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Abstract. Quantitative measures of the uncertainty of Earth variance of stochastically forced linear systems is described
system estimates can be as important as the estimates theiny a Lyapunov equation (Farrell and loannou, 1996). How-
selves. Direct calculation of second moments of estimatiorever, for dynamical systems with a large number of degrees
errors, as described by the covariance matrix, is impracti-of freedom, direct solution of covariance equations is imprac-
cal when the number of degrees of freedom of the systenical due to computational cost and incomplete knowledge of
state is large and the sources of uncertainty are not comthe sources of uncertainty. Therefore, in many situations, the
pletely known. Theoretical analysis of covariance equationscovariance must be modeled.

can help guide the formulation of low-rank covariance ap- One approach to covariance modeling is to specify ana-
proximations, such as those used in ensemble and reducefi#ically parameters, such as the variances and correlation
state approaches for prediction and data assimilation. Wgengths (Dee and da Silva, 1998; Rabier et al., 1998). Com-
use the singular value decomposition and recently developegdlex features, such as flow dependence, may also be modeled
positive maptechniques to analyze a family of covariance through appropriate parameterization (Riishgjgaard, 1998).
equations that includes stochastically forced linear systemsA second approach is to assume that the uncertainty is well
We obtain covariance estimates given imperfect knowledgedescribed with a few structures and hence, to approximate the
of the sources of uncertainty and we obtain necessary coneovariance matrix by a low-rank matrix. Low-dimensional
ditions for low-rank approximations to be appropriate. The covariance representations are often directly connected to
results are illustrated in a stochastically forced system withthe dynamics, as in reduced-state Kalman filter data assim-
time-invariant linear dynamics. ilation and ensemble prediction (Cane et al., 1996; Cohn
and Todling, 1996; Houtekamer and Mitchell, 1998; Molteni
et al., 1996). Correlation modeling and low-rank approaches
are combined in “hybrid” methods (Hamill and Snyder,
2000).

Estimates of the state of the Earth system contain uncertainty, D!f€Ct comparison of covariance approximations with the
xact covariance is only possible in idealized models where

a consequence of imperfect observations and models. Qual‘? :
the number of degrees of freedom is small and the sources of

titative measures of this uncertainty are useful in a variety : = :
of ways. Users of weather and climate predictions base detncertainty are specified (Cohn and Todling, 1996; Kleeman

cisions on both forecast and forecast uncertainty (Changnofd Moore, 1997; Whitaker and Sardeshmukh, 1998). Oth-

et al., 1999). Data assimilation systems combine informa-£7Wise, analytical methods must be relied upon to provide

tion from observations and models in a manner that dependguidance. Theoretical analysis of covariance equations can

upon their presumed uncertainty (Cohn, 1997). Ensembldrovide insights with potential value for covariance model-
prediction systems use estimates of analysis error to genef19: An example is Tippett et al. (2000b), where the steady-

ate ensembles of initial conditions (Barkmeijer et al., 1998). state analysis error covariance of a time-invariant data assim-

Uncertainty can be modeled as a random variable. With'lat'on system is analyzed. i
some assumptions, equations can often be obtained for the 1h€ purpose of the present paper is to analyze a more
evolution of the mean and covariance of this random vari-9€neral problem, namely, the family of covariance equations

able (Ehrendorfer and Tribbia, 1997). For instance, the coWhose solution is a linear transformation of a single forc-
’ ’ ing covariance. This family of problems includes systems

Correspondence tayl. K. Tippett with linear dynamics and stationary additive stochastic forc-
(tippett@iri.ldeo.columbia.edu) ing. We use two analytical methods. The first uses the fa-
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miliar eigenvalue and singular value decompositions (SVD)(Horn and Johnson, 1985). The eigenvalueP @ompletely

and provides results for normal operators. These results ardetermine the approximation error, which is

extended to the general nonnormal case, usimasitive map )

technique that has recently been applied to Lyapunov equaIJP - P =

tions (Bhatia, 1997; Tippett et al., 2000a). We demonstrate [diag (0,...,0,Ar41(P), ..., Au(P))]] . 3

that many results derived for specific covariance equation ; ; _ AT

are .a_ctually simple ggneral consequences of the structure %]oer ;r;;ts)lﬁa,alt?oahzrfgeigtral MoK oo = /A (XTX),

positive maps. In particular, we show that some known prop-

erties of Lyapunov equations, such as covariance boundd|P — P"||o = Ay (diag (0,...,0, A4 1(P),..., \(P)))

stochastic optimals and necessary conditions for low-rank =\11(P). (4)

approximation, are, in fact, properties of the general prob- ) )

lem. Additionally, we obtain a new low-rank approximation !N this norm, the error is small compared wifP ||, when

estimate. the first eigenvalue aoP is large compared to thg + 1)st
The paper is organized as follows. Section 2 introducestigenvalue ofP. In fact, a necessary condition fdt to

the general linear covariance equation. This equation is and?@ve a good low-rank approximation amy unitarily invari-

lyzed in Sect. 3, using the SVD and positive map techniques@nt norm is that\, (P) > A, (P), i.e. thatP has a large

