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Abstract. Multi-petal, rotating vortices can form in two-
dimensional flows consisting of an inviscid incompressible
fluid under certain conditions. Such vortices are principally
nonlinear thermo-hydrodynamical structures. The proper ro-
tation of these structures which leads to time-dependent vari-
ations of the associated temperature field can be enregistred
by a stationary observer. The problem is analyzed in the
framework of the contour dynamics method (CDM). An an-
alytical solution of the reduced equation for a contour curva-
ture is found. We give a classification of the solutions and
compare the obtained results with observational data.

1 Introduction

In this paper, we elucidate conditions under which large-
scale, stationary rotating structures which consist of “hot”
vortex formations of the multi-petal type can form. Such vor-
tices are principally nonlinear thermo-hydrodynamical struc-
tures. The proper rotation of these structures which leads to
time-dependent variations of the associated temperature field
can be enregistred by a stationary observer.

Large-scale, long-lived vortices are found in many types
of hydrodynamic flows. The problem of the formation and
of the evolution of such vortives in turbulence, known at co-
herent structures, attracts much attention. Large-scale vor-
tices are largely observed in the planetary atmosperes and in
the oceans (see Gill, 1982; Robinson, 1983; Ingersoll, 1990,
and references therein). On the one hand, we see evidence
of self-organisation in nature. On the other hand, large-scale
oceanic and atmospheric vortices attract interest due to the
role they can play, par example, in the transport of heat, salt
and other properties.

A question immediatelly arises: under what conditions do
large-scale vortex structures form? In traditional statistical
approachs, the turbulent medium is usually considered to be
homogeneous and isotropic. Common sense and thermody-
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namical laws suggests that is very difficult to extract energy
from a chaotic system, and only with some additional spe-
cific properties of such systems is this possible to archive.
Homogeneous, isotropic turbulence, which does not possess
any distinguishing scales or preferred directions, is too sym-
metric to give birth to large-scale vortices; self-organization
seems to be improbable in this case. It is evident that the
breaking of some symmetry is a necessary condition for self-
organisation. It is clear , par example, that turbulent fluid
with broken spherical symmetry (quasi two-dimensional ap-
proximation) can be considered a suitable candidate of a
medium where large-scale vortices can be organized. In line
with this remark, we consider only hereinafter the quasi two-
dimensional approximation: the flows which commonly oc-
cur in nature where the horizontal velocity components dom-
inate over the vertical velocity.

In the geophysical context, there are several possible rea-
sons for the depletation of one (vertical) of the velocity com-
ponents of the flow: the two-dimensional motion is cuased
by the pre-dominant two-dimensional nature of the flow do-
main itself, when tbe characteristic horizontal scale of the
flow, L, greatly surpasses the vertical one,Hs (the so-called
thin-layer atmospheric models whenε ≡ Hs/L � 1). The
depletation can also be due to the strong density stratifica-
tion, or due to the rotation of the system as a whole, shallow
layers. In electrically conducting fluid (plasma flows in mag-
netic fields), such a depletation is ensured by a strong exter-
nal magnetic field. The depletation of one velosity compo-
nent is also observed in experimental systems, including thin
layers of electrolytes, and flows in soap films.

In the atmosphere and oceans of the Earth, the quasi two-
dimensional large-scale vortex structures are abundant. Ex-
amples of such structures are the Golf Stream rings, the
vortices shed from coastal currents, the cyclones and anti-
cyclones, the Antarctic Polar Vortex, etc. Two-dimensional
modelsε ≡ Hs/L → 0 are often applied to such sys-
tems (Kamenkovich, 1977; Pedlosky, 1987, and references
therein).

For atmospheres, the following characteristic scales of
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the field variables based on observed values can be intro-
duced (Holton, 1992): the horizontal velocity scale〈v〉 ∼

1 ÷ 10 m s−1, the vertical velocity scale〈w〉 ∼ 1 cm s−1,

the length scaleL ∼ 105
− 106 m � R0 ∼ 107 m, and the

height scaleHs ∼ 104 m. Since the vertical velocity compo-
nent〈w〉 is small,|w| ∼ ε, whereε = Hs/L � 1, we are
limited by the lowest approximation when all small terms
∼ ε are omitted in the governing equations of motion. Thus,
the evolution of larger scales, whereL � Hs (L � R0) for
large vortex structures in the atmosphere can be considered
two-dimensional in the lowest approximation.

On the other hand, the approximation of a quasi-ideal fluid
is justified in real flows, including turbulent ones, if the char-
acteristic scales of the vortex structures are greater than the
characteristic scales of turbulent pulsations (Pedlosky, 1987).
The atmospheric large-scale flows are characterized by ultra-
large Reynolds numbersRe = vL/ν � 1. If L ∼ 105 m,
andv ∼ 1 m/s, even if the kinematic viscosityν is replaced
by a turbulent viscosity, one hasRe ∼ 106

÷ 108
� 1. Such

flows have the striking property of organizing spontaneously
into large-scale coherent vortex structures. A well-known ex-
ample is Jupiter’s Great Red Spot, a huge vortex with a very
large Reynolds number and intense small-scale turbulent mo-
tion, which has persisted for more three centuries; the pres-
ence of intense turbulence does not destroy it. Let us note
that even if a flow is turbulently unsteady (due to convec-
tion, buoyancy, etc.), this does not necessarily mean that the
average ordered motion is absent. In such a case, the equa-
tions of motion of the ideal (see below), or quasi-ideal fluid
with “eddy” viscosity are known to be a good approximation
of the description of large-scale average fields of a turbulent
flow.

