = 0.1, 0.5) the ratio decreases passing from the
purely deterministic system to the corresponding stochastic
system and theV1 component of the stochastic system. In
contrast, the ratioσ2/σ1 increases passing from theV1 to the
V2−15 SVD component obtaining almost the value ofσ2/σ1
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estimated for the purely deterministic Lorenz system. The
above results reveal that similarly with the correlation di-
mension and the autocorrelation coefficient the behavior of
the colored noise is strong discriminated by the white noise
concerning the singular value stectrum. Table 4 is similar to
Table 3 corresponding to the case of perturbed Lorenz sys-
tem by white noise. This table shows that the ratioσ2/σ1 is
almost invariant passing from the purely deterministic signal
to the corresponding stochastic signal and the SVD compo-
nents of the second.

5 SVD analysis and phase portraits

In this section we study the two-dimensional phase portraits
of the AE index system, the stochastic Lorenz system, as well
as their SVD components. Figs. 19(a-d) show the two di-
mensional phase portrait of the AE index time series and its
SVD componentsV1, V4, V2−10. The phase portrait of the
original time series (AE index) reveals some kind of structure
extended along the axisX(t), X(t + 60). The phase portrait
of the V1 component (shown in Fig. 19b) reveals approxi-
mately the same structure to the original time series. How-
ever, the Brownian character is stronger in the phase portrait
of the V1 component. The phase portraits of the next SVD
componentsV4 andV2−10 (shown in Figs. 19(c-d)) reveal
a structure much different than the structure of the original
time series (AE index) and itsV1 component. Now the struc-
tureV2−10 is extended along the diagonal while the structure
of theV4 component is more spherical than the structure of
theV2−10 component or the structures corresponding to the
AE and itsV1 component.

Figs. 20(a-d) are similar to Figs. 19(a-d) but for thex-
component of the Lorenz system. As Fig. 20b and Fig.
20d reveal, the phase portraits of theV1, V4 components are
different from the phase portrait of the original signal. The
phase portrait of theV2−15 component reveals a structure al-
most similar to the original signal.

Figs. 21(a-d) show the phase portraits of the colored noise
(e = 0.1) stochastic Lorenz system and its SVD compo-
nents. Now the structures of the original signal (stochastic
Lorenz signal) and its SVD components are weakly changed
compared to those shown in Figs. 20(a-d), which correspond
to the purely deterministic Lorenz system. In more details
the phase portrait of theV2−15 component remains invari-
able passing from the purely deterministic (Fig. 20c) to the
stochastic component (shown in Fig. 21c). However, the
componentV1 changes sensibly passing from the purely de-
terministic to the stochastic signal (see Fig. 20b, 21b).

When the amplitude of the external colored noise pertur-
bation becomes stronger, corresponding to the valuee = 0.5
of the noise parameter, then we can observe some important
new characteristics. Now opposite to the previous case of
weak perturbation(e = 0.1) the colored noise has entirely
destroyed the structures of the original stochastic signal and

its V1 component, as we can conclude by comparing Figs.
20(a-b) and Figs. 22(a-b). However, it leaves invariant the
structures of the next componentsV4, V2−15, as we can con-
clude by comparing Figs. 20(c-d) and Figs. 22(c-d).

