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Abstract. We study the flow obtained from a three-layer,
eddy-resolving quasigeostrophic ocean circulation model
subject to an applied wind stress curl. For this model we will
consider transport between the northern and southern gyres
separated by an eastward jet. We will focus on the use of
techniques from dynamical systems theory, particularly lobe
dynamics, in the forming of geometric structures that govern
transport. By “govern”, we mean they can be used to com-
pute Lagrangian transport quantities, such as the flux across
the jet. We will consider periodic, quasiperiodic, and chaotic
velocity fields, and thus assess the effectiveness of dynamical
systems techniques in flows with progressively more spatio-
temporal complexity. The numerical methods necessary to
implement the dynamical systems techniques and the signif-
icance of lobe dynamics as a signature of specific “events”,
such as rings pinching off from a meandering jet, are also
discussed.

1 Introduction

In this paper we consider intergyre transport in the top layer
of a wind-driven, three-layer, quasigeostrophic double-gyre
ocean model. We use techniques from dynamical systems
theory (invariant manifolds, lobe dynamics) to describe the
flow structures associated with intergyre transport as well as
to perform precise calculations of the intergyre flux. Dynam-
ical systems techniques allow us to give a rigorous definition
of the boundary between the southern and northern gyres.
By “rigorous” we mean that at a given time, all fluid par-
ticles in the so constructed southern (resp., northern) gyre
either make a clockwise (resp., counterclockwise) revolution
around the southern gyre, or have earlier made such a rev-
olution to arrive at their location at the given time. This
boundary is constructed from pieces of two special curves;
an unstable manifold emanating from the western boundary
and a stable manifold emanating from the eastern boundary.
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These curves intersect to form regions called lobes, and it is
only the fluid that is inside the lobes that can participate in
intergyre transport. Hence, the area of the lobes can be di-
rectly related to the intergyre transport. Moreover, as these
lobes are the sole mechanism for intergyre transport, their
movement and geometrical shape give a complete descrip-
tion of the intergyre transport process. For example, we are
able to give a detailed description of the “geometrical alley-
ways” followed by particle trajectories that start in the north-
ern gyre, move downwards along the western boundary cur-
rent, transfer to the southern gyre, make a clockwise journey
around the southern gyre, moving upwards along the western
boundary current, and then transferring back to the northern
gyre. Moreover, since these stable and unstable manifolds
are the mediators of intergyre transport, the role of eddies in
intergyre transport can also be analyzed. In particular, we are
able to study the formation and kinematics of ring structures
and determine their role in intergyre transport.

The dynamical systems approach to Lagrangian transport
has been applied to a variety of problems in fluid mechan-
ics. Babiano et al. (1994) and Aref and El Naschie (1994)
provide recent reviews. Dynamical systems techniques were
first applied to Lagrangian transport in the context of two-
dimensional, time-periodic flows. In recent years these tech-
niques have been extended to include flows having arbitrary
time dependence, see Wiggins (1992), Malhotra and Wiggins
(1998), and Haller and Poje (1998). One aspect of our study
is to consider the effect of different types of temporal vari-
ability on transport. Accordingly, we compare transport in
flow regimes exhibiting periodic, quasiperiodic, and chaotic
time dependence. In this sense, our work is in the same spirit
as recent work concerned with understanding the bifurcation
structure of the wind-driven quasigeostrophic equations (Di-
jkstra and Katsman, 1997) and the wind-driven shallow wa-
ter equations (Jiang et al., 1995). In recent years the dy-
namical systems approach has been extended to a number
of geophysical fluid dynamics settings, for example, Pier-
rehumbert (1991a,b), Samelson (1992), Duan and Wiggins
(1996). These early works mainly involved kinematically
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defined velocity fields. Some of the first attempts to treat
dynamically evolving velocity fields were the works of del-
Castillo-Negrete and Morrison (1993) and Ngan and Shep-
herd (1997). The treatment of general dynamically evolv-
ing velocity fields became possible with the development of
computational techniques to treat velocity fields which only
had a numerical representation, i.e., which were the output
of the numerical solution of a partial differential equation
whose solution was a velocity field. Early work along these
lines is Shariff et al. (1992), Duan and Wiggins (1997), and
Miller et al. (1997). Recent work of this type in a geophys-
ical fluid dynamics setting is that of Rogerson et al. (1999),
which is concerned with fluid exchange across a barotropic
meandering jet, and that of Poje and Haller (1999), which is
focused on ring detachment. The numerical techniques de-
veloped in this paper allow us to treat transport in basin scale
models, whereas the previous works were limited to transport
issues associated with certain features in flows (e.g., mean-
dering jets, flow around obstacles, ring detachment).

This work is organized as follows. In § 2 we describe the
model. In § 3 we describe the numerical methods, for which
there are two parts. One is concerned with the numerical
solution of the quasigeostrophic equations, the next part is
concerned with the numerical methods for studying the tra-
jectories of the velocity field obtained from the numerical so-
lution of the quasigeostrophic equations. In § 4 we review the
basic ideas from dynamical systems theory that are used and
show how they apply in the context of the intergyre transport
problem. In § 5 we describe the results.

2 Description of the model

We use a three-layer eddy-resolving quasigeostrophic model
(Rowley, 1996) which has its origins in the two-layer model
developed by Holland (1978) and is similar to the later mod-
els of Cummins and Mysak (1988), and Lozier and Riser
(1989, 1990). The model uses the quasigeostrophic approx-
imation in the context of a β-plane (f = f0 + βy) ocean
modeled as three discrete isopycnal layers, each of mean
layer thickness and constant density, as depicted in Fig. 1.

Following Rowley (1996), each layer k of the model is of
mean thickness Hk and constant density ρk . The reduced
gravity between layers k and k + 1 in the model is

g′k+1/2 =
g(ρk+1 − ρk)

ρ0
, (1)

where g and ρ0 are the gravitational constant and a reference
density. The ρ0 with the set of Hk and ρk define the mean
stratification of the model ocean. Variations of the total depth
H0 are represented by hB(x, y), with the restriction under
quasigeostrophy that hB � HN , for a model with N layers.

We can write the governing N-layer quasigeostrophic
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Fig. 1. In the upper left panel is a qualitatitve depiction of a three
layer quasigeostrophic model. The other panels show streamfunc-
tion contours for each of the three layers which are typical for the
parameter values chosen for this study. Note that the streamfunction
contours are solid for positive values and dashed for negative val-
ues, which in the first layer correspond to an anticyclonic gyre and
cyclonic gyre, respectively. A schematic profile of the prescribed
wind stress τ is shown adjacent to the first layer.

equations on a β plane (Holland, 1978),

∂

∂t
∇2ψk = J (f + ∇2ψk,ψk)

+ f0

Hk
(wk−1/2 −wk+1/2)+ Fk +Dk, (2)

∂

∂t
hk+1/2 = J (hk+1/2, ψk+1/2)+wk+1/2, (3)

hk+1/2 = f0

g′k+1/2
(ψk+1 − ψk), (4)

where ψk is the layer-k quasigeostrophic streamfunction and
J is the Jacobian operator defined such that

J (ψk,A) = ∂ψk

∂x

∂A

∂y
− ∂ψk
∂y

∂A

∂x

= uk
∂A

∂x
+ vk ∂A

∂y
.

The remaining variables in (2–4) are the interface height per-
turbations hk+1/2, interface vertical velocities wk+1/2, and
the interface streamfunctions ψk+1/2, which are calculated
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as weighted averages of the corresponding layer function
(Phillips, 1954), i.e.,

hk+1/2 = Hkhk+1 +Hk+1hk

Hk +Hk+1
,

wk+1/2 = Hkwk+1 +Hk+1wk

Hk +Hk+1
,

ψk+1/2 = Hkψk+1 +Hk+1ψk

Hk +Hk+1
,

the force term Fk and the dissipation termDk . The forcing is
through the wind stress τ = −τ0 cos (2πy/Ly), so that Fk is
nonzero for k = 1 only, when

F1 = curl τ

ρ0H1
= − 2πτ0

ρ0H1Ly
sin

(
2πy

Ly

)
.

Note that the imposed wind stress is sinusoidal and produces
a double-gyre in the first layer, with an anticyclonic gyre in
the southern part of the basin and a cyclonic gyre in the north-
ern part of the basin (as shown in Fig. 1). In contrast, a more
realistic forcing configuration is possible by mapping data
for a given regional wind forcing from an acquisition grid to
the model grid.

The dissipation is performed by lateral Laplacian fric-
tion, Dk = ν∇4ψk , which can include bottom drag, DN =
ν∇4ψN − cD∇2ψN . The top and bottom boundary condi-
tions enter through w1/2 = 0, for a rigid lid, and wN+1/2 =
DhB/Dt = J (ψN, hB), for possible bottom topography.

Our goal is to study transport under different types of tem-
poral variability. However, there are many parameters in
this problem. In choosing the parameters we are guided by
the work of Jiang et al. (1995) who isolated and presented
results for several flow regimes for a wind-driven double-
gyre, shallow water model. We have chosen basin dimen-
sions and lateral dissipation coefficient identical to theirs.
However, our resolution is significantly higher than that of
Jiang et al. (1995), which will be discussed further in § 4.2.
The wind stress amplitude, τ0, was varied to obtain sev-
eral flow regimes with different time dependencies, namely
steady, periodic, quasiperiodic, and chaotic. The remaining
model parameters, layer thicknesses, reduced gravity, mean
state density, bottom friction coefficient, and Coriolis param-
eters, were chosen to be consistent with typical values used in
three-layer quasigeostrophic models, such as that of Lozier
and Riser (1989). The values of all the model parameters
used throughout this study are given in Table 1.

For a thorough discussion of the quasigeostrophic approx-
imations, see Pedlosky (1977) or Cushman-Roisin (1994).

3 Some key ideas from dynamical systems theory re-
lated to transport

In this subsection we introduce the ideas from dynamical sys-
tems theory that will be crucial for our analysis. Our discus-
sion will be at an informal and intuitive level. Details of
the mathematical background can be found in Malhotra and
Wiggins (1998).

Basin dimensions Lx = 1000 km
Ly = 2000 km
L ≡ (Lx+Ly)/2 = 1500 km

Number of grid points Nx = 81
Ny = 161

Lateral dissipation coefficient
(Laplacian)

ν = 300 m2/s

Time step  tPDE = 2 h

Layer thickness H1 = 300 m
H2 = 700 m
H3 = 4000 m

Total ocean depth H0 = 5000 m

Reduced gravity g′
1 1

2
= 0.03 m/s2

g′
2 1

2
= 0.02 m/s2

Coriolis parameters f0 = 9.3× 10−5 1/s
β = 2× 10−11 1/ms

Bottom friction CD = 1× 10−7 1/s

Mean state density ρ0 = 1.0 g/cm3

Ekman number Ek ≡ ν/βL3 = 4.44× 10−6

Rossby number Ro ≡ 2πτ0/ρ0β
2HL3

Table 1. Model parameters.

3.1 Hyperbolic trajectories or “moving saddle points”

First, we want to generalize the notion of a saddle-type stag-
nation point of a steady flow to the setting of unsteady flows.
In the case of a steady flow, the saddle point nature of a stag-
nation point is determined from the linearization of the flow
about the saddle point. In that case the eigenvalues of the
(constant) matrix associated with the linearization serve to
characterize the saddle point nature of the stagnation point.
In the case of aperiodically time dependent velocity fields,
the saddle point nature of a time dependent trajectory is also
determined from the linearization about the trajectory. How-
ever, in this case the eigenvalues of the (time dependent) ma-
trix associated with the linearized velocity field cannot gen-
erally be used to determine the stability properties of the tra-
jectory.