Two-dimensional Euler flows (Re → ∞) are the invis-
cid limit of two-dimensional incompressible Navier-Stokes
flows. They are often used as the simplest models for
geophysical and astrophysical flows (Dritschel and Legras,
1993; Frisch, 1995; Marcus, 1988; Sommeria et al., 1988;
Pavlov et al., 2001; Goncharov and Pavlov, 2001).

The assumption that all field variables are independent of
the coordinatez ≡ x3, i.e. the operator∂3 ≡ 0 for all
field variables, also leads to two-dimensional models and is
largely used in theoretical considerations (Milne-Thomson,
1968; Greenspan, 1968; Lavrent’ev and Shabat, 1973).

We start with a reminder of some observational data.
For Earth and Venus and their atmospheres, some basic
properties are: the rotation periods 2π/� are 23.9 hr (pro-
grade) and 243 days (retrograde); the overhead mo-
tions of the Sun are east to west for the Earth
and west to east for Venus (inclinations of equa-
tor to orbit are ∼23◦ and ∼177◦); the radii R0 (km)
are ∼6360 and ∼6052; the gravity accelerationsg
(m s−2) are∼9.8 and 8.9 (at surface); the surface temper-
aturesTs (K) are ∼288 and∼730; the surface pressures
ps (Mpa) are 0.1 and 9.2; the densities near the surface
ρs (kg m−3) are 1.23 and 65.0; the pressure scale heights
Hs (km) (at surface) are∼8.4 and∼15.8.

Observational data provides the evidence (Seiff, 1983) that

the lower atmosphere of Venus (≤ 70 km) is generally stat-
ically stable except for limited altitude intervals. Except for
two intervals, the data displays an atmosphere which is stable
rather than convective, whereas prior to the measurements, a
convective atmosphere had been generally expected.

Due to Venus’s very slow rotation, the winds in its at-
mosphere are subjected to a weak Coriolis force. The rel-
ative importance or unimportance of the Coriolis force in the
atmospheric motions can be characterized quantitatively by
evaluating the Rossby numberRo = V/Lf , whereV is the
horizontal wind speed,L is the horizontal length scale of
the fluid motion, andf = 2� sin θ is the Coriolis param-
eter. Here,� is the planetary rotation rate andθ is the lat-
itude. The Rossby number is the ratio of the inertial force
to the Coriolis force. IfRo � 1, the motion is quasi-
geostrophic and the Coriolis force exerts a strong control on
the atmospheric motions (on rapidly rotating planets, such
as the Earth or Jupiter); ifRo � 1, the Coriolis force is
negligible. Typical values ofV andL for large-scale mo-
tions can be proposed as 10 m s−1 and 105 − 106 m. With
L ∼ 600 km, θ ∼ 45◦, �V ∼ 3·10−7 and�T ∼ 7.3·10−5,

we findRo ∼ 30 and∼ 0.1 for Venus and Earth, respec-
tively.

In particular, it follows that for the steady regime,∂tvs =

0, the Venus atmosphere at middle latitudes cannot be in a
quasi-geostrophic dynamical equilibrium when the horizon-
tal pressure gradient is balanced by the horizontal component
of the Coriolis force (for the Earth’s atmosphere, see, for ex-
ample, Pedlosky, 1987; Holton, 1992). The hypothesis of a
cyclostrophic equilibrium is more reasonable in such a situ-
ation, where the horizontal pressure gradient is balanced by
the centrifugal force (Schubert, 1983). However, it appears
that the cyclostrophic balance of the zonal winds is not con-
sistent with the observational data at latitudes near the poles.

It has been discovered that after the flights of the Pioneer-
Venus probes (see Hunten et al., 1983; Taylor et al., 1980;
Gryanik, 1990, and references quoted therein) in polar re-
gions of Venus, the circulation and the temperature distribu-
tion have some distinguishing features. The large polar tem-
perature contrasts which are dynamically significant suggests
a more complex fluid dynamics.

Radio and infrarared data (Hunten et al., 1983) indicate a
polar atmosphere appreciably colder than that at low latitudes
by ∼ 20÷ 40 K . These data show essentially no change in
the average temperature〈T 〉 with latitudes up to 55◦, and
a nearly constant rate of colder(d〈T 〉/dθ)p of 0.9 K per
degree of latitude at higher latitudes (Hunten et al., 1983).

Data indicate a temperature minimum at the altitude level
corresponding to the 200 mbar level at a 75◦ latitude, which
is 35 K colder than the quatorial region at this pressure level,
and 15 K colder than the 60◦ latitude. The latitude of the tem-
perature minimum corresponds closely to the central latitude
of the brightest emission from the twin polar height-emission
spots (Taylor et al., 1980). These two “hot spots” (of about
5◦ in radius, i.e.L ∼ 102

÷ 103 km � Hs ∼ 10 km) are po-
sitioned symmetrically with respect to the pole (at latitudes
of ∼ 75 − 85◦) and are rotated around the pole. The sym-
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metry of the temperature contours suggests that the twin hot
spots may be a pair of vortices.