Figs. 23(a-d) and Figs. 24(a-d) are similar to the previ-
ous Figs. 21(a-d) and Figs. 22(a-d) but they correspond to
two different levels of white noise perturbation. When the
external white noise perturbation is weak (7.8% correspond-
ing to the valuee = 1 of the noise parameter) then the phase
portraits of the original stochastic time series (Fig. 23a) and
its SVD components (Fig. 23(b-d)) are similar to the cor-
responding phase portraits of the purely deterministic sig-
nal (shown in Figs. 20(a-d)) except for the small trembling
caused by the external white noise. However, contrary to
the case of the colored noise, when the external white noise
becomes strong enough (39% corresponding to the noise pa-
rametere = 5) the initial structure is covered by the external
perturbation as we can see in Figs. 24(a-d). This charac-
teristic is observed both for the initial stochastic signal (see
Fig. 24a ) and its SVD components (see Figs. 24(b-d)). The
observed difference between the behavior of the white and
colored noise perturbation becomes more significant if we
note the following: the white noise perturbation related to the
noise parameter e=5 corresponds to the percentage of∼ 39%
of the original signal amplitude. This percentage of white
noise is efficient to destroy the original phase space structures
for both the original signal and its SVD components. In con-
trast, the much higher percentage 185% of the colored noise
perturbation corresponding to the valuee = 0.5 of the noise
parameter can destroy only the phase structures of the origi-
nal signal and itsV1 component (see Figs. 22(a-b)), while it
leaves invariant the phase space structures of the next SVD
componentsV4, V2−15 (see Fig. 22(c-d)).

Summarizing the above results referred to in the Lorenz
system we can conclude that the two dimensional phase por-
traits of the original signals and their SVD components are
also efficient to discriminate between the white and colored
noise perturbations. Moreover, even when the colored noise
perturbation is much stronger in amplitude than the ampli-
tude of the original signal, the SVD analysis permits one to
recapture the original phase space structure by using the SVD
components next toV1, such as theV2−15 SVD component
which will be described in the next sections.

By using the above results concerning the stochastic
Lorenz system we can conclude that theV2−10 SVD com-
ponents of the AE index is appropriate for extracting useful
information about the underlying dynamical process in the
case where the AE index includes strong colored noise. The
last supposition about the colored noise component in the AE
index can be supported by the previous results concerning the
Lorenz system perturbed by external colored noise.
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Fig. 19. Two dimensional phase portraits estimated for the AE in-
dex time series and itsV1, V4, V2−10 SVD reconstructed compo-
nents.
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Fig. 20. The same as Fig. 19 but for thex(t) Lorenz signal.
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Fig. 21. The same as Fig. 19 but estimated for thex(t) stochas-
tic Lorenz signal corresponding to the levele = 0.1 (37%) of the
external colored noise perturbation.
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Fig. 22. The same as Fig. 21 corresponding to the levele =

0.5 (185%) of external colored noise perturbation.
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Fig. 23. The same as Fig. 19 but estimated for thex(t) stochas-
tic Lorenz system corresponding to the levele = 1 (7.8%) of the
external additive white noise perturbation.
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Fig. 24. The same as Fig. 23, but corresponding to the levele =

5 (37%) of the external white noise perturbation.



120 Athanasiu and Pavlos: SVD analysis of the magnetospheric AE index time series

Table 5. This shows the cross correlation coefficients of the
stochasticx(t) Lorenz signal and itsV1, V4, V2−15 SVD recon-
structed components for two levelse = 1 (7.8%), e = 5 (39%)

of external white noise perturbation compared with the correspond-
ing values of the original (deterministic)x(t) Lorenz signal.

Lorenz with white noise
Cross Correlation Coefficient

e Noise % V1 V2−15 V4
0 0.0 0.47 0.91 0.40
1 7.8 0.47 0.90 0.40
5 39 0.44 0.87 0.37

Table 6. The same as Table 5 but for the case of white noise pertur-
bation of the Lorenz system.

Lorenz with colored noise
Cross Correlation Coefficient

e Noise % V1 V2−15 V4
0.0 0.0 0.47 0.91 0.40
0.1 37 0.59 0.83 0.37
0.5 185 0.91 0.09 0.07

6 Other comparisons of the original signals and their
SVD components

6.1 Cross correlation of the original signals and their SVD
components

The correlation of the original Lorenz signal (deterministic or
stochastic) with its SVD components is shown in Table 5 as a
function of the white noise level(e = 0, 1, 5) and in Table 6
as a function of the colored noise level(e = 0, 0.1, 0.5). For
example, the columnV1 in Table 5 presents the cross corre-
lation of the original Lorenz signal and itsV1 component as
a function of the white noise level. The first column of every
table shows the percentage of the noise corresponding to the
noise parameter.

