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Abstract. The dynamic evolution of laboratory water
surface waves has been studied within the framework
of dynamical systems with the aim to identify stochas-
tic or deterministic nonlinear featurcs. Three differ-
ent regimes arc considered: pure wind waves, pure me-
chanical waves and mixed (wind and mechanical) waves.
These three regimes show different dynamics. The re-
sults on wind waves do not clearly support the recently
proposed idea that a deterministic Stokes-like compo-
nent dominate the evolution of such waves; they arc
more appropriately described by a similarity-like ap-
proach that includes a random character. Cubic res-
onant interactions are clearly identified in pure mechan-
ical waves using tricoherence functions. However, de-
tailed aspects of the interactions do not fully agree with
existing theoretical models. Finally, a deterministic mo-
tion is observed in mixed waves, which therefore are hest
described by a low dimensional nonlinear deterministic
Process.

1 Introduction

The wator surface waves motions are known to exhibit
more or less strong irregularities. From the fundamen-
tal as well as practical viewpoint, three types of wave-
fields are of particular interest: 7.} pure wind generated
waves, it ) swell and #i.) swell under wind action. For
mainy vears, the irregularitics in these fields have been
at least implicitly atiributed to different causes. In wind
penerated waves, they were often attributed to the ran-
dom character of the motion, owing to the turbulent
nature of the wind flow. Then, probahilistic analvsis
of these waves have been ecarried ont (see o.g. Phillips.
1977). On the other hand, their nonlinear feat ures being
now recognized, they would be seen as nonlinear oscil-
Lations driven by a stochastic foree and. then, elassified
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as nonlinear stochastic dynamical systems. However,
the few analytical developments made in that direction
(West. 1982; Middleton and Mellen, 19835), apparently,
did not attract the spectalized scientific community at-
tention. Instead, the discovery of the dispersionless na-
ture of wind waves (Ramamonjiarisoa, 1974) yiclded to
propose that the evolution of such waves is dominated
by a deterministic Stokes-like component. Then, the ob-
served irregularities, rather than due to the randomness
would be attributed to the instabilities of this domi-
nant. These instabilities are now considerably docu-
mented (see Yuen and Lake, 1980). According to such
proposition wind waves and nonlinear swells share com-
mon basic dynamics, of deterministic character. In a
logical way, a mixed wavefield (swell under wind action)
would also sharc such dynamics.

In the past, the irregularities of surface wavefields were
characterized through an extensive use of the spectral
analysis. Undoubtedly, this vielded to fundamental pro-
gress in the understanding of the physical processes in-
volved in the wave evolution. Most of the above results
were obtained through spectral analvsis. However. such
analvsis is known to be insufficient to make clear distine-
tion among stochastic, deterministic. combined stochas-
tie and deterministic behaviours especiallv for the situ-
ations which will be examined herein which proved to
be typical of laboratory waveficlds evolution.

Recently, new methods for characterizing irregular be-
haviour have been developped in the framework of the
so-called nonlinear dynamical svszem. Theyv have been
widely applied with success to various svstems (see e.g.
Snminhammer et al, 1987 Tsonis and Elsner. 1990:
Buzug et al, 1992; Herzel et al. 1994;...). In principle.
they are able to make distinction between the above
three behaviours.  Few applications to water surface
waves and connected technical fields exist this time. But
they appear to be not much conclusive. Some of the
methods are used here, in addition to the classical spece-
tral analvsis, to explore data obtained from laboratory



38 Joelson, et al.: Chaotic and deterministic features in water surface waves

experiments with two main objectives in mind. The first
objective deals with looking at more experimental evi-
dence of nonlinear evolution in wavefield. The second
objective is concerned with the identification, if possi-
ble, of the nature of the various observed wave motions.
This would help, in particular, to confirm or to refute
some of the above proposed physical models of evolu-
tion.

The experiments are briefly presented in §2. In §3,
the analysis methods are described with a first com-
ments concerning their significance from the physical
viewpoints. Then, the main results are reported (§4)
and discussed on physical grounds {(§5). The main con-
clusions are briefly recalled in § 6.