One of the physical explanations of the phenomenon may
be as follows. Disturbances with a horizontal scaleL such
thatL � R0 andL � Hs, which contain hotter and there-
fore lighter gas, have to move in the centrifugal-force field
toward the axis of rotation, i.e. toward the pole. The ac-
cumulation of hot gas at the pole leads to the formation of
a “hot cap”. However, if localized disturbances of the fluid
(hotter than the surrounding medium), positioned symmetri-
cally with respect to pole, arevortical in nature, then their
displacement directly towards the pole is obviously impos-
sible. In fact, in the vicinity of the pole, each eddy is sub-
jected to an influence of a velocity field induced by all other
vortices. The eddies participate, therefore, in the mutual ro-
tation about the pole in connection with their temperature
anomalies. The rotation of the two- or multi-petal “hot po-
lar cap” which is formed over the pole leads to variations in
temperature that may be measured by a stationary observer.
Motivated by these observations, we consider the “over-all
picture” of the phenomenon.

We consider below quasi two-dimensional flows in a thin
sheet of an ideal fluid, an assumption which allows one to
make some additional simplifications (see Goncharov and
Pavlov, 1997, 1998, 2000, and references therein).

We replace the real continuous velocity profile by a patch-
like model with constant vorticity in each patch (see Zabusky
et al., 1979; Saffman, 1992, and references therein). Such a
model is valid when large-scale motions are weakly sensi-
tive to a fine structure in the velocity field. In this scenario,
one may expect that even crude approximations with a small
number of patches, that only describe the general structure of
the real vorticity profile, correctly grasp large-scale dynam-
ics. The proposed model allows one to formulate the dynam-
ics of the flow in terms of a small number of interfaces, while
determining thecontoursof the vortex structures within the
framework of spatially one-dimensional integro-differential
nonlinear equations. This approach is called the contour dy-
namics method. The equations of the contour dynamics de-
scribe the self-induced motion of the vorticity-discontinuity
boundaries, or “contours”, in an inviscid, incompressible,
two-dimensional fluid with piecewise constant vorticity dis-
tribution.

Recall that detailed comparisons between results obtained
within the framework of the contour dynamics and conven-
tional numerical simulations (see, for example, Zabusky et
al., 1979; Dritschel, 1988; Dritschel and McIntyre, 1990;
Saffman, 1992, and Refs therein) have shown a surprisingly
good agreement for flows with distributed vorticity at ultra-
large Reynolds number, lnRe � 1. Thus, it appears that
many general aspects of the nearly inviscid flows with dis-
tributed vorticities can be reproduced using contour dynam-
ics with a moderate number of vorticity levels. These results
suggest that contour dynamics may be a competitive analyt-
ical tool for problems of scientific interest, particularly in
connection with large-scale, and very large Reynolds num-
ber flows.

The limits of validity for our model are defined by a for-
mulated goal: elucidate qualitative conditions under which a
large-scale, stationary rotating structure can be formed con-
sisting of “hot” vortex formations of the multi-petal type.
Instead of massaging the computer-calculated details of the
vortex structures, it is more important to answer the practical
question of whether the vortex may form under certain con-
ditions. The description is tailored to obtain the basic char-
acteristics of the vortex patch-like structures, such as the hor-
izontal space-scale, the period of rotation of the multi-petal
“hot vortex spots”, etc., and even in a simplified situation, we
can find a rich pattern of vortex dynamics.

A brief outline of the paper is as follows. Section 2 is
devoted to the basic elements of vortex dynamics in the
presence of centrifugal forces. The governing equations for
steadily rotating vortex structures are presented in Sect. 3.
In Sect. 4, we outline the key points of the general approach
for the application of the contour dynamics method to the
two-dimensional models of fluid dynamics. The method is
applied to localized vortex structures in Sect. 5, where the
governing equations for contour curvature are obtained. Sec-
tion 6 classifies the resulting solutions, calledN -petal vortex
structures. In Sect. 7, we discuss some features of the tem-
perature distribution associated with the multi-petal vortex
patches.

2 Basic equations and concepts

The equations of motion for a continuum inviscid fluid ex-
press the conservation of mass, of momentum, and of en-
ergy (see, for example, Landau and Lifshitz, 1987). We ex-
press these equations in a rotating, with the angular velocity
� = (0, 0, �), Cartesian coordinate system (with thex ≡ x1
andy ≡ x2 axes in the horizontal plane, andz vertically up-
wards). For such a fluid, we have the following equations
(see Greenspan, 1968)

ρ
[
∂tvi + vj∂jvi + 2εi3k�vk

]
= −∂ip − ρ∂i8,

∂tT + (vj∂j )T = 0,

∂jvj = 0. (1)

Here,vi are the components of a velocity field,ρ is the den-
sity, p is the pressure,T is the temperature,8 = g z −

(1/2)|[�, r]|
2, [a, b] is the vector product of the two vec-

torsa andb, εi3k is the alternating tensor (zero for any two
indices being equal,+1 for any even number of permuta-
tions, and−1 for any odd number). The application of the
operator∇× to the equation of momentum leads to an equa-
tion[
∇ + β∇T ,

dv

dt
+ 2[�, v]

]
= β [∇(τs + τ), ∇8] .

Here,r = (x, x3), vj = (v, w), ∇ × s ≡ [∇, s], ∇ ×

(ρs) = ρ∇ × s + [∇ρ, s],8 = g z− (1/2)|[�, r]|
2, [a, b]

is the vector product of the two vectorsa and b, ∇ρ =

(∂ρ/∂T )p ∇T + (∂ρ/∂p)T∇p ' −ρβ∇T . The coefficient
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of thermal expansion,β = −ρ−1(∂ρ/∂p)T , is assumed con-
stant. The rotation axis of the fluid coincides with thez-axis,
the vectorg is anti-parallel to the vertical axis, and is per-
pendicular to the planex0y. The departures of the pressure
p′

= p−p0 and densityρ′
= ρ− ρ0 from their undisturbed

valuesp0 andρ0 are assumed small enough. For the equation
of state we shall assume, in accordance with the assumption
of an incompressible medium, that the density depends only
on the temperature and not on the pressure. Thus, we set
ρ = ρ0[1− β(T − T0)], where subscript 0 denotes the refer-
ence values. Becauseβ(T − T0) is generally of little interest
here, one may neglect the density variations and hence re-
placeρ by the constant valueρ0, except in the “buoyancy”
term ∼ ∂i8 (see, for example, Turner, 1979; Landau and
Lifshitz, 1987).

