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Abstract. The singular value decomposition (SVD) analy- first principal axis and the; eigenvector of the SVD analy-
sis is used at different stages in this paper in order to extracsis, according to the ordering > o2 > ... > 0, > 0 (see
useful information concerning the underlying dynamics of the next section). In this direction it has been proved that the
the magnetospheric AE index. As a frame of reference weSVD analysis strongly supports the low-dimensional charac-
use the dynamics of the Lorenz system perturbed by exterter of the internal magnetospheric dynamics as it is revealed
nal noise, white or colored. One of the critical results is thatin the AE index time series. Ten years ago we used the con-
the colored noise can be differentiated from the white noisecept of strange attractor dynamics as an explicative paradigm
when we study their perturbation upon the eigenvalue specef the magnetospheric substorms (see Pavlos, 1988). Ac-
trum of the trajectory matrix, the SVD reconstructed com- cording to this concept it is implied that the magnetospheric
ponents of the original time series and other characteristicssubstorms can be explained as the effect of nonlinear dynam-
This resultis used in order to conclude the existence of strongcs of the magnetospheric physical state on a strange attract-
component of colored noise included in the magnetospheriéng subset of the phase-space corresponding to the magne-
AE index time series. Moreover, the study of the SVD recon-tospheric dynamics. Baker et al. (1990) have studied the
structed components of the original time series can confirmsolar-wind magnetosphere coupling problem using a nonlin-
the low-dimensionality of a dynamical system strongly per- ear dripping faucet analogy of the system. This approach
turbed by external colored noise. Finally, the results of thiswas motivated by using the laboratory study of the dripping
study strengthen the hypothesis of the magnetospheric chaokucet (Shaw, 1984) and also by using the dripping faucet
description of plasmoid formation and release discussed by
Hones (1979). Baker's model of the magnetospheric dy-
namics is a mechanical analog. Klimas et al. (1991, 1992)
developed the Faraday loop response model. Pavlos et al.
1994) extended the linear magnetospheric equivalent elec-
ric circuit of Liu et al. (1988) to a nonlinear one. The

1 Introduction

The generalized theory known as singular system analysis

singular value decomposition (SVD) analysis constitutes %bove nonlinear modeling of the magnetospheric dynamics
significant tool for the discrimination of different dynamical has given strong results supporting the concept of magne-
components included in an experimental time series. SVD

vsi tv developed by B head and Ki tospheric chaos which has also been indicated by chaotic
analysis was recently developed by broomnead an Inganalysis of experimental time series (Vassiliadis et al., 1990;
(1986) in relation with chaotic time series analysis as a framex han et al.. 1991° Roberts et al.. 1991 Prichard and Price

work which allows one to address the problems associate 992 Pavlos et al.. 1992a. b: Vassiliadis et al.. 1992: Sharma
with the noisy, finite precision sampled data produced by " 1993 Takalo and Timonen 1994) B ’
measuring experimental phenomenon. Broomhead and King _ ’ _ e
(1986) used the SVD analysis in order to exclude the noisy P:ragel ttotrt]hehse sttt;]d|e.s aff:wtful crltlc;sm r;]as.beﬁn devel-
component associated with small or vanishing singular val-°P€d @boutthe Nypothesis or the magnetospheric chaos espe-

ues ¢;) corresponding to the principal axes in the embeddingCia"y in relation to its experimental evidence. Prichard and
space. Price (1992, 1993) showed that many of the previous results

supporting experimentally the concept of low-dimensional
Imagnetospheric dynamics were caused by the long decorre-
lation time of the AE index and therefore were not the re-
sult of low-dimensional dynamics. Osborne and Provenzale
Correspondence tavl. Athanasiu (1989), Provenzale et al. (1992), Theiler (1991), Pavlos et al.

Additionally, in this paper we use SVD analysis in order
to exclude “noisy” components associated with large singula
values, especially the; singular value corresponding to the
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(1992a, b) used many tests in order to exclude the pseuddsection 5 we study the two-dimensional phase portraits of
chaos of colored noises. The term pseudo-chaos was intra¢he SVD reconstructed components of the AE index and the
duced by Pavlos et al. (1992a, b) to discriminate the real low-Lorenz system perturbed by external noise. In Section 6 we
dimensional chaotic dynamics contained in aperiodic timecompare the cross correlation and the standard deviation of
series from the stochastic high dimensional time series (nonthe original signals and their SVD reconstructed components
chaotic and aperiodic time series) which can mimic almostin the case of the AE index and the Lorenz system which
indistinguishably the phenomenology of chaotic time seriesis also perturbed by external noise. Finally, in Section 7,
Moreover, Vassiliadis et al. (1992) used the Theiler's test inwe summarize the new results of this study especially with
the case of magnetospheric data and showed that, when ththe hypothesis of magnetospheric chaos and we raise critical
parametetw of Theiler becomes comparable to the decorre-questions for future study.

lation time of the magnetospheric signal, the scaling in the

correlation integral disappears and there is no convergence i

of its slopes. Pavlos et al. (1994) extended the chaotic analé 1 heoretical framework

ysis to the AE index by using SVD analysis according to In this section we summarize some theoretical concepts con-

Broomhead and King (1986). Sharma et al. (1993) had aISOcerning the embedding theory, the method of surrogate data

used SVD analysis for the estimation of the eigenvalue spec- . : . ;
trum of the AE index. The combination of SVD analysis and the SVD analysis which constitute the main tools of our

and the Theiler’s test in the work of Pavlos et al. (1994) hasanalyss.
given strong evidence for the existence of magnetospherie 1 Empedding theory and phase-space reconstruction
chaos especially when the Theiler’s parametds equal to
the decorrelation time. Prichard (1995), in a short comment,The earth’s magnetosphere is a system of magnetized plasma,
strongly criticizes the results presented in the work of Pavlosyhich microscopically is an infinite dimensional system, the
etal. (1994). Inthis criticism he uses the method of surrogatedynamics of which is mirrored in the ground measured AE
data and the method of Takens (1985) for the estimation oindex. Some kind of “self-organization” may give rise to
correlation dimension. The conclusion by Prichard was thatthe system evolution on a low-dimensional manifédof
there is no evidence that the AE index can be described bylimensiond. This means that the magnetosphere can be
a low-dimensional strange attractor. An extended review ofdescribed macroscopically by a low-dimensional dynamical
studies of nonlinear dynamics of the magnetosphere is givesystem ofn macroscopic degrees of freedom with> d.
by Klimas et al. (1996). In two previous studies (Pavlos etFor linear systems, “self-organization” is more an externally
al., 1999a, b) we have ascertained that the detailed statisticalriven process described by the external parameters of the
comparison of geometrical and dynamical magnitudes corresystem. For nonlinear and dissipative systems, however, it is
sponding to the AE index time series and its nonlinear surro-possible that the system evolves by its internal dynamics in
gate data (Theiler et al., 1992a,b) can reveal significant dissuch a way that the corresponding phase space flow contracts
crimination between the AE index and the non-linear noiseson sets of lower dimensions which are called attractors.
(nonlinear surrogate data). These results strongly indicate The embedding theory permits one to study the dynami-
the non-linearity and low-dimensionality of the AE index. cal characteristics of a physical system by using experimen-
Furthermore, the comparison of the magnetospheric dynamtal observations in the form of time series (Takens, 1981;
ics with known stochastic and input-output dynamics which Broomhead and King, 1986). Lat(r) = £ (x(0)) de-
can mimic the magnetosperic system (Pavlos et al., 1999chote the dynamical flow underlying an experimental time
has shown that the low-dimensional chaotic dynamics is theseriesx(t;) = h(x(s;)) where i describes the measure-
most appropriate concept for modeling the magnetospherignent function. When there is a noisy component;)
system. In the last paper, it was also shown that the study ofhen the observed time series must be givenxlly) =
the SVD reconstructed components of the AE index can indi-4(x (1;), w(z;)). On the other hand, Takens (1981) showed
cate the existence of an external high dimensional dynamicaihat for autonomous and purely deterministic systems the de-
component. lay reconstruction mag, which maps the statesinto m-
In this paper we extend the previous results and we comdimensional delay vectors

are the SVD spectrum of the reconstructed components o _
Fhe AE index tirEe series with the SVD reconstrucF;ed com-&(x)z[h(x)’ AT A, h(F PN (1)
ponents of the Lorenz system. In Section 2 we summarizes an embedding when > 2n + 1, wheren is the dimension
the theory of SVD analysis concerning the SVD componentsof the manifoldM of the phase space in which evolves the
of the original time series. In Section 3 we present the re-dynamics of the system. This means that interested geomet-
sults of the SVD analysis applied to the magnetospheric AErical and dynamical characteristics of the underlying dynam-
index time series. In Section 4 we present results of the SVOcs in the original phase space are preserved invariable in the
analysis applied to the Lorenz system perturbed by externateconstructed space as well.
noise. In the same section we compare the results of the SVD Let X, = ®®(X) be the reconstructed phase space and
analysis applied to both cases, the Lorenz and the magnetoe, (r;) = ®(x(#;)) the reconstructed trajectory for the em-
spheric systems and we extract significant conclusions. Irbedding®. Then the dynamics evolved in the original phase
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space is topologically equivalent to its mirror dynamical flow  When the sloped(m) of the correlation integrals reveal

in the reconstructed phase space according to plateaus at low values efand the plateau converges for in-
; , 1 creasingn, then this is strong evidence for low-dimensional-
frGer) = ®x) 0 f1(x) 0 @7 (xr) (2) ity of the underlying dynamics to the observed signal. The

of the reconstructed phase spage In other words, the em- s_tochast_ic component behaving as noise in _the exp_erimental
bedding® is a diffeomorphism which takes the orbijfé(x) time series, destrpy the plateau and satqran_on prof|le_ at low
of the original phase space to the orbjt&(x,) in the re- vglues pf the _rad|us anq makes the derivation of reliable
constructed phase in such a way of preserving their oriendimension estimates difficult (Pavlos et al., 1999c).