2 The experiments

The data of interest issue from experiments made in
the wind wave facility of the IRPHE-IOA Laboratory.
Basically, the facility consists of a water tank of 40 m
length, 3 m width and 1 m depth. An air flow, with
velocities ranging from 0 m/s to about 15 m/s generates
wind wave fields. In addition, the facility is equipped
with an electro-hydraulic wave maker producing swells
with frequencies ranging from about 1 to 2 Hz. Various
types of surface waves can be produced by separated or
by combined action of the air flow and the wave maker.

It is to be stressed that the facility includes particu-
lar devices intended to control various parasitical effects
which could coexist with the physical process under con-
sideration. In particular, a permeable wave absorber is
disposed at the upwind end of the water tank to prevent
the wave reflection. Within the range of wave frequency
of interest in the experiments on surface waves, the re-
flection coefficient is estimated to be less than 5%. As
far as wind generated waves are concerned, a specific
design has been adopted for a smooth joining of the air
flow and the water surface. The design prevents air flow
separation at the facility entrance test section. This in-
sures a natural development of the turbulent boundary
layer over the water surface. In addition, later quays
disposed in the water tank favor the three-dimensional
evolution of the wind waves. Studies with more details
about there specific devices are given in a number of
publications (see e.g. Ramamonjiarisoa, 1974; Coantic
and Favre, 1974).
We concentrate here on the time evolution of the water
surface deflection level at a given position. The record-
ings were made using a capacitance wire gauge of 0.3
mm outer diameter; the capacity of this gauge varies
linearly with the surface deflection level; the sensitivity
of the device is about 0.6 V/cm, giving a resolution of
the order of 0.1 mm.

Experiments were carried out under various condi-
tions, whose main parameters are the wind velacity, the
amplitude and the frequency of the wave maker, and the

distance between the gauge and the wave maker (here-
after denoted fetch). In which follows, we consider three
particular runs that are indicative of the different types
of behaviour observed:

1. waves generated by wind only (velocity 10 m/s)

2. waves generated by wave maker only (frequency 1.7
Hz, wave steepness (0.25)

3. waves generated by wind (velocity 10 m/s) and wave
maker (frequency 1.2 Hz, initial wave steepness 0.15)

In each run, the gauge was fixed at 35 m from the wave
maker. Then, the waves had sufficiently long space to
evolve dynamically.

The choice of the above conditions was dictated by the
following arguments:

a.) well developed pure wind generated laboratory grav-
ity waves fields are known to exhibit similar statistical
properties whatever the fetch and the wind velocity may
be. The similarity is seen in the spectral density func-
tions, the probability density function as well as in the
dispersion relation (see Ramamonjiarisoa, 1973; Toba,
1973) . Of particular interest is that the so-called sig-
nificant wave steepness is of the order of 0.25. The par-
ticular condition corresponds to a dominant wave fre-
quency of about 1.5 HZ which is close to the frequency
of the pure mechanically generated wavefield. In ad-
dition, the actual wind wavefield possesses sufficiently
high amplitude which favours accurate measurements
and determination of the various quantities of interest
in the study.

b.) the pure mechanical waves have an initial wave
steepness of 0.25, close to the significant wave steep-
ness of the pure wind waves. The analyzed signal corre-
sponds to the largest fetch available. A$ seen in Figure 1
in this location, the field has reached a chaotic state,
which strongly differs from the regular motion (not re-
ported here), observed at shorter fetch associated with
the Benjamin-Feir instability. We are interested here
in the long term behaviour of the wavefield. The short
term behaviour has been already the subject of several
investigations by many authors.

e.) In the mixed field, the initial wave steepness of the
mechanical wave is 0.15. Due to the amplification by
the wind. the steepness increases along the fetch so that
the field will become more and more nonlinear. At the
point of measurement, the steepness is estimated to bhe
of order 0.26. The wind velocity is chosen sufficiently
high so that to be eventually able to perturb the regular
behaviour of the mechanical wave. The combination of
the wave nonlinearity and the wind action was expected
to produce a stochastic evolution. Surprisingly, as will
be shown, this appears to be not the case.