Let beε1 = β |1T | � 1. In this case, the termβ[∇T , s]

is small with respect to[∇, s] on horizontal scales and can
be neglected. Limiting by this approximation, we obtain the
equation[
∇,

dv

dt
+ 2[�, v]

]
= β [∇(τs + τ), ∇8] .

In the tensorial form, this equation can be rewritten as

Dtωi = ωj ∂jvi + β εijk ∂j (τs + τ) ∂k8.

Here,Dt = ∂t + vj∂j ≡ Dt + w∂3, j = 1,2, 3, Dt =

∂t + (v · ∇), r = (x, x3), vj = (v, w), ωi = εijk ∂j vk +

2�i, τs + τ = T − T0, τs is a part of the temperature
perturbation independent of the time.

Noting thatε3jk ∂j τs ∂k8 ≡ 0 because of a postulated ax-
ial symmetry ofτs, we obtain forω3 andτ the basic set of
equations:

Dtω3 = β ε3jk ∂j τ ∂k8,

Dtτ = −(v · ∇)τs,

∇ · v = 0. (2)

Here,Dt = ∂t + (v · ∇), v = (v1, v2), ∇ = (∂1, ∂2) is the
horizontal gradient operator,ω3 = ε3jk ∂j vk + 2�3, τs +

τ = T − T0, τs is an axially symmetrical part of the temper-
ature perturbation which is independent of the time.

We consider the simplest model in which the vortex struc-
tures are formulated in a ”thin” flat sheet of an incompress-
ible inviscid fluid when the vertical componentw of the ve-
locity is depleted and can be neglected (i.e.Hs � L, V 2

� gL, Re � 1; see, for example, Kamenkovich, 1977;
Pedlosky, 1987; Goncharov and Pavlov, 1997).

The condition of incompressibility (1) makes it possible to
express velocity components in terms of the stream function
ψ :

vi = εik∂kψ.

Here,i = 1, 2, εik ≡ −εi3k is the antisymmetric unit tensor
of the second order,ε12 = −ε21 = 1, ε11 = ε22 = 0. In this
case, we haveω3 = −1ψ, where1 = ∂2

1 + ∂2
2 . To simulate

the effect of the temperature stratification, i.e. the increasing

of the stationary temperature with respect to distance from
axe of rotation, we take the background distribution of the
temperatureτs in the form (herer = |x|, x = (x1, x2))

τs(x) =
γ

2
r2, γ > 0. (3)

This expression can be considered the result of expanding a
radially symmetric stationary distributionτs(x) in the Taylor
series in the vicinity of the axe.

We obtain the coupled set of governing equations

∂t [1ψ − 2�] + εik∂iψ∂k[1ψ − 2�] = �2βεikxi∂kτ ;

∂tτ + εik∂iψ∂kτ = γ εikxi∂kψ. (4)

In the absence of temperature stratification (γ = 0) and cen-
trifugal force (� = 0), Eqs. (4) become traditional equations
for the vortex evolution in a two-dimensional ideal fluid.

The generalization of (1)–(4) to a more complex case can
be made too, for example, for a thin layer of fluid on a sphere.

3 Steadily rotating vortex structures

Let us consider the solutions for Eqs. (4) which correspond
to the stationary vortex structures rotating with a constant
angular velocityω around the pole.

Having in mind applications, we retainRo � 1 and con-
sider it suitable for our purpose. In this case,ω3 ' −1ψ.

For Venus, the characteristic Rossby’s number isRo ∼ 30.
Taking into account that the structures become immovable

when shifting to a new rotating coordinate system, the deriva-
tive with respect to time is transformed as

∂t = −ωεikxi∂k,

and we obtain the following system of equations:

εik
∂

∂xi

(
ψ − ω

r2

2

)
∂1ψ

∂xk
= �2βεikxi

∂τ

∂xk
,

εik
∂

∂xi

(
ψ − ω

r2

2

)
∂τ

∂xk
= γ εikxi

∂ψ

∂xk
. (5)

It follows from (5) that the general expression forψ(τ)
should be sought in the form

ψ = ω
r2

2
+ f

(
τ + γ

r2

2

)
, (6)

wheref (s) is an arbitrary function. This result is obtained
after the substitution of (6) in (5) and after differentiating
ωr2/2 + f (τ + γ r2/2) with respect to arguments. To elim-
inate the functional arbitrariness in (6), we shall assume that
ψ, τ → 0 at r → ∞. The requirement of localization for
the physical fields,ψ andτ, namely,ψ, τ → 0 atr → ∞,
leads to the result thatf (s) is a linear function ofs, and to
the relation

ψ = −
ω

γ
τ. (7)
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Substituting (7) in (5) we find the equation

εik
∂

∂xi

(
ψ − ω

r2

2

)
∂

∂xk

(
1ψ −

�2γβ

ω2
ψ

)
= 0. (8)

4 Contour dynamics method

The contour dynamics method (CDM) used in this paper is an
analytical method for simulating large-scale vortex structures
(regions of rotating fluid) in two-dimensional flows. CDM is
based on the observation that for an inviscid, incompressible
fluid, the evolution of a patch of uniform vorticity is fully de-
scribed by the evolution of its bounding contour. The method
is not limited to a patch of uniform vorticity: several contours
can be nested in a stack. Therefore, a given continuous vor-
ticity distribution can be approximated by a step-function.
The velocity in the fluid and, in particular, at the contours of
vorticity-discontinuity can be found using the Green’s func-
tion of the associated Laplace (or another) operator, or be
using the method of pseudo-differential operators (Maslov,
1973; Goncharov and Pavlov, 2000).