Section 4 illustrates the results with an example, using theondition number(P) = IP]|oc [P~ ]| (Golub and Van

dynamics of a generalized nonnormal advection equation-0an, 1996); the condition number of a symmetric positive
Conclusions are given in Sect. 5. definite matrixP is A1 (P)/A,(P). Such a matrix is said to

be ill-conditioned.
Equations for the covariand@ can be derived from evo-
2 The linear covariance equation lution equations for the system uncertaiaty For instance,
suppose the evolution efis given by
We suppose that the system uncertaiatya real vector of

lengthn, is a mean-zero random variable. Thisnight be %€ _Fet & €e(t=0)=0,
a forecast error, an analysis error, or a climate anomaly, for .
instance. From physical and dimensional considerations, a <€(t1)€(t2) > = 0(t1 — t2)Po, (5)

symmetric positive definite matri¥1 is chosen so that the i i ,
scalare” Me is a meaningful measure of the magnitude of whereF is a.constanh x n matrix. Then we obtain a Lya-
the uncertaintye; (-)7 denotes the transpose. The corre- PUNOV equation foP:

sponding inner product for (generally complex) vectors is dP
defined to beey, e2) = EJ{MEQ; ()T denotes the conjugate g¢
transpose. We tak®I = I without loss of generality since if
M +# I, then a new random variabée= M'/2¢ can be in-
troduced with(eq, €2) = éj{ég. System uncertainty statistics
are contained in the x n covariance matri, defined by

=FP+PFT + Py, P(t=0)=0. (6)

Two basic properties of (6) are that its solutBris a covari-

ance matrix for any forcing covariand®,, and thatP is a

linear function ofPy. We will see that much of the structure

of this solution is a consequence of these two simple proper-

P= <66T> , (1) ties. . ' . '
To demonstrate this assertion as the basis for this paper,

where () denotes expectation. The total varianceeois we consider a generalization of (6), hamely, the linear co-

given bytr P, wheretr denotes trace. variance equation

. The e|genyectors or EOFs @t ordgr state-space dl_rec- dP — [Py, Py=Pl>0, )

ions according to the amount of variance they explain an

can be used to construct low-rank approximationBoRank-  where£ is an operator acting on matrices dpglis a forcing

r approximations ofP, » <« n, can be stored and used in covariance matrix. We assume only that4i)js such thal?

calculations even when the sizerpfnakes calculations with  is a covariance matrix for any forcing covariarf2g and that

P itself impractical. A particular rank-approximatioriP(*) (ii) Pis alinear function oPy, i.e. thatl is a linear operator.
is the projection of? onto its leading- eigenvectors, given In the case of (6), these two properties can be established by
by writing its solution explicitly in the form of (7):
I t T
P = Z A(PYwiw? ) P(t)=LPy = /0 eFPoe™ dr; (8
i=1

_ _ . . hereL depends on. Similarly, if the evolution of the uncer-
wherew; is the normalized eigenvector Bf corresponding  tainty is given by a discrete-time model

to the eigenvalue\;(P) with ordering A, (P) > X2(P) >

-+ > A\ (P) > 0. This projectionP (") is, in fact, the best €1 = A€y, + €1, <6060T> =Py,

rank+ approximation ofP in the sense that it minimizes the

error||P — P(")|| for any unitarily invariant matrix norrjj - | <£i€]T> = 6;;Po, 9)
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then the covariance evolution is

P, = APAT + Py (10)

The solution of (10) can be written in the form of (7) as

k+1 _
Pi1=LPg =) A'Pg(AT)" ;
=0

(11)

hereL depends o. For stablé dynamics, the limitg — oo
andk — oo of (8) and (11), respectively, exist and give the
solutions of the algebraic Lyapunov equations:

FP +PFT + Py =0 (12)
and
P=APAT + P,. (13)

As (8) and (11) show, in these caséss a highly nonlinear

function of the dynamics and for this reason, its analysis is

challenging.
We examine next how the two defining properties/of

in the linear covariance equation (7) determine the structure

of the solutionP. Since the forcing covariandg, is often
poorly known, results that depend primarily Srand require
limited knowledge ofP are desirable.

3 Analysis of linear covariance matrix equations

3.1 Eigenvectors and singular vectors

We present two methods of analyzing the solution of (7). In
both, the fundamental object of our attention will be the lin-

ear operatoL that maps the covariance forciily, to the co-
variance respongB. In the first method, the covariance ma-
tricesP, andP are viewed as vectors of lengtit and L is
viewed as am? xn? matrix (Byers and Nash, 1987; Ghavimi

and Laub, 1995). Familiar linear algebra techniques, such ab =LPo= a
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ande,. Again, we takeM = I without a loss of generality.
We mention that foiM = I, the matrix inner product (14)
is just the Euclidean inner product on vectors of length
since then

(X,Y) =tr XY = i ifijyij

i=1 j=1

(15)

and that X, X) = ||X||3, where]|- || is the Frobenius matrix
norm.
By definition, the adjoiniL* of £ satisfies

(X, LY) = (LX,Y), (16)

for any twon x n matricesX andY. It can be shown, for
instance, that the adjoints of the operatdrs (8) and (11)
with respect to the inner product (15) are, respectively,

t
LPy = / ¢ F Poe ™ dr (17)
0
and
k+1 ) '
L'Py=) (A7) PoA’. (18)
1=0

These two covariance operatatsaarenormal i.e. they have
a complete set of orthogonal eigenvectors, if and only if the
dynamics F and A, respectively) are normal.

