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Abstract. Quantitative measures of the uncertainty of Earth
system estimates can be as important as the estimates them-
selves. Direct calculation of second moments of estimation
errors, as described by the covariance matrix, is impracti-
cal when the number of degrees of freedom of the system
state is large and the sources of uncertainty are not com-
pletely known. Theoretical analysis of covariance equations
can help guide the formulation of low-rank covariance ap-
proximations, such as those used in ensemble and reduced-
state approaches for prediction and data assimilation. We
use the singular value decomposition and recently developed
positive maptechniques to analyze a family of covariance
equations that includes stochastically forced linear systems.
We obtain covariance estimates given imperfect knowledge
of the sources of uncertainty and we obtain necessary con-
ditions for low-rank approximations to be appropriate. The
results are illustrated in a stochastically forced system with
time-invariant linear dynamics.

1 Introduction

Estimates of the state of the Earth system contain uncertainty,
a consequence of imperfect observations and models. Quan-
titative measures of this uncertainty are useful in a variety
of ways. Users of weather and climate predictions base de-
cisions on both forecast and forecast uncertainty (Changnon
et al., 1999). Data assimilation systems combine informa-
tion from observations and models in a manner that depends
upon their presumed uncertainty (Cohn, 1997). Ensemble
prediction systems use estimates of analysis error to gener-
ate ensembles of initial conditions (Barkmeijer et al., 1998).

Uncertainty can be modeled as a random variable. With
some assumptions, equations can often be obtained for the
evolution of the mean and covariance of this random vari-
able (Ehrendorfer and Tribbia, 1997). For instance, the co-
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variance of stochastically forced linear systems is described
by a Lyapunov equation (Farrell and Ioannou, 1996). How-
ever, for dynamical systems with a large number of degrees
of freedom, direct solution of covariance equations is imprac-
tical due to computational cost and incomplete knowledge of
the sources of uncertainty. Therefore, in many situations, the
covariance must be modeled.

One approach to covariance modeling is to specify ana-
lytically parameters, such as the variances and correlation
lengths (Dee and da Silva, 1998; Rabier et al., 1998). Com-
plex features, such as flow dependence, may also be modeled
through appropriate parameterization (Riishøjgaard, 1998).
A second approach is to assume that the uncertainty is well
described with a few structures and hence, to approximate the
covariance matrix by a low-rank matrix. Low-dimensional
covariance representations are often directly connected to
the dynamics, as in reduced-state Kalman filter data assim-
ilation and ensemble prediction (Cane et al., 1996; Cohn
and Todling, 1996; Houtekamer and Mitchell, 1998; Molteni
et al., 1996). Correlation modeling and low-rank approaches
are combined in “hybrid” methods (Hamill and Snyder,
2000).

Direct comparison of covariance approximations with the
exact covariance is only possible in idealized models where
the number of degrees of freedom is small and the sources of
uncertainty are specified (Cohn and Todling, 1996; Kleeman
and Moore, 1997; Whitaker and Sardeshmukh, 1998). Oth-
erwise, analytical methods must be relied upon to provide
guidance. Theoretical analysis of covariance equations can
provide insights with potential value for covariance model-
ing. An example is Tippett et al. (2000b), where the steady-
state analysis error covariance of a time-invariant data assim-
ilation system is analyzed.

The purpose of the present paper is to analyze a more
general problem, namely, the family of covariance equations
whose solution is a linear transformation of a single forc-
ing covariance. This family of problems includes systems
with linear dynamics and stationary additive stochastic forc-
ing. We use two analytical methods. The first uses the fa-
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miliar eigenvalue and singular value decompositions (SVD)
and provides results for normal operators. These results are
extended to the general nonnormal case, using apositive map
technique that has recently been applied to Lyapunov equa-
tions (Bhatia, 1997; Tippett et al., 2000a). We demonstrate
that many results derived for specific covariance equations
are actually simple general consequences of the structure of
positive maps. In particular, we show that some known prop-
erties of Lyapunov equations, such as covariance bounds,
stochastic optimals and necessary conditions for low-rank
approximation, are, in fact, properties of the general prob-
lem. Additionally, we obtain a new low-rank approximation
estimate.

The paper is organized as follows. Section 2 introduces
the general linear covariance equation. This equation is ana-
lyzed in Sect. 3, using the SVD and positive map techniques.
Section 4 illustrates the results with an example, using the
dynamics of a generalized nonnormal advection equation.
Conclusions are given in Sect. 5.

2 The linear covariance equation

We suppose that the system uncertaintyε, a real vector of
lengthn, is a mean-zero random variable. Thisε might be
a forecast error, an analysis error, or a climate anomaly, for
instance. From physical and dimensional considerations, a
symmetric positive definite matrixM is chosen so that the
scalarεT Mε is a meaningful measure of the magnitude of
the uncertaintyε; (·)T denotes the transpose. The corre-
sponding inner product for (generally complex) vectors is
defined to be(ε1, ε2) ≡ ε†1Mε2; (·)† denotes the conjugate
transpose. We takeM = I without loss of generality since if
M 6= I, then a new random variablêε = M1/2ε can be in-
troduced with(ε1, ε2) = ε̂†1ε̂2. System uncertainty statistics
are contained in then× n covariance matrixP, defined by

P ≡
〈
εεT

〉
, (1)

where 〈·〉 denotes expectation. The total variance ofε is
given bytrP, wheretr denotes trace.