The equations of contour dynamics describe the self-
induced motion of the vorticity-discontinuity boundaries, or
“contours,” in an inviscid, incompressible, two-dimensional
fluid whose vorticity distribution is piece-wise constant.
From a mathematical viewpoint, the assumption of piece-
wise constant vorticity seems severe. But detailed compar-
isons between the results obtained both in the framework of
the CDM and by direct numerical calculations show good
agreement for flows with distributed vorticity with a very
high Reynolds number. It appears that many aspects of the
nearly inviscid flows with continuous distributed vorticity
can be reproduced using contour dynamics with a moderate
number of vorticity levels.

Before proceeding to analyze Eq. (8), we note that it bears
a close resemblance to the well-known stationary equation
for geostrophic potential vorticity in an appropriately rotat-
ing reference frame (Pedlosky, 1987). This analogy allows
us to name the quantity

q = 1ψ −
1

R2
ψ, R =

|ω|

�
√
γβ
, (9)

as a cyclostrophic potential vorticity and correspondingly,R

is the length-scale characteristic of the problem.
Let us note here that the geostrophic potential vorticity

(GPV) evolves as a Lagrangian quantity with a fluid parti-
cle and hence is materially conserved. In contrast with the
GPV, the quantity called the cyclostrophic potential vorticity
(CPV) does not fall into this class.

Concerning the character of a spatial distribution of the
quantityq, we shall assume that it is a piece-wise uniform
function in the planez = x1 + ix2. Let us note again that
x = {x1, x2}. Such a distribution may be described simply
by using two-dimensional Heaviside step-functions:

θ(z) =

{
1, if z ∈ D;

0, If z /∈ D.

Here, D is a singularly connected region in thez-plane
bounded by a closed contour which is given in the parametric
form

z = ẑ (s) , (10)

wheres is contour arc length. For the vectorẑs = ∂ẑ/∂s tan-
gential to the contour, the following normalizing condition
holds∣∣ẑs∣∣2 = 1. (11)

Note that theθ -functions admit the following analytical rep-
resentation through the contour integral:

θ(z) =
i

2π

∮
ds

ẑs

z− ẑ
. (12)

This representation can be obtained as a corollary of the for-
mula known in the theory of function of complex variables
as Cauchy’s formula. Using another formula (see Madelung,
1957):

∂

∂z̄

1

z
= πδ(x),

the z-derivative of theθ -function can be easily calculated
from (12) as

∂θ

∂z̄
=
i

2

∮
dsẑsδ(x − x̂). (13)

Thus, in terms of theθ -functions, the distribution ofq can
be written as

q = q0θ(z), (14)

whereq0 is a constant value taken by quantityq within the
regionD. The substitution of (14) in (8), after differentiating
theθ -functions using (13), leads to the contour integral

εik
∂

∂xi

(
ψ − ω

r2

2

)
∂

∂xk

(
1ψ −

1

R2
ψ

)

= −4q0

[
∂θ

∂z

∂

∂z̄

(
ψ − ω

r2

2

)]

= q0

∮
ds δ(x − x̂)

∂

∂s

(
ψ̂ − ω

|ẑ|2

2

)
= 0. (15)

It follows from this substitution that the rotate-frame stream
function must be constant on the vortex boundary:

ψ̂ − ω

∣∣ẑ∣∣2
2

= const. (16)

Here,ψ̂ is defined byψ̂ = ψx=x̂ .

Eq. (16) determines the boundary shape (10) if the stream
function ψ̂ is expressed in terms of the contour coordinates
x̂. Taking into account that the Green’s functionG

(
x, x′

)
of

operator1− R−2 is given by

G(x, x′) = −
1

2π
K0

(
|x − x′

|

R

)
,
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and by solving (9), we obtain the stream-functionψ in terms
of the cyclostrophic potential vorticityq:

ψ(x) = −
1

2π

∫
dx′q

(
x′
)
K0

(∣∣x − x′
∣∣

R

)
, (17)

wheredx = dx1dx2 andKn(ξ) denotes a modified Bessel
function of then-th order.

To convert (17) into a contour integral, we make use of the
equality

K0 = R21K0 + 2πR2δ
(
x − x′

)
= 4R2∂

2K0

∂z̄∂z
+ 2πR2δ

(
x − x′

)
,

which follows immediately from the definition of the Green’s
function. Assuming thatx → x̂, existing outside the re-
gionD, and integrating (17) in parts with obvious transfor-
mations, we find

ψ̂(s) = −
2R2

π

∫
dx′ q(x′)

∂2

∂z̄′∂z′
K0

(
|x − x′

|

R

)
=

2q0R
2

π

∫
dx′

∂θ ′

∂z̄′

∂

∂z′
K0

(
|x̂ − x′

|

R

)
(18)

=
Rq0

2π

∫
ds′K1

(
|ẑ′ − ẑ|

R

)
ẑ′s(z̄

′
− z̄)

|ẑ′ − ẑ|
.