Concerning the white noise we notice that the cross corre-
lation of the original Lorenz signal and its SVD components
(V1, V4, V2−15) is approximately independent of the external
perturbation and equal to the original cross correlation esti-
mated for the valuee = 0 of the noise parameter (case of
zero perturbation).

It is important to note in Table 5 that the cross correla-
tion of the original signals and theirV1 andV4 components
are equal to the value∼ 0.4 − 0.5. Contrary, the cross cor-
relation value of the original signals and theirV2−15 SVD
component is much higher and equal to∼ 0.9. This result is
expected as the componentV2−15 approximates the original
signal much better than theV1 or V4 components, according
to the theoretical concepts presented in Section 2.

Concerning the colored noise perturbation we observe dif-
ferent behavior of the cross correlations. As we can see in
Table 6 the cross correlation of the original signal with its

Table 7. The same as Table 5 corresponding to the magnitudes of
the standard deviation.

Lorenz with white noise
Standard deviation

e Noise % Original V1 V2−15 V4
0 0.0 12.69 5.29 11.17 5.19
1 7.8 12.73 5.32 11.24 5.21
5 39 13.63 5.40 12.20 5.65

Table 8. The same as Table 6 but for the standard deviation.

Lorenz with colored noise
Standard deviation

e Noise % Original V1 V2−15 V4
0.0 0.0 12.69 5.29 11.17 5.19
0.1 37 13.78 7.62 11.11 5.31
0.5 185 27.47 24.06 11.29 6.91

V1 component increases as we increase the amplitude of the
external perturbation. In contrast to this, the behavior of the
cross correlations corresponding to the SVD componentsV4
andV2−15 decreases as we increase the amplitude of the ex-
ternal perturbation for both cases ofV4 andV2−15 SVD com-
ponents.

Comparing the previous results about the dependence of
the correlation of the initial signals with the SVD compo-
nents upon the level of the external noise, we can conclude
the following: the white noise perturbs symmetrically all of
the SVD components of the original signal, while the colored
noise perturbs mainly the first SVD componentV1 and leaves
invariant the next components.

6.2 Standard deviation of the original signals and their SVD
components

The standard deviation, defined as the square root of the vari-
ance, was computed for the original signal and its SVD re-
constructed components in the case of the Lorenz system per-
turbed by external white and colored noise. Table 7 shows
the standard deviations in the case of white noise as a func-
tion of the noise level. As we increase the level of noise the
standard deviation does not increase significantly in the case
of the original signal as well as in the cases of its SVD com-
ponentsV1, V4, V2−15. Contrary, in the case of the colored
noise (Table 8), the standard deviation of the original sig-
nal and its first SVD componentV1 increases significantly
as we increase the level of noise while it remains invariable,
especially for the componentV2−15. In the case of theV4
component we notice a very slow increase which becomes
∼ 2 units for 185% of noise. For 37% of colored noise the
standard deviation of theV4 andV2−15 SVD components re-
main invariable and equal to the standard deviation of the
purely deterministic signal. Concluding, we have shown in
this section that the study of cross correlations and standard
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deviations indicate clear differences between white and col-
ored noises. That is, while the white noise can be manifested
symmetrically in all the SVD components, the colored noise
perturbs only the first SVD component. The above results
are similar with the results included in previous sections.

7 Summary and discussion

In this paper we applied the SVD analysis to the magneto-
spheric AE index and the Lorenz system. In the case of the
Lorenz system we studied it in three different stages: When
the system is independent from external noise, as well as
when it is perturbed by external white or colored noise. The
results of the above analysis are very interesting for the phys-
ical understanding of the magnetospheric dynamics. In addi-
tion, the results of this paper reveal new possibilities of the
SVD analysis improving the algorithm of chaotic analysis of
experimental time series. Before we discuss the physical im-
plications of this paper, we summarize the crucial points of
the previous sections.