The eigenvectors or EOFs ofP order state-space direc-
tions according to the amount of variance they explain and
can be used to construct low-rank approximations ofP. Rank-
r approximations ofP, r � n, can be stored and used in
calculations even when the size ofn makes calculations with
P itself impractical. A particular rank-r approximationP(r)

is the projection ofP onto its leadingr eigenvectors, given
by

P(r) ≡
r∑

i=1

λi(P)wiw
T
i , (2)

wherewi is the normalized eigenvector ofP corresponding
to the eigenvalueλi(P) with orderingλ1(P) ≥ λ2(P) ≥
· · · ≥ λn(P) ≥ 0. This projectionP(r) is, in fact, the best
rank-r approximation ofP in the sense that it minimizes the
error‖P−P(r)‖ for any unitarily invariant matrix norm‖ · ‖

(Horn and Johnson, 1985). The eigenvalues ofP completely
determine the approximation error, which is

‖P−P(r)‖ =
‖diag (0, . . . , 0, λr+1(P), . . . , λn(P))‖ . (3)

For instance, in the spectral norm‖X‖∞ ≡
√

λ1(XT X),
the approximation error is

‖P−P(r)‖∞ = λ1 (diag (0, . . . , 0, λr+1(P), . . . , λn(P)))
= λr+1(P) . (4)

In this norm, the error is small compared with‖P‖∞ when
the first eigenvalue ofP is large compared to the(r + 1)st
eigenvalue ofP. In fact, a necessary condition forP to
have a good low-rank approximation inanyunitarily invari-
ant norm is thatλ1(P) � λn(P), i.e. thatP has a large
condition numberκ(P) ≡ ‖P‖∞‖P−1‖∞ (Golub and Van
Loan, 1996); the condition number of a symmetric positive
definite matrixP is λ1(P)/λn(P). Such a matrix is said to
be ill-conditioned.

Equations for the covarianceP can be derived from evo-
lution equations for the system uncertaintyε. For instance,
suppose the evolution ofε is given by

dε

dt
= Fε + ξ, ε(t = 0) = 0,〈

ξ(t1)ξ(t2)T
〉

= δ(t1 − t2)P0, (5)

whereF is a constantn × n matrix. Then we obtain a Lya-
punov equation forP:

dP
dt

= FP + PFT + P0, P(t = 0) = 0 . (6)

Two basic properties of (6) are that its solutionP is a covari-
ance matrix for any forcing covarianceP0, and thatP is a
linear function ofP0. We will see that much of the structure
of this solution is a consequence of these two simple proper-
ties.

To demonstrate this assertion as the basis for this paper,
we consider a generalization of (6), namely, the linear co-
variance equation

P = LP0, P0 = PT
0 ≥ 0, (7)

whereL is an operator acting on matrices andP0 is a forcing
covariance matrix. We assume only that (i)L is such thatP
is a covariance matrix for any forcing covarianceP0 and that
(ii) P is a linear function ofP0, i.e. thatL is a linear operator.
In the case of (6), these two properties can be established by
writing its solution explicitly in the form of (7):

P(t) = LP0 ≡
∫ t

0

eτFP0e
τFT

dτ ; (8)

hereL depends ont. Similarly, if the evolution of the uncer-
tainty is given by a discrete-time model

εk+1 = Aεk + ξk+1,
〈
ε0ε

T
0

〉
= P0,〈

ξiξ
T
j

〉
= δijP0, (9)
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then the covariance evolution is

Pk+1 = APkAT + P0 . (10)

The solution of (10) can be written in the form of (7) as

Pk+1 = LP0 ≡
k+1∑
i=0

AiP0

(
AT
)i

; (11)

hereL depends onk. For stable1 dynamics, the limitst →∞
andk → ∞ of (8) and (11), respectively, exist and give the
solutions of the algebraic Lyapunov equations:

FP + PFT + P0 = 0 (12)

and

P = APAT + P0 . (13)

As (8) and (11) show, in these casesL is a highly nonlinear
function of the dynamics and for this reason, its analysis is
challenging.

We examine next how the two defining properties ofL
in the linear covariance equation (7) determine the structure
of the solutionP. Since the forcing covarianceP0 is often
poorly known, results that depend primarily onL and require
limited knowledge ofP0 are desirable.

3 Analysis of linear covariance matrix equations

3.1 Eigenvectors and singular vectors

We present two methods of analyzing the solution of (7). In
both, the fundamental object of our attention will be the lin-
ear operatorL that maps the covariance forcingP0 to the co-
variance responseP. In the first method, the covariance ma-
tricesP0 andP are viewed as vectors of lengthn2 andL is
viewed as ann2×n2 matrix (Byers and Nash, 1987; Ghavimi
and Laub, 1995). Familiar linear algebra techniques, such as
the SVD and the eigenvalue decomposition, can then be ap-
plied. For instance, the SVD ofL can be used to identify the
forcingP0 that produces the maximum responseP, and can
also be used to identify approximations ofL. The SVD of
L and the adjointL∗ of L depend on the choice of amatrix
inner product.

A natural inner product for two matricesX andY can be
defined by

(X,Y) ≡ trM1/2X†MYM1/2 , (14)

whereM is a symmetric positive definite matrix. The ma-
trix inner product in (14) is compatible with the vector inner
product(ε1, ε2) = ε†1Mε2, defined previously in the sense
that the orthogonality of two rank-1 Hermitian matricesε1ε

†
1

andε2ε
†
2 is equivalent to the orthogonality of the vectorsε1

1The continuous-time dynamicsF is stable if and only if the
eigenvalues ofF all have a real part that is less than zero. The
discrete-time dynamicsA is stable if and only if the eigenvalues of
A lie inside the unit circle.

andε2. Again, we takeM = I without a loss of generality.
We mention that forM = I, the matrix inner product (14)
is just the Euclidean inner product on vectors of lengthn2,
since then

(X,Y) = trX†Y =
n∑

i=1

n∑
j=1

XijYij (15)

and that(X,X) = ‖X‖22, where‖·‖2 is the Frobenius matrix
norm.