Consider the following two dimensional, unsteady veloc-
ity field

ẋ = v(x, t), x ∈ IR2, t ∈ IR, (5)

and let x = γ (t) be a trajectory of (5). Then γ (t) is called a
hyperbolic or saddle-type trajectory if the velocity field lin-
earized about the trajectory:

ξ̇ = ∂xv(γ (t), t)ξ , ξ ∈ IR2, (6)

has two time-dependent, linearly independent solutions; one
that grows unboundedly at an exponential rate as t → ∞,
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which we refer to as ϕu(t), and one that decays to zero at
an exponential rate as t → ∞, which we refer to as ϕ s(t).
Hence, we can think of γ (t) as a “moving saddle point”.

3.2 Stable and unstable manifolds of hyperbolic trajecto-
ries

With the notion of a hyperbolic trajectory defined, we can
now define the stable and unstable manifolds associated with
a hyperbolic trajectory. The term “manifold” is from dynam-
ical systems theory, in the context of fluid mechanics it can be
thought of as a distinguished material surface, whose nature
we describe more fully below. Just as the notion of a hyper-
bolic trajectory follows from the linearized behavior near the
trajectory, the stable and unstable manifolds associated with
a hyperbolic trajectory also are related to the linearized be-
havior near the trajectory. In fact, we infer their existence
based on the linearized behavior. So first we will describe
the linearized behavior associated with the linearized veloc-
ity field.

Since (6) is linear, αϕu(t), for all α ∈ IR, is also a solu-
tion of (6) that grows unboundedly at an exponential rate as
t →∞. At each instant in time, the set of points defined by
αϕu(t), for all α ∈ IR, defines a one-dimensional subspace
of IR2, which we refer to as the unstable subspace, Eu(t), as-
sociated with the hyperbolic trajectory γ (t). As t varies, this
subspace may move. Clearly, it has the interpretation as the
set of initial conditions, at time t , corresponding to trajecto-
ries that grow at an exponential rate as t →∞.

Similarly, αϕs(t), for all α ∈ IR, is also a solution of (6)
that decays to zero at an exponential rate as t → ∞. At
each instant in time, the set of points defined by αϕ s(t), for
all α ∈ IR, defines a one-dimensional subspace of IR2, which
we refer to as the stable subspace, Es(t), associated with the
hyperbolic trajectory γ (t). As t varies, this subspace may
move, and it has the interpretation as the set of initial con-
ditions, at time t , corresponding to trajectories that decay to
zero at an exponential rate as t →∞.

One can view the stable and unstable manifold theorem for
hyperbolic trajectories as saying that the behavior described
above for the linearization of the velocity field about the hy-
perbolic trajectory γ (t) persists for the nonlinear velocity
field (5). In particular, it states that there exists time vary-
ing curves, Ws(γ (t)) and Wu(γ (t)), that intersect in γ (t),
and are tangent to Es(t) and Eu(t), respectively, at γ (t). The
curves Ws (γ (t)) and Wu(γ (t)) are referred to as the sta-
ble manifold and unstable manifold, respectively, associated
with the hyperbolic trajectory γ (t), and they have the follow-
ing properties.

Invariance. They are invariant curves, i.e., particle trajectories that
start on the curves must stay on the curves for all time. This is the
mathematical statement of the fact that they are material curves.
Hence, they are barriers to transport in the sense that no particle
trajectories can cross them.

Asymptotic Behavior. Particle trajectories that start on Ws (γ (t))

approach γ (t) at an exponential rate as t → ∞. Trajectories that
start on Wu(γ (t)) approach γ (t) at an exponential rate as t →−∞.

u
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Fig. 2. A lobe, Lpq , at a fixed time τ . Here the superscript “pq”
is used to explicitly denote the fact that this lobe is defined by seg-
ments of the stable and unstable manifolds that intersect at the pri-
mary intersection points p and q. It will not be used in our later
notation for lobes.

3.3 The implications of stable and unstable manifolds of
hyperbolic trajectories for transport: Lobe dynamics

From the point of view of transport, the stable and unstable
manifolds of hyperbolic trajectories are important because
they form the “frontiers” between qualitatively different fluid
particle trajectories. We now discuss the implications that
stable and unstable manifolds of hyperbolic trajectories have
for transport. In the following, γ i (t) will denote a hyper-
bolic trajectory, with associated stable and unstable mani-
folds Ws (γ i (t)) and Wu (γ i (t)), i = 1, 2. 1 We begin by
defining the notion of a lobe.

A lobe is formed from intersections of stable and unstable
manifolds of hyperbolic orbits in two dimensional flows and
has played an important role in the study of transport in time
periodic and quasiperiodic flows.

We now describe the generalization of “lobe dynamics”
to two dimensional flows with aperiodic time dependence.
First we define the notion of a primary intersection point of
the stable and unstable manifolds of a hyperbolic trajectory.

At a fixed time t = τ consider a point p ∈
Ws(γ 1(τ ))∩Wu(γ 2(τ )). Let [γ 1(τ ),p] denote the segment
of Ws (γ 1(τ )) connecting γ 1(τ ) to p and let [γ 2(τ ),p] de-
note the segment of Wu(γ 2(τ )) connecting γ 2(τ ) to p. Then
p is said to be a primary intersection point (pip) if [γ 1(τ ),p]
and [γ 2(τ ),p] intersect only in p.

With this definition in hand we can now define a lobe. Sup-
pose p and q are two pips such that there are no other pips
on the segments of Ws (γ 1(τ )) and Wu(γ 2(τ )) that connect
p and q . Then the region at the time t = τ bounded by the
segments of Ws (γ 1(τ )) and Wu(γ 2(τ )) that connect p and
q is called a lobe, which we denote byLpq . The points p and
q are referred to as the defining pips of the lobe, see Fig. 2.

First we write down two “rules” that must be satisfied by
points on the stable and unstable manifolds of hyperbolic tra-
jectories, which essentially follow from uniqueness of solu-

1With no loss of generality we could consider the case γ1(t) =
γ 2(t). This case is implicitly covered in our discussion, but it is not
needed for the transport questions considered in this paper.
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tions and invariance of the manifolds.

Rule 1: Maintenance of Order Under Time Evolution. Since at any
fixed time t = τ the curves Wu(γ 1(τ)) and Ws(γ 2(τ)) are one
dimensional, points on them can be ordered. We define an or-
dering of points on Ws(γ 2(τ)) as follows. For any two points
qτ , q̄τ ∈ Ws (γ 2(τ)) we say that qτ <s q̄τ if qτ is closer than q̄τ
to γ 2(τ) in the sense of arc length along the curve Ws (γ 2(τ)). (A
similar type of ordering can be defined for points on Wu(γ 1(τ)),
but it will not be required in our construction.) Let x(t, τ, qτ ) ≡
qτ+t , x(t, τ, q̄τ ) ≡ q̄τ+t denote points at time τ + t that are the
time evolution of the points qτ , q̄τ . By invariance, these points are
also in Ws(γ 2(τ + t)). Moreover, we have

qτ+t <s q̄τ+t .

This follows from uniqueness of solutions, otherwise there would
be an intermediate time on which the trajectories passed through
each other.

Rule 2: Invariance of Intersections. If the stable and unstable man-
ifolds of a hyperbolic trajectory (or two different hyperbolic trajec-
tories) intersect at a fixed time, then they intersect for all time. This
simply follows from the fact that the manifolds are invariant for all
time.

3.4 Lobe dynamics and flux: Quantification of finite time
transport

Suppose γ 1(t) and γ 2(t) are hyperbolic trajectories. We as-
sume that for some fixed time Wu(γ 1(t)) and Ws(γ 2(t)) in-
tersect in Ñ points, where Ñ can be infinity. By invariance of
the manifolds, if they intersect in Ñ points at one time, they
must intersect in Ñ points for all other times. We also as-
sume that the intersections are topologically transverse (i.e.,
heuristically, the manifolds pass through each other, and are
not tangent at the intersection points of interest).

Let {tn}Nn=0 be a monotonically increasing sequence of
times, and we could have N = ∞. These are the times at
which we observe the flow. If x(t, t0, x0) denotes the trajec-
tory passing through the point x 0 at t = t0 then, for each
n ∈ {0, . . . , N}, we have the map

fn : xn �→ fn(xn) ≡ x(tn+1, tn, xn) = xn+1, (7)

which is just the mapping of points under the flow from time
tn to tn+1. (This notation makes certain formulae less cum-
bersome.) The inverse map is given by

f−1
n : xn+1 �→ f−1

n (xn+1) ≡ x(tn, tn+1, xn+1) = xn. (8)

At time t = tn choose a point qn on Wu(γ 1(tn)) ∩
Ws (γ 2(tn)). Let U [γ 1(tn), qn] denote the segment of
Wu(γ 1(tn)) beginning at γ 1(tn) and ending at qn and let
S[γ 2(tn), qn] denote the segment of Ws (γ 2(tn)) beginning
at γ 2(tn) and ending at qn. The points in the sequence {q n}
are chosen such that

qn <s f−1
n (qn+1), ∀n ∈ ZZ, (9)

and are referred to as boundary intersection points (bips).
The sequence {qn} can always be chosen to satisfy this con-
straint as a result of the fact that all points in

Wu(γ 1(t)) ∩ Ws (γ 2(t)) on a given time slice will have
moved closer to Ws(γ 2(t)) (closer in the sense of distance
in arclength from γ 2(t)) at any later time.

The importance of this condition will be apparent when
we construct families of special lobes called “turnstiles” and
describe their dynamical significance. This sequence of bips
is used to construct a sequence of time-dependent boundaries
and turnstiles.

ThenBn ≡ U [γ 1(tn), qn]∪S[γ 2(tn), qn] is a curve at time
tn joining Wu(γ 1(tn)) and Ws(γ 2(tn)). Locally, this curve
separates the flow into two regions, which we denote by Rn1
andRn2 (here the superscript on the regions indicates that they
vary as tn varies; the superscript is the same as the subscript
of tn). We will be concerned with transport across this family
of curves {Bn}Nn=0 at the sequence of times {tn}Nn=0 under the
dynamics generated by the sequence of maps {fn}Nn=0.

For an arbitrary time t = tn−1 consider the point
f−1
n−1(qn) ∈ Wu(γ 1(tn−1))∩Ws(γ 2(tn−1)) (by the choice of

the sequence {qn}, we have qn−1 <s f−1
n−1(qn)). Then there

exists an odd number, Kn−1, of pips on U [f−1
n−1(qn), qn−1]

between f−1
n−1(qn) and qn−1 (the odd number is due to the fact

that the maps fn are orientation preserving due to unique-
ness of trajectories passing through a given initial condi-
tion). These define Kn−1 + 1 lobes at time t = tn−1; with
(Kn−1 + 1) − Jn−1 in Rn−1

1 , denoted by Ln−1
1,2 , and Jn−1

lobes in Rn−1
2 , denoted by Ln−1

2,1 . 2 The lobes Ln−1
1,2 ∪ Ln−1

2,1
are called the turnstile lobes associated with the boundary
Bn−1 at the time t = tn−1. The turnstile lobes are important
because they mediate transport across the boundary Bn−1.

The following theorem is the fundamental result, and is
proved in Malhotra and Wiggins (1998).

Theorem 3.1

fn−1

(
Ln−1

1,2

)
⊂ Rn2 ,

fn−1

(
Ln−1

2,1

)
⊂ Rn1 .

Moreover, the only points that move from Rn−1
1 (resp. Rn−1

2 )
into Rn2 (resp. Rn1 ) under the action of fn−1 by crossing Bn−1

are those that are in Ln−1
1,2 (resp. Ln−1

2,1 ), see Fig. 3.

