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Self-organized criticality: Does it have anything to do with criticality
and is it useful?
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Abstract. Three aspects of complexity are fractals, chaos,
and self-organized criticality. There are many examples of
the applicability of fractals in solid-earth geophysics, such
as earthquakes and landforms. Chaos is widely accepted
as being applicable to a variety of geophysical phenomena,
for instance, tectonics and mantle convection. Several sim-
ple cellular-automata models have been said to exhibit self-
organized criticality. Examples include the sandpile, for-
est fire and slider-blocks models. It is believed that these
are directly applicable to landslides, actual forest fires, and
earthquakes, respectively. The slider-block model has been
shown to clearly exhibit deterministic chaos and fractal be-
haviour. The concept of self-similar cascades can explain
self-organized critical behaviour. This approach also illus-
trates the similarities and differences with critical phenom-
ena through association with the site-percolation and diffusion-
limited aggregation models.

1 Introduction

The concept of self-organized criticality was proposed by
Bak et al. (1988) as an explanation for the behaviour of a
simple cellular-automata model that they developed. In this
model, there is a square grid of boxes and at each time, step a
particle is dropped into a randomly selected box. When a box
accumulates four particles, the particles are redistributed to
the four neighboring boxes, or in the case of edge boxes, lost
from the grid. Redistributions can lead to further instabili-
ties, with “avalanches” of particles lost from the edge of the
grid. Due to of this “avalanche” behaviour, this was called a
“sandpile” model. The noncumulative frequency-area distri-
bution of model “avalanches” was found to satisfy a power-
law (fractal) distribution:
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N ∼ A−α (1)

whereN is the number of avalanches with areaA, andα is a
constant with a valueα ≈ 1.

A second model that can exhibit self-organized critical be-
haviour is the slider-block model (Carlson and Langer, 1989).
In this model, an array of slider-blocks are connected to a
constant velocity driver plate by puller springs, and to each
other, by connector springs. The blocks exhibit stick-slip
behaviour due to frictional interactions with the plate when
the blocks are pulled across it. The frequency-area distri-
bution of the smaller slip events again satisfies Eq. (1) with
α ≈ 1. The area A is defined to be the number of blocks
that participate in a slip event. This model is completely de-
terministic, whereas the sandpile model is stochastic. This
model also provides a direct bridge to deterministic chaos;
for instance, Huang and Turcotte (1990) showed that a pair
of slider blocks pulled over a surface can exhibit determinis-
tic chaos with a period doubling route to chaos.

A third model that exhibits deterministic chaos is the forest-
fire model (Bak et al., 1992; Drossel and Schwabl, 1992). In
the simplest version of this model, a square grid of sites is
considered. At each time step either a tree is planted on a
randomly chosen site (if the site is unoccupied) or a spark is
dropped on the site. If the spark is dropped on a tree, that
tree and all adjacent trees are “burned” in a model “forest
fire”. The frequency-area distribution of the smaller fires
again satisfies Eq. (1) withα = 1.0 − 1.2. The areaA is
defined to be the number of trees that are burned in a fire.
The forest-fire model is closely related to the site-percolation
model that is known to exhibit critical behaviour (Stauffer
and Aharony, 1992). If trees are planted on a grid without
fires, site-percolation behaviour is found. The critical point
is reached when a tree cluster spans the grid. The frequency-
area distribution is power-law only at this critical point.

A satisfactory definition for self-organized criticality re-
mains elusive. The three models discussed above exhibit
similar behaviours, but there are also significant differences.
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Many variations on these models have been proposed; some
are considered self-organized critical models, but many oth-
ers are not. Totally different models have been proposed
that exhibit self-organized critical behaviour. Some of these
models are applicable to problems in the biological and so-
cial sciences. Bak (1996) has provided a comprehensive,
yet personal review of developments. Extensive discussions
of self-organized criticality have also been given by Jensen
(1998) and by Turcotte (1997, 1999a). Although the concept
of self-organized criticality was conceived as an explanation
for simple “toy” models, it has been associated with several
natural hazards (Malamud and Turcotte, 1999).