Suppose we denote by;(£), U; and 'V, respectively,
the i-th singular value, left singular vector and right singu-
lar vector of the general operatdl, 1 < i < n2. The
n x n matricesU; and'V; satisfy LV, = ¢;(£)U; and
(U;,U;) = (V;,V;) = &5, where(-, -) is the matrix inner
product (15); singular values are ordered so thdtl) >
o2(L) > -+ > 0,2(L£) > 0. Then the decomposition of the
solutionP of the covariance equation (7) in the left singular
vectors ofL is

> 0i(L) (Vi,Po) Us. (19)
i=1

the SVD and the eigenvalue decomposition, can then be ap-

plied. For instance, the SVD @ can be used to identify the
forcing Py that produces the maximum respod3eand can
also be used to identify approximations 6f The SVD of
L and the adjointC* of £ depend on the choice ofraatrix
inner product

A natural inner product for two matricés andY can be
defined by

(X,Y) = tr MY/2XTMYM'/2 | (14)

whereM is a symmetric positive definite matrix. The ma-
trix inner product in (14) is compatible with the vector inner
product(e;, e3) = e{MEQ, defined previously in the sense
that the orthogonality of two rank-1 Hermitian matri@si
and 626; is equivalent to the orthogonality of the vecters

The continuous-time dynamidg is stable if and only if the

eigenvalues of' all have a real part that is less than zero. The

discrete-time dynamic4 is stable if and only if the eigenvalues of
A lie inside the unit circle.

The first singular value of is seen to be the maximum am-
plification of the forcingP in the Frobenius norm, i.e.

| £Po||2
B Pollz (L)
and is achieved by choosif®, = V;, in which caséP =
01 (,C)Ul

Approximate solutions of the covariance equation (7) can
be obtained by approximating. Using the approximation
L£(") obtained by truncating the series in (19) gives

(20)

f’ = ﬁ(T)PO = ial(ﬁ) (Vi7 P()) UZ‘ (21)
=1
with error
~ 2
i B15 = (2 - )
= > (L) [(Vi,Po)* . (22)

i=r+1
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The error of this approximation depends on the size of thetained by truncating the series expansion (25):
singular values ofZ and on the projection oP, onto the .
right singular vector&V;. The approximation error is small 5 _ - ( t ) i
relative to|| P||, if the leadingr singular values of are large P Z Z Dij (#;Pozi) 2i2; - (26)
compared tar, 1 (L), and if the projection oP onto the
leadingr right singular vectord/;, 1 < i < r,isnotsmall.  The error of this approximation depends on (i) the values of
If the leadingr left singular vectordJ; of £ happen to be  D;;, which, inturn, are determined by the stability properties
rank-1 matrices, theR is an approximation dP whose rank  of the dynamicsA, and on (ii) how the forcing covariance
is at mostr, although thisP may not be the best rankap- P, projects onto the eigenvectors Af WhenP, = I, the
proximation ofP(") defined in (2). Still, in case the leading expansion (25) becomes simply
r left singular vectordJ; of £ happen to be rank-1 matri- .
ces, we have constructed a low-rank approximakoof P . 1
whose error depends on the singular values.of b= Zl Diiziz; 27)

To illustrate a situation where the rank Bfin (21) is at -
mostr, consider the solutioR of the discrete algebraic Lya- and
punov equation (13) for normal dynamids

i=1 j=1

P=LAPy= ZA]’CPO (AT)k : (23) i=1

k=0 is, in fact, the best rank-approximationP () of P. For
the notation, emphasizes the dependence on the dynamicdo = 1, the error||[P — P(")||, is small relative to P|
A. The eigenvalues and eigenvectors of the Lyapunov operawhen some, but not all of the eigenmodes/ofare nearly
tor L4 in (23) are simply related to those of the dynamics ~ unstable, i.e. when some, but not all of thg; are large. In
(Lancaster, 1970). Specificallf;; = (1 — \i(A)X;(A))! this case A1 (La) > A\2(LA) .and_LA is ill-conditioned.
is an eigenvalue of 5 whose corresponding eigenvector is WhenP, 7 I, a rankr approximation of> may be better
the rank-1 matrix:; z|, wherez; is the eigenvector oA cor-  than (26) if the spectrum of 4 is relatively flat and hence,

responding to the eigenvalug(A), i.e. La is not ill-conditioned. For instance, wheh = cI, 0 <
¢ < 1, the spectrum of 5 is flatand\; (La) = A\2(LA) =

— N1 2\—1 . . h .
EAz,-z; _ (1 B )\i(A)/\j(A)) Ziz; . (24) ély— ¢*)~*. In this case, the solutioR for any P is given

When A is normal, so isCa, and the eigenvectors afa
are orthogonal with respect to the inner product (15). In thisP = 1_2
case L} zz] = Dyjzz) and it follows thatCa £3 22| =
LZLAziz; = |Dy;|?z:z]. Therefore,|D;;| is a singular ~ and has the best rankapproximatiorP (") — (1-c>) Py