We remark that several “pathologies” for turnstile lobes
are possible, e.g., turnstile lobes that intersect each other, and
these can be treated in the aperiodic case exactly as described
in Wiggins (1992).

LetA denote an arbitrary region (but one sufficiently well-
behaved that its area is defined) in the flow. We denote the
area of A by µ(A). The instantaneous flux from Rn−1

1 into
Rn2 across Bn is given by

φn−1
1,2 = 1

tn − tn−1
µ

(
Ln−1

1,2

)
. (10)

2As we will see in the different flows considered in the follow-
ing, the number of lobes in Rn1 and Rn2 may change as n varies. This
explains the need for the “time varying” integers Kn and Jn in the
notation.
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Fig. 3. The turnstile mechanism, illustrated for the case of two lobes per turnstile (i.e., Kn−1 = Jn−1 = 1.) The insets in each panel show
only the pieces of stable and unstable manifolds that make up the boundaries Bn at t = tn and Bn−1 at t = tn−1.

Similarly, the instantaneous flux from Rn−1
2 into Rn1 across

Bn is given by

φn−1
2,1 = 1

tn − tn−1
µ

(
Ln−1

2,1

)
. (11)

The weighted finite time average flux from R0
1 into Rn2 from

time t = 0 to t = tn is given by

φ1,2 = (t1−t0)φ0
1,2+(t2−t1)φ1

1,2+···+(tn−tn−1)φ
n−1
1,2

(t1−t0)+(t2−t1)+···+(tn−tn−1)
,

= 1

tn − t0
n−1∑
k=0

µ
(
Lk1,2

)
. (12)

Similarly, the weighted finite time average flux from R 0
2 into

Rn1 from time t = 0 to t = tn is given by

φ2,1 = (t1−t0)φ0
2,1+(t2−t1)φ1

2,1+···+(tn−tn−1)φ
n−1
2,1

(t1−t0)+(t2−t1)+···+(tn−tn−1)

= 1

tn − t0
n−1∑
k=0

µ
(
Lk2,1

)
. (13)

3.5 Lobe dynamics and intergyre transport

As a consequence of the double-gyre structure of the flow,
there are two hyperbolic trajectories, one on the western
boundary and one on the eastern boundary, whose unstable
and stable manifolds, respectively, form the boundary be-
tween the southern and northern gyres. Moreover, transport
between these gyres is completely governed by the evolution
and geometry of these manifolds, which we now describe.

The hyperbolic trajectory on the western boundary is the
(moving) point at which the flow along the western boundary
converges from the southern and northern gyres and subse-
quently moves into the interior of the flow. Mathematically,
we know that such a trajectory exists and that it has associ-
ated with it an unstable manifold that extends into the interior
of the flow. Similarly, on the eastern boundary there exists a
(moving) point at which the flow separates as it collides with
the eastern boundary, resulting in some fluid moving north-
wards along the eastern boundary and some moving south-
ward. This trajectory on the boundary has associated with it
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a stable manifold that extends into the interior of the flow.
The unstable manifold emanating from the western bound-

ary may intersect the stable manifold emanating from the
eastern boundary. An intersection point is primary (pip) if the
segment of the unstable manifold from the western bound-
ary to the intersection point does not intersect the segment
of the stable manifold from the intersection point to the sta-
ble hyperbolic trajectory. All other intersection points are
secondary (sips). It is important to distinguish between pri-
mary and secondary intersection points because it is the se-
quence of primary intersection points (pips) and the segments
of unstable and stable manifolds between them that define
the lobes. If the time dependence of the flow is periodic or
quasiperiodic, then an infinite number of lobes are created.
In the temporally chaotic cases we consider, numerical evi-
dence shows that an arbitrarily large number of lobes exist.

Suppose that at some initial time, t = t0, the stable and
unstable manifolds intersect in a finite number of points as
shown in Fig. 4. We stress here that the illustrations in this
section are schematic in the sense that we show only enough
detail of the manifolds to describe the ideas we are trying to
convey. For example, in Fig. 4 we only show a relatively
small piece of the unstable manifold in comparison with the
length of the stable manifold shown. In practice one can only
compute finite lengths of the manifolds even though in theory
they are infinite in length.

At time t = t0 we define a boundary between the southern
and northern gyres by taking the pieces of the stable and un-
stable manifolds only up to some (arbitrary) pip labeled a 0
in Fig. 4 (the significance of the pip b0 in this figure will be
explained shortly). Once this boundary is chosen, we denote
the resulting fluid in the southern gyre by the hatched region,
see Fig. 4.

Now we consider the time evolution of these manifolds
from t = t0 to some later time t = tn. Under time evolution
segments of the unstable manifold lengthen, segments of the
stable manifold shorten, and intersection points must remain
intersection points (and obey the rules of time evolution de-
scribed earlier). We illustrate the situation in Fig. 5. Hence
we see that the boundary between the southern and northern
gyres constructed at t = t0 has deformed under time evolu-
tion.

We now ask the following question:

How much fluid from the southern (resp. northern)
gyre at time t = t0 has moved into the northern
(resp. southern) gyre at time t = tn?

The first thing we must do in order to answer this question
is to describe what the boundary is at t = tn that separates the
southern and northern gyres since the corresponding bound-
ary defined earlier at t = t0 has undergone deformations in
the meantime. Hence at time t = tn we choose a new bound-
ary between the southern and northern gyres. This boundary
is formed by taking pieces of the stable and unstable mani-
folds only up to the pip labeled bn, as shown in Fig. 5. Now
the point bn is not arbitrary, but it is the evolution of the point
b0 at time t0 to time tn. With this choice for the boundary at

tn, it follows that the lobes between the points bn and an are
the time evolved lobes at time t0 between the points b0 and
a0. Note that a0, b0, an and bn are all pips by definition, but
also, a0 in Fig. 4 and bn in Fig. 5 are bips, because they are
the pips which determine the pieces of the stable and unstable
manifolds that form the Lagrangian fluid boundary between
the northern and southern gyres.

It is easily seen from Fig. 5 that the amount of fluid that
has moved from the southern gyre at t = t0 into the north-
ern gyre at t = tn is the area of the hatched lobes between
the points bn and an. Similarly, the amount of fluid that has
moved from the northern gyre at t = t0 into the southern
gyre at t = tn is the area of the non-hatched lobes between
the points bn and an.

It is possible to describe this procedure in a different way,
but that gives the same meaning to intergyre transport.

At some time t = tn construct a boundary between the
southern and northern gyres by choosing an intersection
point, say bn as shown in Fig. 5.

Once this boundary is chosen consider a set of lobes that is
defined by moving to the right along the stable manifold and
and stopping at some other intersection point, denoted an in
Fig. 5.

The area of these lobes is then the amount of fluid that
has crossed the boundary between the southern and northern
gyres at t = tn from an earlier time t0, where the boundary at
t0 was formed by taking the pieces of the stable and unstable
manifolds only up to the point of intersection labelled a 0 in
Fig. 4, where a0 is the point at t = t0 that evolves to an at
t = tn.

In general, the areas of these two sets of lobes (i.e., the
hatched lobes and the non-hatched lobes) are not the same,
even though the flow is incompressible. This is because the
boundary across which we are measuring transport may be
moving in the sense that the boundary between the the south-
ern and northern gyres at t = t0 may not be the same as the
boundary at t = tn. This raises another transport question:

How much fluid from the southern (resp. northern)
gyre at time t = t0 has crossed the boundary that
was defined at t0?

The answer to this question is most easily seen by super-
imposing Figs. 4 and 5, as shown in Fig. 6. We see from
this figure that the movement of fluid in the southern (resp.
northern) gyre is due to two effects: 1) the change in the def-
inition of the boundaries between the southern and northern
gyres between t = t0 and t = tn and 2) the movement of
the lobes. We call transport due to the boundary movement
reversible transport and transport due the lobes irreversible
transport. The term irreversible transport derives from the
fact that the fluid inside the lobes may travel arbitrarily far
throughout the flow. This is due to the fact that the two pri-
mary intersection points that define the lobe get closer and
closer as time increases since they both must approach the
hyperbolic trajectory on the eastern boundary. Since the flow
is incompressible the area of a lobe must remain the same for
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a0

b0

stable manifold
unstable manifold

Fig. 4. Pieces of the unstable manifold of the hyperbolic trajectory
on the western boundary and the stable manifold of the hyperbolic
trajectory on the eastern boundary at time t = t0.

all time. Hence the lobe must develop into a long, filamen-
tary structure that winds throughout the flow.

It is possible to quantify the relative amounts of reversible
and irreversible transport. The (signed) 3 area between the
boundaries at t = t0 and t = tn is equal to the difference
between the areas of the lobes in the southern gyre and the
lobes in the northern gyre t = tn. This computation is an el-
ementary application of incompressibility of the flow, which
we do not perform here but, rather, we explain the idea in
Fig. 7. In panel a) of the figure we show the boundary at
t = t0 and the boundary at t = tn, where along with the lat-
ter we also show the lobes that have crossed this boundary
from the earlier time slice t = t0. In panel b) we show the
boundary between the southern and northern gyre at t = t 0
and the boundary between the southern and northern gyre at
t = tn. Here we show these two boundaries not intersect-
ing. However, it is possible that they may intersect, but that
does not have any effect on our conclusion (but it is the rea-
son that we emphasized that we are computing signed areas).
In panel c) we show the lobes in the southern and northern
gyres along the boundary between the southern and northern
gyres at t = tn (where we are only showing the segment of
the stable manifold that makes up the boundary). The signed

3When the area is computed as a line integral around a bound-
ary we take the positive sign when traversing the curve in a coun-
terclockwise sense.

an

bn

stable manifold
unstable manifold

Fig. 5. The time evolution of the pieces of the unstable manifold
of the hyperbolic trajectory on the western boundary and the stable
manifold of the hyperbolic trajectory on the eastern boundary from
time t = t0 to t = tn.

area between the two curves in b) is equal to the area of the
lobes in the southern gyre minus the area of the lobes in the
northern gyre shown in c).

4 Numerical methods

The numerical methods necessary for this study are divided
into four parts: the solution of the quasigeostrophic equation
described previously, the integration of Lagrangian trajecto-
ries, the construction of invariant manifolds of hyperbolic
trajectories, and the determination of pips and the resulting
lobes.

4.1 Model solution

After using (3) and (4) to eliminate wk+1/2 in (2), the set
of layer equations can be written in matrix form as (Rowley,
1996),

∂

∂t
(∇2�̂ − A�̂) = R̂, (14)

where �̂ is now a column vector of the ψk , the source terms
on the right hand side are in a corresponding vector form
R̂, and the matrix A contains the constant coefficients that
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stable manifold
unstable manifold

Fig. 6. Figures 4 and 5 superimposed.

couple the layer equations together. The elements of R̂ are

R̂k = J (f +∇2ψk,ψk)

+ f 2
0

g′k−1/2Hk
J (ψk−1 − ψk,ψk−1/2)

− f 2
0

g′k+1/2Hk
J (ψk − ψk+1, ψk+1/2)+ AH∇4ψk

− δN,kcD∇2ψk + δ1,k curl τ

ρ0H1
− δN,kJ (ψk, f0hB

Hk
).

The tridiagonal matrix A is given by

A =




α1,1 α1,2 0 0 0

α2,1 α2,2 α2,3 0 0

0 α3,2 α3,3 α3,4 0
...

0 0 αN−1,N−2 αN−1,N−1 αN−1,N

0 0 0 αN,N−1 αN,N




which has nonzero elements

αk,k−1 = − f 2
0

g′k−1/2Hk

αk,k = f 2
0

g′k−1/2Hk
+ f 2

0

g′k+1/2Hk

αk,k+1 = − f 2
0

g′k+1/2Hk
.