Now we introduce the new variableϕ(s) which is the slope
angle that is formed when the unit vector is tangential to the
contour at a points with the axisx1. Then, according to (11),
we have

∂s ẑ = eiϕ(s). (19)

For vortex structures with a weak enough contour curvature

|κ| = |∂sϕ| � 1/R, (20)

It is possible to make the following approximations in the
integral of (18)∣∣ẑ′ − ẑ

∣∣ ≈
∣∣s′ − s

∣∣ , Im ẑ′s
(
z̄′ − z̄

)
≈

1

2
κ(s)

(
s′ − s

)2
,(21)

where an over-bar denotes a complex conjugation.
With the help of (21), the integral (18) can be reduced to

the local relation

ψ̂ (s) =
q0R

3

4
κ(s), (22)

which relates the stream function̂ψ and the contour curva-
tureκ in the points.

5 Equations for contour curvature

To derive the equations which define the boundary shape in
thez-plane, we make the transformation

ẑ = eiϕ
(
x̂ + iŷ

)
, (23)

wherex̂ and ŷ, as well asϕ are some functions of the con-
tour arc lengths. Then from (19), the following relationships
hold:

∂x̂

∂s
− κŷ = 1,

∂ŷ

∂s
+ κx̂ = 0. (24)

To obtain a complete description of the contour, we substitute
(22) and (23) in (16):

q0R
3

2ω
κ −

(
x̂2

+ ŷ2
)

= const. (25)

For convenience, we non-dimensionalize the contour Eqs.
(24) and (25) by taking as a length scale

L =
R

2

(q0

ω

)1/3
. (26)

In terms of the dimensionless variables, without changing the
old symbol designations, we obtain the following equations:

∂x̂

∂s
− κŷ = 1,

∂ŷ

∂s
+ κx̂ = 0,

κ −
1

4

(
x̂2

+ ŷ2
)

= const. (27)

From (27) we can readily obtain the expressions for the vari-
ablesx̂ andŷ in terms of curvature:

x̂ = 2
∂κ

∂s
, ŷ = 2c1 − κ2. (28)

Then, the substitution (28) in (27) gives the equation for the
curvature:(
∂κ

∂s

)2

= −
1

4
κ4

+ c1κ
2
+ κ + c2. (29)

Here,c1 andc2 are two constants that parameterize the solu-
tions of the problem.

Recall that the condition for application of Eq. (29) is de-
termined by the inequality (20), which in dimensionless form
is given by

|κ| �
L

R
=

1

2

∣∣∣q0

ω

∣∣∣1/3 . (30)

As this inequality shows, the condition of the weak contour
curvature does not limit the physical applicability of the so-
lutions, as it might appear at first sight. The reason is that the
inequality (30) always holds for intense vortices which are
characterized by large enough values of the ratioq0/ω.

According to the theory of elliptic functions (Abramovitz
and Stegun, 1964; Bateman and Erdelui, 1955), Eq. (29) has
two sets of the periodic solutions expressed in terms of ellip-
tic functions

κ = b +
a − b

1 − α F (λs|m)
. (31)

Here, F is one of the Jacobi elliptic functions, and sn or
dn, andm are the parameters of these functions (a vertical
line symbolizes them-dependence). Note that depending on
which Jacobi elliptic function is taken, the independent basic
parametersα andm will parameterizea, b, λ, and conse-
quently,c1 andc2.
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Fig. 1. The geometry of the three-petal vortex region of the piece
wise constant vorticity with self-intersecting contour. The distribu-
tion of the cyclostrophic potential vorticity isq0 in petals and 2q0
in the core, so the jump in the potential vorticity is the invariantq0
in tracing the contour.

6 N -petal vortex structures

In the case F= sn(λs|m), the periodic solution (31) for the
contour curvature takes the form

κ = b +
a − b

1 − α sn(λs|m)
, (32)

where

a = −2−1/3 α(1 +m− 2α2)

[(1 −m)2α(m− α4)]1/3
,

b = 2−1/3 α2
+m(α2

− 2)

α[(1 −m)2α(m− α4)]1/3
,

λ = 2−1/3

√
(α2 −m)(1 − α2)

[(1 −m)2α(m− α4)]1/3
. (33)

In turn, the parametersc1 andc2 are expressed in terms of
a andb as

c1 =
ba

2
−

1

a + b
, c2 = −

1

4

(
b + a + b2a2

)
. (34)

It should be emphasized that the conditions for contour
continuity (smoothness) and the reality of the solutions for
Eq. (30) impose the following restrictions on the parameters
α andm:

0 ≤ α ≤ 1, m < α2. (35)

It follows from the formula (23) that in order to find the
boundary shape, we must know the slope angleϕ(s) in addi-
tion to the variableκ. also the variablêx andŷ. This can be
computed by integrating (32) along the contour line,

ϕ(s) =

s∫
ds′κ(s′)

Fig. 2. Three-petal vortex structure. The points+ = K(m)/λ lies
at the top of the petal ands− = 3K(m)/λ lies between the petals.
s∗ is the self-contacting point of the contour.

= bs +
a − b

λ
5
(
α2

; am(λs|m) |m
)

− 2Im ln[cn(λs|m)
√
α2 −m (36)

+ i dn(λs|m)
√

1 − α2].

Here,5(u;ϑ |m) is the incomplete elliptic integral of the
third kind and the Jacobi amplitude am(u|m) is the function
defined by am(u|m) = arcsin(sn(u|m)).