Py (29)

value of the normal operata 5. If D;; is real, then the The examples (27) and (29) illustrate two factors that may
rank-1 matrixz; 2} is the corresponding singular vector. If 1€ad to the solutiorP of the discrete algebraic Lyapunov
D,; is complex, theriD;;| is a repeated singular value and €duation (13) for normal dynamics having a good low-rank
the corresponding singular vectors are the rank-2 matrice@Pproximation: £ being ill-conditioned and®, having a

Rz;z! andImz,z, whose sum has rank-2. Therefore, the 900d low-rank approximation. Recall that a necessary condi-
! ! tion for a positive semi-definite matri® to have a good low-

rank approximation is that it be ill-conditioned; (P) >
A (P). In fact, the solutiorP of (13) can be ill-conditioned
only when eitherZ or Py is ill-conditioned. To observe
this for normal dynamics, one writes (25) as

matrix P in (21) has rank which is at mostwhen the trun-
cation is chosen such thaf 1 (£a) # 0,(LA).

When A is normal, SVD analysis of o can be replaced
by eigenanalysis. The expansion®fin the eigenvectors of

EA is
n n P=2Z(Do(Z'PyZ))Z", (30)
P = Z ZD” tr (Z@Z}P(_OZ@Z} ( )
i=1j=1 where o denotes the Hadamard prodticand Z =
" & [21,...,2n]. Then one can obtain
= Z Z Dij (z;fPozi)ziz} . (25) ! "

i=1 j=1

A (P)

The maximum possible amplification in the Frobenius norm, )\1 P (L) h (P

as well as in any other unitarily invariant norm, is given by n(P) n2(L£a) An(Po)
. . = o1 .

the first eigenvalue\; (£a) = (1 — [A1(A)[]*)~" and is a- 2The Hadamard product of two matric&andY with entries

chieved by the forcin@®, = lei: forwhichP = LAP = X;; andY;;, respectively, is the matrix whose entries &igYi,.
(1 —|A1(A)]2)" 1z, 2]. A rank+ approximation ofP is ob- *From\,(Po)(DoI) < Do Py < A (Pg)(Dol).

max; D” )\1 (PQ)
min; Di; A (Po)

A1(La) A1(Po)

IN

< (31)
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or equivalentlyx(P) < x(La)r(Py), showing thaf® can  derived in Tippett and Marchesin (1999) for the discrete al-
be ill-conditioned only if eithei 5 or Py is also ill-condi-  gebraic Lyapunov equation. In this sense, the eigenvectors
tioned. These two mechanisms can interfere with each otheof the bound matrix order state space directions according
and examples can be constructed where ligthrandPy are  to the maximum possible response. Sometimes vihgis
ill-conditioned, but the spectrum @& is flat. poorly known,P is calculated assuminB, = I (Whitaker

There is no correspondingly simple analysis of the solutionand Sardeshmukh, 1998). The bounds in (35) show that the
of (13) for nonnormal dynamica. In general, the singular results of such calculations can be used to bound the response
vectors ofL o are ranksn matrices and the truncation in (21) to a general forcing covariand?,.
does not give a low-rank approximation Bf Additionally, A convenient characterization of tipe= 1 Schatten norm
there is the practical difficulty of the calculation of the SVD of £ is useful, since this norm measures the total variance,
of La. However, in the next subsection, we show that the||P||; = trP. Since thep = 1 andp = oo Schatten norms
properties of the normal Lyapunov operator that lead to rela-are dual to each other, a standard functional analysis result
tions such as (31) are also properties of both the nonnormais that||£||; = ||£*]|, WhereL* is the adjoint ofC with
Lyapunov operator and of gener@l This allows us to show respect to the matrix norm defined in (15). Sinteis also
for the Lyapunov operator, a relation between the stability ofa positive map, (34) can be used to compute the maximum
A and the conditioning oP, and for general, to show the  total variance amplification:
connection between the conditioning®fand that ofP. t

T £P0
1£]: = max

. ape € o = 1£7T ]l
3.2 Positive maps and operator norms o o
=\ (LT). (36)

The linear operatof in (7) maps covariance matrices to co- In other words. 21l can be calculated by computing the
variance matrices and is thuspasitive map We will use laraest eiWenva,I‘llje”c;t*I The forcig P tha){ rodE(L:jelsgt]his
the properties of positive maps to extend the results of the 9 9 ' g*'o b

previous section and to demonstrate that many properties gfraximum amplification can be foundTby consude_rlng the re-
sponse to the rank-1 forcirg, = ww*, wherew is a col-

solutions of Lyapunov equations are also properties of so- e . L
lutions of (7) {Bk?atia 1937_ Tippett et al, 2pOOF())a). We use Y™mn vector of lengtu. The amplification of this forcing is

operator normgo obtain a new upper bound for the fraction ||Lww?|; trLww” (£, ww’)

of variance explained by the first eigenmoderof [wwT|; T trww? | wlw
The operator norm of is defined by wT (£°T) w
x =2 =7 (37)
I1£]l, = max ; (32) . . . .
x [ X|lp The maximum value of the Rayleigh quotient on the right-

hand side of (36) i3, (L*I), obtained whenw is the leading
eigenvector ofL*I. From (36), this is, in fact, the maximum
n 1/p variance amplification for any?y. The eigenvectors of*I