As said previously, only time variations of the water
surface defection level at given locations in space are
available from the measurements. The corresponding
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processed series are made of n = 72115 samples gath-
ered at a continuous rate of 200 Hz. Generally speaking,
the water surface wavefields of interest here are known
to have temporal as well as spatial dynamics in which
dispersion, nonlinearity, dissipation (by the kinematic
viscosity or by breaking) and eventually wind action
are involved. The results presented herein are limited
to some aspects of the temporal evolution at the given
space locations. In such case, the dispersion effect was
found to be quite negligible. Then, the work is intended
to give insight on the réle of the others cited processes,
especially, as far as the chaotic or deterministic features
of the fields are concerned.

It is to be stressed again that many others runs have
been conducted under various experimental conditions
but no results which significantly differ from those re-
ported here have been found.

3 Analysis methods

In this section we present four different analysis meth-
ods that were applied to the data, in addition to clas-
sical spectral and statistical methods. The experimen-
tal analysis of deterministic nonlinear systems is nowa-
days receiving growing interest {Tsonis, 1992; Ott et
al., 1994, Abarbanel, 1996; Kantz and Schreiber, 1997)
but only few studies have been devoted to water waves
{Mayer-Kress and Elgar, 1989; Haykin and Puthussery-
pady, 1997). That these do not adequately fit into the
categories of deterministic or stochastic systems, may
explain the problems encountered in describing them..

3.1 Phase space analysis

One of the simplest and yet powerful methods for get-
ting qualitative information from a physical process is
by exploring its phase space. Most experiments, how-
ever, do not give direct access to the phase space or are
too noise-dominated to enable the computation of higher
order derivatives. Time-delay embedding often provides
a satisfactory alternative to this problem (Kantz and
Schreiber, 1997). Given a single scalar measurement,
it allows us to reconstruct a phase space that, under
mild conditions, is topologically equivalent to the true
one. Consider the regularly sampled water level mea-
surements [i(¢1),n(t2),...,7(t,)], then the ensemble of
points whose coordinates are

X(@) = (@), n(t = 7)m(t - 27),... .9t — (m = 1)1))(1)

defines an orbit in m-dimensional phase space. The time
evolution of the system is then depicted qualitatively by
the way the orbits move away the points X(¢). Such
orbits provide the basis for the various analysis methods
that have been developed in the framework of dynamical
systems {Eckmann and Ruelle, 1985).

Once the orbits are reconstructed by time-delay em-
bedding, it is often desirable to have a reference set to

which the data can be compared. A classical test in-
volves surrogate data: a time series is generated, which
mimics the properties of the observations (having the
same power spectral density and the same probability
density) but in which signatures of nonlinearity, i.e. de-
terministic phase couplings between Fourier modes, are
destroyed. A simple way of doing this is by computing
the Fourier transform, randomizing the phases and then
performing the inverse transform (Theiler et al., 1992).
We can thereby test the hypothesis whether the data
are the cutput of a linear system driven by stochastic
forces (and possibly transformed by a static nonlinear
filter).

The main problem here is the choice of the time lag 7
(which is necessarily a multiple of the sampling period)
and the embedding dimension m. There exist various
criteria for selecting the embedding dimension (Abar-
banel, 1996; Kantz and Schreiber, 1997). As far as
we merely want to have a qualitative look at the phase
space, we shall be content here with a relatively small
value m = 2. More important is the choice of the time
lag 7, for which there also exist various selection criteria.
The lag should be such that the two time series n(t) and
71(t — 7) are reasonably decorrelated. An obvious choice
would then be to take the smallest time lag 7 for which
the autocorrelation function Ru,(r) = {(p(t)n(t + 7))
(where brackets denote ensemble averaging) vanishes or
hecomes small enough. Tt is generally agreed upon, how-
ever, that the mutual information approach, to be de-
scribed now, is more adequate for such purposes.

3.2 Mutual information at different lags

Let n and u be two random variables whose probability
densities are respectively Py(n) and P,(g). The infor-
mational content of these variables is known to be asso-
ciated with their entropies H, = — [ Py(n)log P,(n)dn
and H, = — [ P,(p)log P, (u)dy; the joint entropy is
Hp, = — [ P,.(n, p)log By, (n, )dndy. The mutual in-
formation between the two variables, defined as

Jop = Hy + Hy — Hpy (2}

tells us how much information we gain about one of the
two processes given knowledge of the other (Fraser and
Swinney, 1986). This mutual information vanishes if
and only if the two processes are independent, that is
if Ppu{n,p} = Py(n)P,(1). The mutual information in
this sense provides a more global measure of indepen-
dence.