The vertical boundary conditions (rigid lid, rigid bottom) are
imposed through the αij by setting g′1/2 and g′N+1/2 to∞. In
practice, we non-dimensionalize (14) and solve the system
by transforming to modal form, so that the layer equations
are decoupled. This yields a transient solution for the stream-
function ψ in each layer, which can be used directly for our
analysis.

4.2 Lagrangian trajectories

For incompressible two-dimensional flow the velocity field
is given in terms of the streamfunction ψ(x, y, t), with
u(x, y, t) = −∂ψ/∂y and v(x, y, t) = ∂ψ/∂x. Lagrangian
trajectories of fluid particles satisfy

dx

dt
= u = −∂ψ

∂y
(x, y, t),

dy

dt
= v = ∂ψ

∂x
(x, y, t). (15)

Although the model of Rowley (1996) has the capability of
non-rectangular boundaries, in this study the spatial domain
is rectangular, defined by 0 ≤ x ≤ Lx and 0 ≤ y ≤ Ly .
The temporal domain is defined by −T ≤ t ≤ T , with the
magnitude of T determined by the particular case under con-
sideration. For a periodic case, T is simply the length of the
period, but for more general time dependencies, T is chosen
to provide a large enough data set for analysis.

The numerical solution of the streamfunction discussed in
§ 4.1 is known only at discrete temporal and spatial grid
points, i.e. ψ(xi, yj , tn), where i = 1, 2, . . . , Nx , j =
1, 2, . . . , Ny and n = 1, 2, . . . , Nt . The values of Nx , Ny ,
Lx and Ly used throughout this study are given in Table 1
and Nt is given by Nt ≡ T/ T , where  T is the tem-
poral resolution to be discussed in more detail below. The
spatial resolution is thus  x =  y = Lx/(Nx − 1) =
Ly/(Ny − 1) = 12.5 km throughout this study, which is
selected so that the Munk layer, with length δM = (ν/β)1/3,
is described by two grid points. The motivation to resolve
the Munk layer with at least two grid points is described
by Meacham and Berloff (1997). The lateral boundary con-
ditions are free-slip, as opposed to the partial-slip and no-
slip conditions used by Munk (1950), which means that the
model’s dissipative boundary layer is not a Munk layer in
the strict sense. However, the free-slip boundary condition
used in the model creates the necessary vorticity gradient for
the establishment of a dissipative boundary layer, although
weaker than the Munk layer. Thus, the Munk layer is a con-
servative quantity to use for resolution selection.

To integrate (15), we use an adaptive step-size Runge-
Kutta-Fehlberg (RKF45) method, which substantially re-
duces the computational time needed by constant step size
methods, such as the typical fourth-order Runge-Kutta (RK4)
method. For the RK4 method, we found that a step size of
 tRK4 = 2 h is necessary for most of our test cases to avoid
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unstable manifold
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a b c

Fig. 7. (a) The boundary at t = t0 (with no lobes shown) and the boundary at t = tn (with only the lobes shown that have crossed the
boundary from the earlier time t = t0). (b) The boundary between the southern and northern gyre at t = t0 and the boundary between the
southern and northern gyre at t = tn. (c) The lobes in the southern and northern gyres along the boundary between the southern and northern
gyres at t = tn (where we are only showing the segment of the stable manifold that makes up the boundary).

numerical instabilities (indicative of too large of an integra-
tion step). The step size of the RKF45 method is controlled
by setting a tolerance et , a minimum step size  tmin, and a
maximum step size  tmax, the values of which are shown
in Table 2. We found that choosing et = 0.001 yields a
solution devoid of visible numerical instabilities, while si-
multaneously allowing the integration to efficiently proceed
at a rate of  tmax throughout most of the flow, only slow-
ing to  tmin in the jet and a few other nearby regions. For
the aforementioned values of  tRK4, et ,  tmin, and  tmax,
the computational time required by RKF45 integration is ap-
proximately a factor of eight less than RK4 integration. In
general, we found that the step size of the RKF45 method
was inversely proportional to the norm of the velocity field,
i.e., taking small steps when the speed of the flow was fast
and large steps when the speed of the flow was slow. This
suggests that a simpler adaptive step sizing method could be
used by setting  tRK4 = δ/ |v|, where δ is an empirically
found constant (Pozrikidis, 1992). The disadvantage of this
type of adaptive method is choosing δ for each individual
flow.

During integration, the velocity field is needed at an ar-
bitrary point (x, y, t), which requires interpolation in the
three-dimensional space. Following the example of Miller
et al. (1997), we divide the three-dimensional interpolation
task into a two-dimensional spatial interpolation and a one-
dimensional temporal interpolation. To maintain the Hamil-
tonian structure of (15) and preserve area of the incompress-

ible flow, it is necessary to interpolate the discrete stream-
function with a method that provides smoothness through
the first derivative. We use local bicubic interpolation for
the spatial interpolation of the streamfunction (Press et al.,
1992), which directly yields values for u and v. Bicu-
bic interpolation requires values of ψ , ∂ψ/∂x, ∂ψ/∂y, and
∂2ψ/∂x∂y at the four discrete points nearest to (x, y, t), i.e.
(xi;i+1, yj ;j+1, t). The derivatives of ψ are approximated
by second-order numerical differentiation, thus requiring the
value of ψ at eight additional grid points adjacent to the
aforementioned four points.

In order to obtain values for u and v at arbitrary t , tempo-
ral interpolation is performed using Lagrange polynomials.
The motivation for using Lagrange polynomials, instead of
a simpler method such as linear interpolation, is to decrease
the temporal resolution  T , thus reducing storage require-
ments and allowing a longer time evolution for data sets of
general time dependence. The order of the Lagrange polyno-
mial was varied from 1st degree through 6th degree. Higher
degree polynomials allowed larger  T , thus reducing stor-
age requirements, but computational time increases due to
the increasing number of arithmetic operations. The compu-
tational time was found empirically to increase at the rate of
2.8e0.337Nd , where Nd is the degree of the Lagrange poly-
nomial. We chose to use 3rd degree polynomial interpola-
tion for all of our tests, which offered the best compromise
between storage requirements and computational time, de-
creasing the storage requirements by a factor of twelve over
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linear interpolation with  T = 2 h, while increasing the
computational time by only a factor of two over linear inter-
polation.

Since 3rd degree polynomials require values for the in-
terpolant at two temporal grid points before t and two grid
points after t , i.e. tn−1, tn, tn+1, and tn+2, the entire three-
dimensional interpolation scheme requires information from
(4+8)×4 = 48 grid points. These grid points can be used in
an interpolation scheme by performing bicubic spatial inter-
polation first or Lagrange polynomial temporal interpolation
first. Our spatial-temporal interpolation method performs
bicubic interpolation using twelve ψ grid points in each of
the four temporal data slices, then uses 3rd degree polyno-
mials on the resulting four values of u and v. Our temporal-
spatial interpolation method uses 3rd degree polynomials to
generate the necessary twelve grid points of ψ at some ar-
bitrary t , and then performs bicubic interpolation with those
ψ grid points to obtain u and v. Although both the spatial-
temporal and temporal-spatial methods use the same 48 grid
points, efficiency and accuracy differ. Temporal-spatial inter-
polation is approximately 40% faster than spatial-temporal
due to less arithmetic operations, but numerical oscillation
occurs during computation of Lagrangian trajectories with
the temporal-spatial method and not with the the spatial-
temporal method. This is due to the inherent numerical error
of the Lagrangian polynomials being magnified by the bicu-
bic interpolation. We thus chose to use a spatial-temporal
interpolation scheme for all of our results.

The temporal resolution  T is not equivalent to the time
step used in solving the model  tPDE, which is given in Ta-
ble 1.  T may be chosen independently of  tPDE, with the
only restriction that  T must be an even multiple of  tPDE.
To choose T , we used the RK4 method with  tRK4 = 2 h
and 3rd degree polynomials, varying  T such that  T =
2, 4, . . . , 24 h. The Lagrangian trajectories computed with
 T = 24 h were nearly indistinguishable from those com-
puted with  T = 2 h. So, we chose to use  T = 24 h
for all of the computations in this study. A larger  T could
perhaps have been used for interpolation purposes, but would
be inconvenient for constructing the manifolds, as will be ex-
plained in the next section. To summarize, RKF45 integra-
tion using a spatial-temporal interpolation scheme with local
bicubic splines and 3rd degree Lagrange polynomials is an
excellent computational method for constructing Lagrangian
trajectories, decreasing the computational time by a factor of
four and simultaneously decreasing the storage requirements
by a factor of twelve over a method with T =  tRK4, such
as that used by Miller et al. (1997) and other workers that
have followed their example.

4.3 Hyperbolic trajectories and invariant manifolds

Since the hyperbolic trajectories we are interested in for
studying intergyre transport are located on either the west-
ern or eastern boundary, a rather straightforward method can
be designed for finding and tracking the location of a hyper-
bolic trajectory, γ (t). As a hyperbolic trajectory travels ver-

RKF45 tolerance et = 0.001

Minimum step size  tmin = 1 h

Maximum step size  tmax = 24 h

Temporal resolution  T = 24 h

Table 2. Temporal integration constants used in all of the results.

tically up and down either the western or eastern boundary,
there will be a corresponding instantaneous stagnation point,
γ sp(t), which is also traveling up and down. There is a rela-
tionship between the range of travel of the hyperbolic trajec-
tory and the range of travel of the stagnation point: across a
sufficiently long time span, the range of travel of the hyper-
bolic trajectory will always be within the range of travel of
the stagnation point. This relationship between the stagna-
tion point and the hyperbolic trajectory is further explained
and proven by Ide and Wiggins (2000). Thus, if we know the
bounds on the range of travel of the stagnation point, then we
also know the bounds on the range of travel of the hyperbolic
trajectory. So, we begin by first devising and employing a
method for finding the stagnation point. We estimate the lo-
cation of the stagnation point γ sp(τ ) at a time t = τ , either
by visual inspection of the streamfunction contours or from
a known location of the stagnation point at some previous
time t = τ −  t , i.e. γ sp(τ −  t). We then initialize (15)
with x = γ spx and y = γ spy ± δy at t = τ , where δy is cho-
sen large enough such that γ spy (τ −  t) − δy < γ spy (τ ) <
γ
sp
y (τ −  t) + δy is expected, and then integrate each re-

sulting pair of (15) through  t . In practice, γ spx is not set
exactly equal to the x-coordinate of the boundary, but rather
is set to position that is a small distance from the boundary.
The integration is performed by a constant step size integra-
tor, such as RK4, and  t is a small value. In our case we
chose  t = ±1 h, where  t > 0 for hyperbolic trajec-
tories on the western boundary and  t < 0 on the east-
ern boundary. It should be pointed out that the sign of  t
is indirectly a result of which boundary the hyperbolic tra-
jectory resides; directly, it is determined by the objective to
compute either the unstable or stable manifold, being posi-
tive for the former and negative for the latter. In either case,
if both trajectories resulting from the integration of the pair
of (15) move toward the estimate γ spy (τ ), then we have two
points which straddle the stagnation point. If we have not
straddled the stagnation point, then we may either try to im-
prove our guess for the present location of the stagnation
point, or increase δy and check again if the stagnation point is
straddled. Once we have straddled the stagnation point, then
we proceed by letting (αspx , α

sp
y ) =

(
γ
sp
x , γ

sp
y (τ )− δy

)
and

(β
sp
x , β

sp
y ) = (γ spx , γ spy (τ )+δy). The simplest method to find

γ sp, is to initialize (15) with (αspx , α
sp
y ) and integrate through

 t , then initialize (15) with (β spx , β
sp
y ) and integrate through

 t . We then project back to γ spx by letting αspx = βspx = γ spx .
We continue this procedure, integrating each pair of (15) and
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projecting back to γ spx until βspy − αspy < ε, where ε is the
desired accuracy. We found that for the size of the basin used
in these computations, ε = 1 km was sufficient. The stagna-

tion point is then given by γ sp =
(
γ
sp
x ,

1
2 (α

sp
y + βspy )

)
. This

entire procedure can be repeated at each time step to track
the vertical position of the instantaneous stagnation point as
a function of time along the boundary. To accelerate con-
vergence, a bisection method can be employed. Once the
stagnation point is straddled, we initialize (15) with our es-
timate for γ sp(τ ) and integrating through  t . If this trajec-
tory moves toward αspy , that is, |γ spy (τ )−αspy | < δy , then the
actual location of γ spy (τ ) must be between αspy and γ spy (τ ).
Thus, we let βspy = γ

sp
y (τ ) and γ spy (τ ) = (α

sp
y + βspy )/2.