I1X|, = <Z af(X)) 1<p<co, (33)  arestochastic optimalé the sense that they order the state

i=1 space directions according to the amount of variance excited
by the forcing in that direction (Farrell and loannou, 1996;
Kleeman and Moore, 1997). More generally, there is the re-
lation tr P = tr (Py £*I) (Bhatia, 1997). As an example,
for the continuous-time Lyapunov equation wittdefined in
(8), the stochastic optimals are the eigenvectors of

the Schattep-norm of ann x n matrix X is defined to be

whereo;(X) is thei-th singular value of the matriX. For
covariance matriceB, |P||; = tr P, |P||2 is the Frobenius
norm, and||P||. = A1 (P). For normal dynamics\, the
norm of the Lyapunov operator j&Ca ||, = M (L£a) = (1 —
A (A7

A basic fact about positive maps is that they obtain theirﬁ*I R - 4 38
p = oo Schatten norm on the identity matiixBhatia, 1997), I A (38)
ie. " :
The positive map abstraction can also be used to formu-
A (LP i -
L] = ma 1(£Py) — M (B), (34) late and prove properties of the solutiBrof the general co

Po A (Po) variance equation (7) that are not obvious from analysis of a
specific covariance equation. For instance, positive maps and

where thebound matrixB, defined byB = £I, is the co- A
variance response (7) to the identity. This means that rathe?perator norms are used in Tippett et al. (2000a) to formulate

than having to carry out the maximization in definition (32), and prove the generalization of the bound (31):

£l can always be calculated by computing the largest A1 (P) <Ll A1(Po) (39)
eigenvalue of the bound matrix. The bound mafidxcan ), (P) — e A\ (Po)

also be used to estimate the variance explained by a direction ] » )
« in state space by using the relation for invertible positive maps andP, = PJ > 0. This

bound means that the solutiéhof (7) can be ill-conditioned
M (Po) 2"Bx < TPax < \(Py) 2" Bz, (35)  only if either £ or Py is also ill-conditioned. For example,
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if Py = I, thenP can be ill-conditioned and have a good TakingP; = \,(Po)I and ;" = A\ (Py)I in (43) gives
low-rank approximation only if is ill-conditioned. bounds that depend on the bound matrix:

The general result (39) can be applied to the discrete al-
gebraic Lyapunov equation (13) in order to demonstrate theln(Po)B <P < A1 (Pg)B. (47)

connection between the stability of general nonnormal dy-ynen the bounds in (47) are tight aRthas a well separated
namicsA and the conditioning of the solutioR. This is set of leading eigenvalues, the leading eigenvectoP afid

done by relating the stability oA to the operator norms of B span approximately the same subspaces (Golub and Van
La and its inverse. First|£'||, can be estimated in terms Loan, 1996, Theorem 7.2.4)

of the singular values oA by The numerical cost of calculating operator norms can be

max |1 — o?(A)| < [|[Lx ], < 1+ 0i(A). (40)  comparable to calculating the full covariance, though the is-
! sue of poorly known sources of uncertainty is avoided. Lanc-
Therefore £ [|s > 1 whenoy(A) > 1 and the dynam-  zos methods can be used to calculate the leading eigenval-
ics presents strong nonmodal growth. Second, the size ofies and eigenvectors @I when £I, or an approximation
[£allp is bounded by thereof, is available as an operator. For instance, in the case
1 1 of the discrete algebraic Lyapunov equation, the approxima-
A Ay S 1Lall < 5 (41)  tion
r(A) +r2(A) r2(A)
where theradius of stability 7(A) is the distance fromA  LAT~T+AAT + AZA%T ... ¢ AFAFT (48)
to the closest unstable matrix (Mori, 1990; Tippett et al., ) - )
2000a); ||£all, is large whenA is close to an unsta- Can be applied to a vector X andA* are available as oper-
ble matrix. Together, estimates (40) and (41) show that2tOrs-
[ £alloo | £ | is large when the dynamics is nearly un-
stable and has at least one singular value that is not near unitMr. Example
A new bound for the fraction of total variance explained

by the first eigenmode d? is We now illustrate the results with a specific example: a dis-
A (P)/tr P 1LPo]|oo [|£71P |1 crete algebraic Lyapunov equation. The dynamics come from
A (Py)/tr P = Polle [Pl the generalized one-dimensional advection equation
<NLllooll£7 s - (42) €, +ae, 4+ (x)e=0 0<z<1 (49)

Though not obvious frpm specific examples of positive MabSyith ¢ > 0, and the initial and boundary conditions

L, the result follows directly from the operator norm defini-

tion. A significant fraction of the total variance Bfcanbe  ¢(z,t = 0) = ¢y(z), €(z =0,t) =0, (50)

in its first eigenmode only if either the same is trueRy, _ _ _

or if the quantity||£||~||£~!||1 is large. The estimates (40) respectively; the functior(z) is assumed to be monotone

and (41) show thaﬂﬁAHocHﬁgllh is large if A is nearly ~ decreasing for convenience. Nonnormality is due to the un-

unstable and has at least one singular value that is not nedlifferentiated term’(z)e and the boundary condition. Sim-

unity. ilar dynamics are used in Chang et al. (2001) to model trop-
Positive maps preserve orderingrhis property is useful  ical Atlantic variability. This model, with periodic boundary

in caseP, is not precisely known, but there are upper and conditions, is studied in Tippett et al. (2000b) in the context
lower boundsP, < P, < Pg. In this case, upper and Of data assimilation. We discuss first properties of the deter-

lower bounds for the solutioR of (7) are ministic dynamics.
We defineA ;. to be the operator that advances the solution
— + T
LPy =P < [P;. (43) 7 time units for some fixed, i.e.e(z,t + 7) = A e(x,t).

