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Abstract. This paper applies the Hamiltonian Approach (HA)
to two-dimensional motions of incompressible fluid in curvi-
linear coordinates, in particular on a sphere. The HA has
been used to formulate governing equations of motion and
to interpret the evolution of a system consisting ofN local-
ized two-dimensional vortices on a sphere. If the number of
vorticesN is large,N ∼ 102

− 103, a small number of vor-
tex collective structures (clusters) is formed. The surprise
is that a quasi-final state does not correspond to completely
disorganized distribution of vorticity. Numerical analysis has
been carried out for initial conditions taken in the form ofa
fewaxisymmetric chains of point vortices distributed initially
in fixed latitudes. The scheme of Runge-Kutta of 4th order
has been used for simulating an evolution of resulting flows.
The numerical analysis shows that the Kelvin-Helmholtz in-
stability appears immediately formating initial disorganized
structures which are developed and finally “bursted”. The
system evolves to a few separated vortex “spots” which exist
sufficiently for a long time.

1 Introduction

In the past, a number of theoretical and experimental studies
have been devoted to the understanding of the dynamics of
atmospheric and oceanic vortices which are frequently ob-
served in nature (Fig.1). Vortices of planetary scale are in-
teresting to a large extent because of their longevity, their ro-
bustness to perturbations, their coexistence with surrounding
turbulence, and their ubiquity in laboratory, geo- and astro-
physical flows. The interest in the problem is also driven by
the anxiety of the civilization’s impact on the environment
(see, for example, McIntyre (1991) for a review on the ozone
hole, or works on the stratospheric polar vortex).

Compared to the traditional fluid dynamics, atmospheric
and oceanic vortex dynamics includes a number of physi-
cal restrictions (quasi-two-dimensional motion of wave and
vortex structures on a curvilinear (spherical) surface, strati-
fication, presence of shear flows, rotation of the Earth, etc.)

Fig. 1. Cyclone.

which strongly affect the motion and interaction of vortex
fields and vortices. A study combining all these factors is a
very complicated problem, and therefore until now has been
frequently investigated separately, or with some simplified
assumptions.

There have been numerous studies of the stability, interac-
tions, and mergers of small numbers of isolated vortices (see
Overman and Zabusky, 1982, and Refs therein). An evolu-
tion of large-scaled vortices have been discussed in the works
of Bogomolov (1977), Zabusky and McWilliams (1982), Rez-
nik (1992) and Polvani and Dritschel (1993) (see Refs therein
also). Marcus (1990) has carried out dynamical simulation
calculations (concerning the Great Red Spot which can be
considered as a persistent spot of cyclonic vorticity) on a flat
annulus with rigid boundaries. The effect of planetary cur-
vature and rotation was incorporated by theβ-plane approxi-
mation. In the model of Miller et al. (1992), the Monte Carlo
simulations were compared with the long-time dynamics of
Marcus (1990). Smith and O’Neill (1990) confined their re-
search to the point-vortex limit (see Miller et al., 1990). The
list of similar works can be continued.

With few exceptions, most of the works on this topic are
focused generally on the development of complex three-di-
mensional numerical models. However, these giant models
have somehow obscured the fact that a number of fundamen-
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tal responses can be found from simpler models that possess
distinct physical fundamentals. It should be kept in mind that
without addressing, in the beginning, the ”big picture”, the
brute-force computer calculations of vortex phenomena for
complex configurations are not very appealing. Their results
often depend on a number of factors of secondary importance
which can both distort the overall picture and introduce de-
tails frequently even nonexistent.

With this in mind, we extend in the present work the study
of the Hamiltonian dynamics of vortices1 in a two-dimensio-
nal thin layerof incompressiblefluid by examining their be-
havior when they are movingon the curved surface.

Thus, in the following consideration, there are two concep-
tual aspects: a two-dimensional approximation of hydrody-
namical motions, and the use of the Hamiltonian Approach.

Let us briefly review some of the key factors of the two-
dimensional hydrodynamic models (for detailed discussion
and justification of the models, the reader can be directed to
classical textbooks, for example, Pedlosky (1987)).

Let the fluid motions be characterized by the following
typical scales: the horizontal,V , and vertical,W , velocities
of the fluid, as well as the horizontal length-scale,L, of a vor-
tex structure. The layer thickness,D, will be regarded as the
vertical length-scale. If the Froude number,Fr = V 2/gL, is
small, and the Reynolds number,ReD = VD2/νL is large,
the problem can be considered as two-dimensional and in-
viscid. Hereg is the gravity acceleration, andν is the kine-
matic viscosity of the fluid. Here the dominant mechanism
of bottom Rayleigh friction is taken into account (Pedlosky,
1987, and Refs therein). If the horizontal size of the vor-
tex structure has a scale ofL ∼ 104

÷ 106 m, the thickness
of the atmosphere is ofD ∼ 104 m, then for a moderate
velocity of flows V ∼ 1 ÷ 101 ms−1 and typical viscos-
ity ν ∼ 10−5m2s−1, the characteristic Reynolds number is
ReD > 106

� 1. Thus, the inequalitiesFr � 1, ReD �

1, D � L, W � V hold true, and we can consider the fluid
layer as “thin”, and motions as two - dimensional. Such es-
timations of dimensionless numbers are typical for geophys-
ical hydrodynamics (Holton, 1992). Obviously, in venturing
applications to the Earth’s conditions, the neglected effects
of dissipation, radiation and vertical structure distance this
idealized model from the real thing. However, certain impor-
tant features of the complex dynamics of vortex motion can
be captured by this simple model.