Here, the random variables  and u are respectively
the water level and the same time series delayed by 7.
The mutual information thus becomes a function of the
time lag, which we shall write as I(r) = Jy4y5¢~r). No-
tice that the empirical probability densities are discrete
and so in practice the integrals in the definition are re-
placed by summations over different bins.
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The optimum time lag 7 for reconstructing the phase
space is frequently chosen to be the value that gives
the first local minimum of I{r} (Fraser and Swinney,
1986). In most applications the mutual information is
indeed restricted to that single use, although it obvi-
ously contains more pertinent information. In particu-
lar, a comparison between values of the mutual correla-
tion, as computed for real and for surrogate data, should
reveal whether nonlinearity generates correlations that
would go undetected by standard linear correlation anal-
ysis.

3.3 Dimension analysis

Dimension calculations have become a standard method
for quantifying low-order determinism in dissipative sys-
tems (Eckmann and Ruelle, 1985; Abarbanel, 1996; Ka-
ntz and Schreiber, 1997}. Best known is the correla-
tion dimension which, loosely speaking, reveals the ef-
fective number of degrees of freedom associated with the
system. A finite dimension is associated with the exis-
tence in phase space of an attractor, whose shape can
actually be highly intricate. Qur system being spatially
extended, there is a priori no reason for such a finite
dimension to exist.

The estimation of correlation dimensions from em-
bedded phase spaces has nowadays become a standard
although certainly not a trivial procedure. First, the
correlation integral is estimated

. 1
)= D

DT Hr—IX () - X)) .(3)

Lj=1.i#]

where H(.) is the Heaviside function and the norm ||.||
can be Buclidian or a different one. The correlation
integral should in principle scale with the radins r of
the hyperballs in m-dimensional phase space like

lir% em(r) ocr” | (4)

The exponent v is estimated for increasing values of m;
if the system has a low-dimensional attractor, then v
should converge toward the correlation dimension pro-
vided that e > 2r. We must stress that finite sample
size effects and the omnipresence of noise severely re-
strict the access to small radii r and large dimensions m,
and hence to high dimensions. In our case, dimensions
typically in excess of 4 cannot be meaningfully assessed.

3.4 Nonlinear wave interactions

A complementary and in some sense more natural de-
scription of nonlinear water waves issues from models
of weakly interacting waves. Such models have received
much attention in the past (Vyshkind and Rabinovich,
1976), and have heen extensively studied in the frame-
work of Hamiltonian systems (Zakharov et al., 1985).

It is well established that nonlinear wave-wave interac-
tions do occur between waves provided the resonance
conditions:

fi(ky) + falks) = f(k; + ka) , (5)
for three-wave interactions and
filky) + falks) + fa(ks) = f(ky + ks + ka) (6)

fitky) + fatke) = falks) + f(ky + ko + k3)

for four-wave interactions are satisfied. Here f is the
frequency and k the wave number. Three-wave interac-
tious can be ascribed to nonlinearities of the quadratic
type. Their characteristic signature is an asymmetry of
the probability density (Kim and Powers, 1979). Four-
wave interactions are associated with nonlinearities of
the cubic type. Typical examples are decay instabil-
ities for the former, and modulational instabilities for
the latter. The appropriate quantities for assessing the
strength of three- and four-wave interactions are respec-
tively the bispectrum and the trispectrum (Subba Rao
and Gabr, 1984; Nikias and Petropulu, 1993). Both are
direct generalizations of the power spectral density to
multipoint correlations. The bispectrum reads

B(f1. f2) = ()AL (A + f2)) (7)

and the trispectrum

T(fifo fa) = GRS (U + fo + fa)) o (8)

where #(f) is the Fourier transform of the time series
7(t), the superscript * denotes complex conjugation and
brackets denote ensemble averaging.