By definition, the adjointL∗ of L satisfies

(X,LY) = (L∗X,Y), (16)

for any twon × n matricesX andY. It can be shown, for
instance, that the adjoints of the operatorsL in (8) and (11)
with respect to the inner product (15) are, respectively,

L∗P0 ≡
∫ t

0

eτFT

P0e
τF dτ (17)

and

L∗P0 ≡
k+1∑
i=0

(
AT
)i

P0Ai . (18)

These two covariance operatorsL arenormal, i.e. they have
a complete set of orthogonal eigenvectors, if and only if the
dynamics (F andA, respectively) are normal.

Suppose we denote byσi(L), Ui and Vi, respectively,
the i-th singular value, left singular vector and right singu-
lar vector of the general operatorL, 1 ≤ i ≤ n2. The
n × n matricesUi and Vi satisfyLVi = σi(L)Ui and
(Ui,Uj) = (Vi,Vj) = δij , where(·, ·) is the matrix inner
product (15); singular values are ordered so thatσ1(L) ≥
σ2(L) ≥ · · · ≥ σn2(L) ≥ 0. Then the decomposition of the
solutionP of the covariance equation (7) in the left singular
vectors ofL is

P = LP0 =
n2∑
i=1

σi(L) (Vi,P0) Ui . (19)

The first singular value ofL is seen to be the maximum am-
plification of the forcingP0 in the Frobenius norm, i.e.

max
P0

‖LP0‖2
‖P0‖2

= σ1(L) (20)

and is achieved by choosingP0 = V1, in which caseP =
σ1(L)U1.

Approximate solutions of the covariance equation (7) can
be obtained by approximatingL. Using the approximation
L(r) obtained by truncating the series in (19) gives

P̃ ≡ L(r)P0 ≡
r∑

i=1

σi(L) (Vi,P0) Ui (21)

with error

‖P− P̃‖22 =
∥∥∥(L − L(r)

)
P0

∥∥∥2

2

=
n2∑

i=r+1

σ2
i (L) |(Vi,P0)|2 . (22)
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The error of this approximation depends on the size of the
singular values ofL and on the projection ofP0 onto the
right singular vectorsVi. The approximation error is small
relative to‖P‖2 if the leadingr singular values ofL are large
compared toσr+1(L), and if the projection ofP0 onto the
leadingr right singular vectorsVi, 1 ≤ i ≤ r, is not small.
If the leadingr left singular vectorsUi of L happen to be
rank-1 matrices, theñP is an approximation ofP whose rank
is at mostr, although thisP̃ may not be the best rank-r ap-
proximation ofP(r) defined in (2). Still, in case the leading
r left singular vectorsUi of L happen to be rank-1 matri-
ces, we have constructed a low-rank approximationP̃ of P
whose error depends on the singular values ofL.

To illustrate a situation where the rank ofP̃ in (21) is at
mostr, consider the solutionP of the discrete algebraic Lya-
punov equation (13) for normal dynamicsA,

P = LAP0 ≡
∞∑

k=0

AkP0

(
AT
)k

; (23)

the notationLA emphasizes the dependence on the dynamics
A. The eigenvalues and eigenvectors of the Lyapunov opera-
torLA in (23) are simply related to those of the dynamicsA
(Lancaster, 1970). Specifically,Dij ≡ (1−λi(A)λj(A))−1

is an eigenvalue ofLA whose corresponding eigenvector is
the rank-1 matrixziz

†
j , wherezi is the eigenvector ofA cor-

responding to the eigenvalueλi(A), i.e.

LAziz
†
j =

(
1− λi(A)λj(A)

)−1

ziz
†
j . (24)

WhenA is normal, so isLA, and the eigenvectors ofLA

are orthogonal with respect to the inner product (15). In this
case,L∗Aziz

†
j = Dijziz

†
j and it follows thatLAL∗Aziz

†
j =

L∗ALAziz
†
j = |Dij |2ziz

†
j . Therefore,|Dij | is a singular

value of the normal operatorLA. If Dij is real, then the
rank-1 matrixziz

†
j is the corresponding singular vector. If

Dij is complex, then|Dij | is a repeated singular value and
the corresponding singular vectors are the rank-2 matrices
<ziz

†
j andImziz

†
j , whose sum has rank-2. Therefore, the

matrix P̃ in (21) has rank which is at mostr when the trun-
cation is chosen such thatσr+1(LA) 6= σr(LA).