tation and other topological characteristics as eigenvalues

Lyapunov exponents, or dimensions of the attractors. Ac-2-3  The method of surrogate data

cording to the above theory, in the reconstructed phase space ) ) . ,

we can estimate geometrical characteristics as dimension%Ccordlng to the_rela_ltlon (3) the scaling propert@er_) ~
which correspond to the degrees of freedom of the under? of the_ correlation integral a5 — 0 a_md the saturation of
the scaling exponent,(m) — D, asm increases are neces-

lying dynamics of the experimental time series, as well as 7 . . .
dynamical characteristics as Lyapunov exponent, mutual inSary conditions for the existence of low-dimensional dynam-

formation and predictors (Pavlos et al., 1999a,b). Moreover!®S underlying to the experimental time series. However, it
is shown elsewhere that the method of reconstructed phas"éas been shown that these conditions are not efficient in order
space conserve its significance even when the observed siéglc_onclude_ Iow-_dlhmbe n5|gkr)1al gynamlcs from an experzlmen-
nal is derived by a stochastic process. (Argyris et al., 199gial ime series with broadband power spectrum, as they can

Pavlos et al., 1999¢) be reached also by stochastic systems (Osborne and Proven-
N ' zale, 1989; Provenzale et al., 1991). Moreover, according
2.2  Correlation dimension to Theiler (1991), the concept of low correlation dimension

(fractal or integer) can be applied to time series in two dis-
The theoretical concepts described above permit us to ustnct ways. The first one indicates the number of degrees of
experimental time series in order to extract useful geometfreedom in the underlying dynamics and the second quanti-
ric characteristics, which provide information about the un- fies the self-affinity or “crinkliness” of the trajectory through
derlying dynamics. Such a characteristic is the correlationthe phase space. In the first case, the scaling and saturation

dimensionD defined as profile are caused by the recurrent character of the recon-
dlin C(r)] structed trajectory, i.e. by uncorrelated in “time” and cor-
D= |m0 i (3) related in “space” state points. In the second case, they are
r—

caused by time correlated state points that are uncorrelated
whereC(r) is the so-called correlation integral for a radius in space. In order to discriminate between the two cases,
r in the reconstructed phase space. When an attracting s&hown as dynamic and geometric low-dimensionality, we re-
exists therC (r) reveals a scaling profile strict the sum in (5) to pairée (i), x (j)) with |i — j| > w, for

d the Theiler's parametap larger than the decorrelation time
Cr)y~r for — r—0. 4 of the time series.

The correlation integral depends on the embedding dimen- When low-dimensionality is persistent as a dynamic char-
sionm of the reconstructed phase space and is given by th@cteristic after the application of Theiler’s criterion, then we
following relation have to decide first between linearity and nonlinearity and

then between chaoticity and pure stochasticity. By the term
NN . ) chaoticity we mean the case that the deterministic compo-
Z Z O —llx@ —x()l. () nent of the process is prevalent and reveals low-dimensional
chaos. For a stochastic process, the deterministic compo-
where®() = 1ifa > 0 and®(@) = 0if a < 1, and  nentmay correspond to low-dimensional, even nonlinear and
N is the length of the time series. The scaling exponentchaotic dynamics, but its effect can hardly be observed as the
d(m) increases as we increase the embedding dimemsion process is driven mainly by noise. Therefore, we focus here
When the time series is related to a low-dimensional dynam-on the solution to the first problem, i.e. determining whether
ical system, thed (m) saturates at a final value for a suf-  the AE index time series is linear or nonlinear. This is done
ficiently large embedding dimensiomg. Theoretically, the by following the method of “surrogate” data (Theiler et al.,
valuemg is the smallest integer larger thdh according to  1992a, 1992b).

2
C(r, = —
rem NN =1 i=1 j=i+1

Ding et al., (1993), but in practice;o may attain larger val- The method of “surrogate” data includes the generation of

ues (Kugiumtzis, 1996). That is, an efficient embedding mayan ensemble of data sets which are consistent to a null hy-

require a largem than the smallest integer larger thAn pothesis. According to Theiler (1992a), the first type of null
For periodic attractors the correlation dimensibnbe- hypothesis is the linearly correlated noise which mimics the

comes equal to the topological dimensiwf the manifold  original time series in terms of autocorrelation function, vari-
M, which includes the attractor. Usually for a strange attrac-ance and mean. The second and more general null hypoth-
tor, D obtains a fractal value. esis takes into account that the observed time series may be
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a nonlinear monotonic static distortion of a stochastic linearmatching of power spectrum achieved in the first step is al-
signal. tered. Therefore, the two step process is repeated several
Every Gaussian process is linear while a non-Gaussiarimes until the change in the matching of power spectrum is

process can be linear or nonlinear. An experimental time sesufficiently small. In this paper we follow the algorithm of
ries may show nonlinearity in terms of a non-Gaussian pointSchreiber and Schmitz as it is more efficient to produce sur-
distribution, which may be due to a nonlinear measurementgogate data which mimics the original data. For a comparison
function of a linear underlying dynamics. In this case, the of the two algorithms see Pavlos et al. (1999a).

generated “nonlinear” surrogate data mimic the original time

seriesx (i) in terms of autocorrelation function and propabil- 2.4 Singular value analysis (SVD) and SVD reconstructed
ity density functionp(x). It is always possible for a nonperi- components of the original time series

odic time series of finite length to be a particular realization _ )
of a noise process or of a low-dimensional deterministic pro->ingular value analysis has been proved to be a strong and ef
cess. Therefore, it is a statistical problem to distinguish af€ctive method for modern time series analysis. It was used

nonlinear deterministic process from a linear stochastic pro2Y Broomhead and King (1986) for firsttime and comes from

cess. For this purpose we use as a discriminating statistif® 9eneralized theory of information. In this study we use

a quantityQ derived by a method sensitive to nonlinearity, the above analysis in two cases: _(i) as a time series filter and
as the correlation dimension estimation. The discriminating(ll) {0 decompose a time series in its SVD reconstructed com-

statisticQ is calculated for the original and the surrogate dataPPNents which can be used for the detection of the underlying

and the null hypothesis is verified or rejected according to thefynamics. Singular value analysis is applied to the trajectory
value of “sigmas”s matrix which is constructed by an experimental time series

as follows:
§ = [Hobs = Hsul (6) x(t), x(1+ 1), .., x(t1 + (n = D)
Osur X — x(t2), x(t2 + 1), ..., x(t2 + (n — D7)

where usyr and ogyr is the mean and standard deviation of

Q on the surrogate data andps is the mean ofQ on the xX(tn) Xty + 7). x(ty + (1= D7)

original data. For a single time serigsgps is the singleQ x{

value (Theiler et al., 1992a). I Ko
The significance of the statistics is a dimensionless quan- .y

tity, but we follow here the common parlance and we report xk

it in terms of the units of “sigmas”. WhensS takes values
higher than 2- 3 then the probability that the observed time

series does not belong to the same family with its surrogate . . :
trajectory matrix constitute the state vectarﬁ on the re-

data is higher than.05 — 0.99, correspondingly. : . ;
For testing the second more general null hypothesis degonstructed trajectory in the embedding space Rs we

scribed above we can follow the algorithm of Theiler have constructed state vectors in embedding spacetRe

(Theiler, 1992a), as well as the algorithm of Schreiber and.prOblem is how to use them in order to find a set of linearly

Schmitz (Schreiber and Schmitz, 1996). Both algorithmsmdependent vectors in"Rwvhich can describe efficiently the

o . - attracting manifold within the phase space according to the
create stochastic signals which have the same autocorrelatio . .
. SO - . ) theoretical concepts of paragraph 2.1. These vectors consti-
and amplitude distribution as the original time series.

A dina to the first alaorith hite G . .. tute part of a complete orthonormal ba&s, i = 1, 2, ..n}
ccording o the hirst aigorithm, a white aussian n0|s§ Ifs‘in R" and can be constructed as a linear combination of vec-

Stors on the reconstructed trajectory ifi By using the rela-

wherex(t;) is the observed time series amds the delay
éime for the phase space reconstruction. The rows of the

to make the original time series Gaussian). Then the phas

of this signal are randomized (to destroy any possible non-

linear structure). Finally, the original signal is reordered to siTx = gl.ciT ) (8)

match the rank of the above constructed coloured noise (to

regain the original amplitude distribution). The derived shuf- According to singular value decomposition (SVD) theorem

fled time series is the surrogate time series. it can be proved that the vectarsandc; are eigenvectors of
The algorithm of Theiler was improved by Schreiber and the structure matrixX” and the covariance matri’ X of

Schmitz by a simple iteration scheme in order to strengtherihe trajectory according to the relations

the ability of the surrogate data to fit more exactly the auto-

correlation and power spectrum of the original time series.XXTs" =ofsi, X'Xei=ofe ©)