From this relationship follows bounds for the eigenvalues, The dynamics operatak ; is given by (see Appendix)
diagonal and total variance ®f:

M(LP5) < M(P) < M(LPD) 44)  Are(a,t) = {O t 0 Sf Sj; .G
diag (CP7) < diag (P) < diag (CP}) (45) s@ele—ant) arsws<
tr LP; <trP < trLP{ . (46) where s(z) = expl(c(r —ar) —c(x))/a]; s(x) > 1

since we have taken(z) to be decreasing, and(z) ~
. . .
from its largest eigenvalue to the unit circle. For nonnormal dy- exp(—7¢/(x)) if a7 < 1. Disturbances move from left

namics, the radius of stability depends on the pseudospectridm of to right with speed;'a, growing at rates(z). Spatially dis- .
(Trefethen, 1997). Eigenvalues near the unit circle, large singulac"®te: €Xxact dynamics can be constructed on the regular grid

values and sensitive eigenvalues cause the radius of stability to b&%1: 2, - -+ Zn}, i = i/n, for intege_r COl-_Want number
small. C = arn, by evaluating (51) at the grid points; the result

SFor two symmetric matriceX andY, the orderingX < Y is ourn x n dynamics matrixA (see Appendix). The zero
means thaly — X is positive semi-definite. boundary condition at the left boundary forces the solution

“For normal stable matriceA) = 1 — |\1(A)|, the distance
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1.2

X

Fig. 1. ¢(z) (solid line) ands(z) (dash-dot line).

of (49) to be identically zero after the time ' required to
cross the domain. Thereford,'/7 = 0, and the matrixA

is nilpotent, with all of its eigenvalues identically zero; there
is no modal growth.

Nonmodal transient growth is found from the singular val-
ues and singular vectors @&. The singular values and left
singular vectors ofA are the square roots of the eigenval-
ues and the eigenvectors AfAT, which turns out to be a
diagonal matrix (see Appendix):

{

Thus, the singular values & are zero and the values taken
on by s(x;) at all but the firsiC' grid points. The left singu-
lar vector associated with the singular vah{e;) is thei-th
column of the identity matrix. The matri&” A is also diag-

0

5% ()

<1<
(AAT) tsisC (52)
C+1<i<n.

(%)
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400
300}
200}

100

0.2 0.4

Fig. 2. The diagonal elements @ (solid line) andBr (dash-dot
line).

0.25, n = 48, andc(z) given by
(x) =1+ L2 t
c\r) = 6 arctan

In much of the domaing/’(z) ~ 0 and there is little growth.
Nearz = 0.5, there is significant amplification, as shown in
the plots ofc(x) ands(x) in Fig. 1. The maximum growth in
aone time unitig; (A) = 1.17. Calculation of the diagonal
elements oB andBr gives||La ||cc = A1(B) = 347.1 and
I£alli = M (Br) = 334.0. The spatial dependence of the
diagonal elements dB and B is plotted in Fig. 2. From
(41), the operator norfil a ||, is large because the distance
r(A) from A to the closest unstable matrix is small. If the
matrix A were normal, then(A) would bel — |\ (A)| = 1.
For the nonnormal dynamics here, the eigenvalueA afre
sensitive to perturbations andA) = 0.012. The norm of
£, is bounded byl < ||£ |, < 1+ 0?(A) = 2.36 from

(16(0.5 — z)) . (54)

onal and the right singular vector associated with the singulag40). Since the produdtla || | £ [l is large, (39) tells

values(z;) is the(i — C)-th column of the identity matrix.
We add mean-zero Gaussian-distributed ngisat each
time-step:
_ T\ _
€xt1 = Aep + &k, <€i£j > =0;;Po. (53)

The steady-state covariance mafhof the system is given

us that the steady-state covariance md®imay have a good
low-rank approximation.