The vorticity in real atmospheric and oceanic eddies of-
ten largely exceeds the background vorticity (for example, in
oceanic rings or typhoons). Such localized vortex structures
have a relatively large life-time. On the other hand, in the
approximation ofRe−1

→ 0 when a fluid is considered as
inviscid, the governing hydrodynamical equations admit the
singular vortices as its solution. Thus, point (singular) vor-
tices, as a mathematical model, can be used as basic elements
in a constructed model.

1There exists a few versions of the Hamiltonian Approach. We
use the version formulated in the works of Goncharov and Pavlov
(1993).

In spite of some difficulties in the interpretation of phys-
ical results, the concept of localized (in particular, singular)
vortices is largely used in problems of geo- and astrophysical
hydrodynamics. Singular vortices offer a simplified descrip-
tion, valid when the vortices are concentrated and well sep-
arated. In recent years a large number of publications have
appeared in which different models of behavior of localized
vortices have been proposed. For various reasons such mod-
els were found attractive. In many cases the study of the dy-
namics of the localized vortices and their interaction is sim-
pler than in analogous problems for continuous vortex dis-
tribution. An arbitrary initial hydrodynamical field can be
represented in the form of superposition of fields generated
by such vortices, etc.

In the framework of the presented approximation, the vor-
tex field evolution can be interpreted as a result of the inter-
action of the localized vortices, and the averaged vorticity is
defined via their superposition.

In our work, we assume that the physics of the considered
processes is described by inviscid Euler equations in two di-
mensions. In this case, 2D Euler flows can be described by a
system of point vortices: the full vorticity is given by

� =

∑
i

γi δ
(2)(x − xi).

Obviously, a model of point vortices provides a convenient
mathematical model where one neglects the effects of finite
vortex cores. (Effects of finite-area vortices are frequently
addressed using uniform vortex patches, but neither system
– point-vortices or vortex patches – is entirely satisfactory).
In astrophysics, a similar double standard is used. For ex-
ample, point masses are considered to describe problems of
celestial mechanics, but fluid globes are used to model stellar
structure.

Let us make here some comments about the difficulties
associated with the concept of singular vortices.

(i) In the traditional description of experimental results,
flows involve continuous distributions of vorticity. How
can one approximate a continuous distribution of vorticity
by means of point vortices? The response can be as fol-
lows: the physical meaning has only the averaged distribu-
tion 〈�〉 =

∫
6
dσ � where the characteristic size of the

domain of space averaging,(6)1/2, satisfies the condition
(D/N)1/2 � (6)1/2 � D1/2. HereN is the full number of
vortices, andD the area of the domain where the vortices are
localized. The averaging procedure has to be applied after
calculating� only.

(ii) For a vorticity field consisting of point vortices, in-
tegrals of any finite power of the vorticity involve powers
of delta-functions and are therefore singular. Yet in typical
physical models the vorticity field has perfectly, well-defined
moments. How can one define these integrals and moments?

The interpretation of the integrals is simple if we use the
following consideration (see Landau and Lifshitz, 1987):∫
dx δn(x) = lim

ε→0

∫
dx δn−1

ε (0) δ(x).
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Here,δε(x) is a “spreaded” delta-function withδε(0) = ε−1

and the condition of normalization
∫
dx δε(x) = 1. ε is the

characteristic scale of the domain where the “spreaded” delta-
function is localized. Thus, we obtain∫
dx δn(x) = ε−(n−1)

∫
dx δ(x) = ε−(n−1).

If �(x) =
∑N
i=1 γi δ

(2)(x − xi) (for the two-dimensional
description), we obtain the estimate for the moment

M(n)
=

∫
dx�n(x) =

N∑
i=1

γ ni σ
−(n−1).

Here,σ is the characteristic area of the domain occupied by
a localized vortex. The numberN of vortices is fixed by
the number of momentsM(n) in question. Parametersγi are
found by solving the set of equations

N∑
i=1

γ
j
i = σ j−1M(j), j = 1,2, ... N.

In Section 2 we present the fundamentals of the Hamilto-
nian Approach. The governing equations for vortices moving
on a spherical surface are formulated in Section 3. Vortex in-
teractions are examined in Section 4. We show how the vor-
ticity rearranges itself forming large vortex clouds. Numer-
ical calculations, for several initial distributions, show that
such collective structures form taking the form ofclusters,
like galaxies emerging from a system of point masses. It is
still a surprise that this regime does not correspond to a com-
pletely disorganized (homogeneous) distribution of vorticity.
Our conclusions regarding the results and the use of the me-
thod are presented in Section 5.

2 Basic equations

2.1 Hamiltonian approach

The second important aspect of the present work consists in
the application of the Hamiltonian Approach (the version de-
veloped in works of Goncharov and Pavlov, 1993, 1997a,b)
to the problems of the geophysical hydrodynamics. One of
the motivations of the present work is connected withpracti-
cal applications of this method.

Let us consider the dynamics of incompressible flows gov-
erned by equations

∂tvα + vβ∂βvα = ∂α(ρ
−1p + χ), ∂βvβ = 0, (1)

wherevα are velocity components (α, β = 1, 2, 3) in the
Cartesian system of coordinates,∂t is the partial derivative of
a field variable with respect to time,p is pressure,ρ is den-
sity (furtherρ = 1). The summation convention is implied
on repeated Greek indices when tensor notation is used.