Nonzero values of these higher order spectra arise
only when deterministic phase couplings exist between
Fourier modes whose frequencies satisfy the resonance
conditions (Eqgs. 5 and 6). Such phase couplings are a
necessary (but not always sufficient) condition for hav-
ing nonlinear wave interactions.

In practice, it is more convenient to normalize higher
order spectra in order to have a quantity that is bounded
between 0 and 1. The normalized bispectrum is called
the bicoherence

2 . |B(fl.:f2)‘2

b Loy = o= — - — 9
R A AR @

and the normalized trispectrum the tricoherence

tz(flaf'l: fa) |T(f1,f-3,f3)|2 (1)

AT F AP + f2 + F )

Both quantities have become standard indicators for
nonlinearity and non-Ganssianity in time series (Nikias
and Petropulu, 1993, and references therein). We just
mention that there exist other, slightly different variants
in their definition (Kravtchenko-Berejnoi et al., 1995).
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4 Results

We now go through the results obtained using the var-
ious analysis methods, starting with the classical ones.
A synthesis follows in the next section.

4.1 Spectra and probability density function

Figure 1 summarizes the basic properties of the wave-
field, with an excerpt of the time series, the probability
density and the power spectral density. The three runs
correspond to wind waves (i.), pure mechanical waves
{ii.), and mixed waves (#4i.).

A first striking result is the large amplitude and high
coherence of the waves obtained by combined action of
wind and wave maker (4#.) as compared to waves gener-
ated solely by wind or by wave maker. The random-like
character of the latter is attested by probability den-
sities that are close to Gaussian, whereas in case (#4.)
the density is more akin to that of a sinusoidal wave
embedded in random noise {see e.g. Middleton, 1960).
The asymmetry of the probability density further sug-
gests that the waves are rather of the Stokes type than
sinusoidal. Such an asymmetry is a typical signature
of quadratic wave interactions, which will be evidenced
below by the bicoherence analysis.

An inspection of the power spectral densities reveals
further differences between the three cases. The energy
level around the peaks are quite different. This could
raise question about the validity of the comparison of
the three runs. This has been discussed in section 2
considering the respective values of the significant wave
stecpness which is generally accepted as indicative of
the nonlinearity level of the wavefields. The aperiodic
structure of wind waves (i) is evidenced by a broad
maximum in the power spectral density. Pure mechani-
cal waves on the other hand show several spectral lines,
one of which occurs at the wavemaker frequency. At the
actual stage of the fetch evolution, the presence of such a
discrete spectrum is reminiscent of the modulational in-
stability, which has been well documented in laboratory
experiments {Benjamin and Feir, 1967). We note the
occurrence of a “frequency downshift” since the most
energetic spectral line is not the one associated with the
carrier at f = 1.7 Hz (as observed for smaller fetches)
but its lower sideband. It is known that such an asym-
metric development of sidebands cannot be predicted by
classical instability theory.

The power spectral density of mixed waves (#1.) is
also highly peaked at the wave maker frequency but
shows no evidence for subharmonic transitions; we ob-
serve instead a single fundamental with its harmonics.
This already suggests that the random forcing of the
wind prevents the modulational instability from devel-
oping like in case {ii.).

We note that at high frequencies the power spectral
density of wind generated waves exhibits a power-law

decay P(f) o« f” (v is estimated in order of _g for
wind waves}. The existence of such a scaling is a well-
known feature of self-similar processes (see e.g. Kitaig-
orodskii, 1987}. The present work focuses on the fre-
quency band surrounding the frequency of the funda-
mental mode. Therefore, smaller scales, which are of
interest, the study of wind-wave interactions, will not be
considered.

4.2 Autocorrelation and mutual information functions

The autocorrelation function and the mutual informa-
tion are compared in Figure 2. We estimated the mutual
information using a grid of 10 equiprobable intervals (see
Fraser and Swinney, 1986) but the results are qualita-
tively identical for other numbers of bins. As a measure
of uncertainty, we take the bias of this empirical esti-
mate, which is calculated to be about 0.01 bit.