Starting with a white noise signal, its Fourier amplitudes (grogan, 1982). The vectoss, ¢; are the singular vectors of

are replaced by the corresponding amplitudes of the origi-x ando; are its singular values, while the SVD analysis<of
nal data. The rank order of the derived stochastic signal isgn pe written as

used to reorder the original time series. By this reordering,
the matching of amplitude distribution is succeeded, but theX = S=C’ (10)
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whereS = [s1,52,...,5,], C = [e1,¢2,...,¢,] andS = which is obtained by summing only for the eigenvectars
diago1, 02, ...,0,]. The orderingry > 02> ... >0, >0 with non-zero eigenvalues. From the relation (12) we can
is assumed. Moreover according to the SVD theorem thaeconstruct the original time serig$) by usingn new time
non-zero eigenvalues of the structure matrix are equal to nonseriesV (¢;) according to relation

zero eigenvalues of the covariance matrix. This means that ;

if n’ (wheren’ < n) |Ts the numb;r of the/ non-zero eigen- ;) _ Z Vi) (14)
values, then rankKX® = rank X* X = n’. It is obvious =

that then’-dimensional subspace ofRspanned bys;, i =

1,2,...,n'} is mirrored to the basis vectef which can be where evenyV; () is given by the first column of the matrix
found as the linear combination of the delay vectors by us-(X¢i)¢/ . The V;(r) time series are known as SVD recon-
ing the eigenvectors; according to (8). The complemen- structed components (Elsner and Tsonis, 1996). This is a
tary subspace spanned by theet i = n’ +1,..., N} is kind of n-dimensional spectral analysis of a time series.
mirrored to the origin of the embedding spaceacording The new time serie¥;(¢) constitutes the reconstructed
to the same relation (8). That is, according to SVD analy-time series components of the SVD spectrum, correspond-
sis, the number of the independent eigenvectprthat are  INg to the spectrum of the singular vectas The depen-
efficient for the description of the underlying dynamics is dence of SVD analysis upon the existence of external noise
equal to the numben’ of the non-zero eigenvalues of is described by Broomhead and King (1986) for white noise
the trajectory matrix. The same numbgrcorresponds to and by Elsner and Tsonis (1996) for colored noise. In the
the dimensionality of the subspace containing the attracting?@se of white noise the singular values} of X are shifted
manifold. The trajectory can be described in the new basid!niformly according to the relation

{ci, i = 1,2,...,n} by the trajectory matrix projected on 02 = 52 4+ (£2) (15)

the basidgc;} given by the producKC of the old trajectory ! !
matrix and the matribxC of the eigenvector¢e;}. The new  wheregs; are the eigenvalues of the unperturbed signal and
trajectory matrixXC is described by the relation (£2) is the perturbation of the covariance matkX X. Re-
lation (15) indicates that in a simple case of white noise the
existence of a non-zero constant background or noise floor in

This relation corresponds to the diagonalization of the newthe spectrunio; } can be used to distinguish the determinis-

: : : . tic component. In this way we can obtain the deterministic
covariance matrix so that in the bagés} the components of component of the observed time series
the trajectory are uncorrelated. Also, from the same relation P
(11) we conclude that each eigenvaltfeis the mean square  x, — Z Xeiel (16)
projection of the trajectory on the correspondifngso that o1 >noise
the spectrun{aiz} includes information about the extending . .
of the trajectory in the directions as it evolves in the recon- Whereo; corresponds to singular values above the noise back-
structed phase space. The explored phase space by the t,glr_o_und. Also the above rglatlon (15)_shows that in the case of
jectory corresponds on the average taadimensional ellip-  White noise the perturbation of the smgular valuess |ndg- .
soid for which{c;} gives the directions an@; } the lengths of pendent of them. In co_ntrast, as we shpw in the fqllowmg, in
its principal evolves in the subspace spanned by eigenvector@e case of colored noise the pertqrbatlon of the singular val-
{¢;} corresponding to non-zero eigenvalues. However, whert€S is much stronger for the first singular vaag} than the
the system is perturbed by external noise or deterministic ex?thers. This result could be expected as the colored noise in-
ternal input, then the trajectory begins to be diffused also includes finite dimensional determinism while the white noise
directions corresponding to zero eigenvalues where the exiS an infinite dimensional signal. The above difference be-
ternal perturbation dominates. As we show in the following, tVeen white and colored noise is significant because it makes
the replacement of the old trajectory matixwith the new the SVD analysis efficient to discriminate between different
XC works as a linear low pass filter for the entire trajectory. dynamical components of the original signal.
Moreover, the SVD analysis permits one to reconstruct the
original trajectory matrix by using th€C matrix as follows 3 SVD analysis of the AE index

Xco)'(xc) = x2. (11)

n
X = Z(Xci)ciT . (12) In this section we present the results of SVD analysis ap-
i=1 plied to the AE index in two different levels. First we use
the SVD method as a filter of noise. In this case we estimate

The part of the trajectory matrix which contains all the in- e correlation dimension of the AE index by transforming
formation about the deterministic trajectory as it can be ex-hq original trajectory matrix. At this level we apply the

tracted by observations corresponds to the reduced matrix method of surrogate data in order to decide between static

v and dynamic nonlinearity. In a second level we estimate the

X, = Z(Xci)cT (13) correlation dimensions and the singular values spectra of the
]

~ SVD reconstructed components of the original time series.
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This permits one to distinguish between a high dimensional
component and a low-dimensional component in the original
time series of the AE index. The results of this study are used
for a deeper understanding of the underlying AE time series
dynamical process.

AE Index

3.1 SVD filtering of the AE index time series and estima-
tion of correlation dimension

The AE index describes the Auroral-zone magnetic activity
which is related with the global magnetospheric dynamics
through a complex system of currents. The magnetospheric
dynamics during substorms is manifested as strong variabil-
ity of the magnetospheric and ionospheric electric currents,
especially the auroral electrojets (McPherron, 1995). Distur-
bances in the Earth’s magnetic field produced by currents in
the magnetosphere and ionosphere are commonly described
by a number of magnetic activity indices, which are derived _
from certain physical parameters connected to the dominantx
phenomena causing the disturbance. The indices AU, AL, &
and AE give a measure of the strength of the auroral elec- -
trojets and are defined with the use of traces of the hori-
zontal component (H) of the geomagnetic field measured by
a world-wide chain of auroral-zone magnetic observatories
(Davis and Sugiura, 1966). AU is the maximum positive
disturbance (upper envelope) recorded by any station in the
chain. AL is the minimum disturbance defined by the lower
envelope of the traces of the chain. AE is defined by the sep-
aration of the envelopes (AE = AU-AL) in order to obtain a
better measure of the strength of the auroral electrojets.

Fig. la shows measurements of AE index which corre-
spond to the second half of the year 1978. The sampling rate
of the original signal was one minute while the time series
used in this paper contaié; = 32768 data points that are
the eight minute averages of the entire time series, rounded
to the nearest power of two. That is, the original time series
containsN = 250000 data points. This time series has a
much longer length than the time series used in our previous
work (Pavlos et al., 1992b; 1994) as well as in the works of
other scientists. The stationarity of the time series is tested by
estimating the amplitude distribution for the first half of the
data set and for the second half of it (see Fig. 1b). The ampli-
tude distributions are the normalized ones as we subtract the
mean and we have divided by the standard deviation. From..

sity

Den

Autoc. Coefficient

the same figure it is obvious that the AE index time series
reveals non-Gaussian amplitude distribution.
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rT|]:|g. 1. (a) AE index measurements with eight minute time resolu-
tion corresponding to the second half of the year 1978. The burst-
ing character of the AE index is obvious and indicates the strong

The random character of the AE time series is revealed byoupling of the magnetosphere with the solar witt). Amplitude
the decaying shape of the autocorrelation function (Fig. 1c)distribution for the first and second half of the AE index time series.
showing an abrupt decay during the first 100—200 minutedt is apparent the stationarity of AE indefc) The autocorrelation
and a slow long decay afterwards. This profile of the auto-coefficient for the first 2000 units of lag time indicates two different
correlation function could be caused by two different mech-processes. The first corresponds to an abrupt decay of the autocor-
anisms: a dynamical one, which corresponds to the abrupfélation coefficient and the second to a slow decay.

decay, and a stochastic one (coloured noise), which is re-
sponsible for the slow decay. The two discontinuous lines

in Fig. 1c reveal the two different mechanisms. Of coursedistortion of a linear stochastic system.
the abrupt decay cannot be explained solely as a chaotic be- Fig. 2a shows the slope® of the correlation integrals
haviour as it is possible to be caused by a static nonlineaestimated for embedding dimensioms= 4 — 20. In this
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of the slopes at the levaD = 5 is also observed in Fig.
2a. The above low-dimensional profile is destroyed for lower
distances (Inr < 5), something which indicates the strong
component of the experimental perturbation of the system
(see next sections).

In the following we estimate the slopes of the correla-
tion integral by using the SVD method described in Sec-
tion 2.4 for filtering the external noise. Fig. 2b shows the
slopesD(r, m) of the correlation integral€’ (r, m) for em-
bedding dimensions: = 5 — 20 as a function estimated
by using the trajectory matriXC projected onto the ba-
sis {¢;}. For this estimation we used columns included in
the original trajectory matriXC constructed for embedding
dimensionm = 20. That is, for the embedding dimen-
sionm = 5, the slope corresponds to the trajectory recon-
structed by the first 5 columns of thé x 20 matrix corre-
sponding to the transformed mati¥C estimated forn =
20. The same happens for the next valuesnof Now it
is obvious that there is a clear scaling of the correlation in-
tegral C(r, m) ~ r?™ and a clear low value saturation of
the slopesi(r,m) = d[InC(r,m)]/dInr, in a long region
Alnr = 4 — 6 of the distance. In this estimation the
Theiler's parameter takes the value= 500 and the delay
time was taken to be = 5. The dashed line indicates the
low value saturation of the slopes and scaling exponents at
the levelD = 2.5. This result remains the same for dimen-
sionsm > 15 in the case that the slopes are estimated for
independent trajectory matrices. Fig. 2c is the same as Fig.
2b, but now we have reconstructed an independent matrix
XC for each embedding which was used for the reconstruc-
tion of the corresponding trajectory. As we can see in Fig.
2c the saturation profile appears fer> 15. The delay time
t for the construction of the trajectory mati&was chosen
appropriately for each embedding dimension. According to
the embedding theory the numhérof degrees of freedom
of the underlying dynamics corresponding to the AE index
processisinthe regioP +1 <d < 2D + 1 with D = 25.

The above saturation valug = 2.5 is sensibly lower than
the valueD = 5 estimated in Fig. 2a and in our previous
study (Pavlos et al., 1999a) where no SVD filter was used.