7.1 The AE index system

The SVD method used for substituting the original trajec-
tory matrix X by theXC trajectory matrix improves effec-
tively the scaling and the saturation profile of the slopes. The
slopes estimated by using theX andXC trajectory matrices
(shown in Figs. 2(a-b)) showed clearly the improvement of
the scaling and low-dimensional profile of the slopes after
the application of the SVD transformation on the trajectory
matrix.

The first SVD reconstructed componentV1 of the AE in-
dex does not reveal low-dimensionality, although it corre-
sponds to the eigenvectorc1 and the eigenvalueσ1, which
theoretically must include the highest deterministic compo-
nent of the signal. Moreover, the slopes of theV1 component
indicate that theV1 time series is a high dimensional stochas-
tic signal with long decorrelation time because no significant
discrimination with its nonlinear surrogate data is possible.
On the other hand, the next SVD componentsV4, V2−10 of
the AE index clearly reveal low-dimensional and nonlinear
character. The discrimination with nonlinear surrogate data
is now effective.

Concerning the singular value spectrum of the AE index
we observed the first valueσ1 to be much larger than the
next singular values which are pressed to the noise floor.
This picture is invariable passing to the first SVD compo-
nentV1, but changes drastically going to the next SVD com-
ponents. In particular, for theV2−10 SVD component, we
observed a spectrum of normal singular values which in-
cludes a small number(∼ 7) of nontrivial eigenvectors. This
number of nontrivial eigenvalues and eigenvectors above the
noise background indicates∼ 7 dynamical degrees of free-
dom of the underlying dynamics. This result is in agree-
ment with the correlation dimensionD ∼= 2.5 given that
the number of degrees of freedom(d) satisfies the relation

Dint ≤ d ≤ 2Dint + 1, whereDint corresponds to the first in-
teger which is greater than the fractal correlation dimension.
For the AE index this relation indicatesd = 3 − 7 possible
degrees of freedom.

7.2 The Lorenz system

7.2.1 Purely deterministic low-dimensional dynamical sys-
tem (Lorenz system)

The correlation dimensions remain invariable passing from
the original signal to its SVD components, while the nonlin-
ear surrogate data are clearly discriminated from the original
signal, the Lorenz signal and itsV1, V4, V2−10 SVD compo-
nents. The singular value spectrum{σi} is also invariable
passing from the original Lorenz signal to its SVD compo-
nents. The phase portrait of theV2−15 SVD component is
almost similar to the phase portrait of the original signal,
while the phase portraits of the independent SVD component
(V1, V4···) are dissimilar to that of the original signal.

7.2.2 Low-dimensional stochastic dynamics (the case of
white noise)

The study of the stochastic Lorenz system showed that the
perturbation of a dynamical system by external white noise
leaves invariant the physical characteristics of the system
causing only secondary changes. Summarizing the results
about the white noise perturbation at a dynamical system we
have observed the following:

In the case of white noise perturbation the scaling and satu-
ration profile of the slopes are conserved invariable for a nar-
row range of distancer, but they are destroyed for small val-
ues ofr. This character was observed to be real for the orig-
inal (purely deterministic system), the white noise stochas-
tic system and their SVD components. That is, the correla-
tion dimension is almost the same for the original purely de-
terministic signal, the stochastic signal caused by the white
noise perturbations, and the SVD reconstructed components
of the stochastic time series. The singular value spectrum
{σi} is also invariable passing from the original(e = 0) to
the stochastic(e = 1, 5) system and from them to the SVD
components of the stochastic time series.