WhenA is normal, SVD analysis ofLA can be replaced
by eigenanalysis. The expansion ofP in the eigenvectors of
LA is

P =
n∑

i=1

n∑
j=1

Dij tr
(
ziz

†
jP0

)
ziz

†
j

=
n∑

i=1

n∑
j=1

Dij

(
z†jP0zi

)
ziz

†
j . (25)

The maximum possible amplification in the Frobenius norm,
as well as in any other unitarily invariant norm, is given by
the first eigenvalueλ1(LA) = (1 − |λ1(A)|2)−1 and is a-
chieved by the forcingP0 = z1z

†
1, for whichP = LAP0 =

(1− |λ1(A)|2)−1z1z
†
1. A rank-r approximation ofP is ob-

tained by truncating the series expansion (25):

P̃(r) =
r∑

i=1

r∑
j=1

Dij

(
z†jP0zi

)
ziz

†
j . (26)

The error of this approximation depends on (i) the values of
Dij , which, in turn, are determined by the stability properties
of the dynamicsA, and on (ii) how the forcing covariance
P0 projects onto the eigenvectors ofA. WhenP0 = I, the
expansion (25) becomes simply

P =
n∑

i=1

Diiziz
†
i , (27)

and

P̃(r) =
r∑

i=1

Diiziz
†
i (28)

is, in fact, the best rank-r approximationP(r) of P. For
P0 = I, the error‖P − P̃(r)‖2 is small relative to‖P‖2
when some, but not all of the eigenmodes ofA are nearly
unstable, i.e. when some, but not all of theDii are large. In
this case,λ1(LA) � λn2(LA) andLA is ill-conditioned.
WhenP0 6= I, a rank-r approximation ofP may be better
than (26) if the spectrum ofLA is relatively flat and hence,
LA is not ill-conditioned. For instance, whenA = cI, 0 ≤
c < 1, the spectrum ofLA is flat andλ1(LA) = λn2(LA) =
(1 − c2)−1. In this case, the solutionP for anyP0 is given
by

P =
1

1− c2
P0 (29)

and has the best rank-r approximationP(r) = (1−c2)−1P(r)
0 .

The examples (27) and (29) illustrate two factors that may
lead to the solutionP of the discrete algebraic Lyapunov
equation (13) for normal dynamics having a good low-rank
approximation:LA being ill-conditioned andP0 having a
good low-rank approximation. Recall that a necessary condi-
tion for a positive semi-definite matrixP to have a good low-
rank approximation is that it be ill-conditioned,λ1(P) �
λn(P). In fact, the solutionP of (13) can be ill-conditioned
only when eitherLA or P0 is ill-conditioned. To observe
this for normal dynamics, one writes (25) as

P = Z
(
D ◦ (Z†P0Z)

)
Z† , (30)

where ◦ denotes the Hadamard product2 and Z =
[z1, . . . , zn]. Then one can obtain3

λ1(P)
λn(P)

≤ maxi Dii

mini Dii

λ1(P0)
λn(P0)

≤ λ1(LA)
λn2(LA)

λ1(P0)
λn(P0)

(31)

2The Hadamard product of two matricesX andY with entries
Xij andYij , respectively, is the matrix whose entries areXijYij .

3Fromλn(P0)(D ◦ I) ≤ D ◦P0 ≤ λ1(P0)(D ◦ I).
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or equivalently,κ(P) ≤ κ(LA)κ(P0), showing thatP can
be ill-conditioned only if eitherLA or P0 is also ill-condi-
tioned. These two mechanisms can interfere with each other
and examples can be constructed where bothLA andP0 are
ill-conditioned, but the spectrum ofP is flat.

There is no correspondingly simple analysis of the solution
of (13) for nonnormal dynamicsA. In general, the singular
vectors ofLA are rank-n matrices and the truncation in (21)
does not give a low-rank approximation ofP. Additionally,
there is the practical difficulty of the calculation of the SVD
of LA. However, in the next subsection, we show that the
properties of the normal Lyapunov operator that lead to rela-
tions such as (31) are also properties of both the nonnormal
Lyapunov operator and of generalL. This allows us to show
for the Lyapunov operator, a relation between the stability of
A and the conditioning ofP, and for generalL, to show the
connection between the conditioning ofL and that ofP.

3.2 Positive maps and operator norms

The linear operatorL in (7) maps covariance matrices to co-
variance matrices and is thus, apositive map. We will use
the properties of positive maps to extend the results of the
previous section and to demonstrate that many properties of
solutions of Lyapunov equations are also properties of so-
lutions of (7) (Bhatia, 1997; Tippett et al., 2000a). We use
operator normsto obtain a new upper bound for the fraction
of variance explained by the first eigenmode ofP.

The operator norm ofL is defined by

‖L‖p ≡ max
X

‖LX‖p

‖X‖p
; (32)

the Schattenp-norm of ann× n matrixX is defined to be

‖X‖p ≡
(

n∑
i=1

σp
i (X)

)1/p

1 ≤ p ≤ ∞ , (33)

whereσi(X) is thei-th singular value of the matrixX. For
covariance matricesP, ‖P‖1 = trP, ‖P‖2 is the Frobenius
norm, and‖P‖∞ = λ1(P). For normal dynamicsA, the
norm of the Lyapunov operator is‖LA‖p = λ1(LA) = (1−
|λ1(A)|2)−1.

A basic fact about positive maps is that they obtain their
p = ∞Schatten norm on the identity matrixI (Bhatia, 1997),
i.e.

‖L‖∞ ≡ max
P0

λ1(LP0)
λ1(P0)

= λ1(B) , (34)

where thebound matrixB, defined byB ≡ LI, is the co-
variance response (7) to the identity. This means that rather
than having to carry out the maximization in definition (32),
‖L‖∞ can always be calculated by computing the largest
eigenvalue of the bound matrix. The bound matrixB can
also be used to estimate the variance explained by a direction
x in state space by using the relation

λn(P0) xT Bx ≤ xT Px ≤ λ1(P0) xT Bx, (35)

derived in Tippett and Marchesin (1999) for the discrete al-
gebraic Lyapunov equation. In this sense, the eigenvectors
of the bound matrix order state space directions according
to the maximum possible response. Sometimes whenP0 is
poorly known,P is calculated assumingP0 = I (Whitaker
and Sardeshmukh, 1998). The bounds in (35) show that the
results of such calculations can be used to bound the response
to a general forcing covarianceP0.