To illustrate the bound matrix estimates derived from (47),
we take the forcing covariance to % = 0.51 + 0.5G,
where G is a Gaussian covariance model with correlation
length 0.25 and normalized so thatG = tr I; the diagonal
elements o are unity. A sense of the temporal behaviour

by P = LAP(. We have seen that many of the properties of of the system is seen by looking at the spatial mean of a re-
La can be obtained from the eigenvalues and eigenvectoralization of the forcingt;, and of the response, in Fig. 3.

of the matrice8B = L I andBr = L, rI. These matri-

The dynamics, with no modal growth, amplifies the forcing

ces are diagonal for the dynamics here. The largest responsand increases the time coherence.

as measured by the eigenvaluesBfis || LA ||oc = A (B),

Figure 4a shows the eigenvaluggP) along with the up-

according to (34). The largest sensitivity to forcing, as mea-per and lower bounds obtained from the bound mad&iand

sured by the eigenvalues 8, is ||£al1 = A (Br), ac-
cording to (36). In fact, the maximum dfag B is within a7
of the right boundary and the maximum difxg By occurs
within a7 of the left boundary, independently ofz) (see

(44). Much of the variance d® is contained in just the first
few modes, as suggested by the ill-conditioningCaf. The
spread in the bounds is due to bounding whose spectrum
is not flat, with multiples of the identity matrix. Figure 4b

Appendix). In contrast, maximum growth as measured byshows the diagonal dP and its bounds obtained from the

singular vectors depends ofr) and is located at the maxi-
mum ofs(x). Since left singular vectors df are to the right

bound matrix and (45).
The fraction of total variance explained by the best projec-

of their corresponding right singular vectors, the leading lefttion P(") defined in (2) is shown as a functionofn Fig. 5;

singular vectors oA explain more of the total variance Bf
than the leading right singular vectors Af
As a specific numerical example, we take= 1/12, 7 =

the first 10 eigenmodes & explain about 70% of the total
variance. In addition, the fraction of total variance explained
by other rank- approximations oP is shown, in particular,
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Fig. 3. Spatial mean of a realization @) the forcing&, and(b) X

the response;. as a function of the advection tinfe= kra.

Fig. 4. (a)Eigenvalues\;(P) (thick line) and their upper and lower

L . . bounds (thin lines) obtained using (44) wity, = \,(Po)I and
the projections onto the eigenvectorsi®f the left singular P — A (Po)L (b) Diagonal of P (thick line) and its bounds

vectors ofA and the right singular vectors @&. About 15 (thin lines) obtained using (45) witF, = A,(Po)I andP; =
eigenvectors oB are needed to explain 70% of the total vari- ), (p)1.
ance. The left singular vectors &f do not do as well, but

are slightly better than the right singular vectorsAaf . i i
gnty g g Similarly, we have shown that the fraction of the variance ex-

plained by the first eigenmode of the covariance can be large
only when the same is true of the forcing covariance, or when
L is ill-conditioned.

In the case of the discrete algebraic Lyapunov equation
scribing the steady-state covariance mdgigf a stable,

5 Conclusions

Ensemble and reduced-state approaches to prediction and d&é
ta assimilation ha_ve shown_ low-rank covariance reF)rese.ntafime-invariant, stochastically forced dynamical system, con-
tions to be practical covariance models. How appropriate d

S : . itioning of L4 is related to the stability of the dynamics
such approximations are in a given problem depends on the . . U
. C . matrix A. Nearly unstable dynamics leads£q being ill-
spectrum of the full covariance, which is generally not avail-

. . conditioned. These results were illustrated in an example us-
able. Idealized and theoretical results must, therefore, be re- ; : : :
: : . . ing nonnormal dynamics from a generalized one-dimensional
lied upon for guidance. We have obtained theoretical results

. : ; . ; advection equation. The dynamics matrix A is nearly unsta-
in the case the covarian&is a linear transformatiod of a S i . .

. . ble and. 4 is ill-conditioned. Analytic and numerical calcu-
forcing covariancé,,.

The sinaul lue d i fthe t formatio lations of the singular values &, the radius of stability of
€ singuiar vajue decomposition ot the ransformation o g operator norms af o demonstrated the mechanisms

provide_s information_about the appropriateness of IO\'\’Trankthat lead to the ill-conditioning of o and to the existence of
approximations ofP in some special cases, such as time- good low-rank approximations d.

invariant systems with normal dynamics. More generally, we

have seen that such information can be obtained from operappendix

ator norms of the transformatiofi. Since £ is a positive

map mapping covariance matrices to covariance matricesl et A, denote the operator that advances the solution of (49)
there are simple expressions for its norms. lll-conditioningfrom any timet to some later time + 7, e(z,t + 7) =

is a necessary condition for the covariance matrix to permit aA . €(z, 7). The solution operatoA , can be determined ex-
low-rank approximation. We have shown that the covarianceplicitly by making a linear change in the variable such that
P can be ill-conditioned only when either the forcing co- in the new variable, (49) is just the constant-coefficient ad-
varianceP or the transformatiort is also ill-conditioned.  vection equation. The new dependent variable(is, ) =
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40 50

Fig. 5. Fraction of the total variance explained by the eigenvectors
of P (solid line), eigenvectors dB (dash-dotted line), left singular
vectors ofA (dashed line) and right singular vectors Af(dotted
line).