Both the autocorrelation function and the mutual in-
formation reveal oscillations that are characteristic of a
narrow band process. Recall that the optimum time lag
7 for reconstructing the phase space by delay embed-
ding is given either by the first zero of the autocorre-
lation function {giving Teerr) or by the first minimum
of the mutual information (giving Ty ). The following
values of 7,y and 7., are found (with an uncertainty
of typically 0.02 sec.)

case | Trut 56¢] | Teorr 15€€]
i) 0.175 0.17
i.) 0.145 0.16
#1.) 0.195 0.215

The closeness of the values, as estimated by the two
methods, suggests that the nonlinearity is rather weak
in all three cases. To evidence.the effect of nonlinear-
ity, we compare the values of the mutual information
as computed from real and from surrogate data, see
Figure 2. We recall that the surrogate data have the
same properties as the original data, but without sig-
natures of nonlinearity. In case (i) the difference is
barely significant and so n nonlinearity does not have
to be invoked per se to explain the wavefield dynam-
ics. A greater discrepancy appears in cases (i) and
{4i2.) where evidence is found for a deterministic phase
coupling between Fourier modes. At this stage we may
conclude that the the nonlinearity increases the degree
of coherence of the wavefield. In (#.) this enhancement
mainly concerns adjacent crests of the fundamental os-
cillation whereas in (4i.) the effect extends over many
periods. Such an effect should be visible in the phase
portraits. to be examined now.

4.3 Phase portraits
Since we know the optimum time lag 7, we can attempt

a partial reconstruction of the phase space by delay em-
bedding. As mentioned before, we restrict ourselves
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here to two-dimensional projections of the phase space,
whose true dimension is not known a priori. Figure 3
shows the reconstructed phase portraits.

All three phase portraits have in common a dominant
cyclic feature, but their fine structure reveals marked
differences. Wind generated waves (i.) show the most
erratic behaviour, with wiggles indicating that there is
no clear connection between low and high frequencies
{as compared to the frequency of the fundamental).

A stronger coupling between Fourier modes is evident
in pure mechanical waves {#.) since, even though the
power spectral density is comparable to that of (i.), the
high frequency distortions are not distributed through-
out the phase space anymore but arise in a more ordered
way. Surprisingly, it is the combined action of wind and
wave maker that yields the most structured phase por-
trait, see Figure 3. Indeed, the trajectories concentrate
on well structured orbits (an “attractor”} that are the
hallmark of determinism. Given the sensitivity of the
probes and the experimental conditions, we cannot at-
tribute the thickness of the attractor to experimental
noise. It thus remains to be determined whether the
observed attractor has a fine structure or if it width
Jjust results from the stochastic action of the wind and
dissipation. To answer this question, we now investigate
the correlation dimension.

4.4 Correlation dimensions

The dimension analysis of the wavefield is summarized
in Figure 4, in which the logarithmic derivative of the
correlation integral dlog ¢, (r) /dlog r is displayed vs the
size r of the hyperballs in phase space. Time lags com-
puted by mutual information were used to reconstruct
embedded phase spaces of dimensions ranging from m =
I to 10.

If Eq. {4) holds, then the curves in Figure 4 should
all flatten and saturate for large m; the level of the
plateau then corresponds to the correlation dimension
of interest. We must stress that the limited sensitiv-
ity of the probes prohibits access to structures whose
size is smaller than r < 107 which correspond to water
level fluctuation less than 0.5mm. Figure 4 shows that
there is no evidence for a saturation of the correlation
integral with either wind or pure mechanical waves. We
conclude that the wavefield dimension is either infinite
or too large (typically larger than 4) to be quantified. A
finer analysis of the saturation and a comparison with
surrogate data suggest that such a dimension, if it ex-
ists, is likely to be smaller for mechanical than for wind
waves.