3.2 Statistical test of the null hypothesis

Fig. 2. (a) The slopes of the correlation integrals as a function of The non-Gaussian amplitude distribution of the AE index

the radius- estimated for embedding dimensions= 4— 20, delay

(shown in Fig. 1b) may imply the nonlinearity of the signal

time © = 60 units of sampling time and the Theiler's parameter under appropriate conditions. However, the nonlinearity of a

w = 100. (b) The same with (a) for

=5 m =5-20and

signal can be static or dynamic. As discussed in Section 2.3

w = 500 estimated by using the SVD filtering of the original signal 3 random like and non-Gaussian signal could be caused by a

and the same trajectory matrix for all embeddig). The same as

deterministic nonlinear and even chaotic underlying process

(b) but now we have used independent trajectory matrices for every, by a linear stochastic process observed through a nonlin-

embedding.

estimation the Theiler’s parameter takes the vaiue 100,
while the slopes remain invariable far > 100, and forr =
10— 70. An apparent plateau in a long regigrninr = 5 —

ear static distortion. Fig. 3a presents the slope of the corre-
lation integral estimated in a 20-dimensional state space for
the AE index and surrogate data. As in Section 3.1 we have
used theXC trajectory matrix for the above estimation. Fig.
3b presents the significancs)(of the statistics as a func-
tion of Inr. We observe that for small values of the distance

6.5 of the distance and a tendency for low value saturation (r) Alnr = 4.5—5.5 the significance stays within the region
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Table 1. This shows the ratie, /o4 of the first two singular values
of the AE index time series and i, V>_10 SVD reconstructed
components.

o2/01
0.10
0.10
0.57

AE Index
AE—Vq
AE—(Vo_10)

amplitude of the values of the components are decreasing
for the increasing values of the indéx The decorrelation
times of the signals are also decreasing for increasing values
of i. This reveals that the deterministic character of the com-
ponentsV; (¢) weakens as the indexincreases. The above
characters of the componenits(z) are in accordance with
the fact that according to SVD analysis, every time series
Vi (t) corresponds to the projection of the trajectory on the
eigenvectors; related to they; respectively (see relation 9).
The eigenvalues; also decrease passing from low to high
values of the index, so that the amplitude of the extension
of the trajectory along the axis decreases as we go through
from low to high values of. By comparing Figs. 4a, 4b and
Figs. 4e, 4f we conclude that the first SVD compongnt
corresponds approximately to the trend of the original time
series. Atfirst glance the difference betwéarand the other
components is similar to the difference of a low and a high
pass filter. However the relation betwe®n and the other

components is more complicated as we show in the follow-
ing. Fig. 5a shows the spectrum of the singular valge®er

the original time series. Fig. 5b is the same as Fig. 5a but
estimated for the componelii(¢) of the original time series
and for embedding dimensioms = 10 — 25. Figs. 5(a-b)
reveal apparent similarity between the singular value spectra
~ 2 — 4. This permits one to reject the null hypothesis with for both time series, the AE index and its first SVD compo-
high confidencex 95%). Comparing the above results with nentV;(z). Also we can notice the high difference between
similar results obtained previously for the AE index (Pavlos the value of the first eigenvalug and the value of the next

et al., 1999a) we can conclude that the SVD filter is very eigenvalues;, i = 2 — 25. Fig. 5¢ shows the spectrum of
helpful and strengthens the algorithm for uncovering low- the singular values estimated for the time series
dimensionality and dynamic nonlinearity of the underlying 10

dynamical process to the original time series. In our previ-v2_lo _ Z Vi)

ous paper (Pavlos et al., 1999a) we have estimated the same = '

characteristics of the AE index but without applying the SVD
filtering. There the significance of the statistics was found to
take sensibly lower values than the ones found here.

Fig. 3. (a)Slopes of the correlation integrals estimated for the orig-
inal signal and its first 10 surrogate data as function of |{ip) The
significance of the statistics as function of-lrshown in (a).

(17)

corresponding to the sum of ten first SVD reconstructed com-
ponents except the componént We can observe that the
spectrum of the singular values is normal for #he 19 com-

3.3 Correlation dimension and singular values for the SvDponent without any asymmetry in valuesa@fobserved for

reconstructed components of the AE index time series the AE index and itsV; component. As Fig. 5c reveals
clearly the existence of a noise background after the first

In this subsection we study the slopes of the correlation in-7— 10 singular values. Fig. 5c reveals that approximately the
tegral and the singular values spectrum for the SVD recondeterministic components of the SVD spectrum are the first
structed componentg; () according to the theoretical con- 7 — 10 component¥;, corresponding to nontrivial eigenvec-
cepts presented in Section 2.4. Figs. 4(b-d) show the recortors. Also Figs. 5(a-c) indicate a strong difference between
structed component®i(r), Va(t), Vio(t) and Figs. 4(f-h)  the first componeny; and the next SVD components of the
show the corresponding autocorrelation coefficients in com-AE index as we can conclude by studying the ratigo; of
parison with the original time series and its autocorrelationthe first two singular values estimated for the AE index and
coefficient (Figs. 4a, 4e). As we can see in this figure theits SVD components as shown in Table 1. The ratigo;
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Vi, i =1, 4,10, components of the SVD analysis of the signal shown in(éal) The autocorrelation coefficients estimated for the signals
shown in (a-d) respectively. The dotted lines indicate when the autocorrelation function in (g,h) become zero for first time.
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Ln(r)
takes small values~{ 0.1) both for the AE index and its
Va(r) component but increases .Sl'gnlflcantly for the case OfFig. 6. (a) The slopes of the correlation integrals estimated for the
the Vo_19 SVD components obtaining the value 0.57. To un- V, SVD reconstructed component of the AE index for= 5 —
derstand the physical meaning of the above characteristicg’ r = 100 and Theiler's parameter = 0. (b) The same as (a)
concerning Fhe singular value spectrum Qf the AE index isestimated forw = 100. (c) The same as (a) for AE index and its
a central point of this paper. In the following, we study the surrogate data and for parameters= 10, © = 200, w = 500. (d)
slopes of the correlation integrals estimatedfpandV,_1¢ The significance of the statistics shown in (c).
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dex signal.(b) The autocorrelation coefficient of the signal shown Fig. 8. (a,b) The slopes of the correlation integrals estimated for
in (a). (c) The slopes of the correlation integral estimated for the the Vo_10, V4 SVD reconstructed components of the AE index and

Vo_10 SVD reconstructed component (shown in a) estimated fortheir corresponding surrogate datéc,d) The significance of the
parameters = 10, m = 6 — 10, w = 50. (d) The same as (c)
corresponding to th&, DVD reconstructed component of the AE

index.

statistics shown in (a,b) respectively.
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time series. 4.1 Purely deterministic time series

Figs. 6(a-b) show the slopes of the correlation integrals
estimated for the first SVD componeWi(¢) of the AE time ~ Fig. 9a shows the-component time series of the Lorenz
series. Fig. 6a corresponds to Theiler's parametes 0 system obtained by arithmetic solution according to Abar-
and Fig. 6b tow = 100. The first figure indicates a pro- Panel (1993). Figs. 9(b-c) show thg and V4 component
file corresponding to low correlation dimension which, how- Of the spectrum of the SVD reconstructed components of the
ever, is destroyed when time correlated points of the reconoriginal time series shown in Fig. 9a and Fig. 9d shows
structed trajectory are excluded. This characteristic revealgh€ V2—10 component corresponding to the sumV; for
that there is no low-dimensional deterministic process un< = 2 — 10. Figs. 9(e-h) show the autocorrelation coeffi-
derlying to the first SVD component of the AE index. This Cients corresponding to the time series shown in Figs. 9(a-
point of view is strengthened by Figs. 6(c-d) which presentd). We can notice here that thg component includes high
the comparison with surrogate data. Fig. 6c shows the slopedeterminism with long decorrelation time. As the inder-
of nonlinear surrogate data constructed for theime series ~ Creases the determinism decreases as we can conclude from
in comparison with the slope of thié, component. As we the autocorrelation coefficient shown in Fig. 99 correspond-
can see in Fig. 6d the significance of the statistics indicatednd to theVs component. The componel corresponds to
a small possibility for the discrimination between dynamic the trend of the original time series (see Fig. 9b) while the
nonlinearity and static nonlinearity, taking values lower than Ne€xt components correspond to the high frequencies. The
two sigmas at the main part of the region of values of distanceeoOmponent/>_;o approximates efficiently the original time
r. series as we can conclude from Fig. 9a and Fig. 9d.

Figs. 7(a-b) show th&,_10 SVD component and its auto- ~ F19S: 10(a-d) show the slopes of the correlation integrals
correlation coefficient. The decorrelation time of this time corresponding to the time series shown in Figs. 9(a-d). The
series is 30— 40 lags. Fig. 7c shows the slopes of the §Iopes Qf the sgrrogate data corresponding tq thg original
correlation integrals for th&/,_10 time series, estimated for time series and its SVD components are shown in Figs. 10(e-
m = 6—10 andw = 50. This figure reveals a scaling charac- h). From Figs. 10(a-d) we conclude that for the Lorenz
ter in the regiom In » = 4— 5 and a saturation of the scaling SYStem every SVD reconstructed component reveals a scal-
exponents at the valup = 2.5. Fig. 7d shows the slopes N9 gnd satu_ratlon profile S|m|Ia_1r to t_hat sh_own by the origi-
of the correlation integrals estimated for thig component nal time series, as the correlation d|men3|o.n of gll the_SVD
of the SVD spectrum of the AE index, for = 7 — 10 and ~ COmponents is almost equal to the correlation dimension of

w = 100. This figure also reveals a scaling profile and low th€ original time series of the Lorenz system. That is the
value saturation of the scaling exponents. estimated correlation dimension for thér) time series of
éhe Lorenz system and the correlation dimension of its SVD
component is~ 2.1 — 2.5 as it can be concluded by Figs.
son with the slope of the original time series, for embeddinglo(a_d)' On the other.har.]d,_ F|g_S. 10(e-h) indicate clearly
the possibility for the discrimination of the linear stochastic

dimensionm = 8 andm = 6 respectively. The significance . . ) S
of the statistics coresponding to the Figs 8(a-b) is shown Ondata transformed by nonlinear static distortion and the origi-