If |γ spy (τ ) − αspy | > δy , then the actual location of γ (τ )

must be between βspy and γ spy (τ ). In that case, we would
let αspy = γ

sp
y (τ ) and again γ spy (τ ) = (α

sp
y + βspy )/2. We

then initialize (15) with the new γ sp(τ ) and repeat the en-
tire procedure until satisfactory convergence is obtained, i.e.
β
sp
y − αspy < ε.
Once we know the basic behavior and range of travel of

the stagnation point, we can find and track the hyperbolic
trajectory. The procedure for doing this is very similar to
the first procedure described for finding the stagnation point.
We know that the movement of the hyperbolic trajectory will
always be less than or interior to the movement of the stag-
nation point, so we may let (αx, αy) =

(
γ
sp
x , γ

sp
y |min

)
and

(βx, βy) =
(
γ
sp
x , γ

sp
y |max

)
, where γ spy |min and γ spy |max are

the minimum and maximum values of γ spy over the time span
that we wish to track the hyperbolic trajectory. We are thus
certain that the hyperbolic trajectory is straddled and inte-
grate from τ to τ +  t , then project back to the boundary
by letting αx = βx = γ

sp
x . Note that in the previously-

described procedure for the stagnation point we were inte-
grating through  t , but the streamfunction which was used
for the right-hand side of (15) was frozen at t = τ , so
we were finding the instantaneous location of the stagnation
point. To find the hyperbolic trajectory, we continue integrat-
ing forward in time, i.e. from τ + t to τ + 2 t , again let-
ting αx = βx = γ spx afterward. This is an important, albeit
subtle, difference in the procedures for tracking stagnation
points vs. hyperbolic trajectories. We continue this method,
always integrating forward in time and projecting back to γ spx
until βy − αy < ε, at which point we have found the hy-
perbolic trajectory. Depending on the character of the flow
along the boundary, αy and βy may converge very rapidly,
or may take a considerable amount of time. Once αy and βy
have converged to a satisfactory accuracy, though, we then
let γ = (γ spx , 1

2 (αy + βy)) and just integrate γ directly, and
of course, project back to the boundary after each integration
step. Note that it is not possible to accelerate the procedure
for finding and tracking the hyperbolic trajectory with a bi-
section or similar type of method.

Once the hyperbolic trajectories can be tracked on each
boundary, we may use the techniques discussed in § 4.2 to
construct invariant manifolds corresponding to these hyper-
bolic trajectories. Numerically speaking, a stable or unsta-

ble invariant manifold is an ordered array of points, i.e. w s
1,

ws2,. . . ,wsN ∈ Ws and wu1, wu2,. . . ,wuM ∈ Wu, which fol-
lows directly from Rule 1 in § 3.3. N andM are the number
of points in the stable and unstable manifolds, respectively.
The location of these points are computed by first finding
the location of the hyperbolic trajectory γ at the present time
and then setting w

s;u
1 = γ . We then integrate w

s;u
1 = γ

through  tnp , where  tnp is the temporal resolution of the
manifold, and then let w

s;u
2 = γ , integrate both w

s;u
1 = γ

and w
s;u
2 = γ through  tnp , so that N increases by 1 each

 tnp and thus the manifold continues to grow in length. Em-
pirically, we found that for all values of τ0 that we studied,
 tnp = 24 hours was sufficient for the western boundary,
and tnp = 168 hours was sufficient for the eastern bound-
ary. Inserting points at regular intervals ensures that the tem-
poral resolution is sufficient, but the manifold will experi-
ence rapid stretching as it grows in length, so it is neces-
sary to also check the distance between adjacent points in the
manifold and to insert new points between adjacent points if
necessary to ensure that sufficient spatial resolution is main-
tained. There are many methods for checking the distance
between points and inserting new points. Each has its advan-
tages depending on the accuracy required of the manifold and
the level of algorithmic complexity that one wishes to tackle.
The simplest approach is to consider the manifold as a poly-
line, i.e. a collection of straight line segments and simply
check the linear distance between adjacent points and if nec-
essary, insert a new point midway along this segment. The
advantage of using this linear approach is that it is straight-
forward to implement. The disadvantage is that a high spa-
tial resolution is necessary, thus requiring a large value for
N . Another option is to use circular arcs, fitted through each
consecutive triplet of points along the manifold. The angle
subtended by the circular arc can then be used to determine if
a new point should inserted between existing adjacent points
along the manifold. The circular arc method is a bit more
difficult to implement, but it has the advantage of generally
requiring less points to be maintained in the manifold. The
reason for this is that more points are needed along the man-
ifold where it has high curvature and less points are needed
where the manifold has lower curvature. Using the subtended
angle of the circular as a criteria for point insertion automat-
ically accomplishes this objective. A more accurate method
yet, is to describe the manifold as a series of cubic splines,
fit through each of four adjacent points in the manifold. The
curvature along the spline can then be computed as a func-
tion of the arc length along the spline (Spivak, 1979, p. 11),
and used to determine whether or not a new point should be
inserted between the two existing middle points of the four.
We experimented with all three of these methods, but even-
tually decided to use the linear approach for all of the man-
ifold computations in this paper. Note that whenever it is
necessary to insert a new point between existing points, say
between w

s;u
j and w

s;u
j+1, it is impractical to shift all of the

points in the array w
s;u
j+1, w

s;u
j+2, . . . , w

s;u
N up one index to

make room for the new point. Instead, a “link list” can be
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maintained which describes the physical order of the points
in the array w

s;u
j , which is a functional extension of Rule

1. An entry in the link list, say =j is equal to the index

value of the point which physically follows the point w
s;u
j

in the manifold. If the manifold was generated strictly by in-
serting points at the hyperbolic trajectory, then the link list
would be trivial, =j = =j+1. In fact, when a point is in-

serted at the hyperbolic trajectory, we simply set w
s;u
N+1 = γ

and =N = N + 1, and then increment N , which generates
this trivial link list. To insert a new point between say w

s;u
j

and w
s;u
=j

, we set w
s;u
N+1 = 1

2

(
w
s;u
j + w

s;u
=j

)
, and then set

=N+1 = =j and =j = N + 1, in that order.

4.4 Pips and lobes

Once we have computed both stable and unstable manifolds,
it is next necessary to determine the pips of the manifolds and
the resultant lobes. If each manifold is considered a polyline
described by the arrays ws1, ws2, . . . , wsN for the stable mani-
fold and wu1, wu2, . . . , wuM for the unstable manifold, then all
of the intersection points can be determined by computing

px =
(
muwux,j −mswsx,i +wsy,i −wuy,j

)
/
(
mu −ms) ,

py = mu
(
px −wux,j

)
+ wuy,j , (16)

where i = 1, 2, . . . , N and j = 1, 2, . . . ,M , ms;u =(
w
s;u
y,=

s;u
i

−ws;uy,i
)
/

(
w
s;u
x,=

s;u
i

−ws;ux,i
)

. The point p is the

unique intersection point of the line defined by w s
i and ws

=si
,

and the line defined by wuj and wu
=uj

, which is an intersection

only if

∣∣p − wsi

∣∣ ≤ ∣∣∣ws=si − wsi

∣∣∣ ,
∣∣∣p − ws=si

∣∣∣ ≤
∣∣∣ws=si − wsi

∣∣∣ ,∣∣∣p − wuj

∣∣∣ ≤ ∣∣∣wu=uj − wuj

∣∣∣ , ∣∣∣p − wu
=uj

∣∣∣ ≤ ∣∣∣wu=uj − wuj

∣∣∣ . (17)

Note that finding all of the intersection points is anN ×M
procedure, so as the manifolds grow in length, it can become
computationally expensive. There is a method for reducing
the computational expense of finding intersection points far
below N × M operations, but describing it is beyond the
scope of this paper. It is described by Coulliette et al. (2000).
Once all of the intersection points are found, they must be
classified as either primary (pips) or secondary (sips). An in-
tersection point can be determined to be a pip by applying
(16) and (17), and checking that the segment of the unsta-
ble manifold from the hyperbolic trajectory of the western
boundary does not intersect the segment of the stable mani-
fold from the intersection point to the hyperbolic trajectory
on the eastern boundary. After the intersection points are
classified, a lobe is defined simply by the segment of the un-
stable manifold and the segment of the stable manifold be-
tween each adjacent pair of pips. Numerically speaking, the
lobes themselves are simply a concatenation of two series of

points, each from a link list array. The set of points describ-
ing the perimeter of each lobe can then be used for visual-
ization, i.e. colorizing the lobe, or computing the areas of
the lobes, and thus transport quantities, using Green’s Theo-
rem. Using Green’s Theorem is also useful for determining
if a given lobe has or will move across the boundary from
south to north, or if it has or will move across the boundary
from north to south. If we always apply Green’s Theorem by
integrating along the stable manifold in the direction of in-
crementing index value, then the integral will either be pos-
itive or negative. Lobes with negative area integrals have or
will move across the boundary from south to north, and vice
versa. Lobes with positive area integrals have or will move
across the boundary from north to south.

Identifying lobes should not be thought of as a static proce-
dure, i.e. as an analysis only of the present manifolds. Rather
it needs to be considered a dynamical procedure. In order to
completely harness the theoretical potentials of lobe dynam-
ics for flows of general time dependence, it is necessary to
be able to find all of the lobes that result from a stable and
unstable manifold, and then at a later time to find again the
lobes that result from the same stable and unstable manifold.
The process is continued a short time later, again finding the
lobes that results from another realization of the manifolds,
etc. Once the lobes have been identified at each realization of
the manifolds, they must be matched from realization to re-
alization, so that it can be determined which lobe at a given
time is actually the same lobe at a later time. This follows
directly from Rule 2 of § 3.3. Developing a robust algorithm
for lobe matching is an essential, yet challenging task, espe-
cially when numerical errors in the computed manifolds and
hence, intersection points must be considered. Describing
such an algorithm is beyond the scope of this paper, but is
discussed in detail by Coulliette et al. (2000).

5 Results

In the following section we present results on intergyre trans-
port in the top layer for different values of the wind curl
stress. In each simulation the fluid starts from rest and is
allowed to spin up for 25,000 days.