We shall restrict our study to the vortex structures with
a finite area bounded by a closed contour without self-
intersections. The precise equations of two-dimensional fluid
dynamics allow for the existence of solutions with such a
topology of a contour. Self-intersecting contours correspond
to rather exotic vortex formations. To consider such contours
some generalizations of the model assumptions should be
made in the initial statement of the problem. Since the vortex
region becomes multiply connected due to self-intersection,
the corresponding piece wise constant vorticity distribution
may be found. If the topology of the self-intersecting contour
is known, the distribution of the cyclostrophic potential vor-
ticity can be easily reproduced because the jump in the po-
tential vorticity must remain invariant when going around the
contour in one of the directions (see Fig. 1). In essence, the
question of whether to include the self-intersecting solutions
into the framework of our scheme is a question of whether or
not the global character of the solutions is sensitive to a lo-
cal violation of the approximation of a weak curvature. The
answer can be found from comparing the numerical and an-
alytical solutions.

Since the contour is closed and its curvature is a periodic
function in the arc lengths, the boundary shape of the vortex
distributions under consideration has ann-petal structure. An
example of such a structure is illustrated in Fig. 2. From this
figure and the analysis of the solution (32), it is clear that the
contour curvature of then-petal structure has extrema at the
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points, since it is a periodic function with period 4K(m)/λ:

s− = (4j − 1)
K(m)

λ
,

s+ = (4j − 3)
K(m)

λ
, j = 1, 2, . . . , n,

whereK(m) is a complete elliptic integral of the first kind.
At these points the contour curvature takes the extreme val-
ues:

κ+ = b +
a − b

1 − α
= 2−1/3 m(α + 2)− α(1 + 2α)[

(1 −m)2α(m− α4)
]1/3 ,

κ− = b +
a − b

1 + α
= 2−1/3 m(α − 2)− α(1 − 2α)[

(1 −m)2α(m− α4)
]1/3 . (37)

The subscript notation∓ means thatf∓ = f (s∓). The rela-
tive position of the turning pointss− ands+ depends on the
parametersα andm. In order to establish which of these pa-
rameters is at the tip of the petals and which is in the trough
between the petals, it is necessary to calculate the distances
of these points to the symmetry center. For this purpose we
introduce the polar coordinates of points asρ andθ so that

ẑ(s) = ρeiθ .

According to the above results, the variablesρ and θ are
given by

ρ2
= 4(c2

1 + c2 + κ), (38)

θ = arcctg

(
∂κ/∂s

c1 − κ2/2

)
+ ϕ. (39)

Expressingc1, c2 in terms ofα andm through (34), (33) and
substituting these expressions together with (37) in (38), we
find that

ρ2
+ = 22/3 [m(1 + 2α)− α3(α + 2)]2

α(m− α4)[(1 −m)2α(m− α4)]1/3
,

ρ2
− = 22/3 [m(1 − 2α)− α3(α − 2)]2

α(m− α4)[(1 −m)2α(m− α4)]1/3
. (40)

The relative position of the turning points depends on
whether 1 is greater or less than the ratio(
ρ−

ρ+

)2

= 1 +
8α(α2

−m)(m− α4)[
m(1 + 2α)− α3(α + 2)

]
]2
. (41)

It is easy to see that the inequalityα4
≤ m ≤ α2 entails the

inequalityρ− ≥ ρ+, so in this interval of parameters the tops
of the petals lie at the points−. In the event thatm ≤ α4 and
consequently the reverse inequalityρ− ≤ ρ+ holds true, the
tips of the petals lie at the points+.

It is obvious that not all solutions (32) in the region of
permissible parameters

m < α2
≤ 1 (42)

correspond to vortex structures with closed contours. The
condition that a contour corresponding to a periodic solution
(32) is closed can be formulated as

1θ = θ− − θ+ =
π

n
. (43)

Fig. 3. The family of n-petal vortex regimes in the plane (α,m).
The characteristic curves assign the dependencemn(α) for n =

−1,−2, · · · ,−9. Limit points in which the corresponding vortex
structure has the contour with a self-contact are marked as•.

The requirement (43) has a simple geometrical meaning
shown in Fig. 2. From this figure it is easy to see that 21θ is
simply the angular distance between neighboring petals. To
evaluate its value it suffices to note that the position vector
and tangent are mutually orthogonal in turning points. There-
fore,

θ± = ϕ± +
π

2
1±, (44)

where the signum function1± is defined by the first term of
(39). From the analysis,

1± = sign
[
m(1 ± 2α)− α3(α ± 2)

]
. (45)

The expression forϕ± can be easily found from (36):

ϕ± = (4j − 2 ∓ 1)

[
b
K(m)

λ
+
a − b

λ
5
(
α2

|m
)]

− π, (46)

where5(u|m) = 5(u; π2 |m) is the complete elliptic integral
of the third kind.

The above formulas allow us to rewrite (43) as

b
K(m)

λ
+
a − b

λ
5
(
α2

|m
)

=
π

2

(
1

n
−1

)
, (47)

where

1 =
1

2
(1− −1+) =

=
1

2
{sign[m(1 − 2α)− α3(α − 2)]

− sign[m(1 + 2α)− α3(α + 2)]}. (48)

Equation (47) has solutions in the form ofn-petal structures
in region

m ≤ α3 α − 2

1 − 2α
,

where1 = 0 for n ≤ −2. In Fig. 3 this region is marked
by a shaded background. The solutions in this region are
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Fig. 4. Shapes of the boundaries for double petal vortex structures
in thex-y plane.(a) α = 0.050;(b) α = 0.200;(c) α = 0.300;(d)
α = 0.353.

parameterized by characteristic curves which assign the de-
pendencemn(α) for everyn. Hence ann-petal structure can
be characterized by the one parameterα. The vortex shapes
for n = 2,3, depending onα, is shown in Figs. 4 and 5.
For everyn-petal regime the characteristic curve has a limit
point in which the corresponding vortex structure has a self-
contacting contour. To the left of the point there are solutions
without self-intersections of contours and to the right, there
are solutions with self-intersections.