Figs. 8(c-d). Figures 8(c-d) clearly indicate the possibility nallltlmefse_rtlesS.VTgls happenstbof_f: for the Lorenzt_systfm as
for the rejection of the null hypothesis in both cases as thelve! as Torits components. Here we can notice strong
significance takes high values dissimilarity between the Lorenz system and the system cor-

_ . . responding to the AE index especially concerning the first
The previous results of the SVD analysis of the AE index SVD components (). As we have shown in Figs. 6(b-c) in

rev(;a?! t::?jt. the o_rlgmlalt'umhe stgnes mcludei ahgtr;)ng I||n(iarhe case of the AE index th¥; component reveals a strong
and fugh dimensional stochastic component which IS relateqyige rance from the original time series concerning the slopes

with the I'rzt componentt/l OIIAthe SVD tshpectru:nsc\)jéhe '€ of the correlation integral. That is, for tHg component of
constructed components. Voreover, the nex COMPO30 AE index there is no significant low-dimensional profile

negtslvi_, ! d> 1 |n_d|c|ate a low-dimensional and nonlinear and no significant discrimination from the surrogate data.
underlying dynamical process. Similar results we have also found in the case of the sin-
gular value spectrum. Figs. 11(a-c) show the normalized
singular valuego;} for the x(¢) time series of the Lorenz
4 SVD analysis of the Lorenz system system and itd/1, Vo_10 SVD components. The result here
is similar to that of the slopes, as there is no significant dif-
In this section we repeat the SVD analysis of the Section 3ference between thgy;} spectra estimated for the original
applied to the Lorenz system in three stages: a) the Lorentime series and its SVD components. Contrary to the Lorenz
system without external noise b) the Lorenz system perturbedystem for the AE index system we observe a strong differ-
by white noise and c) the Lorenz system perturbed by colorecnce between the singular values spegifa corresponding
noise. The result of the SVD analysis applied to a knownto the AE index and it$’; component compared to the SVD
dynamical system will help to understand at a deeper levecomponents of the AE index time series (see Figs. 5(a-c)).
the previous results of the SVD analysis for the AE index. However, we have observed a strong similarity between the

Figs. 8(a-b) show the slopes of the nonlinear surrogate
estimated for thé/,_19 and theV, components, in compari-
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Fig. 11. Singular value spectra estimated for the) Lorenz time
series and its SVD components.

spectrum{o;} corresponding to the original AE index time
series and the spectrugs; } estimated for théd/; SVD com-
ponent of the AE index. The above comparison of the spectrdag the white noise leaves invariant the autocorrelation coef-
estimated for the AE index system and the Lorenz system beficient even for 39%e = 5) percentage of noise. Fig. 12c
comes more evident by comparing Table 2 and Table 1. Tablg@resents the slopes of the correlation integrals estimated for
2 shows the rati@» /o1 estimated for the Lorenz signal and the stochastic Lorenz time seriés = 0.1 — 5.0) and the

its SVD components and indicates that the ratigo is al-
most invariable passing from the original signal to its SVD sionm = 6, delayr = 10 and Theiler’s parametar = 100.
components. However, for the AE index, the ratigo was
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Table 2. The same as Table 1 corresponding to the deterministic
x(t) Lorenz signal.

02/01

Lorenz 0.54
Lorenz-Vy 0.68
Lorenz(Vo_10) 0.63

found to be invariable passing from the original signal to its
V1 component and increases sensibly passing fvgrto the
Va_10 SVD component.

Summarizing the results of the SVD analysis applied to the
Lorenz system, we can conclude the followirkepr purely
dynamical systems the correlation dimension estimated
by the slopes of the correlation integrals and the singu-
lar value spectrum remains invariable as we pass from
the original time series to its SVD reconstructed compo-
nents. However, in the case of an experimental time series
corresponding to an unknown underlying process, it is pos-
sible to show strong differences as we pass from the original
time series to its first SVD component and then to the its next
components.

In order to go deeper for a physical explanation of these
characteristics we repeat the above SVD analysis for the
Lorenz system perturbed by external noise.

4.2 Perturbation by external white noise

In this section we study the-time series of the stochastic
Lorenz system perturbed by external additive white noise ac-
cording to the relation

x(t) = xp(t) + exwn(?) (18)

where thexyn(7) time series was obtained to have mean value
zero and standard deviation one.

We use time series corresponding to the parametets
0.1, 0.3, 0.5, 1.0, 5.0. The respective percentages of the
white noise to the above values are7&% 2.34% 3.9%,
7.8%, 39%.

Fig. 12a shows the-Lorenz time series obtained for 39%
external white noise. Comparing this figure with Fig. 9a
we notice that, although the perturbation is strong enough,
the stochastic time series conserves the general profile of the
original time series. Fig. 12b shows the autocorrelation coef-
ficient for the purely deterministic Lorenz time series and for
the corresponding stochastic Lorenz time series. As we no-
tice in this figure the white noise does not perturbs strongly
the autocorrelation coefficient. Especially at high values of

original Lorenz time seriese = 0) for embedding dimen-

In this figure we notice a significant characteristic that has
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Fig. 12. (a) The x(r) Lorenz signal perturbed by external ad-
ditive white noise corresponding to the value parameter 5
(see the text). (b) Autocorrelation coefficient of the purely de-
terministic Lorenz signal as well as of the two stochastic Lorenz
0.5,5) (c,d) Slopes of the correlation integrals of
the x(¢) deterministic Lorenz signal and af(r) stochastic Lorenz

signals(e =

been analyzed extensively in our previous paper (Pavlos et
al., 1999c). As we can see in Fig. 12c the slope of the corre-
lation integral is destroyed gradually from low to high values
of Inr as we increase the percentage of the stochastic exter-
nal perturbation. Fig. 12d shows the slopes for embedding
dimensionsn = 5 — 8 estimated also for the case aB%

(e = 0.5) of external white noise perturbation. For distance
r: Inr < 1 there is no scaling and no saturation profile of
the slopes. However, for higher values of the distande

the reconstructed phase space, the slopes remain invariable
revealing the same scaling and saturation profile with the un-
perturbed and purely deterministic original time serni¢s

of the Lorenz system.

Fig. 13a shows the stochasti¢s) Lorenz time series per-
turbed by 78% (e = 1) external additive white noise, while
Figs. 13(b-d) correspond to thé&, V4 andV>_15 SVD com-
ponents of the original signal shown in Fig. 13a. The 15
component corresponds to the simV;, i = 2 — 15. The
slopes of the correlation integrals corresponding to the time
series shown in Figs. 13(a-d), are presented in Figs. 13(e-h).
The slopes of the original stochastic Lorgaz= 1) time se-
ries, shown in Fig. 13e reveal scaling and saturation profile
only at high values of the In, in the regionAInr =2 — 3.

The saturation value i® = 2.0 — 2.1 and is approximately
equal to the correlation dimension of the purely deterministic
x-Lorenz time series. This characteristic remains the same
for the first(V1) SVD component of the stochastie = 1)
Lorenz time series as we can see in Fig. 13f. However, the
scaling and saturation profiles are now observed at the re-
gion Alnr = 0 — 1 of the distance. The same result was
obtained for theV, and V,_15 components but now the sat-
uration valueD of the scaling exponents was found to take
little higher values, as shown in Fig. 13g and Fig. 13h.

Figs. 14(a-b) show the autocorrelation coefficient of the
SVD componentsVy, V4 and V,_15 corresponding to the
purely deterministicc-Lorenz time series and the stochastic
x-Lorenz time series corresponding to the strong perturba-
tion by percentage 39% = 5) of external additive white
noise. It is apparent here that the strong component of the
external white noise leaves invariant the autocorrelation co-
efficients in all the cases of the original time series (see Fig.
12b) as well as of its SVD components (Figs. 14(a-b)). Fig.
14c shows a comparison of the autocorrelation coefficients
corresponding to the stochastic= 1) x-Lorenz time series
and its SVD components. This figure reveals that the decor-
relation time of theV; component is longer than that of the
original signal, while the decorrelation time of tivg@ com-
ponent is shorter than that of tHé_15 component. Also,
the decorrelation time of the original signal is longer than its
Vo_15 and V4 SVD components. These characteristics are
similar to those of the AE index and the purely deterministic
x-Lorenz signal (see Figs. 4(e-h), 9(e-h)).

Figs. 15(a-b) show the spectrum of the singular values
{0/}, i = 1— 20 estimated for the purely deterministic=

signals corresponding to different levels of white noise perturba-0) x-Lorenz system and the two stochastic Lorenz time se-

tion. The percentage of white noise for every parametalue is
0.78% (e = 0.1), 2.34% (e = 0.3), 3.9% (¢ = 0.5), 7.8% (e =

1), 39%/ (e = 5).

ries(e = 1, 5) caused by external additive white noise per-
turbation as well as for their SVD componesandV,_1s.
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- ] 4.3 Perturbation by external colored noise
-0.8
\ \ \
0 25 50 75 100 In this section we apply the SVD analysis to the Lorenz sys-

Lag(k) tem perturbed by external additive colored noise. The exter-

nal colored noise is obtained by the equation

Fig. 14. (a) The autocorrelation coefficient of thé, SVD com-

; . M2
ponent of the stochastic(r) Lorenz component corresponding to .
the levele = 0.5 (7.8%) of the external white noise perurbation X(t) = Z Creodaxti +i), i=1....M (19)
compared to the autocorrelation coefficient of the original signal i=1
(e = 0). (b) The same as (a) for thés, V_15 SVD compo-  where the phases, are randomly distributed on the interval
nents of the stochastio(z) Lorenz signal corresponding to the ex- [0, 277] and C, are constants related to the power spectrum

ternal white noise perturbation level = 5 (39%). (c) The au- P(wy) by

tocorrelation coefficient of the(¢) stochastic Lorenz signal and its

V1, Vi, Vo_15 SVD component corresponding to the external white or 17Y2

noise perturbation level = 1 (7.8%). Cr = [P(w)ﬁx} (20)

These random time series have power spegtf@) of the
form =% and show low-dimensional chaos, with correlation
This figure reveals that the perturbation of dynamic systemdimensionD related tax through the relatio® = 2/(a—1),
by white noise leaves invariant the nontrivial eigenvalues ofaccording to Osborne and Provenzale (1989).
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e = 0.5 (185% of the external additive colored noise perturbation.
(b) The autocorrelation coefficients of the_15 SVD component
of the stochastie (t) Lorenz signal corresponding to the two levels
e = 0.1 (37%) ande = 0.5 (185% of the external additive col-
ored noise perturbation(c) The same as (b) but for the, SVD
component.