5.1 τ0 = 0.140: A time-periodic velocity field

For this value of the wind stress a time-periodic velocity field
is obtained. Evidence for this is presented in Fig. 8. In the
top panel of Fig. 8 the spatially-averaged kinetic energy as
a function of time is shown for the three layers, which are
denoted by the curves KE1, KE2, and KE3, respectively,
for τ0 = 0.140 dyn/cm2. KET denotes the total kinetic
energy. We see from the top panel of Fig. 8 that KET is
nearly identical to KE1, so for this value of τ0, and also
for the other values of τ0 studied in this paper, most of the
energy remains in the top layer of the model. In the lower
panel of Fig. 8 we show the power spectrum of the time vary-
ing part of the spatially-averaged kinetic energy in the first
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Fig. 8. Spatially-averaged kinetic energy and the corresponding
power spectrum for the upper layer when τ0 = 0.140 dyn/cm2,
indicating a period of 160 days.

layer after the 25,000 day spin up, KE1 − KEavg1 , where
KE

avg

1 denotes the time average of KE1. The average is
computed from day 25001 until day 29000 (4000 days total).
From the spectrum, we see that the top layer has a period
of T̃ = 160 days. The spin up time of 25000 days is much
longer than typically used in other work on quasigeostrophic
models. The objective in using such a long spin up was to
be certain that we had reached a statistically steady state. We
found that the spin up time necessary to reach a statistically
steady state varies inversely with the magnitude of τ0. In this
study we prescribe 0.140 dyn/cm2 ≤ τ0 ≤ 0.170 dyn/cm2,
which is low in magnitude relative to a more typical value
of τ0 = 1.0 dyn/cm2 used in the other literature on quasi-
geostrophic models (e.g. Cummins and Mysak, 1988; Lozier
and Riser, 1989, 1990).

Before we can compute the manifolds and lobes, we must
first be able to track the hyperbolic trajectories along the
western and eastern boundaries. Fig. 9 demonstrates the re-
sult of the numerical method described in § 4.3 for track-
ing hyperbolic trajectories on boundaries. The upper panel
shows the vertical position of the hyperbolic trajectory on the
western boundary as a function of time and the lower panel
shows the vertical position of the hyperbolic trajectory on the
eastern boundary as a function of time. In both panels, the
blue line is αy , the lower bound on the hyperbolic trajectory,
and the green line is βy , the upper bound on the hyperbolic
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Fig. 9. The location of the hyperbolic trajectory and the instan-
taneous location of the stagnation point for the western bound-
ary (upper panel) and the eastern boundary (lower panel) when
τ0 = 0.140 dyn/cm2.

trajectory. Also included in both panels is a red line, which
is the instantaneous vertical location of the stagnation point,
γ
sp
y . Note that in the upper panel, αy and βy converge rapidly

to each other, that is βy−αy < 1 km at t = 25021 days, and
then follow a path very similar, yet distinct, from that of γ spy .
As mentioned in § 4.3, we see from Fig. 9 that once αy and
βy have converged, the range of travel of the hyperbolic tra-
jectory is bounded by the range of travel of the instantaneous
location of the stagnation point, i.e. γ spy |min ≤ αy ≤ γ spy |max
and γ spy |min ≤ βy ≤ γ spy |max . This principal also applies to
the lower panel of Fig. 9, but there are some distinctions be-
tween the upper and lower panel. The hyperbolic trajectory
does not follow a path that is nearly identical to the stagna-
tion point, as in the upper panel. In fact, its range of travel
is considerably less than that of the stagnation point. Also,
αy and βy converge much more slowly in the lower panel,
requiring over 2000 days to converge to 1 km or less. This
is a result of the velocities near the eastern boundary being
much slower than those near the western boundary. In both
panels, though, we see that the hyperbolic trajectory changes
direction, that is, the sign of the vertical velocity of the hy-
perbolic trajectory changes, as the instantaneous location of
the stagnation point crosses to the opposite side of the hyper-
bolic trajectory.

Once we are able to track the hyperbolic trajectories on
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Fig. 10. Lobes created by the intersection of the stable and unstable manifolds of the hyperbolic trajectories on the eastern and western
boundaries, respectively, for τ0 = 0.140 dyn/cm2.

both boundaries, we can compute the associated manifolds.
In Fig. 10 we show the lobes created by the intersecting
stable and unstable manifolds of the hyperbolic trajecto-
ries on the eastern and western boundaries, respectively, for
τ0 = 0.140 dyn/cm2. These are the manifolds that govern
intergyre transport. In the left panel of Fig. 10, we show the
manifolds at time t0 = 25075 days, that is, 75 days after
the spin up. Two points are labeled in the panel, a0 and b0,
which are pips of the unstable and stable manifolds. In ad-
dition, a0 is the bip for time t = t0, which means that the
boundary between the northern and southern gyre is defined
by the red unstable manifold to the left of a0 and the blue
stable manifold to the right of a0. Between a0 and b0 is a
series of eighteen others pips and corresponding lobes, nine
of which are in the northern gyre and ten of which are in the
southern gyre. The right panel of Fig. 10 shows what hap-
pens to the manifolds and lobes ten periods later, i.e. when
t = tn = 26635 days. Note that a0 has mapped to an and
b0 has mapped to bn. Now, bn is the new bip and the lobes
between an and bn illustrate the transport that has occurred
between the northern and southern gyre during the time in-
terval tn− t0. So, in the left panel, the lobes which are shown
there indicate the fluid which will be transported across the
boundary between the northern and southern gyre, while in
the right panel, the lobes indicate the fluid which has been
transported across the boundary.

Not only do the lobes illustrate the location and shape of

the fluid which will be or has been transported across the
boundary, but, in addition, they can be used to precisely cal-
culate the amount of transported fluid. For example, we use
Green’s Theorem to compute the areas of each lobe, sum the
areas of the lobes between an and bn on the north side of
the boundary, multiply by the upper layer thickness,H 1, and
then divide by tn − t0, which gives φS,N = 0.0590 Sv. This
represents the amount of irreversible flux from the southern
gyre into the northern gyre during the interval between t 0 to
tn. Likewise, we perform a similar calculation for the lobes
in the southern gyre to get φN,S = 0.0563 Sv. If we subtract
this value from φS,N we get φR = 2.67 × 10−3 Sv, which
denotes the instantaneous value of the reversible component
of the flux at t = tn described in the previous section, which
is attributed to the movement of the boundary between the
southern and northern gyres from t0 to tn. For a point of ref-
erence regarding these transport quantities, we can compute
the transport along the jet, φJ , by taking the difference in the
instantaneous streamfunction values at t = tn from the cen-
ters of the eddies above and below the jet near the western
boundary and multiplying by the distance between the two
centers.

In this case, φJ = 6.12 Sv is two orders of magnitude
larger than φS,N and five orders of magnitude larger than
φR. However, it is important to explore and estimate the
numerical accuracy of the flux computations which rely on
the lobes. To do this, we can exploit certain behaviors of
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this particular case. First, in many time-periodic solenoidal
fields, such as this case, all of the lobes on a given side of the
boundary should theoretically be identical in area. So, we
compute the variation, φv , in the lobe area for all the lobes
on the north side of the boundary by subtracting the min-
imum and maximum lobe areas, dividing the result by the
maximum lobe area, and multiplying by 100%. In this case,
φv = 0.429%, which serves as a measure of the global rela-
tive error. Another measurement of the global relative error
takes a bit more effort to obtain, but the necessary compu-
tations yields other insights into the physics of the transport
processes.

If we re-compute the manifolds and corresponding flux
computations for Fig. 10, but start and stop the computa-
tions five days later, that is, t0 = 25085 days and tn =
26635 days, and maintain the same number of points in each
manifold, 18000 in the unstable, and 3000 in the stable, then
we will get slightly different values for φS,N , φN,S and φR . If
we repeat this computation at five day intervals for 750 days,
the result is Fig. 11. Note that φS,N is the black dashed line
and φN,S is the red dashed line in the upper panel of Fig. 11.
The red and black solid lines in the upper panel are φ S,N and

φN,S , which represent the time average of φS,N and φN,S
from the present t back to t0, respectively. Since φS,N−φN,S
represents the reversible flux due boundary movement, and
flow is time-periodic, then φS,N and φN,S should approach
the same constant value when tn − t0 >> T̃ . In this case,
t0 = 25080 days, tn = 27385 days, and T̃ = 160 days,
which satisfies this condition. From Fig. 11 we can see that
although φS,N and φN,S both approach constant values over
the 750 day span shown, there is a small difference between
their final values, i.e. φE = ∣∣φS,N − φN,S ∣∣t=27385. This
difference is another measure of the global error of the com-
putations, which in this case is 0.387%. So, by the value
given for φv and this difference between φS,N and φN,S , it is
safe to say that for the parameters chosen to control the ac-
curacy of the numerical methods, such as the temporal inter-
polation, spatial interpolation, integration, spatial resolution
of the manifolds, etc., chosen for the computations in these
studies, the overall global error is less than 1%. The lower
panel of Fig. 11 shows φR, corrected by φE . Note that φR is
truly reversible, in the sense that it oscillates above and be-
low the zero line, and that it has a period of 160 days, equal
to the period of the spatially-averaged kinetic energy of the
entire basin shown in the lower panel of Fig. 8. Note that φR
is a very small quantity relative to that of φS,N or φN,S , so the
boundary between the northern and southern gyres is nearly
stationary and nearly all of the flux across the boundary is
of a long-term irreversible nature. The discontinuities in the
curvature of φS,N , φN,S , and φR are a natural consequence
of the discrete changes in the bip at t = tn as the manifolds
are advanced forward in time.

5.2 τ0 = 0.160: A time-periodic velocity field

Since our objective is to develop methods and to study flows
with periodic, quasiperiodic and chaotic time dependence, it
is important to increment τ0 gradually and examine the re-
sulting implications on the lobe dynamics. If we increase the
magnitude of the wind stress to τ0 = 0.160 dyn/cm2, the
flow remains time-periodic. Evidence for this is presented in
Fig. 12. The spectrum of the mean spatial kinetic energy of
the top layer in the basin is similar to that shown in Fig. 8,
but indicating a period of 154 days.

In Fig. 13 we show the lobes created by the intersect-
ing stable and unstable manifolds of the hyperbolic trajecto-
ries on the eastern and western boundaries, respectively, for
τ0 = 0.160 dyn/cm2 at t = tn = 26580 days. There are
26 intersections of the unstable and stable manifold segments
shown, all of which are pips. As in the right panel of Fig. 10,
two of the pips are labeled, an and bn. bn is the present bip
and an is the map of a0 from t = t0 = 25075 days. The
two manifolds and 26 pips define 13 lobes in the northern
gyre, and 12 lobes in the southern gyre. The overall ge-
ometric pattern of the lobes is very similar to the previous
τ0 = 0.140 case. In fact, for all values of τ0 the motion of
the lobes follows the same general pattern. Note the lobes at
the top of the figure. Under time evolution they move to the
left, toward the western boundary. After reaching the western
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Fig. 12. Spatially-averaged kinetic energy and the corresponding
power spectrum for the upper layer when τ0 = 0.160 dyn/cm2,
indicating a period of 154 days.

boundary they move downwards along the western boundary
until they reach a neighborhood of the hyperbolic trajectory
on the western boundary. Then they move back to the interior
of the flow, and in the process, cross from the northern to the
southern gyre. However, in this case of τ0 = 0.160, the lobes
move around the gyre more rapidly than in the τ 0 = 0.140
case.

For the lobes shown in Fig. 13, the intergyre transport
is φS,N = 0.136 Sv while the transport along the jet is
φJ = 6.98 Sv. So, we see that the intergyre transport has
increased significantly (almost by a factor of two). Yet the
increase in transport along the jet does not experience as sig-
nificant an increase. Note also that the asymmetry between
the patterns of lobes in the northern and southern gyres is
more pronounced than for τ0 = 0.140. This is due to the
fact that the meandering of the jet is more pronounced for
τ0 = 0.160. The instantaneous value of the reversible flux
is φR = 0.00335 Sv and the lobe variation for the northern
lobes is φv = 0.435%, both of which are increased from the
their corresponding values when τ0 = 0.140.