The so-called hydrodynamical Hamiltonian systems
evolve according to the law

∂tui = {ui, H} =

∫
dx′

{ui, u
′

j }
δH

δuj (x′)
, (2)

where the Hamiltonian,H, of the system is the quantity func-
tionally dependent on the fields,ui . The Hamiltonian struc-
ture of hydrodynamical models consists, this way, of the Ha-
miltonian,H, given by the total energy expressed in terms of
field variables,ui, and of the functional Poisson bracket{ , }.

Conservation of energy follows from the given formulation,
since∂tH = {H , H} = 0.

The detailed consideration of the subject has been given in
the works of Goncharov and Pavlov (1993), Goncharov and
Pavlov (1997a).

It is well known (Arnold, 1969, see also Morrison, 1982,
Goncharov and Pavlov, 1993, 1997) that the system (1) may
be presented on the phase space of the vorticity field

�α = εαµβ∂µvβ (3)

(εαµβ is the Levi-Civita tensor) in Hamiltonian form as

∂t�α = {�α,H } =

∫
dx′

{�α, �
′
β}
δH

δ�′
β

. (4)

Here and further, prime denotes that the field variables de-
pend on space coordinatex′. The functionalH = H [�]

under the symbol of the variational derivativeδ/δ�j , the ki-
netic energy of flow:

H =
1

2

∫
dx v2, (5)

is the Hamiltonian. The skew-symmetric functional Poisson
bracket in Eq. (4),{�(x),�(x′)}, is local and is defined for
the given model by expression

{�α, �
′
β} = εασγ εγ λνεβνµ∂σ�l∂µδ(x − x′). (6)

Here and further,dx = dx1dx2dx3.

The curvilinear generalization of (6) and (5) in the case of
when the used coordinatesx = (x1, x2, x3) are not Cartesian,
may be written (see Goncharov and Pavlov, 1993) as

{�α, �′β
} =

= g−1/2εασγ εγ λνε
βνµ∂σ�λ∂µg

−1/2δ(x − x′), (7)

H =
1

2

∫
dxg1/2gαβvαvβ , (8)

wheregαβ is the metric tensor,g is its determinant,�α are
contravariant components of the vorticity,vα are covariant
components of the velocity. Here,

�α = g−1/2εαβκ∂βvκ . (9)

is the curvilinear generalization of (3).

2.2 Two-dimensional approximation

We will consider effectively two-dimensional incompressible
flows whose particles move along non-intersecting stationary
fluid surfaces. Depending on the symmetry of the problem,
it is convenient to study such flows in a suitable system of
orthogonal curvilinear coordinatesx1, x2, x3 so that coordi-
nate linesx3 coincide with vortex ones while coordinate lines
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x1 andx2 lay on the fluid surfaces. In such coordinate sys-
tems the vector field of the velocity has two componentsv =

{v1, v2, 0} and the vector field of the vorticity has only one
component� = {0,0,�}, where� = g−1/2(∂1v2 − ∂2v1).

The incompressibility equation,∇ · v = 0, which is pre-
sented obviously in the form

g−1/2∂β

(
g1/2vβ

)
= 0. (10)

allows us to introduce the stream function9

vβ = g−1/2εβα∂α9, (11)

whereεαβ is an anti-symmetrical unit tensor of second order,
ε12

= 1, ε21
= −1.

Let us note here that9 possess symmetry9 → 9 +Cte,

i.e. the coordinate-independent part of the stream function
〈9〉 may be omitted.

By virtue of the incompressibility condition the basic
quantities can be expressed in terms of the stream function
9 as

v1 = g11g
−1/2∂29, v2 = −g22g

−1/2∂19; (12)

� = −g−1/2(∂1g22g
−1/2∂1 + ∂2g11g

−1/2∂2)9. (13)

In the two-dimensional case the Poisson bracket (8) reduces
to the more simple expression:

{�,�′
} =

εαβ

√
g

∂�

∂xα

∂

∂xβ

δ(x − x′)
√
g

, (α, β = 1, 2). (14)

To avoid confusion, it should be noted that contravariant vor-
ticity � is named later merely as a vorticity and differs from
the usual physical vorticity�g1/2 (g11g22)

−1/2. Both defini-
tions coincide only in cases wheng = g11g22. The funda-
mental nature of contravariant vorticity is based on the fact
that in two-dimensional incompressible non-plane flows only
this characteristic is a scalar quantity which obeys to the law

∂t�+ vα∂α� = 0, (α = 1,2).

That is,� is conserved conveying fluid particles along their
Lagrangian trajectories.

Without the loss of generality we assume thatx1 coincides
with streamlines of the unperturbed stationary problem. For
this wide class of layer models, geometric properties of the
space associated with such coordinate systems are character-
ized only by componentsg11, g22, g33 of the metric tensor
and by its determinantg which are deemed independent of
x1, just as the velocity profile of the unperturbed flow.

Using equation (11), the HamiltonianH∗ may be rearran-
ged as

H∗
=
ρ

2

∫
dζ (∇9)2 = −

ρ

2

∫
dζ 9 �

= −
ρ

2

∫
dζ 1 dζ 2 g1/29 �, (15)

where

� = −g−1/2 εβα∂α uβ = −19. (16)

Here, quantity� is a generalized vortex on a non-flat, two-
dimensional flow,uβ are covariant components of the hydro-
dynamical velocity,uβ = gβα u

α, 1 is a two-dimensional
operator, similar to the Laplace operator, defined by:

1 = g−1/2εαβ∂βgαγ g
−1/2εγ ν∂ν

= g−1/2(∂1g22g
−1/2∂1 + ∂2g11g

−1/2∂2) (17)

In expression (15), the space-independent part of�, i.e.
〈�〉, can be eliminated too, because of the condition on the
stream-function:

∫
dζ 9 〈�〉 = 〈�〉

∫
dζ 9 = 0.