A convenient characterization of thep = 1 Schatten norm
of L is useful, since this norm measures the total variance,
‖P‖1 = trP. Since thep = 1 andp = ∞ Schatten norms
are dual to each other, a standard functional analysis result
is that‖L‖1 = ‖L∗‖∞, whereL∗ is the adjoint ofL with
respect to the matrix norm defined in (15). SinceL∗ is also
a positive map, (34) can be used to compute the maximum
total variance amplification:

‖L‖1 ≡ max
P0

trLP0

trP0
= ‖L∗‖∞ = ‖L∗I‖∞

= λ1(L∗I) . (36)

In other words,‖L‖1 can be calculated by computing the
largest eigenvalue ofL∗I. The forcingP0 that produces this
maximum amplification can be found by considering the re-
sponse to the rank-1 forcingP0 = wwT , wherew is a col-
umn vector of lengthn. The amplification of this forcing is

‖LwwT ‖1
‖wwT ‖1

=
trLwwT

tr wwT
=

(L∗I,wwT )
wT w

=
wT (L∗I) w

wT w
. (37)

The maximum value of the Rayleigh quotient on the right-
hand side of (36) isλ1(L∗I), obtained whenw is the leading
eigenvector ofL∗I. From (36), this is, in fact, the maximum
variance amplification for anyP0. The eigenvectors ofL∗I
arestochastic optimalsin the sense that they order the state
space directions according to the amount of variance excited
by the forcing in that direction (Farrell and Ioannou, 1996;
Kleeman and Moore, 1997). More generally, there is the re-
lation trP = tr (P0 L∗I) (Bhatia, 1997). As an example,
for the continuous-time Lyapunov equation withL defined in
(8), the stochastic optimals are the eigenvectors of

L∗I ≡
∫ t

0

eτFT

eτF dτ . (38)

The positive map abstraction can also be used to formu-
late and prove properties of the solutionP of the general co-
variance equation (7) that are not obvious from analysis of a
specific covariance equation. For instance, positive maps and
operator norms are used in Tippett et al. (2000a) to formulate
and prove the generalization of the bound (31):

λ1(P)
λn(P)

≤ ‖L‖∞‖L−1‖∞
λ1(P0)
λn(P0)

(39)

for invertible positive mapsL andP0 = PT
0 > 0. This

bound means that the solutionP of (7) can be ill-conditioned
only if eitherL or P0 is also ill-conditioned. For example,
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if P0 = I, thenP can be ill-conditioned and have a good
low-rank approximation only ifL is ill-conditioned.

The general result (39) can be applied to the discrete al-
gebraic Lyapunov equation (13) in order to demonstrate the
connection between the stability of general nonnormal dy-
namicsA and the conditioning of the solutionP. This is
done by relating the stability ofA to the operator norms of
LA and its inverse. First,‖L−1

A ‖p can be estimated in terms
of the singular values ofA by

max
i
|1− σ2

i (A)| ≤ ‖L−1
A ‖p ≤ 1 + σ2

1(A) . (40)

Therefore,‖L−1
A ‖∞ � 1 whenσ1(A) � 1 and the dynam-

ics presents strong nonmodal growth. Second, the size of
‖LA‖p is bounded by

1
2r(A) + r2(A)

≤ ‖LA‖p ≤
1

r2(A)
, (41)

where theradius of stability4 r(A) is the distance fromA
to the closest unstable matrix (Mori, 1990; Tippett et al.,
2000a); ‖LA‖p is large whenA is close to an unsta-
ble matrix. Together, estimates (40) and (41) show that
‖LA‖∞‖L−1

A ‖∞ is large when the dynamicsA is nearly un-
stable and has at least one singular value that is not near unity.

A new bound for the fraction of total variance explained
by the first eigenmode ofP is

λ1(P)/trP
λ1(P0)/trP0

=
‖LP0‖∞
‖P0‖∞

‖L−1P‖1
‖P‖1

≤ ‖L‖∞‖L−1‖1 . (42)

Though not obvious from specific examples of positive maps
L, the result follows directly from the operator norm defini-
tion. A significant fraction of the total variance ofP can be
in its first eigenmode only if either the same is true ofP0,
or if the quantity‖L‖∞‖L−1‖1 is large. The estimates (40)
and (41) show that‖LA‖∞‖L−1

A ‖1 is large if A is nearly
unstable and has at least one singular value that is not near
unity.

Positive maps preserve ordering5. This property is useful
in caseP0 is not precisely known, but there are upper and
lower boundsP−

0 ≤ P0 ≤ P+
0 . In this case, upper and

lower bounds for the solutionP of (7) are

LP−
0 ≤ P ≤ LP+

0 . (43)

From this relationship follows bounds for the eigenvalues,
diagonal and total variance ofP:

λi(LP−
0 ) ≤ λi(P) ≤ λi(LP+

0 ) (44)

diag (LP−
0 ) ≤ diag (P) ≤ diag (LP+

0 ) (45)

trLP−
0 ≤ trP ≤ trLP+

0 . (46)

4For normal stable matricesr(A) = 1 − |λ1(A)|, the distance
from its largest eigenvalue to the unit circle. For nonnormal dy-
namics, the radius of stability depends on the pseudospectrum ofA
(Trefethen, 1997). Eigenvalues near the unit circle, large singular
values and sensitive eigenvalues cause the radius of stability to be
small.