The situation is again quite different for mixed waves
(#4.), since the onset of a plateau is observed, clearly at-
testing the presence of a low dimensional attractor. The
measured dimension is Dy = 1.3 £ 0.05, a value that is
indeed compatible the type of limit cycle observed in
Figure 3. The noninteger value of the dimension indi-

43

Fig. 3. Two dimensional phase portraits as reconstructed from
the three time series by delay embedding. The time lags 7wy are
set by the first minimum of the mutual information: Tmq: = 0.175
sec (i.), Tmut = 0.145 sec (i), and Tmu: = 0.195 sec (#2.).
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Fig. 4. Logarithmic derivative of the correlation integrals, as
computed from the three time series, with different dimensions
m and different sizes r of the hyperballs. Time lags obtained
by mutual information criteria were used to reconstruct the phase
spaces, but the results are relatively robust against the exact value
of the lags.
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Fig. 5. Bicoherence as estimated for the three data sets. The display is restricted to the principal domain, which is bordered by a line.
For the sake of clarity, the corresponding power spectral densities are also shown on the same plots. Since the empirical biccherence
estimator is biased, values below 0.2 are not considered to be significant.

cates that we have a strenge attractor, whose topology
is intermediate between a limit cycle and a torus. Such
strange aftractors are a typical feature of deterministic
chaos in dissipative systems. We may therefore conclude
that the highly regular waveform, and its small mod-
ulation, have their origin deeply rooted into the non-
linear nature of the process we consider. The surprise
comes from the fact the presence of a stochastic forcing
{the wind) and a deterministic forcing (the wave maker)
can yield to a such a low dimensional dynamics since
the same forcings, taken independently, lead to more
complex behaviour as far as the dimensionality is con-
cerned. Dissipations processes are necessarily present
to generate a strange attractor. It is iikely that incipi-
ent breaking of wave crests, as visually seen during the
experiments, constitute the dominant process. Unfor-
tunately. this process is far from being understood and
still constitute one of the main problems which concern
the nonlinear evolution of water waves. As suggested
by the referee of the present work, the clear ridge of
quadratic phase coupling on fig.5 could be indicative of
the presence of such nonlinear dissipative mechanism.

4.5 Nonlinear Wave Interactions
Let us now consider the observations in terms of weakly

interaction Fourier modes, and for that purpose com-
pute higher order spectra. Figures 5 and 6 respectively

show the bicoherence and the tricoherence functions,
which quantify the strength of three- and four-wave in-
teractions. The results were obtained by decomposing
the time serics into 35 partially overlapping blocks of
4096 samples, computing the Fourier transform for each
of them, and subsequently averaging over the different
blocks. .

Because of the real-valued nature of the data, the bi-
and tricoherence do not have to be estimated for all
possible combinations of frequencies {see for example
Nam and Powers, 1994), Here, we restrict ourselves
to the non-redundant fraction of the frequency domain,
whose limits are indicated by lines in Figures 5 and 6.
The principal domain is a triangle for the bicoherence
and a tetrahedron for the tricoherence.

4.5.1 Bicoherence

The bicoherence is depicted in Figure 5 for the three
runs. For wind-generated waves (i.), we measure a small
bicoherence except for frequencies that approximately
satisfy the summation rule 1.4 + 1.4 == 2.8 Hz. The
maximum bicoherence is ¥ = 0.4, to be compared
with unity for triads of waves that are fully phase cou-
pled to each other. The interpretation of this maximum
is relatively simple: the resonant frequency f = 1.4 Hr
correponds to the peak in the power spectral density, so
we are dealing with a self-interaction of the fundamen-
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Fig. 6. Tricoherence as estimated the three data sets. The display is restricted to the principal domain, which is bordered by a line.
The reference frequencies (shown by a dashed line) are from left to right fo = 1.4 Hz, fo = 1.69 Hz, and fo = 1.2 Hz. For the sake of
clarity, the corresponding power spectral densities are also shown on the same plots. Since the empirical tricoherence estimator is biased,

values below 0.2 are not considered to be significant.

tal, giving a first harmonic at f = 2.8 Hz. This is a
typical feature of Stokes waves.