The decorrelation time was also found to be invariable
passing from the original purely deterministic time series and
its SVD components to the corresponding stochastic signals
and their SVD components. That is, the white noise pertur-
bation does not change the decorrelation times of the original
signal and those of its SVD components. The phase portraits
of the white noise stochastic Lorenz system (case of white
noise) and its SVD components are invariant for weak white
noise perturbation and change drastically for strong white
noise perturbation. The same happens for the cross correla-
tions and standard deviations as they remain invariable pass-
ing from the purely deterministic Lorenz system to stochastic
(after the application of a white noise perturbation) system
and its SVD components. Concluding, we can support the
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  Fig. 25. (a) The slopes of the correlation integrals estimated for

the Lorenz colored noise stochastic signal(e = 0.1) for embed-
ding m = 6, 7. The trajectories were constructed to correspond
to the first six and seven columns respectively of the SVD trans-
formed trajectory matrixXC. (b) The same as (a) corresponding to
5-dimensional and 6-dimensional trajectories constructed by using
theV2−V6 andV2−V7 SVD components of the original stochastic
signal respectively.

concept that generally the white noise perturbation does not
destroy drastically the physical characteristics of the original
dynamical system and it is manifested symmetrically on the
SVD reconstructed components of the original signal.

7.2.3 Low-dimension stochastic dynamics (the case of col-
ored noise)

The behavior of a stochastic signal caused by colored noise
perturbation upon the SVD analysis is much different from
the case of white noise stochasticity or the case of a purely
deterministic signal. The crucial points of differentiation are
the behavior of the first SVD componentV1, the first singu-
lar value(σ1), the decorrelation times, the cross correlations
and the standard deviation of the stochastic signal and itsV1
component. Summarizing, we have observed the following
characteristics:

The decorrelation time increases drastically passing from
the original deterministic signal to the corresponding stochas-
tic signal. The increment of the decorrelation time becomes
larger for larger amplitudes of perturbation. The same phe-
nomenon was observed for theV1 component. That is, the
decorrelation time increases passing from theV1 component
of the original (deterministic) signal to theV1 component of
the corresponding stochastic signal. The increment is also
larger for larger amplitudes of perturbation. Moreover, the
first SVD componentV1 of the colored noise stochastic sig-
nal does not reveal any scaling or low value saturation pro-
file. In addition, it is not possible to discriminate theV1
component of the stochastic signal from its surrogate data.
This behavior indicates that theV1 component absorbs the
main part of the external colored noise. In contrast, the next
SVD components reveal efficient scaling and saturation pro-
files corresponding to the low-dimensional characteristics of
the original deterministic signal.

As for the stochastic system (case of colored noise) and its
V1 component, the first singular valueσ1 of the singular val-
ues spectrum{σi} was observed to be much higher than the
next singular values which were pressed down to the noise
floor. This characteristic becomes stronger as the amplitude
of the colored noise perturbation increases. However, the
singular value spectrum becomes normal and is similar to
the spectrum of the original deterministic signal passing to
the next SVD components of the corresponding stochastic
signal.

The scaling and the low-dimensional profile of the slopes
of the Lorenz signal perturbed by a colored noise (shown in
Fig. 16a) can be improved when we apply the SVD filter.
Fig. 25a shows the slopes of the correlation integrals for em-
beddingm = 6, 7 estimated for the colored noise stochastic
signal (e = 0.1) by using the first six and seven columns
of the transform trajectory matrixXC of the SVD analy-
sis. Comparing Fig. 16e which corresponds to the slopes
estimated by the original trajectory matrixX of the Lorenz
stochastic signal, with Fig. 25a which corresponds to the
SVD filter signal, we observe significant improvement con-
cerning the scaling and low-dimension profile. However, the
improvement is even stronger when we use theV2 − V6 and
V2 − V7 SVD components for them = 6 andm = 7 em-
bedding. Fig. 25b shows the slopes estimated form = 6
andm = 7 embedding by using theVi components of the
stochastic signal as columns of the trajectory matrix. The in-
dex takes valuesi = 2 − 6 andi = 2 − 7 in them = 6
andm = 7 embedding space respectively. Now the scaling
and saturation profile is even better, especially in the range
1 ln r = 0.5−2.5. The saturation valueD ≈ 2.5 of the scal-
ing exponent(dm) is not much different from the correlation
dimension of the original deterministic signal. In contrast to
the case of the white noise, the perturbation of the dynam-
ical system by a strong component of colored noise leaves
invariant the phase portraits of theV2−15 SVD reconstructed
components, as well as the phase portraits of the next compo-
nentsVi, (i ≥ 2). The phase portraits of the stochastic signal
and itsV1 SVD component are changed drastically passing
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from the purely deterministic to the stochastic system. We
have observed similar results for the standard deviations and
the cross correlations. That is, the standard deviation of the
higher SVD component(V2−15, V4) remains invariant as we
increase the amplitude of the colored noise perturbation, but
increases drastically for the original stochastic signal and its
V1 SVD component. The cross correlations of the original
stochastic signal and itsV2−15 SVD component decrease as
we increase the colored noise perturbation while the cross
correlations of the original stochastic signals and itsV1 com-
ponents increase. This behavior reveals that the colored noise
perturbs only theV1 component. Concluding, we can support
the concept that the colored noise perturbation is manifested
in the original stochastic signal only through its first(V1)