2 Applications of the “sandpile” model

Shortly after the “sandpile” model was proposed, a number
of laboratory studies were undertaken to determine whether
actual sandpiles exhibit the behaviour attributed to self-organ-
ized criticality. A variety of frequency-size statistics for ava-
lanches were found (Nagel, 1992; Feder, 1995); in some
cases, the results were consistent with the power-law rela-
tion (1) but in other cases, they were not. Actual landslides
are often well represented by the power-law relation (1) (Pel-
letier et al., 1997; Hovius et al., 2000). Turbidite deposits
are often associated with slumps (avalanches) off continen-
tal margins. Rothman et al. (1994) associate the observed
power-law frequency-thickness distributions of turbidite lay-
ers with the “sandpile” model. It appears reasonable to con-
clude that naturally occurring landslides are an example of
self-organized criticality.

3 Applications of the slider-block model

Since the concept of self-organized criticality was first in-
troduced, earthquakes have been identified as an example of
this phenomena in nature (Bak and Tang, 1989). For over 50
years, it has been accepted that earthquakes universally obey
Gutenberg-Richter scaling; the cumulative number of earth-
quakes per year in a region with magnitudes greater thanm,
ṄCE , is related tom by

logṄCE = −bm + log ȧ (2)

where the constantb is known as theb-value and has a near-
universal valueb = 0.90±0.15. The constanṫa is a measure
of the intensity of the regional seismicity.

When Eq. (2) is expressed in terms of the earthquake rup-
ture area,AE , instead of earthquake magnitude, this relation
becomes a power-law

logṄCE ∼ A−b
E (3)

which is very similar to Eq. (1), except that Eq. (3) is based
on cumulative statistics and Eq. (1) is based on noncumula-
tive statistics.

With aftershocks removed, the background seismicity in
southern California is nearly uniform from year to year (Tur-

cotte, 1999b). Small earthquakes behave like a thermal back-
ground noise. This is observational evidence that the Earth’s
crust is continuously on the brink of failure (Scholz, 1991).
Further evidence for this comes from induced seismicity.
Whenever the crust is loaded, whether in a tectonically active
area or not, earthquakes are induced. Examples of loading in-
clude the filling of a reservoir behind a newly completed dam
or the high-pressure injection of fluids in a deep well.

While there are important similarities between slider-block
models and earthquakes, there are also important differences.
Slider-block models would be representative of a distribution
of earthquakes on a single fault. However, the Gutenberg-
Richter distribution of earthquakes is not associated with a
single fault, but with a hierarchy of faults. The earthquakes
in southern California occur over a broad zone with a width
of about 200 km on a wide variety of faults associated with
the San Andreas system.

There is extensive evidence that the distribution of faults
in the crust is fractal (power-law). This has led to the sugges-
tion (Sammis et al., 1987) that comminution shattering of the
crust has led to a power-law distribution of tectonic blocks.
The boundaries of these blocks are the power-law distribu-
tion of faults.

An important aspect of self-organized criticality relative
to earthquakes is the implications for earthquake forecasting
and prediction. Acceptance of the validity of the Gutenberg-
Richter relation and the constant rate of occurrence of small
earthquakes implies that the observed frequency of occur-
rence of small earthquakes can be extrapolated to estimate
the recurrence frequencies of larger earthquakes. This is rou-
tinely done and is the primary basis for published maps of
the earthquake hazard (Frankel, 1995).