5For two symmetric matricesX andY, the orderingX ≤ Y
means thatY −X is positive semi-definite.

Taking P−
0 = λn(P0)I andP+

0 = λ1(P0)I in (43) gives
bounds that depend on the bound matrix:

λn(P0)B ≤ P ≤ λ1(P0)B . (47)

When the bounds in (47) are tight andP has a well separated
set of leading eigenvalues, the leading eigenvectors ofP and
B span approximately the same subspaces (Golub and Van
Loan, 1996, Theorem 7.2.4).

The numerical cost of calculating operator norms can be
comparable to calculating the full covariance, though the is-
sue of poorly known sources of uncertainty is avoided. Lanc-
zos methods can be used to calculate the leading eigenval-
ues and eigenvectors ofLI whenLI, or an approximation
thereof, is available as an operator. For instance, in the case
of the discrete algebraic Lyapunov equation, the approxima-
tion

LAI ≈ I + AAT + A2A2 T + · · ·+ AkAk T (48)

can be applied to a vector ifA andAT are available as oper-
ators.

4 Example

We now illustrate the results with a specific example: a dis-
crete algebraic Lyapunov equation. The dynamics come from
the generalized one-dimensional advection equation

εt + aεx + c′(x)ε = 0 0 ≤ x ≤ 1 (49)

with a > 0, and the initial and boundary conditions

ε(x, t = 0) = ε0(x), ε(x = 0, t) = 0 , (50)

respectively; the functionc(x) is assumed to be monotone
decreasing for convenience. Nonnormality is due to the un-
differentiated termc′(x)ε and the boundary condition. Sim-
ilar dynamics are used in Chang et al. (2001) to model trop-
ical Atlantic variability. This model, with periodic boundary
conditions, is studied in Tippett et al. (2000b) in the context
of data assimilation. We discuss first properties of the deter-
ministic dynamics.

We defineAτ to be the operator that advances the solution
τ time units for some fixedτ , i.e. ε(x, t + τ) = Aτε(x, t).
The dynamics operatorAτ is given by (see Appendix)

Aτε(x, t) =

{
0 0 ≤ x ≤ aτ

s(x)ε(x− aτ, t) aτ ≤ x ≤ 1
, (51)

where s(x) ≡ exp [(c(x− aτ)− c(x))/a]; s(x) > 1
since we have takenc(x) to be decreasing, ands(x) ≈
exp(−τc′(x)) if aτ � 1. Disturbances move from left
to right with speeda, growing at rates(x). Spatially dis-
crete, exact dynamics can be constructed on the regular grid
{x1, x2, . . . , xn}, xi = i/n, for integer Courant number
C ≡ aτn, by evaluating (51) at the grid points; the result
is ourn × n dynamics matrixA (see Appendix). The zero
boundary condition at the left boundary forces the solution
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Fig. 1. c(x) (solid line) ands(x) (dash-dot line).

of (49) to be identically zero after the timea−1 required to
cross the domain. Therefore,A1/τa = 0, and the matrixA
is nilpotent, with all of its eigenvalues identically zero; there
is no modal growth.

Nonmodal transient growth is found from the singular val-
ues and singular vectors ofA. The singular values and left
singular vectors ofA are the square roots of the eigenval-
ues and the eigenvectors ofAAT , which turns out to be a
diagonal matrix (see Appendix):

(
AAT

)
ii

=

{
0 1 ≤ i ≤ C

s2(xi) C + 1 ≤ i ≤ n .
(52)

Thus, the singular values ofA are zero and the values taken
on bys(xi) at all but the firstC grid points. The left singu-
lar vector associated with the singular values(xi) is thei-th
column of the identity matrix. The matrixAT A is also diag-
onal and the right singular vector associated with the singular
values(xi) is the(i− C)-th column of the identity matrix.

We add mean-zero Gaussian-distributed noiseξk at each
time-step:

εk+1 = Aεk + ξk ,
〈
ξiξ

T
j

〉
= δijP0 . (53)

The steady-state covariance matrixP of the system is given
by P = LAP0. We have seen that many of the properties of
LA can be obtained from the eigenvalues and eigenvectors
of the matricesB ≡ LAI andBT ≡ LAT I. These matri-
ces are diagonal for the dynamics here. The largest response,
as measured by the eigenvalues ofB, is ‖LA‖∞ = λ1(B),
according to (34). The largest sensitivity to forcing, as mea-
sured by the eigenvalues ofBT , is ‖LA‖1 = λ1(BT ), ac-
cording to (36). In fact, the maximum ofdiag B is within aτ
of the right boundary and the maximum ofdiag BT occurs
within aτ of the left boundary, independently ofc(x) (see
Appendix). In contrast, maximum growth as measured by
singular vectors depends onc(x) and is located at the maxi-
mum ofs(x). Since left singular vectors ofA are to the right
of their corresponding right singular vectors, the leading left
singular vectors ofA explain more of the total variance ofB
than the leading right singular vectors ofA.

As a specific numerical example, we takea = 1/12, τ =

0 0.2 0.4 0.6 0.8 1
0

100

200

300

400

x

Fig. 2. The diagonal elements ofB (solid line) andBT (dash-dot
line).