L(z)e(x,t), whereL(x) = exp (¢(z)/a), and satisfies

vi+av, =0 (A1)

with the initial and boundary conditions

v(z,t =0) = L(z)eo(z), v(z=0,t)=0. (A2)

The solution operatoKT of this problem is given by

- 0 0<zx<ar

A, = - A3
/(@) {f(:car) ar <z <1 (A3)

for functions f(x) satisfying the boundary condition
f(0) = 0. It follows from A, = (L(x))_lj&TL(x) that
A is given explicitly by

0 0<z<ar
Arfle) = {s(m)f(x —ar) ar<z <1’ (A9)
where
s(z) = (L(x))_lL(x —ar)
= exp [(c(x —ar) — C(:U))/a} . (A5)

The solution operatorKT and A, can be discretized ex-
actly on a regular gridzy, 22, ..., z,}, ; = i/n, for inte-
ger Courant numbef’ = arn. Then x n shift matrix A is
defined as

{

whered;; is the Kronecker delta, angl is a vector whose
components arg; = f(x;) for some functionf(z) defined
on the grid. Then

(3),~{

0
di—c,j

1< <C

A= ) ,
C+1<i<n

(A6)

0
flx; —ar)

1<i<C
C+1<i<n

(A7)
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and henceA discretizes exactly the solution operatﬁr,
defined in (A3). Similarly, the: x n matrix A defined by

{

discretizes the operatdx . in (A4) exactly. The matriced
andA are related byA = L' AL, whereL is the diagonal
matrix whose diagonal elements dig = L(x;).

We want to calculate the singular values, singular vectors
and bound matrix for the dynamics matéx It follows from
(A6) that ADAT is diagonal for any diagonal matri,
with diagonal elements

{

Therefore, the matriAA” = L-'AL2ATL~! is diagonal,
with diagonal elements

{

Similarly, the matrixA” A is diagonal, with diagonal ele-
ments

(ATA)n‘ - {

Thus, the singular values dk are zero and the values of
s(x;) fori = C +1,...,n. The left singular vector associ-
ated with the singular value(z;) is thei-th column of the
identity matrix, according to (A10), and the corresponding
right singular vector is thé — C)-th column of the identity
matrix, according to (A11).

The bound matriXB satisfiesB = ABA” + I, or equiv-
alently

0

s(wi)di-c,;

1<i<C
C+1<i<n

A

1] =

(A8)

0 1< <C
Di,c_’i,C C+1§Z§7’L

(ADAT) - (A9)

22

0

s%(x;)

1<i<C
C+1<i<n.

(AAT). = (A10)

%

s2(x; + at)
0

1<i<n-C

i (A11)
n—C+1<i<n.

B =ABA” + 12, (A12)

whereB = LBL. It follows from (A9) thatB is diagonal,
with diagonal elements given by

{

SinceB is diagonal B = L~'BL~! is also diagonal. For
Courant numbe€' = 1, equation (A13) is a first order dif-
ference equation whose solution is

B;; = i Lix
k=1

fori=1,2,...,n, sothat

2
]:"vii

B,_ci-c+LZ

1<i<C
C+1<i<n.

i

(A13)

(A14)

k=1 k=1
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fori =1,2,...,n. Further, ifC' = 1, then (A13) gives schemes for stable and unstable dynamics, J. Meteor. Soc. Japan,
74, 63-75, 1996.

B. — L?71,171B_ 41> L1271,i71B_ _ (A16) Dee, D. P. and da Silva, A. M.: Maximume-likelihood estimation

" L2 i=1i-1 L2 e=li-d of forecast and observation error covariance parameters. Part I:
Methodology., Mon. Wea. Rev., 1998.

fori = 2,3,...,n. If ¢(x) is non-increasing, as assumed Ehrendorfer, M. and Tribbia, J.: Optimal Prediction of Forecast

in the text, thenL(x) is also non-increasing and therefore,  Error Covariances through Singular Vectors, J. Atmos. Sci., 54,

(A16) implies thatB;; > B,_1 ;_1; in particluar, the maxi- 286-313, 1997.

mum diagonal element @ is at the right boundary = n. Farrell, B. F. and loannou, P. J.: Generalized stability theory. Part I:

Similarly, it can be shown that fa?' > 1, the maximum still Autonomous operators, J. Atmos. Sci., 53, 2025-2040, 1996.

occurs withinar of the right boundary. The solutidB; of Ghavimi, A. R. and Laub, A. J.: Computation of approximate null

B; = ATB,A + 1is also diagonal and fo€ = 1, the vectors of Sylvester and Lyapunov operators, |IEEE Trans. Au-

tomat. Contr., 40, 387391, 1995.
Golub, G. H. and Van Loan, C. F.: Matrix Computations, The Johns
n n 9 Hopkins University Press, Baltimore, Third edn., 694 pp., 1996.
(Br),, = L, Z L} = Zexp [ (c(z;) — c(zx))| (AL7)  Hamill, T. M. and Snyder, C.: A hybrid ensemble Kalman filter/ 3D-
i i a variational analysis scheme, Mon. Wea. Rev., 128, 2905-2919,
2000.
Horn, R. A. and Johnson, C. R.: Matrix Analysis, Cambridge Uni-

solution has diagonal elements given by

fori=1,2,...,n;if ¢(x) is non-increasing, the(Br),, >

(BT)i+‘1,i+1 an_d the me_lximum diagonal elementB- oc- versity Press, New York, 561 pp., 1985.

curs ati = 1. Similarly, it can be shown that far’ > 1, the  Houtekamer, P. L. and Mitchell, H. L.: Data Assimilation Using an

maximum still occurs withimr of the left boundary. Ensemble Kalman Filter Technique, Mon. Wea. Rev., 126, 796—
811, 1998.
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