In this section we use two levels of colored noise corre-
sponding to percentage 37% = 0.1) and 185%(¢ = 0.5)
according to equation

x(1) = x.(t) + excn(t) (21)
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Fig. 18. The same with Fig. 15 but for the colored nois&)
stochastic Lorenz signal.

where thexcn(7) time series was obtained to have mean value
38 and standard deviation 47.

Fig. 16a shows the stochasticLorenz time series in-
cluding 37% of external colored noise. Fig. 16b shows the
first SVD component/; of the stochastic signal shown in
Fig. 16a. The SVD componentg andV,_15 are shown in
Figs. 16(c-d). The componeib_15 approximates the orig-
inal time series (shown in Fig. 16a) while the compongnt
approximates the typical profile of a nonstationary colored
noise. The component, includes noticeable information
from the original signal shown in Fig. 16a. Figs. 16(e-h)
present the corresponding slopes of the correlation integrals
estimated for the time series of Figs. 16(a-d). The slopes
shown in the Fig. 16e correspond to the original stochastic
signal and the slopes shown in Figs. 16(f-h) correspond to
the slopes of the SVD componerits, V4 and V,_15 of the
original Lorenz colored noise stochastic signal. The slopes
of the original stochastic signal (Fig. 16e) reveal a small ten-
dency for scaling and saturation of the scaling exponents at
the valuesD = 3 — 4 in the rangeA Inr = 1 — 3 of the dis-
tancer in the reconstructed phase space. However, this weak
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Table 3. The same as Table 2 but for the two levels: 0.1 (37%), e = 0.5 (185% of the external additive colored noise perturbation.

Lorenz with colored noise
e | Noise % | op/01 e | Noise % | op/01
Lorenz (stochastic) 0.1 37 0.33 || 0.5 185 0.04
Vi 0.1 37 0.12 || 0.5 185 0.02
Vo_15 0.1 37 045 || 05| 185 0.41

Table 4. The same as Table 3 but for the two levels: 1 (7.8%), e = 5 (39%) of the external white noise perturbation.

Lorenz with white noise

e | Noise % | op/01 || e | Noise % | op/01

Lorenz (stochastic) 1 7.8 050 || 5 39 0.50
Vi 1 7.8 045 || 5 39 0.45

Vo_15 1 7.8 047 || 5 39 0.47

profile of scaling and saturation is entirely destroyed passingnal stochastic signal. Here it is important to notice the clear
to the V1 component, as we can see in Fig. 16f. difference between the original signal anditsSVD com-

A significant profile of scaling and low value saturation of ponent concerning the decorrelation time. This characteris-
the slopes reappears passing to the next SVD compo#gnts tic is similar for the colored and white noise. On the other
and V»_15 as we can see in Figs. 16(g-h). The correlation hand, the behavior of the colored noise is different from that
dimension estimated fdrs andV,_15 time series was found of the white noise passing from one level of noise to the
to be~ 2.5. This value is not much different from the corre- next for both cases of the original signal and ¥s com-
lation dimensions of the purely deterministic Lorenz system.ponent. That is, in the case of the colored noise the decor-
The above results reveal three significant characters concermelation time increases as we increase the amplitude of the
ing the colored noise: external perturbation for both the original signal and its first
. . - SVD component/;. This is opposite to the behavior of the
a) The colored noise causes sensitive raising of the satura—h.t ; turbation as we concluded by usina Fias. 12b

tion valueD of the scaling exponents. While noise pertu . . y g "gs.

and 14a. The autocorreletion coefficients for the next SVD
b) The colored noise perturbation is absorbed mainly bycomponentgVy, V2_15) of the original stochastic signal are
the V1 SVD component destroying the scaling and low shown in Figs. 17(b-c). These figures reveal similar behav-
value saturation profile of the slopes corresponding toior for the colored noise and the white noise (see Fig. 14b),
the V1 SVD component. as the decorrelation time of tHg,, V>_15 SVD components

) remains invariant passing from weak to strong external per-
c) The higher SVD component¥, V2-15) absorb much  ,pation.

lower percentage of the noise. The correlation dimen-
sion of these SVD components is not much different
from the correlation dimension of the purely determin-
istic system.

Figs. 18(a-b) show the singular values spectrum estimated
for the colored noise stochastic Lorenz system and its SVD
componentd/y, Vo_15. Fig. 18a corresponds to the first level
(e = 0.1) of the colored noise perturbation and Fig. 18b to
The above characteristics reveal strong differences betweethe second levele = 0.5). As we can conclude by these
the behavior of the colored and the white noise as we perturliigures the colored noise destroys the normal character of
a dynamical system concerning the correlation dimensionthe nontrivial eigenvalues for the stochastic signal an#t4ts
The case of the white noise leaves invariant the correlatior5VD component causing the ratig/o1 of the second to first
dimension passing from the original stochastic signal to itseigenvalue to increase passing from the purely deterministic
SVD components. However, the colored noise leaves invarito the stochastic signal. However, this effect is not observed
ant only the high SVD components. for the Vo_15 SVD component. Table 3 presents the ratio

In the following we present results concerning the auto-o,/01 estimated for the original Lorenz system, the stochas-
corelation coefficient and the singular value spectrum of thetic (colored noise) Lorenz system and the SVD components
Lorenz system perturbed by colored noise. Fig. 17a show®f the stochastic Lorenz system. For both levels of pertur-
the autocorrelation coefficient estimated for the origilaa- bation (¢ = 0.1, 0.5) the ratio decreases passing from the
0) Lorenz system and for the Lorenz system perturbed by expurely deterministic system to the corresponding stochastic
ternal colored noise corresponding to amplitudes=( 0.1, system and thé/; component of the stochastic system. In
e = 0.5). In the same figure we present the autocorrela-contrast, the ratie» /o1 increases passing from thg to the
tion coefficient of the first SVD componeiy of the origi- V2_15 SVD component obtaining almost the valuesgf oy
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estimated for the purely deterministic Lorenz system. Theits V1 component, as we can conclude by comparing Figs.
above results reveal that similarly with the correlation di- 20(a-b) and Figs. 22(a-b). However, it leaves invariant the
mension and the autocorrelation coefficient the behavior ofstructures of the next components V»_15, as we can con-
the colored noise is strong discriminated by the white noiseclude by comparing Figs. 20(c-d) and Figs. 22(c-d).
concerning the singular value stectrum. Table 4 is similar to
Table 3 corresponding to the case of perturbed Lorenz sys-
tem by white noise. This table shows that the ratigo1 is Figs. 23(a-d) and Figs. 24(a-d) are similar to the previ-
almost invariant passing from the purely deterministic signalous Figs. 21(a-d) and Figs. 22(a-d) but they correspond to
to the corresponding stochastic signal and the SVD compotwo different levels of white noise perturbation. When the
nents of the second. external white noise perturbation is weak8% correspond-
ing to the valuez = 1 of the noise parameter) then the phase
portraits of the original stochastic time series (Fig. 23a) and
its SVD components (Fig. 23(b-d)) are similar to the cor-
responding phase portraits of the purely deterministic sig-
5 SVD analysis and phase portraits nal (shown in Figs. 20(a-d)) except for the small trembling
caused by the external white noise. However, contrary to
In this section we study the two-dimensional phase portraitshe case of the colored noise, when the external white noise
of the AE index system, the stochastic Lorenz system, as welbecomes strong enough (39% corresponding to the noise pa-
as their SVD components. Figs. 19(a-d) show the two di-rametere = 5) the initial structure is covered by the external
mensional phase portrait of the AE index time series and itperturbation as we can see in Figs. 24(a-d). This charac-
SVD componentd/i, Vs, Vo_10. The phase portrait of the teristic is observed both for the initial stochastic signal (see
original time series (AE index) reveals some kind of structureFig. 24a ) and its SVD components (see Figs. 24(b-d)). The
extended along the axis(¢), X (¢t + 60). The phase portrait observed difference between the behavior of the white and
of the V1 component (shown in Fig. 19b) reveals approxi- colored noise perturbation becomes more significant if we
mately the same structure to the original time series. How-note the following: the white noise perturbation related to the
ever, the Brownian character is stronger in the phase portraitoise parameter e=5 corresponds to the percentage36fo
of the V1 component. The phase portraits of the next SVD of the original signal amplitude. This percentage of white
components/s and Vo_19 (shown in Figs. 19(c-d)) reveal noise is efficient to destroy the original phase space structures
a structure much different than the structure of the originalfor both the original signal and its SVD components. In con-
time series (AE index) and it§; component. Now the struc- trast, the much higher percentage 185% of the colored noise
ture Vo_1g is extended along the diagonal while the structure perturbation corresponding to the vakie= 0.5 of the noise
of the V4 component is more spherical than the structure ofparameter can destroy only the phase structures of the origi-
the Vo_10 component or the structures corresponding to thenal signal and itd/; component (see Figs. 22(a-b)), while it
AE and itsV; component. leaves invariant the phase space structures of the next SVD
Figs. 20(a-d) are similar to Figs. 19(a-d) but for the = componentd/y, V,_15 (see Fig. 22(c-d)).
component of the Lorenz system. As Fig. 20b and Fig.
20d reveal, the phase portraits of thig V4 components are
different from the phase portrait of the original signal. The Summarizing the above results referred to in the Lorenz
phase portrait of th&>_15 component reveals a structure al- system we can conclude that the two dimensional phase por-
most similar to the original signal. traits of the original signals and their SVD components are
Figs. 21(a-d) show the phase portraits of the colored noisalso efficient to discriminate between the white and colored
(e = 0.1) stochastic Lorenz system and its SVD compo- noise perturbations. Moreover, even when the colored noise
nents. Now the structures of the original signal (stochasticperturbation is much stronger in amplitude than the ampli-
Lorenz signal) and its SVD components are weakly changedude of the original signal, the SVD analysis permits one to
compared to those shown in Figs. 20(a-d), which correspondecapture the original phase space structure by using the SVD
to the purely deterministic Lorenz system. In more detailscomponents next td;, such as thé»_15 SVD component
the phase portrait of th&,_15 component remains invari- which will be described in the next sections.
able passing from the purely deterministic (Fig. 20c) to the
stochastic component (shown in Fig. 21c). However, the
component/; changes sensibly passing from the purely de- By using the above results concerning the stochastic