0.25, n = 48, andc(x) given by

c(x) = 1 +
1
16

2
π

arctan
(
16(0.5− x)

)
. (54)

In much of the domain,c′(x) ≈ 0 and there is little growth.
Nearx = 0.5, there is significant amplification, as shown in
the plots ofc(x) ands(x) in Fig. 1. The maximum growth in
a one time unit isσ1(A) = 1.17. Calculation of the diagonal
elements ofB andBT gives‖LA‖∞ = λ1(B) = 347.1 and
‖LA‖1 = λ1(BT ) = 334.0. The spatial dependence of the
diagonal elements ofB andBT is plotted in Fig. 2. From
(41), the operator norm‖LA‖p is large because the distance
r(A) from A to the closest unstable matrix is small. If the
matrixA were normal, thenr(A) would be1−|λ1(A)| = 1.
For the nonnormal dynamics here, the eigenvalues ofA are
sensitive to perturbations andr(A) = 0.012. The norm of
L−1

A is bounded by1 ≤ ‖L−1
A ‖p ≤ 1 + σ2

1(A) = 2.36 from
(40). Since the product‖LA‖∞‖L−1

A ‖∞ is large, (39) tells
us that the steady-state covariance matrixP may have a good
low-rank approximation.

To illustrate the bound matrix estimates derived from (47),
we take the forcing covariance to beP0 = 0.5I + 0.5G,
whereG is a Gaussian covariance model with correlation
length 0.25 and normalized so thattrG = tr I; the diagonal
elements ofP0 are unity. A sense of the temporal behaviour
of the system is seen by looking at the spatial mean of a re-
alization of the forcingξk and of the responseεk in Fig. 3.
The dynamics, with no modal growth, amplifies the forcing
and increases the time coherence.

Figure 4a shows the eigenvaluesλi(P) along with the up-
per and lower bounds obtained from the bound matrixB and
(44). Much of the variance ofP is contained in just the first
few modes, as suggested by the ill-conditioning ofLA. The
spread in the bounds is due to boundingP0, whose spectrum
is not flat, with multiples of the identity matrix. Figure 4b
shows the diagonal ofP and its bounds obtained from the
bound matrix and (45).

The fraction of total variance explained by the best projec-
tion P(r) defined in (2) is shown as a function ofr in Fig. 5;
the first 10 eigenmodes ofP explain about 70% of the total
variance. In addition, the fraction of total variance explained
by other rank-r approximations ofP is shown, in particular,
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Fig. 3. Spatial mean of a realization of(a) the forcingξk and(b)
the responseεk as a function of the advection timeT ≡ kτa.

the projections onto the eigenvectors ofB, the left singular
vectors ofA and the right singular vectors ofA. About 15
eigenvectors ofB are needed to explain 70% of the total vari-
ance. The left singular vectors ofA do not do as well, but
are slightly better than the right singular vectors ofA.

5 Conclusions

Ensemble and reduced-state approaches to prediction and da-
ta assimilation have shown low-rank covariance representa-
tions to be practical covariance models. How appropriate
such approximations are in a given problem depends on the
spectrum of the full covariance, which is generally not avail-
able. Idealized and theoretical results must, therefore, be re-
lied upon for guidance. We have obtained theoretical results
in the case the covarianceP is a linear transformationL of a
forcing covarianceP0.

The singular value decomposition of the transformationL
provides information about the appropriateness of low-rank
approximations ofP in some special cases, such as time-
invariant systems with normal dynamics. More generally, we
have seen that such information can be obtained from oper-
ator norms of the transformationL. SinceL is a positive
map, mapping covariance matrices to covariance matrices,
there are simple expressions for its norms. Ill-conditioning
is a necessary condition for the covariance matrix to permit a
low-rank approximation. We have shown that the covariance
P can be ill-conditioned only when either the forcing co-
varianceP0 or the transformationL is also ill-conditioned.

(a)
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Fig. 4. (a)Eigenvaluesλi(P) (thick line) and their upper and lower
bounds (thin lines) obtained using (44) withP−0 = λn(P0)I and
P+

0 = λ1(P0)I. (b) Diagonal ofP (thick line) and its bounds
(thin lines) obtained using (45) withP−0 = λn(P0)I andP+

0 =
λ1(P0)I.

Similarly, we have shown that the fraction of the variance ex-
plained by the first eigenmode of the covariance can be large
only when the same is true of the forcing covariance, or when
L is ill-conditioned.

In the case of the discrete algebraic Lyapunov equation
describing the steady-state covariance matrixP of a stable,
time-invariant, stochastically forced dynamical system, con-
ditioning of LA is related to the stability of the dynamics
matrix A. Nearly unstable dynamics leads toLA being ill-
conditioned. These results were illustrated in an example us-
ing nonnormal dynamics from a generalized one-dimensional
advection equation. The dynamics matrix A is nearly unsta-
ble andLA is ill-conditioned. Analytic and numerical calcu-
lations of the singular values ofA, the radius of stability of
A and operator norms ofLA demonstrated the mechanisms
that lead to the ill-conditioning ofLA and to the existence of
good low-rank approximations ofP.

Appendix

LetAτ denote the operator that advances the solution of (49)
from any timet to some later timet + τ , ε(x, t + τ) =
Aτε(x, τ). The solution operatorAτ can be determined ex-
plicitly by making a linear change in the variable such that
in the new variable, (49) is just the constant-coefficient ad-
vection equation. The new dependent variable isν(x, t) ≡
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Fig. 5. Fraction of the total variance explained by the eigenvectors
of P (solid line), eigenvectors ofB (dash-dotted line), left singular
vectors ofA (dashed line) and right singular vectors ofA (dotted
line).