The coordinate-dependent part of stream function9 can
be expressed in terms of the full vortex field,�. From equa-
tion (16) we find the relationship between these characteris-
tics of field, i.e. between9 and� :

9 = −

∫
dζ ′G(ζ , ζ ′)�(ζ ′), (18)

Here, Green’s functionG(ζ , ζ ′) is a solution of the equation

1G(ζ , ζ ′) = δ(2)(ζ , ζ ′)− V −1, (19)

where V is the “volume” of a domain where the delta-
function is defined (for a spherical surface, the “volume”
is V = 4πR2 and the concrete structure ofG is given be-
low). This result follows from the fact that the surface of a
sphere, for example, has a “volume”, but has no boundaries.
If V → ∞, one has the traditional equation.2 Applying op-
erator1 to expression (19), we find the correct relationship,
19 = �− 〈�〉.

The kinetic energy of fluid may be written in the form

H∗
= −

ρ

2

∫ ∫
dζdζ ′ � �′ G(ζ , ζ ′). (20)

If in the considered system there exist localized zones of in-
tensive concentration of vorticity, the full stream function
(vorticity field) may be presented as a sum of a regular part of
the field,9r (or�r ), and a singular one,9s (�s), associated
with localized vortices (see the following section).

The Hamiltonian,H∗, (integral of motion, energy expres-
sed in terms of the canonical variables) is in this case

H∗
=
ρ

2

∫
dζ (∇9r)2 − ρ

N∑
i−1

γi9
r(ζ i)

−
ρ

2

∑
i,j

γiγj .Gij (21)

The first term here represents the regular current energy, the
second,Hrs, describes the Hamiltonian of interaction be-
tween theregular currentandlocalized vortices, and the last

2For a two-dimensional ideal incompressible fluid, we have
19 = �, for quasi-geostrophic flows in the barotropic atmo-
spheric model, taking into consideration its “compressibility” and
the so-called gyroscopic rigidity, and for the ocean[1−R−2

]9 =

�. Here,� is the potential vorticity,R =
√
gH/β is the Obukhov

scale (Obukhov, 1949),H is the ocean depth or the characteristic
atmospheric height,g is the gravitational acceleration, andβ is the
Coriolis parameter. Operator1, the Laplacian, is written in the
spherical metric.
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termHint describes theinteraction between localized vor-
tices.

Thus, the study of the motion of two-dimensional vortices
when they are interacting among themselves is assured by
the HamiltonianHint . Their behavior when they interact and
are embedded, for example, in regular shearing zonal flows
is described byHrs +Hint , etc.

2.3 Point vortices

Consider now, in the framework of such a modified Hamil-
tonian formulation, an evolution of a system consisting ofN

singular vortices: two-dimensional models of perfect fluid
permit the existence of singular (point) vortices.

We assume that the vortex system consists of a linear su-
perposition of point “sources”, and the field,�, is character-
ized by the following distribution of vorticity

� =

∑
i

γiδ
(2)(ζ − ζ i(t))

= g−1/2
∑
i

γiδ
(1)(ζ 1

− ζ 1
i (t)) δ

(1)(ζ 2
− ζ 2

i (t)). (22)

In this case, a total vorticity is given by∫
dζ ′�(ζ ′) =

∑
i

γi . (23)

Here,γi are independent of time intensities of the vortices,
[γi] = L2T −1, ζ i = (ζ 1

i , ζ
2
i ) are their coordinates depen-

dent on time,δ(2)(ζ − ζ i) is the two-dimensional function of
Dirac (see (A10)),ζ i = ζ i(t).

Notwithstanding this, let us agree that in this chapter the
repetitive index will not mean a summation which will be
shown as

∑
.

Calculating the corresponding Poisson brackets{ζ αi , ζ
β
j }

which follows directly from (14) and (22) (see also the defi-
nition of the delta-function), we find

{ζ αi , ζ
β
j } = γ−1

i g
−1/2
i δijε

αβ , (24)

wheregi = g(ζ = ζ i) is calculated in the point where the
vortex is localized.

Thus, in terms of variablesζ αi the dynamics of a system of
singular vortices will be described by the equations

∂tζ
α
i = {ζ αi , H} =

εαβ

γig1/2

∂H
∂ζ

β
i

, (25)

where canonical pair of dynamical variables isζ αi , {. , .} is
the functionalPoisson bracket expressed in terms of varia-
tional derivatives,δ/δζ αi , H is the Hamiltonian, i.e. thefull
energy of the fluidexpressed in terms ofcanonical variables.
The Hamiltonian does not depend explicitly on time, and thus
it is an integral of motion:∂tH = {H, H} = 0.

Using Green’s functionG(ζ , ζ ′), which satisfies the equa-
tion

1G(ζ , ζ ′) = δ(2)(ζ , ζ ′)− V −1, (26)

we can find for the Hamiltonian of localized vortices

H = −
1

2

N∑
i,j

γiγjG(ζ i, ζ j ). (27)

The final expression forH via the implicit Green’s function
is obtained by substituting (22) into (20).

The expression forH has a shortcoming by having an un-
certainty which arises from turning into infinity of the energy
of the interaction wheni = j. We can write

H = Hi +Hint = −
1

2

∑
i

γ 2
i Gii −

1

2

∑
i 6=j

′
γiγjGij . (28)

One can show that the first term,Hi, has a logarithmic di-
vergence. But this term can be excluded from the considera-
tion, because it is independent on the space coordinates due
to the independence ofGii on the coordinates. Spherical co-
ordinates may be considered as an example of a system of
curvilinear coordinates which satisfy this requirement.3

3 Governing equations for vortices on the sphere

We consider the dynamics of an incompressible, unforced,
inviscid and thin fluid shell on the spherical surface of radius
R. We will work through our article in a frame of reference
that is fixed in space. This formulation is opposed to the
more common geophysical conventions considering a frame
rotating with the system (the Earth, for example).