terministic to the stochastic signal (see Fig. 20b, 21b). Lorenz system we can conclude that the 190 SVD com-
When the amplitude of the external colored noise pertur-ponents of the AE index is appropriate for extracting useful
bation becomes stronger, corresponding to the valse).5 information about the underlying dynamical process in the

of the noise parameter, then we can observe some importamiase where the AE index includes strong colored noise. The
new characteristics. Now opposite to the previous case ofast supposition about the colored noise component in the AE
weak perturbatiorfe = 0.1) the colored noise has entirely index can be supported by the previous results concerning the
destroyed the structures of the original stochastic signal andl.orenz system perturbed by external colored noise.
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external colored noise perturbation.
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Table 5. This shows the cross correlation coefficients of the Table 7. The same as Table 5 corresponding to the magnitudes of
stochasticx () Lorenz signal and itd/1, Vg4, Vo_15 SVD recon- the standard deviation.
structed components for two levats= 1 (7.8%), ¢ = 5 (39%)

of external white noise perturbation compared with the correspond- Lorenz with white noise
ing values of the original (deterministig)) Lorenz signal. Standard deviation
e | Noise % | Original | V1 Vo_15 | Va
Lorenz with white noise 0 0.0 12.69 | 5.29 | 11.17 | 5.19
Cross Correlation Coefficient 1 7.8 12.73 | 532 | 11.24 | 5.21
¢ | Noise%| Vi | Vo 1s Va 5| 39 13.63 | 5.40 | 12.20 | 5.65
0 0.0 0.47| 0.91 0.40
1 7.8 0.47 | 0.90 0.40
5 39 0.44 | 0.87 0.37

Table 8. The same as Table 6 but for the standard deviation.

Lorenz with colored noise
Standard deviation

Table 6. The same as Table 5 but for the case of white noise pertur-

bation of the Lorenz system. e | Noise%| Original | V1 | Vo35 | V4
0.0 0.0 12.69 529 | 11.17 | 5.19
Lorenz with colored noise 0.1 37 13.78 762 | 11.11 | 5.31
Cross Correlation Coefficient 05 185 27.47 | 24.06 | 11.29 | 6.91
e Noise % | Vp Vo_15 Va
0.0 0.0 0.47| 0.91 0.40
0.1 37 0.59| 0.83 0.37
0.5 185 0.91| 0.09 0.07 V1 component increases as we increase the amplitude of the

external perturbation. In contrast to this, the behavior of the
cross correlations corresponding to the SVD compongnts
andV,_15 decreases as we increase the amplitude of the ex-
6 Other comparisons of the original signals and their  ternal perturbation for both cases%f andV,_15 SVD com-
SVD components ponents.
Comparing the previous results about the dependence of
6.1 Cross correlation of the original signals and their SVD the correlation of the initial signals with the SVD compo-
components nents upon the level of the external noise, we can conclude
. o ) . the following: the white noise perturbs symmetrically all of
The correlation of the original Lorenz signal (deterministic or 1o gyvp components of the original signal, while the colored

stochastic) with its SVD components is shown in Table 5 as g,,ise perturbs mainly the first SVD componéhtand leaves
function of the white noise leveék = 0, 1, 5) and in Table 6 invariant the next components.

as a function of the colored noise level= 0, 0.1, 0.5). For
example, the columivy in Table 5 presents the cross corre- 6.2 Standard deviation of the original signals and their SVD
lation of the original Lorenz signal and it§ component as components
a function of the white noise level. The first column of every
table shows the percentage of the noise corresponding to th€he standard deviation, defined as the square root of the vari-
noise parameter. ance, was computed for the original signal and its SVD re-
Concerning the white noise we notice that the cross correconstructed components in the case of the Lorenz system per-
lation of the original Lorenz signal and its SVD components turbed by external white and colored noise. Table 7 shows
(V1, Va, Vo_15) is approximately independent of the external the standard deviations in the case of white noise as a func-
perturbation and equal to the original cross correlation estition of the noise level. As we increase the level of noise the
mated for the value = O of the noise parameter (case of standard deviation does not increase significantly in the case
zero perturbation). of the original signal as well as in the cases of its SVD com-
It is important to note in Table 5 that the cross correla- ponentsVs, Vg4, Vo_15. Contrary, in the case of the colored
tion of the original signals and thelf; and V4 components  noise (Table 8), the standard deviation of the original sig-
are equal to the value 0.4 — 0.5. Contrary, the cross cor- nal and its first SVD componerif; increases significantly
relation value of the original signals and théi_15 SVD as we increase the level of noise while it remains invariable,
component is much higher and equakd.9. This resultis  especially for the componeit_15. In the case of thé/,
expected as the componérit_15 approximates the original component we notice a very slow increase which becomes
signal much better than thé& or V4 components, according ~ 2 units for 185% of noise. For 37% of colored noise the
to the theoretical concepts presented in Section 2. standard deviation of th&, andV,_15 SVD components re-
Concerning the colored noise perturbation we observe dif-main invariable and equal to the standard deviation of the
ferent behavior of the cross correlations. As we can see impurely deterministic signal. Concluding, we have shown in
Table 6 the cross correlation of the original signal with its this section that the study of cross correlations and standard
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deviations indicate clear differences between white and col-Dint < d < 2Djnt + 1, whereDjy corresponds to the first in-
ored noises. That is, while the white noise can be manifestedeger which is greater than the fractal correlation dimension.
symmetrically in all the SVD components, the colored noiseFor the AE index this relation indicates= 3 — 7 possible
perturbs only the first SVD component. The above resultsdegrees of freedom.
are similar with the results included in previous sections.

7.2 The Lorenz system

7 Summary and discussion 7.2.1 Purely deterministic low-dimensional dynamical sys-
tem (Lorenz system)

In this paper we applied the SVD analysis to the magneto-
spheric AE index and the Lorenz system. In the case of thelhe correlation dimensions remain invariable passing from
Lorenz system we studied it in three different stages: Wherthe original signal to its SVD components, while the nonlin-
the system is independent from external noise, as well agar surrogate data are clearly discriminated from the original
when it is perturbed by external white or colored noise. Thesignal, the Lorenz signal and it§, Vs, V2_10 SVD compo-
results of the above analysis are very interesting for the physnents. The singular value spectryat} is also invariable
ical understanding of the magnetospheric dynamics. In addipassing from the original Lorenz signal to its SVD compo-
tion, the results of this paper reveal new possibilities of thenents. The phase portrait of thé_15 SVD component is
SVD analysis improving the algorithm of chaotic analysis of almost similar to the phase portrait of the original signal,
experimental time series. Before we discuss the physical imwhile the phase portraits of the independent SVD component
plications of this paper, we summarize the crucial points of (V1, Va4...) are dissimilar to that of the original signal.
the previous sections.

7.2.2 Low-dimensional stochastic dynamics (the case of
7.1 The AE index system white noise)

The SVD method used for substituting the original trajec- The study of the stochastic Lorenz system showed that the
tory matrix X by the XC trajectory matrix improves effec- perturbation of a dynamical system by external white noise
tively the scaling and the saturation profile of the slopes. Thdeaves invariant the physical characteristics of the system
slopes estimated by using theand XC trajectory matrices  causing only secondary changes. Summarizing the results
(shown in Figs. 2(a-b)) showed clearly the improvement of about the white noise perturbation at a dynamical system we
the scaling and low-dimensional profile of the slopes afterhave observed the following:
the application of the SVD transformation on the trajectory Inthe case of white noise perturbation the scaling and satu-
matrix. ration profile of the slopes are conserved invariable for a nar-
The first SVD reconstructed componeérit of the AE in- row range of distance, but they are destroyed for small val-
dex does not reveal low-dimensionality, although it corre- ues ofr. This character was observed to be real for the orig-
sponds to the eigenvectof and the eigenvalue;, which inal (purely deterministic system), the white noise stochas-
theoretically must include the highest deterministic compo-tic system and their SVD components. That is, the correla-
nent of the signal. Moreover, the slopes of thecomponent  tion dimension is almost the same for the original purely de-
indicate that thé/; time series is a high dimensional stochas- terministic signal, the stochastic signal caused by the white
tic signal with long decorrelation time because no significantnoise perturbations, and the SVD reconstructed components
discrimination with its nonlinear surrogate data is possible.of the stochastic time series. The singular value spectrum
On the other hand, the next SVD componeWis V,_1g of {o;} is also invariable passing from the original = 0) to
the AE index clearly reveal low-dimensional and nonlinear the stochasti¢e = 1, 5) system and from them to the SVD
character. The discrimination with nonlinear surrogate datacomponents of the stochastic time series.
is now effective. The decorrelation time was also found to be invariable
Concerning the singular value spectrum of the AE indexpassing from the original purely deterministic time series and
we observed the first valug; to be much larger than the its SVD components to the corresponding stochastic signals
next singular values which are pressed to the noise floorand their SVD components. That is, the white noise pertur-
This picture is invariable passing to the first SVD compo- bation does not change the decorrelation times of the original
nentVy, but changes drastically going to the next SVD com- signal and those of its SVD components. The phase portraits
ponents. In particular, for th&,_19 SVD component, we of the white noise stochastic Lorenz system (case of white
observed a spectrum of normal singular values which in-noise) and its SVD components are invariant for weak white
cludes a small numbér- 7) of nontrivial eigenvectors. This noise perturbation and change drastically for strong white
number of nontrivial eigenvalues and eigenvectors above th@oise perturbation. The same happens for the cross correla-
noise background indicates 7 dynamical degrees of free- tions and standard deviations as they remain invariable pass-
dom of the underlying dynamics. This result is in agree-ing from the purely deterministic Lorenz system to stochastic
ment with the correlation dimensiob = 2.5 given that (after the application of a white noise perturbation) system
the number of degrees of freeddi) satisfies the relation and its SVD components. Concluding, we can support the
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The decorrelation time increases drastically passing from
the original deterministic signal to the corresponding stochas-
tic signal. The increment of the decorrelation time becomes
larger for larger amplitudes of perturbation. The same phe-
nomenon was observed for thé component. That is, the
decorrelation time increases passing from theomponent
of the original (deterministic) signal to thHg component of
the corresponding stochastic signal. The increment is also
larger for larger amplitudes of perturbation. Moreover, the
first SVD componen¥ of the colored noise stochastic sig-
nal does not reveal any scaling or low value saturation pro-
file. In addition, it is not possible to discriminate thé
component of the stochastic signal from its surrogate data.
This behavior indicates that tHé component absorbs the
main part of the external colored noise. In contrast, the next
SVD components reveal efficient scaling and saturation pro-
files corresponding to the low-dimensional characteristics of
the original deterministic signal.