L(x)ε(x, t), whereL(x) ≡ exp (c(x)/a), and satisfies

νt + aνx = 0 (A1)

with the initial and boundary conditions

ν(x, t = 0) = L(x)ε0(x), ν(x = 0, t) = 0 . (A2)

The solution operator̃Aτ of this problem is given by

Ãτf(x) =

{
0 0 ≤ x ≤ aτ

f(x− aτ) aτ ≤ x ≤ 1
(A3)

for functions f(x) satisfying the boundary condition

f(0) = 0. It follows from Aτ =
(
L(x)

)−1
ÃτL(x) that

Aτ is given explicitly by

Aτf(x) =

{
0 0 ≤ x ≤ aτ

s(x)f(x− aτ) aτ ≤ x ≤ 1
, (A4)

where

s(x) ≡
(
L(x)

)−1
L(x− aτ)

= exp
[(

c(x− aτ)− c(x)
)
/a
]
. (A5)

The solution operators̃Aτ andAτ can be discretized ex-
actly on a regular grid{x1, x2, . . . , xn}, xi = i/n, for inte-
ger Courant numberC ≡ aτn. Then × n shift matrixÃ is
defined as

Ãij ≡
{

0 1 ≤ i ≤ C

δi−C,j C + 1 ≤ i ≤ n
, (A6)

whereδij is the Kronecker delta, andy is a vector whose
components areyi = f(xi) for some functionf(x) defined
on the grid. Then

(
Ãy
)

i
=

{
0 1 ≤ i ≤ C

f(xi − aτ) C + 1 ≤ i ≤ n
(A7)

and hence,̃A discretizes exactly the solution operatorÃτ

defined in (A3). Similarly, then× n matrixA defined by

Aij ≡

{
0 1 ≤ i ≤ C

s(xi)δi−C,j C + 1 ≤ i ≤ n
(A8)

discretizes the operatorAτ in (A4) exactly. The matricesA
andÃ are related byA = L−1ÃL, whereL is the diagonal
matrix whose diagonal elements areLii = L(xi).

We want to calculate the singular values, singular vectors
and bound matrix for the dynamics matrixA. It follows from
(A6) that ÃDÃT is diagonal for any diagonal matrixD,
with diagonal elements

(
ÃDÃT

)
ii

=

{
0 1 ≤ i ≤ C

Di−C,i−C C + 1 ≤ i ≤ n .
(A9)

Therefore, the matrixAAT = L−1ÃL2ÃT L−1 is diagonal,
with diagonal elements

(
AAT

)
ii

=

{
0 1 ≤ i ≤ C

s2(xi) C + 1 ≤ i ≤ n .
(A10)

Similarly, the matrixAT A is diagonal, with diagonal ele-
ments

(
AT A

)
ii

=

{
s2(xi + aτ) 1 ≤ i ≤ n− C

0 n− C + 1 ≤ i ≤ n .
(A11)

Thus, the singular values ofA are zero and the values of
s(xi) for i = C + 1, . . . , n. The left singular vector associ-
ated with the singular values(xi) is the i-th column of the
identity matrix, according to (A10), and the corresponding
right singular vector is the(i− C)-th column of the identity
matrix, according to (A11).

The bound matrixB satisfiesB = ABAT + I, or equiv-
alently

B̃ = ÃB̃ÃT + L2 , (A12)

whereB̃ = LBL. It follows from (A9) thatB̃ is diagonal,
with diagonal elements given by

B̃ii =

{
L2

ii 1 ≤ i ≤ C

B̃i−C,i−C + L2
ii C + 1 ≤ i ≤ n .

(A13)

SinceB̃ is diagonal,B = L−1B̃L−1 is also diagonal. For
Courant numberC = 1, equation (A13) is a first order dif-
ference equation whose solution is

B̃ii =
i∑

k=1

L2
kk (A14)

for i = 1, 2, . . . , n, so that

Bii = L−2
ii

i∑
k=1

L2
kk =

i∑
k=1

exp
[
− 2

a

(
c(xi)− c(xk)

)]
(A15)



340 M. K. Tippett and S. E. Cohn: Adjoints and low-rank covariance representation

for i = 1, 2, . . . , n. Further, ifC = 1, then (A13) gives

Bii =
L2

i−1,i−1

L2
ii

Bi−1,i−1 + 1 >
L2

i−1,i−1

L2
ii

Bi−1,i−1 (A16)

for i = 2, 3, . . . , n. If c(x) is non-increasing, as assumed
in the text, thenL(x) is also non-increasing and therefore,
(A16) implies thatBii > Bi−1,i−1; in particluar, the maxi-
mum diagonal element ofB is at the right boundaryi = n.
Similarly, it can be shown that forC > 1, the maximum still
occurs withinaτ of the right boundary. The solutionBT of
BT = AT BT A + I is also diagonal and forC = 1, the
solution has diagonal elements given by

(BT )ii = L2
ii

n∑
k=i

L−2
kk =

n∑
k=i

exp
[
2
a

(
c(xi)− c(xk)

)]
(A17)

for i = 1, 2, . . . , n; if c(x) is non-increasing, then(BT )ii >
(BT )i+1,i+1 and the maximum diagonal element ofBT oc-
curs ati = 1. Similarly, it can be shown that forC > 1, the
maximum still occurs withinaτ of the left boundary.
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