We suppose that the reader should not be confused as to
whether the vortex dynamics presented below is in a rotating
fluid or not. It is clear that a simple change of the coordinate
system cannot affect the dynamics of the processes.

The dynamics of point vortices moving on a curvilinear
surface is described by equations (25). On a sphere the loca-
tion is given by longitudeθ and latitudeφ. Coordinatesζ αi
are (θi, φi), whereα = 1, 2, g−1/2

= r2 sinθ, tensorεαβ

has componentsε12
= −ε21

= 1, ε11
= −ε22

= 0. Spher-
ical coordinatesr, θ, φ are connected with Cartesian ones as
x = r sinθ cosφ, y = r sinθ sinφ, z = r cosθ. We
have, thus,ζ 1

= θ, ζ 2
= ϕ, ζ 3

= r, g11 = r2, g22 =

r2 sin2 θ, g33 = 1, andg = r4 sin2 θ > 0. For a spherical
surface the basic system of dimensionless equations becomes

∂tθi = (γi sinθi)
−1∂φiHint ,

∂tφi = −(γi sinθi)
−1∂θiHint . (29)

3Obviously, only in the case when the character of these infini-
ties does not depend on the location of the vortices, the self-action
corresponding to the infinite energy which does not affect the evo-
lution of the vortices may be excluded from the Hamiltonian (27).
The mathematical nature of these infinities is universal. It is defined
by the fact that when|ζ − ζ ′

| → 0 Green’s function has a logarith-
mic divergence. Because the above-described divergence appears
only under the assumption of singular vortices, when the vorticity
distribution is described by the delta-function, this problem does not
occur for objects of finite sizes.
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Fig. 2. The evolution of the system whenµ = 0.0613. The dis-
tance between patches exceeds their initial diameter. The instability
of the spot position is observed at the late stage of the simulation,
approximately after 300 time steps.

Here,∂t is the dimensionless derivative-operator with respect
to time applied to a spherical coordinate of a vortex, time is
measured in units ofτ = r2/γ0, γ0 = max(|γi |), γi =

γi/γ0, |γi | ≤ 1, i = 1, ... , N, ∂φi = ∂/∂φi, ∂θi = ∂/∂θi,

0 ≤ θ ≤ π, 0 ≤ φ − 2πk ≤ 2π, k = 0,±1,±2, ... .
If the regular current is absent, the Hamiltonian is given

by the expression

Hint = −
1

2

∑
i,j

γiγjGij . (30)

The diagonal terms are absent in the sum
∑
j,k

′
.

The calculation of the Green’s function (see Appendix B)
give

G(cosβij ) = −
1

4π

∞∑
l=1

2l + 1

l(l + 1)
Pl(cosβij )

≡
1

4π
ln(1 − cosβij ). (31)

Here, Pl(z) are Legendre polynomials. Obviously, the
Green’s function is defined up to a constant.

Let us note that ifz → 1, we obtain the approxima-
tion used frequently in plane motions. Evidently, in this
case,G(z) ' (4π)−1 lnβ2

+ ... . This expression leads
to the classical equations for vortices moving in the plane
x0y (evidently, in this case, one obtainsxk = rφk, yk =

ruk, |φk| � 1, |uk| � 1)

γi∂tyi = −∂xiHint , γi∂txi = ∂yiHint , (32)

Fig. 3. The evolution of the system whenµ = 0.1. The distance
between patches is slightly less then their initial diameter. The in-
stability is developed due to the intensive exchange of localized vor-
tices.

where

Hint = −
1

4π

N∑
i 6=j

γiγj ln[(xi − xj )
2
+ (yi − yj )

2
],

and we arrive at the equations of motion of point vortices in
theunbounded plane(see Lamb, 1932)4

4 Results of calculations and discussion

In our numerical calculations we use the expression for the
Green’s function given by (31). System of equations (29) is
reduced to

4It is a classical result of Kirchhoff (1876) stating that the
equations of a point-vortex motion can be written asγi∂txi =

∂9/∂yi , γi∂tyi = −∂9/∂xi , where thestream function9 =

9(xi , yi) is frequently called the “kinetic energy of interaction”.
In this connection, let us note that the detailed discussion on the
problem of the motion of point vortices has been reviewed by Aref
(1983).
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Fig. 4. The evolution of the system whenµ = 0.157. The patches,
which are initially at sufficiently short distances, exchange immedi-
ately with each other numerous vortices and merge forming rapidly
a perturbed strip. Appearance of 2 or 4 structures is accompanied
by the pushing out of vortices.

∂tθi = (4π)−1
N∑
j=1

′ γj (1 − cosβij )
−1

·

· sinθj sin(φj − φi),

∂tφi = (4π)−1
N∑
j=1

′ γj (1 − cosβij )
−1(cosθj

− sinθj cosθi sin−1 θi cos(φj − φi)), (33)

where

cosβij = sinθi sinθj cos(φj − φi)+ cosφi cosφj .

The system has been treated by means of a 4-order Runge-
Kutta scheme. The time step is restricted by the condition
1t < η19/sup(|∂tθi |, |∂tφi |) where1ψ is the character-
istic angle between two point vortices. To avoid the polar
singularity due to the metrics, a polar cap of 0,01 radian
is excluded from the domain. The energy conservation has
been evaluated during the calculations. The HamiltonianH
tries small variations:−0.0192401≤ H ≤ −0.0192344,
during the process of iterations fromt = 0 to t = 400 with
the the root-mean-square error< 3 · 10−4.