As for the stochastic system (case of colored noise) and its
V1 component, the first singular valag of the singular val-
ues spectrunfo; } was observed to be much higher than the
next singular values which were pressed down to the noise
floor. This characteristic becomes stronger as the amplitude
of the colored noise perturbation increases. However, the
singular value spectrum becomes normal and is similar to
the spectrum of the original deterministic signal passing to
the next SVD components of the corresponding stochastic
signal.

The scaling and the low-dimensional profile of the slopes
of the Lorenz signal perturbed by a colored noise (shown in
Fig. 16a) can be improved when we apply the SVD filter.

Fig. 25. (a) The slopes of the correlation integrals estimated for Fig. 25a shows the slopes of the correlation integrals for em-

the Lorenz colored noise stochastic sigial= 0.1) for embed-
dingm = 6,7. The trajectories were constructed to correspond
to the first six and seven columns respectively of the SVD trans-
formed trajectory matriXC. (b) The same as (a) corresponding to
5-dimensional and 6-dimensional trajectories constructed by usin{f‘

beddingm = 6, 7 estimated for the colored noise stochastic
signal (e = 0.1) by using the first six and seven columns
of the transform trajectory matriXC of the SVD analy-

is. Comparing Fig. 16e which corresponds to the slopes

the V, — Vg andV, — V7 SVD components of the original stochastic €Stimated by the original trajectory maték of the Lorenz

signal respectively.

stochastic signal, with Fig. 25a which corresponds to the
SVD filter signal, we observe significant improvement con-
cerning the scaling and low-dimension profile. However, the

concept that generally the white noise perturbation does notmprovement is even stronger when we useWhe- Vg and
destroy drastically the physical characteristics of the originalV2 — V7 SVD components for the: = 6 andm = 7 em-
dynamical system and it is manifested symmetrically on thebedding. Fig. 25b shows the slopes estimatedifoe= 6

SVD reconstructed components of the original signal.

andm = 7 embedding by using th& components of the
stochastic signal as columns of the trajectory matrix. The in-

7.2.3 Low-dimension stochastic dynamics (the case of col-dex takes values = 2 —6 andi = 2 — 7 inthem = 6

ored noise)

andm = 7 embedding space respectively. Now the scaling
and saturation profile is even better, especially in the range

The behavior of a stochastic signal caused by colored noise\ Inr = 0.5—2.5. The saturation valub ~ 2.5 of the scal-
perturbation upon the SVD analysis is much different from ing exponentd,,) is not much different from the correlation
the case of white noise stochasticity or the case of a purelydimension of the original deterministic signal. In contrast to
deterministic signal. The crucial points of differentiation are the case of the white noise, the perturbation of the dynam-
the behavior of the first SVD componeWi, the first singu-  ical system by a strong component of colored noise leaves
lar value(o1), the decorrelation times, the cross correlationsinvariant the phase portraits of thé_15 SVD reconstructed
and the standard deviation of the stochastic signal arid its components, as well as the phase portraits of the next compo-
component. Summarizing, we have observed the followingnentsV;, (i > 2). The phase portraits of the stochastic signal
characteristics: and itsV; SVD component are changed drastically passing
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from the purely deterministic to the stochastic system. WeTable 9. This shows the cross correlation coefficient of the AE
have observed similar results for the standard deviations anthdex time series and g1, V4, V2_15 SVD components.

the cross correlations. That is, the standard deviation of the
higher SVD componentVs_1s, V4) remains invariant as we AEIndex
increase the amplitude of the colored noise perturbation, but Cross Correlation Coefficient
increases drastically for the original stochastic signal and its Vi_| Vao-15 Va
V1 SVD component. The cross correlations of the original 063] 0.72 034
stochastic signal and itg_15 SVD component decrease as

we increase the colored noise perturbation while the cross

correlations of the original stochastic signals and/itgom- L o o
ponents increase. This behavior reveals that the colored noig nontrivial eigenvalues of the original deterministic Lorenz
perturbs only thé’; component. Concluding, we can support signal. Similar re_sul_ts were found for the phase portraits and
the concept that the colored noise perturbation is manifested1® Standard deviations of the colored noise Lorenz system.
in the original stochastic signal only through its fitst) That is, the phase portraits and the standard deV|at|on§ of
SVD reconstructed component, while the higher SVD com-th€ V2-15 andVa SVD components of the colored stochastic

ponents remain unperturbed and conserve the characteristi&ignals remain invariant passing from the purely determinis-
of the original purely deterministic system. tic to the colored noise stochastic Lorenz system, while they

change drastically for the stochastic signal andviisSVD

7.3 Comparison of the AE index and the Lorenz system Component.
The autocorrelation coefficient of the colored noise
The results of Sections 4-6 permit us to conclude signifi-stochastic signal shown in Figs. 17(a-c) reveals two different
cant similarities between the magnetosperic AE index andprocesses: one process with a short decorrelation time cor-
the Lorenz stochastic system corresponding to the case aksponding to the deterministic component of the signal and
the color noise perturbation. In more detail we have shownthe other process with long decorrelation time correspond-
the following: ing to the colored noise component. The AE index also re-
The scaling and low value saturation profile of the AE in- veals two independent rates of decorrelation (see Fig. 1c):
dex are improved sensibly by the SVD filtering. The sameone rate which is fast and corresponds to low-dimensional
happens with the colored noise stochastic Lorenz signal.  dynamics and the other rate which is slow and corresponds
The first SVD componenk; of the AE index does notre- to the external colored noise perturbation. The existence of
veal low-dimensional profile or efficient possibility for dis- an external high-dimensional colored noise component in the
crimination between thé/; component and its surrogate AE index system can be concluded by the similarity which
data. The same was observed for the case of the colored noiseas observed between the AE index and the colored noise
stochastic Lorenz signal but not for the case of the whiteLorenz system concerning the slopes of the correlation in-
noise stochastic Lorenz signal. In contrast to the componentegral signal and the singular value spectrum estimated for
V1, the next SVD components of the AE ind€x_10, V4 re- the original signals and its SVD reconstructed components.
veal low-dimensional and nonlinear profile. The same char-Accepting the hypothesis of the external colored noise com-
acteristic was observed for the stochastic Lorenz system coponent, we can conclude the low-dimensional and nonlinear
responding to the external colored noise perturbation. character of the deterministic component of the AE index by
The singular value spectrum of the AE index reveals strongusing the results concerning the correlation dimension and
asymmetry between the values of the first eigenvaiug the singular value spectrum. The results concerning the cross
and the values of the next eigenvalyes}, (i > 2), which correlation, the phase portraits and standard deviation of the
are pressed to the noise floor. The same was observed for thégher SVD componentéV,_10, V4) estimated for the col-
colored noise Lorenz stochastic signal but not for the whiteored noise stochastic system in contrast totheomponent
noise Lorenz stochastic signal. conserve the dynamical characteristics of the original purely
The previous result concerning the fitst) and the next  deterministic low-dimensional system. This strengthens the
singular valuego;, i > 2) of the AE index and the colored hypothesis of external colored noise in the AE index system.
noise stochastic signals are conserved effectively passing to In order to estimate in the first approximation the percent-
the V. SVD component of both signals, the AE index time age of the external colored noise to the AE index, we esti-
series and the colored noise stochastic Lorenz system. mated the correlation of the AE index time series and its SVD
The singular value spectrum estimated for the nex¥ito  components shown in Table 9. Assuming thatth&ompo-
SVD components of the AE index and for the colored noisenent absorbs the main part of the external colored noise com-
Lorenz stochastic signal shows a normal profile, revealing gponent, according to the previous results of this paper, we
low number of nontrivial eigenvalues above the noise floor. can conclude~ 40% of external colored noise perturbation
In addition, concerning the colored noise stochastic signabf the AE index. This value was concluded by comparing
(stochastic Lorenz system), the number of nontrivial eigen-the cross correlation of the AE index and its component
values above the noise floor, estimated for the SVD com-shown in Table 9 and the corresponding cross correlation val-
ponentsV,_15, Va4, is approximately similar to the number ues of the original colored noise stochastic signal andtits
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