SVD reconstructed component, while the higher SVD com-
ponents remain unperturbed and conserve the characteristics
of the original purely deterministic system.

7.3 Comparison of the AE index and the Lorenz system

The results of Sections 4-6 permit us to conclude signifi-
cant similarities between the magnetosperic AE index and
the Lorenz stochastic system corresponding to the case of
the color noise perturbation. In more detail we have shown
the following:

The scaling and low value saturation profile of the AE in-
dex are improved sensibly by the SVD filtering. The same
happens with the colored noise stochastic Lorenz signal.

The first SVD componentV1 of the AE index does not re-
veal low-dimensional profile or efficient possibility for dis-
crimination between theV1 component and its surrogate
data. The same was observed for the case of the colored noise
stochastic Lorenz signal but not for the case of the white
noise stochastic Lorenz signal. In contrast to the component
V1, the next SVD components of the AE indexV2−10, V4 re-
veal low-dimensional and nonlinear profile. The same char-
acteristic was observed for the stochastic Lorenz system cor-
responding to the external colored noise perturbation.

The singular value spectrum of the AE index reveals strong
asymmetry between the values of the first eigenvalue(σ1)

and the values of the next eigenvalues{σi}, (i ≥ 2), which
are pressed to the noise floor. The same was observed for the
colored noise Lorenz stochastic signal but not for the white
noise Lorenz stochastic signal.

The previous result concerning the first(σ1) and the next
singular values(σi, i ≥ 2) of the AE index and the colored
noise stochastic signals are conserved effectively passing to
the V1 SVD component of both signals, the AE index time
series and the colored noise stochastic Lorenz system.

The singular value spectrum estimated for the next toV1
SVD components of the AE index and for the colored noise
Lorenz stochastic signal shows a normal profile, revealing a
low number of nontrivial eigenvalues above the noise floor.

In addition, concerning the colored noise stochastic signal
(stochastic Lorenz system), the number of nontrivial eigen-
values above the noise floor, estimated for the SVD com-
ponentsV2−15, V4, is approximately similar to the number

Table 9. This shows the cross correlation coefficient of the AE
index time series and itsV1, V4, V2−15 SVD components.

AE Index
Cross Correlation Coefficient
V1 V2−15 V4

0.63 0.72 0.34

of nontrivial eigenvalues of the original deterministic Lorenz
signal. Similar results were found for the phase portraits and
the standard deviations of the colored noise Lorenz system.
That is, the phase portraits and the standard deviations of
theV2−15 andV4 SVD components of the colored stochastic
signals remain invariant passing from the purely determinis-
tic to the colored noise stochastic Lorenz system, while they
change drastically for the stochastic signal and itsV1 SVD
component.