The numerical analysis shows that the dynamical behavior
of the structures in question includes an exchange of point
vortices (dipoles) between clouds of vortices and the appear-
ance of the fragmentation of the original structures, formed
of initially regularly distributed vortices. We also analyze the
fragmentation of an equatorial, initially homogeneous, jet.

We initialize the system ofm equidistant distribution of
vortices centered at the latitudeθc = π/2, and composed
of n2 point vortices. The parameters of the problem are: a)
the fractional areaµ occupied by the vortices: this parameter
is defined as the total area enclosed by the vortex patches
divided by 4π : µ ' mδϕ δθ sinθc/4π and b) the number
m of domains. The results of the numerical simulations are
given in Figures 2 - 6. The trajectories and the distribution
density of the clouds of point vortices are given here in the
framework of the so-called “sinus” - representation where the
coordinates are defined byx = ϕ sinθ andy = θ.

The results are presented in Figures 2 - 4 for 5 equatorial
patches each containing 64 point vortices and characterized
by the parametersµ = 0.0613, 0.100 and 0.157.

Figure 2 shows the evolution of the system of vortices
whenµ = 0.0613. This parameter corresponds to the dis-
tance between patches exceeding their initial diameter. The
instability of the spot position was observed at the late stage
of the simulation, approximately after 300 time steps. This
instability evidently is a result of the growing exponential of
the accumulated numerical mistakes. The spots behave as
isolated structures, and no exchange of vortices has been ob-
served.

Figure 3 demonstrates the case ofµ = 0.1. In this scenario
the distance between the patches is slightly less than their
initial diameter. In this case, from the very beginning, the
episodical exchange of vortices is observed. Aftert = 180
the instability of the positions appeared. This instability is
developed due to the intensive exchange of localized vor-
tices. 4 or 5 compact structures with densities similar to the
ones in the initial configurations are formed. Finally, the sys-
tem evolves into three patches. Several isolated point vor-
tices ejected from the clusters are clearly observed. Figure
4 shows the evolution of the system whenµ = 0.157. The
patches, which are initially at sufficiently short distances, ex-
change immediately with each other numerous vortices and
merge forming rapidly a perturbed strip which can be qual-
ified as turbulent. Originating from this unstable strip, 4
structures are formed without “pushing out” of vortices at
t = 130. Later, the appearance of 2 or 4 structures is accom-
panied by the pushing out of vortices. Finally, 3 structures
are formed with the vortex density comparable to one of ini-
tial clusters.

Let us present some results of the dynamic behavior of an
equatorial jet consisting ofN = 100 point vortices. The in-
tensities of the vortices are defined by the expressionγi =

±1/N sinθi . These singular vortices are distributed along
the strip with a transversal size 0.15π radian, on circles of
latitudeθi = π×(0.5+0.15ξi),whereξi = −0.5+(i−1)/9.
This distribution corresponds to an equatorial jet with the fol-
lowing parameters: maximum of the velocity on the axis and
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Fig. 5. Destruction of the strip and the formation of 3 or 4 clusters
at t = 305.

transversal variations of the velocity1Vφ,i = ±0.1. The
sliding near the edges of the jet is the cause of the appear-
ance of instability which is displayed for the first time at
t = 158 andt = 193. Figure 5 illustrates fluctuations on the
edges of the strip in a form of small quasi-symmetrical rings.
These structures develop betweent = 226 andt = 246. Very
rapidly, appearing oscillations lead to the destruction of the
strip and to the formation of 3 or 4 dipoles att = 305.

Finally, these structures develop into two large clusters of
positive vorticity and three weak zones of negative vorticity
(t ≥ 374) (Figure 6). These structures are accompanied by
isolated vortices ejected during the process of transition.

The averaged space density of vortex distribution has been
obtained from the following expression:

〈ω(xl)〉 =

N∑
i=1

γi〈δ(xl − xi)〉 =

N∑
i=1

γiw(βli),

wherew(βli) = K sup(1 − βli/πν, 0), βli ≡ β[xl, xi] >

0, xl is the coordinate of pointPl , xi is the coordinate of the
ith singularity,β [xl, xi ] is the angle between the positions
of Pl andPi . ConstantK is defined by the normalization
condition: K−1

=
∫
dσ w(βli) = π3ν2/3. In our model

calculations we usedν = 10−1.

Fig. 6. Two large clusters of positive vorticity and three weak zones
of negative vorticity are formed (t ≥ 374).

5 Conclusion

The paper was motivated by several reasons. First, the ques-
tions regardingwhatthe Hamiltonian looks like andwhatthe
structure of the canonical equations is in concrete situations
arenot as trivial as they may appear at first glance. Indeed
they must be addressed at the very beginning of the analysis
of any practical application. Second, development of the Ha-
miltonian Approach would remain incomplete if no practical
application of the theoretical analysis were given. As one of
the important examples we consider a 2D geophysical flow
of an incompressible fluid.

As an application of the method, in this paper, we have
examined two of the simplest configurations of flows on the
surface of a sphere: a system ofN point vortices initially reg-
ularly distributed, and an equatorial jet. We have found that
the vortex dynamics contains a change of vortices (vortex
pairs) among vortex patches, with the appearance of frag-
mentation of the structures. Second, we have analyzed the
stability and the fragmentation of the initially homogeneous
equatorial jet. The most important result of the simulation is
that the system forms cluster structures.