4 Applications of the forest-fire model

An obvious application of the forest fire model is to actual
forest and wild fires (Malamud et al., 1998). From this study,
four forest fire and wildfire data sets from the United States
and Australia were found to have frequency-area statistics
that were in good agreement with the power-law relation (1).
Similar results have been reported for California (Minnich
and Chou, 1997). Considering the many complexities of the
initiation and propagation of forest fires and wildfires, it is
remarkable that the frequency-area statistics are very similar
under a wide variety of environments. The proximity of com-
bustible material varies greatly. The behaviour of a particu-
lar fire depends strongly on meteorological conditions. Fire-
fighting efforts extinguish many fires. Despite these com-
plexities, the application of the frequency-area distributions
associated with the forest fire model appears to be robust.
Forest and wildfires also appear to be an example of self-
organized critical behaviour in nature.
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5 Conclusions

A number of models and natural phenomena have been dis-
cussed that may or may not exhibit self-organized critical be-
haviour. It is desirable to provide a “clean” definition of what
self-organized criticality is, but there is not a universally ac-
cepted definition. In fact, some authors would submit that
self-organized critical behaviour is the same as critical be-
haviour.

Most authors would agree that the original sandpile model
proposed by Bak et al. (1988) is an example of self-organized
critical behaviour. But this agreement does not extend to the
slider-block and forest fire models. It is certainly possible to
provide a rigorous mathematically-based definition of self-
organized criticality. For example, full self-similarity would
be required. However, such a restricted definition may not
address the real utility of the basic concept. The essential
question is whether a broad range of real complex phenom-
ena exhibits similar behaviour under very broad conditions.
This seems to be true for earthquakes, landslides, and forest
fires. It may also be true for a variety of other examples in
the physical, biological and social sciences. A few examples
are species extinctions, epidemics, stock market crashes and
wars.

A universal feature of these phenomena is that they are
driven systems that involve “avalanches” with a fractal
(power-law) frequency-size distribution. There is a steady-
state “input” and the “output” occurs in the “avalanches.” Al-
though it has not been widely established, there is evidence
that a system with self-organized criticality is on the “edge”
of chaos. Adjacent solutions exhibit a power-law divergence
in time, whereas chaotic solutions exhibit an exponential di-
vergence (a positive Lyapunov exponent).

The simple forest fire model exhibits many of the charac-
teristics associated with self-organized criticality. This for-
est fire model is also closely related to the site-percolation
model that exhibits critical behaviour. The transient forest
fire model without fires is identical to the site-percolation
model; the critical point is when a cluster has formed that
crosses the grid. For both the quasi-steady-state forest fire
model with fires, and the transient forest fire model without
fires, there is an inverse cascade of trees from small to large
clusters. Clusters of trees grow by the addition of new trees
and the growing clusters coalesce to form larger tree clus-
ters. Significant numbers of trees are lost only in the fires that
burn the largest clusters. In the quasi-steady-state forest fire
model, this cascade gives a power-law frequency-area distri-
bution for both the smaller clusters of trees and the forest fires
(Turcotte et al., 1999). The clustering process is statistically
identical to the growth of river networks and to the diffusion
limited aggregation (DLA) clusters (Gabrielov et al., 1999).
In the transient cascade associated with the site-percolation
problem, a power-law distribution is found only at a critical
density of trees. The quasi-steady-state, self-similar cascade
can be extended to explain the behaviour of both the “sand-
pile” and slider-block models.

The above discussion has focused on the power-law (frac-

tal) distributions of the “avalanches”. However, there are
other important aspects of the behaviour of models and nat-
ural phenomena that are associated with self-organized crit-
icality. One of these concerns correlation lengths. Studies
of critical phenomena emphasize the systematic increase in
the correlation length as the critical point is approached. It
has not been established whether there are systematic tem-
poral variations in correlation length in models with self-
organized criticality. There is observational evidence for a
well-defined correlation length for seismic activation prior to
a major earthquake (Bowman et al., 1998).

Although the concept of self-organized criticality is poorly
defined, there is accumulating evidence that it is directly ap-
plicable to a variety of problems in geophysics. It is also a
subject that is in an early stage of development and one that
may relate phenomena over a very broad range of subjects.
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