The autocorrelation coefficient of the colored noise
stochastic signal shown in Figs. 17(a-c) reveals two different
processes: one process with a short decorrelation time cor-
responding to the deterministic component of the signal and
the other process with long decorrelation time correspond-
ing to the colored noise component. The AE index also re-
veals two independent rates of decorrelation (see Fig. 1c):
one rate which is fast and corresponds to low-dimensional
dynamics and the other rate which is slow and corresponds
to the external colored noise perturbation. The existence of
an external high-dimensional colored noise component in the
AE index system can be concluded by the similarity which
was observed between the AE index and the colored noise
Lorenz system concerning the slopes of the correlation in-
tegral signal and the singular value spectrum estimated for
the original signals and its SVD reconstructed components.
Accepting the hypothesis of the external colored noise com-
ponent, we can conclude the low-dimensional and nonlinear
character of the deterministic component of the AE index by
using the results concerning the correlation dimension and
the singular value spectrum. The results concerning the cross
correlation, the phase portraits and standard deviation of the
higher SVD components(V2−10, V4) estimated for the col-
ored noise stochastic system in contrast to theV1 component
conserve the dynamical characteristics of the original purely
deterministic low-dimensional system. This strengthens the
hypothesis of external colored noise in the AE index system.

In order to estimate in the first approximation the percent-
age of the external colored noise to the AE index, we esti-
mated the correlation of the AE index time series and its SVD
components shown in Table 9. Assuming that theV1 compo-
nent absorbs the main part of the external colored noise com-
ponent, according to the previous results of this paper, we
can conclude∼ 40% of external colored noise perturbation
of the AE index. This value was concluded by comparing
the cross correlation of the AE index and itsV1 component
shown in Table 9 and the corresponding cross correlation val-
ues of the original colored noise stochastic signal and itsV1
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component shown in the column(V1) of the Table 6.
According to the extended analysis presented in our previ-

ous paper (Pavlos et al., 1999c ) the supposed colored noise
external perturbation of the AE index system must be con-
nected with the solar wind and the earth’s magnetosphere in-
teraction. According to our analysis, the solar wind, which
causes an external perturbation to the magnetospheric sys-
tem, must be a high-dimensional colored signal. On the other
hand, the previous results permit us to conclude, in addi-
tion, that the low-dimensional profile shown by the SVD fil-
ter AE index signal and its SVD reconstructed components
V2−10, V4, strongly support the supposition of an underlying
low-dimensional internal magnetospheric process. This pro-
cess must be nonlinear as it can be supported by the method
of surrogate data applied to the SVD reconstructed compo-
nents of the AE indexV2−10, V4. The chaotic character of
this process is indicated by the fractal dimensionD ≈ 2.5
estimated in this paper by using the SVD analysis as well
as by the dynamical characteristics studied in our previous
paper (Pavlos et al., 1999b).

Finally, the results of this paper strongly support the theo-
retical concept that the AE index includes two different phys-
ical processes. One process which is low-dimensional and
chaotic, corresponding to the internal magnetospheric dy-
namics, and the other process which is stochastic and strongly
colored in its power spectrum and cannot be discriminated by
a stochastic linear and high-dimensional process, as it was in-
dicated by studying the first SVD componentV1 of the AE
index and its surrogate data. Therefore, the modeling of these
two magnetospheric phenomena remains an open problem.
The first phenomenon is related with the low-dimensional
chaotic behavior and is purely magnetospheric and the other
phenomenon is a rather linear stochastic one and is driven
externally to the magnetosperic dynamics as a colored noise
perturbation. Moreover, the study of stochastic dynamical
systems presented in this paper must be extended for cases
including dynamical noises. The external colored noise per-
turbation of the magnetospheric system must be related to its
coupling with the solar wind system, since the solar wind is
the main source of dynamical perturbation of the magneto-
sphere. If this hypothesis is correct then the solar wind in-
put of the magnetosphere must behave as a high-dimensional
colored noise. From this point of view, in order to test the
above hypothesis concerning the colored noise, the extended
chaotic analysis used in this paper must be applied to the so-
lar wind system.
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