These obtained results are only indicative, since the pro-
posed model is a very crude approximation of the real sit-
uation. However, it is interesting to note that in the frame-
work of the proposed model we can explain the appearance
of vortex structures. As the number of point vortices is in-
creased, individual trajectories become of less concern be-
cause groups of many vortices are formed. With simple ini-
tial conditions these collective structures take the form of
clusters ,or regions of intense vorticity, like galaxies emerg-
ing from a system of point masses. The surprise is that this



Pavlov et al.: Formation of vortex clusters on a sphere 17

regime does not correspond to a completely disorganized (ho-
mogeneous) distribution of vorticity.

Let us conclude with a few remarks concerning the pre-
sented concept. In the current time of the intense use of com-
puters, the merits of advanced analytical methods are often
questioned: what good does a closed solution to a problem
have, when it takes longer to analyze the problem analyti-
cally than to numerically integrate the underlying equations?
In the response to such scepticism we can present the follow-
ing argument.

Formal applications of finite-difference methods to sys-
tems of equations with Poisson brackets depending on fields
(i.e. in non-canonical form) can lead to equations which will
be not conservative. In such cases the loss of conservativ-
ity in Liuville’s systems can be frequently observed. How-
ever, often such a loss of conservativity, as well as violation
of the Jacobi property, may occur not due to the physical
changes in the system, but rather due to the numerical errors
accumulated in the finite-differential schemas (see comments
in the work of Goncharov and Pavlov, 1997a). This remark
is of particular significance because theoretical and comput-
ing physics widely uses discrete models with adequate cor-
respondence to continuous analogies.

The analytical manipulations in the framework of the HA
arenot replicated according to the number of equations. The
Jacobi’s property which defines whether or not the system is
Liuvillian is assured automatically. Indeed, in this approach,
the object for approximating procedures isnot the equations
which are, as a rule, large in number, but a single quantity –
Hamiltonian, the full energy of the system presented in terms
of canonicalfieldvariables.

Let us emphasize that the use of numerical methods im-
poses special requirements on the structure of the essential
element of the method – the Poisson bracket (see, Goncharov
and Pavlov, 1997a). It is evident that approximate methods
are most effectively realized in the framework of the Hamil-
tonian (canonical) formulation with the Poisson tensor in-
dependent of field variables. In this case, there is only one
object for approximation – the Hamiltonian, and correspond-
ing calculations, which as a rule, could have a cumbersome,
recurrent character, are not replicated in accordance to the
number of equations.

The merits of the Hamiltonian method are the ease of trans-
formation to new coordinates and the simplicity of perturba-
tion calculus. The method is most convenient, not only for
the derivation of the dynamic equations, but also for the es-
timate of the extent to which one or the other of the used
approximations is universal. The method also allows one to
reduce analytical manipulations to a minimum when solving
concrete problems.

In conclusion, let us note that casting one’s problem into
the set of Hamilton’s canonical equations, (here the conju-
gate variables arep andq) ∂tp = −δH/δq, ∂tq = δH/δp,

brings benefits to the researcher. The computer is itself a
“Hamiltonian device”: it has a memory (denote its state by
F ) and a central processor (H ) programmed to operate in
each cycleδt : δF = δt H(F ). A simulation of the evo-

lution of a system which follows Hamilton’s equations is,
therefore, an ideal task for a computer.
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Appendix A Spherical harmonics

The appropriate orthogonal basis functions are the spherical
harmonicsYlm(ζ ) which are defined here by the expression

Ylm(θ, φ) =

= (−1)mil
[
(2l + 1) (l −m)!

4π (l +m)!

]1/2

Pml (cosθ) eimφ . (A1)

FunctionsPml (cosθ) are the associated Legendre functions
of the first kind of degreel (see below). It is required that
|m| ≤ l. For negative orderm, the harmonics are defined by

(−1)l−|m|Yl,−|m|(θ, φ) = Y ∗

l,|m|
(θ, φ), (A2)

HarmonicsYlm with m < 0 are represented by (A1) where
|m| is used in place ofm and the coefficient(−1)m is omitted.
It is clear thatm designates the zonal wave number,l − |m|

designates the number of nodes ofPml in the interval−1 <
cosθ < 1 (i.e. between the poles) and, thus, measures the
meridional scale of the spherical harmonics.

The structures of the first several spherical harmonicsYlm
are given below (hereu = cosθ ):

Y00 =
1

(4π)1/2
,

Y10 = i

(
3

4π

)1/2

u,

Y1,±1 = ∓

(
3

8π

)1/2

(1 − u2)1/2 e±iφ,

Y20 =

(
5

16π

)1/2

(1 − 3u2),

Y2,±1 = ±

(
15

8π

)1/2

u(1 − u2)1/2 e±iφ,

Y2,±2 = −

(
15

32π

)1/2

(1 − u2) e±i2φ,

Y30 = −i

(
7

16π

)1/2

u(5u2
− 3),

Y3,±1 = ±i

(
21

64π

)1/2

(1 − u2)1/2(5u2
− 1) e±iφ,

Y3,±2 = −i

(
105

32π

)1/2

u(1 − u2) e±i2φ,

Y3,±3 = ±i

(
35

64π

)1/2

(1 − u2)3/2 e±i3φ . (A3)
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An important property of the spherical harmonics is that
they satisfy the relationship

∇
2Ylm(ζ ) = −r−2l(l + 1)Ylm(ζ ). (A4)

where∇
2 is the full 3D Laplacian.