5.3 τ0 = 0.165: A time-periodic velocity field

For this value of the wind stress another time-periodic ve-
locity field is obtained, which is clear from the wind up and
power spectrum of the spatially-averaged kinetic energy of
the first layer presented in Fig. 14. The period is 151 days.
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Fig. 13. Lobes created by the intersection of the stable and un-
stable manifolds of the hyperbolic trajectories on the eastern and
western boundaries, respectively, for τ0 = 0.160 dyn/cm2 at
tn = 26580 days.

In Fig. 15, we show the lobes created by the intersect-
ing stable and unstable manifolds of the hyperbolic trajec-
tories on the eastern and western boundaries, respectively,
for τ0 = 0.165 dyn/cm2 at t = 27925 days. The lobes have
been colorized with alternating green and purple, so that it is
easier to see the lobes. The colorization also makes it easier
to see the transport behavior. In Fig. 15, purple lobes can be
seen in the southern gyre along the western boundary, in the
jet, and in the northern gyre. Green lobes can be seen along
in the northern gyre along the western boundary, just past the
jet, and in the southern gyre. Since the flow is periodic and
one lobe of each color is generated each period, each purple
lobe can be thought of as a map of any other purple lobe, and
likewise, each green lobe can be thought of as a map of any
other green lobe. So, the colorized lobes allow us to “see” the
transport process: green lobes descend the western boundary,
and then cross the jet into the southern gyre. Purple lobes as-
cend the western boundary, and then cross the jet into the
northern gyre. An animated version of Fig. 15 is available
on the authors’ web site at http://transport.caltech.edu, along
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Fig. 14. Spatially-averaged kinetic energy and the corresponding
power spectrum for the upper layer when τ0 = 0.165 dyn/cm2,
indicating a period of 151 days.

with animations of several of the other similar figures in this
paper. The reader is encouraged to view the animations, since
they clearly illustrate the intergyre transport process. In addi-
tion to elucidating intergyre transport, the lobes also show the
geometric shape of fluid both before and after it has crossed
the boundary. Note that the geometric pattern of the lobes
shows new behavior that is different than that observed for
τ0 = 0.140 and 0.160.

In particular, one notices that the purple lobes in the north-
ern gyre have developed a ring-like structure due to the
rolling up of the tips, which occurs as a result of the inter-
action with the eddy above the jet.

Fig. 16 shows several steps in the formation of the ring-like
structures at a northern meander starting at t = 27945 days
and spanning a 150 day period, at 30 day intervals. Since
the flow has a period of 151 days, the last panel in Fig. 16 is
nearly identical to the first. In the first panel of Fig. 16, a pur-
ple lobe can be seen just after it crossed the jet. The panels
which follow show a ring-like structure pinch off from the
jet, remaining attached to the remainder of the lobe by a very
thin filament. From the last panel, it is evident that only a
small amount of the fluid in the ring-like structure is purple,
i.e. from the southern gyre. The ring-like structures are simi-
lar to the well-known rings often discussed in oceanographic
literature, particularly in discussions of transport processes in
the vicinity of the Gulf Stream. They are similar in the sense
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Fig. 15. Lobes created by the intersection of the stable and un-
stable manifolds of the hyperbolic trajectories on the eastern and
western boundaries, respectively, for τ0 = 0.165 dyn/cm2 at
t = 27925 days. To make it easier to see the lobes, they have
been colorized with alternating green and purple.

that they are quasigeostrophic coherent Lagrangian struc-
tures, but dissimilar in that they do not have associated with
them typical velocity and potential vorticity gradients. As a
result, their path of travel after they are formed is simply the
result of the ambient velocity field, moving slowly around the
gyre, as seen in Fig. 15, whereas rings, once they are formed,
typically travel in a direction opposite to that of the ambient
fluid, e.g. in the case of the Gulf stream. They move in a di-
rection parallel to, but opposite that of the Gulf stream. From
some further studies that we have done corresponding to sig-
nificantly larger values of τ0, the same Lagrangian structures
that we see here do develop associated velocity and potential
vorticity gradients and have a path of travel parallel and op-
posite to that of the jet. So, we will refer to these Lagrangian
structures as rings throughout the remainder of this paper,
since they seem to be the low τ0 analog of classical rings. It
is important to realize that because these rings at low τ0 do
not have associated velocity or potential vorticity gradients,
they are undetectable or invisible by any method other than
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Fig. 16. A series of snapshots showing the formation of a ring in
the southern gyre when τ0 = 0.165 dyn/cm2. The upper-left panel
starts at t = 27945 days, and then each following panel depicts the
ring formation process at 30 days intervals.

that which we describe using lobe dynamics. In this partic-
ular case, note from Fig. 15 and Fig. 16 that the fluid in the
interior of the ring is fluid from the northern gyre. Therefore
we see that these rings for this value of τ0 do not transport
fluid, or at least transport very small amounts of fluid, from
the southern to the northern gyre since these lobes originated
earlier in the southern gyre. This is an interesting observa-
tion since there has been much debate in the literature about
the how much the rings contribute to intergyre transport. We
will also look at the formation of rings at higher values of
τ0 in the following sections to determine if there is a direct
relationship between magnitude of the wind stress curl and
the amount of intergyre transport contributed by rings.

The intergyre flux computed from the northern lobes
shown in Fig. 15 is φS,N = 0.152 Sv, the reversible flux
is φR = 0.00372 Sv, and the flux of the jet is φJ = 7.18 Sv,
all of which represent a linear increase over the values corre-
sponding to τ0 = 0.140 and τ0 = 0.160. The variation com-
puted from the northern lobes is φv = 0.263%, which is a de-
crease from the variation corresponding to both τ 0 = 0.140
and τ0 = 0160. This is probably due to the fact that only
seven lobes were computed for this case, whereas ten lobes
were computed for both of the previous cases, thus the vari-
ation in lobe size is likely to be less.

0 0.0025 0.005 0.0075 0.01
f (cycles/day)

10-4

10-3

10-2

P
S

D
of

K
E

1-
K

E
1av

g

λ = 402 days
λ = 153 days

0 5000 10000 15000 20000 25000
t (days)

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

K
in

et
ic

E
ne

rg
y

(m
3
/s

2
)

KE1

KE2

KE3

KET

Fig. 17. Spatially-averaged kinetic energy and the corresponding
power spectrum for the upper layer when τ0 ∼= 0.1672 dyn/cm2.
However, now the spectrum is not dominated by a single period,
but rather two periods: one of 153 days and the other 402 days. We
refer to this situation as “quasiperiodic”.

5.4 τ0 ∼= 0.1672: A time-quasiperiodic velocity field

For this value of the wind stress we obtain a velocity field that
is clearly not temporally periodic. We show the spectrum in
Fig. 17. We see two dominant peaks in the spectrum: one
at 153 days and the other at 402 days, and we refer to this
situation as “quasiperiodic”. The precise value of the wind
stress curl necessary to obtain this quasiperiodic condition is
0.16715087 dyn/cm2, which was not a trivial value to find,
requiring the model to be spun up from rest over 60 times.

In Fig. 18 we show the lobes created by the intersect-
ing stable and unstable manifolds of the hyperbolic trajec-
tories on the eastern and western boundaries, respectively,
for τ0 ∼= 0.1672 dyn/cm2. There are 18 intersections of
the stable and unstable manifold, all of which are pips. The
manifolds and pips define 17 lobes, 9 of which are purple
and 8 of which are green. Of the purple lobes, 2 of them in
the southern gyre along the western boundary indicate fluid
which will be transported across the boundary, while 7 of
them in the northern gyre indicate fluid which has recently
been transported across the boundary. Of the green lobes,
2 of them in the northern gyre along the western boundary
indicate fluid which will be transported across the boundary,
while 6 of them in the southern gyre indicate fluid which has
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Fig. 18. Lobes created by the intersection of the stable and un-
stable manifolds of the hyperbolic trajectories on the eastern and
western boundaries, respectively, for τ0 ∼= 0.1672 dyn/cm2 at
t = 26057 days. As in Fig. 15, the lobes have been colorized
with alternating green and purple.

been recently transported across the boundary. As for the
geometry of the lobes, we see some similarity with the sit-
uation for τ0 = 0.165 in that the tips of most of the purple
lobes in the northern gyre have rolled up to form rings. How-
ever, there is one very important difference. For this case
we see a small “ring within the ring”. This interior ring is
filled with fluid from the southern gyre (but it is surrounded
by fluid from the northern gyre). Thus, the lobes rings now
contribute to the transport of fluid from the southern to the
northern gyre.

The intergyre flux for the lobes shown in Fig. 18 is φS,N =
0.160 Sv. The reversible flux is φR = 0.0142 Sv and the
flux along the jet is φJ = 7.28 Sv. Note that both the inter-
gyre flux and the flux along the jet have again increased lin-
early from the values corresponding to previously discussed
magnitudes of τ0. But the reversible flux has increased non-
proportionally. We should note that although the reversible
flux values have thus far increased with increasing τ0, these
are instantaneous values only, and are indicative only of the
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Fig. 19. Spatially-averaged kinetic energy and the corresponding
power spectrum for the upper layer when τ0 = 0.1675 dyn/cm2.
However, now the spectrum is broadband and not dominated by a
small number of frequencies. This situation is typical of chaotic
dynamical systems.

present boundary position and shape relative to the initial
boundary. This reversible flux value could change signifi-
cantly as the boundary fluctuated. The variation for northern
lobes shown in Fig. 18 is φv = 24.2%, which is a significant
and non-proportionate increase. This significant increase in
the lobe variation is expected since this quasiperiodic case
represents a transition to a chaotic flow.

5.5 τ0 = 0.1675: A time-chaotic velocity field

For this value of τ0 the velocity field is temporally chaotic, as
can be seen from the broadband spectrum in the lower panel
of Fig. 19.

In Fig. 20 we show the lobes created by the intersection of
the stable and unstable manifolds of the hyperbolic trajecto-
ries on the eastern and western boundaries for τ0 = 0.1675
and tn = 26600 days. There are 14 intersection points, all
of which are pips. The manifolds and pips define 13 lobes, 6
of which are purple and 7 of which are green. All of the pur-
ple lobes indicate fluid which has recently been transported
across the boundary from the southern gyre to the north-
ern gyre. Of the green lobes, one of them in the northern
gyre along the western boundary indicates fluid which will
be transported across the boundary, while 6 of them in the
southern gyre indicate fluid which has been recently trans-
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Fig. 20. Lobes created by the intersection of the stable and un-
stable manifolds of the hyperbolic trajectories on the eastern and
western boundaries, respectively, for τ0 = 0.1675 dyn/cm2 at
tn = 26600 days. As in Fig. 15, the lobes have been colorized
with alternating green and purple.

ported across the boundary. From these lobes, we can com-
pute the usual transport quantities that we have in previous
sections: the intergyre transport is φS,N = 0.090 Sv and the
flux along the jet is φJ = 7.12 Sv. So, in the transition to
chaotic flow, there has been a steep decrease both in intergyre
transport, as well as flux along the jet. The reversible flux in
Fig. 20 is φR = −0.00106 Sv, which represents the first so
far where the boundary fluctuation is such that the present
boundary at t = tn is on the average, south of the original
boundary at t = t0.

From Fig. 20, we see that the geometric pattern of
the lobes is much more irregular than in the periodic or
quasiperiodic cases. In fact, the variation in lobe areas is
almost 100 %, a dramatic increase over the variation at lower
values of τ0. We also note that some of the lobes have formed
rings, while others have not. One of the purple lobes in the
northern gyre has pinched off to form a ring, and two of the
lobes in the southern gyre have also pinched off to form rings.