The conditions for a self-contacting contour can be formu-
lated on geometrical grounds which follow from Fig. 2. First
of all, we note that in the tangency points∗, the anglesθ and
ϕ are related by the equality

θ(s∗) = ϕ(s∗).

Hence from (39), we immediately haveκ2 (s∗) = 2c1.
One more condition is obtained if one takes into account that
in tracing the contour from the points+ to the tangency point
s∗, the tangent vector is rotated throughπ/2; henceϕ(s∗)−

ϕ+ = π/2. Making use of (28) and the relation

ϕ+ =
π

2

(
1

n
−1

)
− π,

which follows from (46) and (47) atj = 1, we obtain the
conditions

ϕ(s∗) =
π

2

(
1

n
−1− 1

)
,

κ2(s∗) (49)

= 2−2/3 2α4(1 +m)+ α2(1 +m(m− 10))+ 2m(m+ 1)

[(1 −m)2α(m− α4)]2/3

Fig. 5. Shapes of boundaries for the three-petal vortex structures in
thex-y plane. (a) α = 0.050; (b) α = 0.200; (c) α = 0.300; (d)
α = 0.371.

These conditions, together with (47), fix all parameters of the
limiting regime.

The case of dn-solutions may be considered analogously.
However, in this case, only vortices with self-intersecting
contours result.

7 Temperature distribution

The temperature distribution associated with these multi-pe-
tal vortex patches is determined by the quantityτ(x) which
is connected to the stream function by the linear relation (7).
This expression represents a deviation from the stationary
background temperature distributionτs . On the basis of the
results obtained in Sect. 3, it is possible to establish the for-
mula:

τ(x)

= −τ0

∫
ds

(
K1

(∣∣ẑ− z
∣∣

ε

)
−

ε∣∣ẑ− z
∣∣
)
ẑs (z̄− z̄)∣∣ẑ− z

∣∣ , (50)

wherez = (x + iy) /L andτ0 = q0γRL/2πω, ε = R/L.

The temperature distributionτ(x)/τ0 associated with the
presence of this vortex and calculated in accordance with
(50) is shown in Fig. 6. The radial temperature profiles cor-
responding to this vortex are presented in Fig. 7. As the cy-
clostrophic vortex rotates about the pole, its petals will be
responsible for the temporal variations in temperature which
may be detected by a stationary observer.

SinceL > 0 exists by definition, the cyclostrophic vortex
has the same sense of rotation as the sign of its potential vor-
ticity: sign(ω) = sign(q0). Note also that as sign(τ0) > 0
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Fig. 6. Surface plot of the temperature field for the limiting three-
petal cyclostrophic vortex.

Fig. 7. The radial temperature profile for the limiting three-petal
cyclostrophic vortex given in Fig. 6. The profiles correspond to the
directionsθ = 60, 36, 48.

both forω > 0 and forω < 0, the variations in temperature
are always positive.

Let us compare the magnitudes of the parametersτ0, ω, ε

with the observed data. The corresponding relations can be
rewritten in the following form

q0

ω
= 8

(
L

R

)3

, R =
|ω|

�
√
γβ
, (51)

γ =
81T

π2R2
0

, β =
1

T
.

Here,1T is the pole-equator difference of temperatures,T is
the average temperature of the atmosphere,R0 is the planet
radius. The first three relations (7) follow from our theory
and the last one assumes that the atmosphere is an ideal gas.

The ratioω/� is given in this case by the expression

(ω
�

)2
=

256

π5

1T

τ0

(
L

R0

)4
1T

T
. (52)

On the other hand, we find thatR = (π/2
√

2) R0 (|ω|/�)
√
T/1T .

Let L ∼ 400 km, R0 ∼ 6 · 103 km, T ∼ 600 K,
1T ∼ 100 K, τ0 ∼ 10 K (Venusian “polar hot cap”).

Table 1. Parameter values in limiting regimes

n α m κ− κ+ ρ− ρ+

−2 0.353 −0.246 −0.457 1.791 0. 2.120
−3 0.371 −0.581 −0.820 1.953 0.194 3.336
−4 0.349 −0.844 −1.016 2.031 0.424 3.517
−5 0.324 −1.055 −1.158 2.089 0.636 3.660
−6 0.300 −1.225 −1.273 2.139 0.830 3.786
−10 0.231 −1.666 −1.600 2.299 1.497 4.224

The substitution of these values into (52) yields an estimate
ω/� ∼ 4,4 · 10−3. In this case,R ∼ 50− 100 km� L.

According to Table 1 for the limiting cyclostrophic vor-
tex with n = 2, we haveρ+ = 2, 12, for the limiting cy-
clostrophic vortex withn = 3, we haveρ+ = 3.37, etc.
Thus, each petal measuresρ+L ∼ 1000÷ 1300 km radially
in length.

Let us note that the multi-petal vortex configurations are
sometimes found on either side of the Earth’s poles at mid-
winter (see, e.g. the contours given by Palmen and Newton,
1969; Gill, 1982).
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