The spherical harmonics are normalized by the condition∫
dζYlm(θ, φ)Y

∗

l′m′(θ, φ) = r2δll′δmm′ , (A5)

with dζ = r2dφ dθ sinθ ≡ r2d6.

Thus, arbitrary field functions9(θ, φ) on the sphere are
expanded in a series by letting

9(θ, φ) =

∞∑
l=0

m=l∑
m=−l

9lmYlm(ζ ),

9lm =

∫
dφdθ sinθ 9(θ, φ)Y ∗

lm(ζ ). (A6)

From here, we can find

9(θ, φ) ≡

∫
dζ ′ δ(2)(ζ − ζ ′)9(θ ′, φ′)

=

∫
dφ′dθ ′ sinθ ′r29(θ ′, φ′) ·

· (r)−2
∞∑
l=0

m=l∑
m=−l

Ylm(ζ )Y
∗

lm(ζ
′). (A7)

The spherical harmonic expansion of the delta-function is

δ(2)(ζ − ζ ′) = r−2
∞∑
l=0

m∑
m=−l

Ylm(ζ )Y
∗

lm(ζ
′). (A8)

The Dirac functionδ(2)(ζ , ζ ′) satisfies to the condition∫
D1∩D2

dζ ′ δ(2)(ζ , ζ ′) = 1. (A9)

This function is connected with the one-dimensional Dirac
functions according to the relation

δ(2)(ζ , ζ ′) = g−1/2δ(1)(ζ 1
− ζ 1′

) δ(1)(ζ 2
− ζ 2′

), (A10)

where∫
D1

dζ 1 δ(1)(ζ 1
− ζ 1′

) =

∫
D2

dζ 2 δ(1)(ζ 2
− ζ 2′

) = 1. (A11)

Appendix B Green’s function on a sphere

For a spheric surface, we haveζ 1
= θ, ζ 2

= φ, ζ 3
=

r, r = Cte, g−1/2
= r2 sinθ > 0. FunctionG(ζ , ζ ′) satis-

fies the equation

r−2

(
sin−1 θ

∂

∂θ
sinθ

∂

∂θ
+ sin−2 ∂2

∂φ2

)
G(ζ , ζ ′)

= δ(2)(ζ − ζ ′)− (4πr2)−1. (B1)

and can be expressed in terms of spherical harmonicsYlm(ζ ).

Function

G(ζ , ζ ′) = −

∞∑
l=1

m∑
m=−l

1

l(l + 1)
Ylm(ζ ) Y

∗

lm(ζ
′), (B2)

yields from the equation(
sin−1 θ

∂

∂θ
sinθ

∂

∂θ
+ sin−2 ∂2

∂φ2

)
Ylm(ζ )

= −l(l + 1)Ylm(ζ ). (B3)

Using the definition of spherical harmonics the Green func-
tion may be rewritten as

G = −(4π)−1
∞∑
l=1

1

l(l + 1)

m∑
m=−l

(2l + 1)(l −m)!

(l +m)!

·Pml (uj ) P
m
l (uk) e

im(φj−φk)

≡ −(4π)−1
∞∑
l=1

2l + 1

l(l + 1)

m∑
m=−l

(l −m)!

(l +m)!

·Pml (uj ) P
m
l (uk) cos[m(φj − φk)]. (B4)

Using the following result (see Landau and Lifshitz, p.697)

Pl(cosβjk) =

=

m∑
m=−l

(l −m)!

(l +m)!
Pml (uj ) P

m
l (uk) cos[m(φj − φk)], (B5)

we can obtain after some manipulations that

G(cosβij ) = −
1

4π

∞∑
l=1

2l + 1

l(l + 1)
Pl(cosβij )

=
1

4π
ln(1 − cosβij ). (B6)

Here cosβjk = uj uk + (1 − u2
j )

1/2(1 − u2
k)

1/2 cos(φj −

φk), βjk is the angle between two directions defined by the
spherical anglesθj , φj andθk, φk.

The obtained formula follows from

dG(z)

dz
= −

1

4π

∞∑
l=1

2l + 1

l(l + 1)
P ′

l (z)

= −
1

4π

∞∑
l=1

[
1

l
P ′

l (z)+
1

l + 1
P ′

l (z)

]
, (B7)

where relations

(1 − z2)P ′

l (z) = (l + 1)[zPl(z)− Pl+1(z)],

(1 − z2)P ′

l (z) = −lzPl(z)+ lPl−1(z)

are used (herePl ′(z) = dPl(z)/dz). After the change of
indices and the summation, the final expression (B6) is ob-
tained.
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Appendix C Canonical equations

System (29) may be rewritten if it is necessary in the more
convenient form using variables(us = cosθs, φs). In this
case

γi∂tui = −∂φiHint , γi∂tφi = ∂uiHint . (C1)

The canonical (Hamiltonian) equations of motion ofN
point vortices on a sphere (−1 ≤ ui ≤ 1, −∞ ≤ φi ≤ +∞)
can be formulated as

γi ∂tui = −
∂H
∂φi

= γi
∑
k

′
γk (1 − u2

i )
1/2(1 − u2

k)
1/2

·

·G′(cosβik) sin(φk − φi), (C2)

γi ∂tφi =
∂H
∂ui

= γi
∑
k

′
γk [uk −

ui

(1 − u2
i )

1/2
(1 − u2

k)
1/2

] ·

·G′(cosβik) cos(φk − φi). (C3)

Here,

cosβjk = uj uk + (1 − u2
j )

1/2(1 − u2
k)

1/2 cos(φj − φk),

andβjk is the angle between two directions which define the
locations ofj - andk-vortices on the sphere.
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