Fig. 21 shows several steps in the formation of the
eastern-most ring in Fig. 20 several months earlier, at t =
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Fig. 21. A series of snapshots showing the formation of a ring in
the southern gyre when τ0 = 0.1675. The upper-left panel starts
at t = 25855 days, and then each following panel depicts the ring
formation process at 30 days intervals.

25855 days and spanning a 150 day period, at 30 day inter-
vals. The green lobe represents fluid which has been trans-
ported across the jet from the northern gyre. Thus, we can
clearly see from this series of snapshots that only the fluid in
the exterior of the ring has contributed to intergyre transport
and the majority of the fluid in the interior of the ring does
not contribute to intergyre transport.

5.6 τ0 = 0.170: A time-chaotic velocity field

Here we have another temporally chaotic case, as is evi-
dent from the time series and the spectrum of the spatially-
averaged kinetic energy shown in Fig. 22.

Despite the different time dependencies, the behavior of
the hyperbolic trajectory for chaotic flows is similar to that
for periodic flows. In Fig. 23 we show the hyperbolic tra-
jectory as a function of time along the western and eastern
boundaries, similar to Fig. 9, but for τ0 = 0.170 dyn/cm2.
The convergence of αy and βy to the hyperbolic trajectory for
both the western and eastern boundary in Fig. 23 is similar to
that of Fig. 9, rapid on western boundary, requiring only 34
days to converge to less than 1 km, and much slower for the
eastern boundary, again requiring over 2000 days to converge
to less than 1 km. As expected, we see that neither the in-
stantaneous vertical position of the stagnation point, nor the
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Fig. 22. Spatially-averaged kinetic energy and the corresponding
power spectrum for the upper layer when τ0 = 0.170 dyn/cm2.
The spectrum shows the same characteristics as in the case shown
in Fig. 19.

vertical position of the hyperbolic trajectory follow a sinu-
soidal path, as they did in Fig. 23. But the behavior of the
hyperbolic trajectory relative to that of the stagnation point
in both the upper and lower panels of Fig. 23 is similar to
that of Fig. 9. In the upper panel, the hyperbolic trajectory
follows the stagnation point closely, while in the lower panel,
the vertical movement of the stagnation point is much more
rapid than that of the hyperbolic trajectory. So, we note that
the principal previously discussed: the range of travel of the
hyperbolic trajectory is bounded by the range of travel of the
stagnation point also holds in this time-chaotic case.

The lobes created by the intersection of the stable and
unstable manifolds of the hyperbolic trajectories on the
eastern and western boundaries, respectively, for τ0 =
0.170 dyn/cm2 at t = 27925 days is shown in Fig. 24.
The lobes have again been colorized with alternating green
and purple to make them easier to see. There are 16 in-
tersection points, all of which are pips. The manifolds and
pips define 15 lobes, 7 of which are purple and 8 of which
are green. Of the purple lobes, one of them in the south-
ern gyre along the western boundary indicates fluid that will
cross the boundary, while 6 of them in the northern gyre in-
dicate fluid which has recently crossed the boundary. Of the
green lobes, 2 of them in the northern gyre along the west-
ern boundary are difficult to see, because they are very thin,
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Fig. 23. The location of the hyperbolic trajectory and the instan-
taneous location of the stagnation point for the western bound-
ary (upper panel) and the eastern boundary (lower panel) when
τ0 = 0.170 dyn/cm2.

but still indicate fluid which will cross the boundary into the
southern gyre. The remaining 6 green lobes are in the south-
ern gyre and indicate fluid which has recently crossed the
boundary from the northern gyre. Note that the lobes vary
significantly in size and shape, and in fact, the variation in
area of the northern lobes is again nearly 100 %. The in-
tergyre flux is φS,N = 0.195 Sv and the flux along the jet
is φJ = 7.158 Sv. So, after the drop in transport that was
experienced in the transition from periodic to chaotic time
dependence, we see that both φS,N and φJ continue to in-
crease as τ0 is increased in the chaotic regime. As in the last
case, the instantaneous value of the reversible flux happens to
be φR = −0.0594 Sv, which again indicated that the present
boundary is, on the average, south of the original boundary
at t = t0. We also observe from Fig. 24 that there happen
to be two rings present at t = 27925 days, one in the south-
ern gyre which was formed some time ago, and another in the
northern gyre which is just finishing its pinching or formation
process. Note that this ring, which is located in the northern
gyre, directly above the eastern end of the jet, is significantly
different in character than the other rings that we have looked
at and discussed so far. The formation of this ring over a 30
day interval is shown in Fig. 25. Note that when this ring
is formed, the interior of it is entirely purple, indicating that
all of the fluid contained by the ring has contributed to in-
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Fig. 24. Lobes created by the intersection of the stable and un-
stable manifolds of the hyperbolic trajectories on the eastern and
western boundaries, respectively, for τ0 = 0.170 dyn/cm2 at
t = 27925 days. As in Fig. 15, the lobes have been colorized
with alternating green and purple.

tergyre transport. So, the contribution of rings to intergyre
transport can vary tremendously, depending on the time de-
pendence of the flow. In a perfectly time-periodic flow, the
rings contribute almost nothing to the intergyre transport and
in time-chaotic flows, their entire contents can contribute to
intergyre transport.

In Fig. 26 we present results similar to that of Fig. 11 for
the reversible and irreversible intergyre flux. Identical to the
methods used for Fig. 11, the flux φS,N shown in the left
panel of Fig. 26, is computed from lobes which transported
fluid from the southern gyre into the northern gyre (purple
dashed line) and the flux φN,S is computed from the lobes
which transported from the northern gyre into the southern
gyre (green dashed line). Their time averages φ S,N and φN,S
are shown by the solid purple and green lines, respectively.
The black and red lines which appear nearly as a single line
are the four flux quantities shown in Fig. 11, provided in this
figure for comparison purposes. Although the wind stress
curl for these two cases presented in Fig. 26 differs only by
0.03 dyn/cm2, there is a striking difference in the behavior
of the intergyre flux. First, the magnitude of the flux for the
τ = 0.170 case is typically more than twice that of the flux
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Fig. 25. A series of snapshots showing the formation of a ring in
the northern gyre when τ0 = 0.170 dyn/cm2. The upper-left panel
starts at t = 27781 days, and then each following panel depicts the
ring formation process at 30 days intervals.

for the τ = 0.140 case. Second, the fluctuations in φS,N and
φN,S , indicated by the purple and green dashed lines, are sev-
eral orders of magnitude larger than the fluctuation indicated
by the red and black dashed lines. Third, the amount of re-
versible flux, φR = φS,N −φN,S , shown in the right panel of
Fig. 26 has considerably larger variations than that shown in
the lower panel of Fig. 11. Note that the units of the vertical
axis of the lower panel of Fig. 11 are in m3/s and the units
of the vertical axis of Fig. 26 are in Sv, so the reversible
flux in the τ0 = 0.170 case has variations which are approxi-
mately three orders of magnitude larger than the τ 0 = 0.140
case. Also note that φS,N , φN,S and φR have smooth contin-
uous changes over short time segments, and then sudden dis-
continuous changes, which are a direct result of re-labeling
a new pip as the bip. This is necessary since we are main-
taining only finite segments of infinitely long manifolds, and
therefore only having finite knowledge of the present trans-
port processes. The time averages smooth out the disconti-
nuities due to the changing bip, but it becomes smoother and
smoother as the time average becomes longer. Therefore, the
time average is useful for obtaining a steady or quasisteady
value for the intergyre flux, but not useful for understand-
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Fig. 27. Summary of the flux computations discussed in the previous sections. φS,N , φJ , |φR |, and φv are each presented as a function of
τ0.

ing the present or transient intergyre flux. A better method
for computing the flux would be to maintain an average over
certain time intervals or a particular number of lobes. How-
ever, this is a challenging task, and is thus beyond the scope
of this paper. Coulliette et al. (2000) further discuss the de-
tails in the computational methods necessary for Fig. 11 and
Fig. 26, and those necessary to maintain an average flux over
a certain time interval or particular number of lobes.

5.7 Summary of the flux results

We summarize our flux results in Fig. 27. The left panel in
the figure shows the values of intergyre transport (φS,N ) on
the left-hand vertical axis as a function of τ0 and values of the
transport along the jet (φJ ) on the right-hand vertical axis as
a function of τ0. For both types of transport we see that the
flux increases linearly with respect τ0 in the periodic regime,
a catastrophic change in the flux-wind relationship occurs in
the transition from periodic to chaotic time dependence, re-
sulting in a decrease in flux.

In the right panel of the figure we show the reversible flux
and the lobe variation as a function of τ0. Note that the varia-
tion is very small, always less than 1 % for the periodic flows,
then rises to 24 % for the quasiperiodic case, and then reaches
nearly 100 % for each of the chaotic cases. The reversible
flux does not follow this type of pattern simply because it is
the instantaneous value of the reversible flux at each of the
times discussed in the previous sections which represents the
present position of the boundary relative to that of the origi-
nal boundary.

6 Conclusions

The most typical approach used to try to understand La-
grangian transport is to release drifters or particles from var-
ious locations throughout the flow (e.g. Lozier and Riser,
1989). The result is a collection of particle pathways that are
often referred to as “spaghetti plots”. Very little useful infor-
mation can be extracted from these plots, other than the ob-
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servation that Lagrangian transport is difficult to understand.
The problem is the nonlinearities inherent in Eq. (5) cause
seemingly straightforward velocity fields to yield seemingly
unintelligible Lagrangian trajectories. Rather than releas-
ing particles from randomly chosen locations, the dynamical
systems approach releases a series of particles from specific
locations (hyperbolic trajectories), which identifies two ma-
terial surfaces (unstable and stable manifold) that intersect
each other (pips and sips) and divide the basin into qualita-
tively different Lagrangian regions (lobes). The visualization
of these regions allows us to understand, for example, why a
particle released from a specific location at a given time fol-
lows a completely different path than a particle released at
exactly the same location at a slightly later time. In addition,
these Lagrangian regions can be used to compute the precise
amount of flux crossing a moving fluid boundary and to vi-
sualize the Lagrangian shape of the regions both before and
after crossing the fluid boundary. This is not possible with
any other conventional method. More specifically we can
make the following conclusions regarding Lagrangian trans-
port and intergyre flux:

– It is possible to quantify Lagrangian transport for pe-
riodic, quasiperiodic and chaotic time dependence us-
ing lobe dynamics with numerically generated velocity
fields.

– The intergyre flux is proportional to the flow rate of the
jet.

– The intergyre flux and the flow rate of the jet are linear
functions of the wind magnitude for periodic flows.

– A catastrophic change occurs in the flux-wind relation-
ship during the transition from periodic to chaotic time
dependence.

– The intergyre flux and the flow rate of the jet are nonlin-
ear functions of the wind magnitude for chaotic flows.

Concerning flow structures and the use of invariant mani-
folds and lobes in describing their influence on transport, we
can make the following conclusions:

– It is possible to precisely study the geometric structure
of transported fluid using lobe dynamics with numeri-
cally generated velocity fields.

– Ring formation from a meandering jet is evident in pe-
riodic, quasiperiodic and chaotic flows.

– Ring formation does not contribute significantly to in-
tergyre flux in periodic flows.

– Ring formation does contribute to intergyre flux in
chaotic flows.

– All of the fluid that crosses the jet must pass through the
western boundary current.

– Fluid that makes a transition around both gyres must
follow the “figure eight” pattern dictated by the lobes.
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