The same harmonic generation is observed for pure
mechanical waves (ii.). The maximum value of the bi-
coherence is now slightly larger, possibly because the
sharpness of the spectral lines makes the couplings more
efficient. Harmonic generation is even stronger for mixed
waves (44.), with a bicoherence reaching #* = 0.6 for the
self-interaction of the carrier 1.2 4+ 1.2 = 2.4 Hz. Notice
the existence also of an interaction between the funda-
mental and its first harmonic 1.24 2.4 = 3.6 Hz. Interac-
tions with higher harmonics are observed when extend-
ing the frequency range of the display. These results are
in agreement with the asymmetric shape of the proba-
bility density, see Figure 1. A novel feature, however,
is the broadband coupling we observe between the fun-
damental and higher frequency modes. This coupling,
which is evidenced by the ridge (fy > 1.2, f» = 1.2)
Hz, indicates that high frequency waves are enslaved to
the fundamental. We had already conjectured such a
coupling when considering the structured shape of the
phase portraits, but the bicoherence now gives direct
evidence for it. This coupling is easily understood if we
remember that the wind-generated wavelets always oc-
cur at the crest and not at the bottom of the waves. The
causal relationship between the carrier and the high fre-
quency waves then manifests itself as a phase coupling,.

4.5.2 Tricoherence

Since the tricoherence $2(fy, fa, f2) is uneasy to visual-
ize, we fix one of its frequencies and display the results
in two dimensions. A suitable choice of the reference
frequency often suffices to capture most of the perti-
nent information. A natural choice is to take the car-
rier frequency (i.) or the frequency of the dominant
mode (i.), and (é5.). The reference frequency is shown
by a dashed line in Fig. 6. Concerning the interpreta-
tion of the tricoherence, we note that the upper triangle
(f1 > 0, f2 > 0) corresponds to interactions of the type
fi + fo+ f3 = fo, with fo, f1, fa, fs > 0. The lower
triangle (f; > 0, f < 0) corresponds to interactions of
the type fi + fa = fo+ fo or fi = fo+ fo + f3, again
both with fo, f1, f2, f3 > 0.

For wind waves (%.), the measured tricoherence level is
not significant and so we conclude that there is no clear
evidence for four wave interactions. Previous investiga-
tions of wind waves (see e.g. Deardorfl, 1967) indeed
suggest that the corresponding spectral energy distri-
bution should rather conform to the similarity theory.
The same result holds for mixed waves (iii.), where the
tricoherence is also negligible.

Pure mechanical waves, on the contrary, show signif-
icant couplings between the carrier and its sidebands.
Differeut types of interactions can be found, depending
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on the choice of the reference frequency fg. In all of
them, significant couplings are observed either between
the carrier and its sidebands or between the sidebands
alone.

In Figure 6, the most significant interaction is marked
by an arrow and corresponds to a resonance of the type
1.48 + 1.90 = 1.69 + 1.69 Hz. These frequencies cor-
respond to two sidebands plus a self-interaction of the
carrier. We must stress that this interaction involves
four waves and that it cannot be easily reduced to a
three-wave resonance of the type 1.48 +1.90 = 3.38 Hz.
Given the significant value of the tricoherence, we have
evidence here for a cubic nonlinearity. Such four-wave
interactions are known to lead to modulational instabil-
ities. Why this nonlinearity disappears in the presence
of wind remains an open question, although it is likely
to be due to a stabilizing effect of the wind on the mod-
ulational instability.

5 Discussion

In which follows, we shall recall some of the above re-
sults and discuss about their possible impacts on the
understanding of the wavefields evolution.

For the wind generated wavefield, the lack of evidence
for a saturation of the correlation integral function sug-
gests a dimension larger than, say, 4, or an infinite di-
mension. In the latter case, the field would behave like
a narrow-band random noise. This appears hardly pos-
sible in view of the fact that there exists clear phase
locking among the Fourier components close 1o the peak
frequency as shown by the bicoherence function. Such
phase locking would confirm previous observations {Ra-
mamonjiarisoa and Mollo-Christensen, 1979; Lake and
al, 1977) that wind generated wavefields in laboratory
facilities on deep water are much less dispersive than ex-
pected by water wave theory. These observations yiclded
to propose that such fields are dominated by a Stokes-
like component suffering the effects of resonant wave-
wave interactions. However, as shown by the tricoher-
ence function, no significant cubic interactions seem to
be present (see Figure 6.1). Then, it remains the case
of large, but not infinite dimension. This would be re-
lated with the presence of competitive deterministic and
random features of the fields whose correct mathemat-
ical and physical formulation has te be found. As far
as the spectral evolution is concerned, a similarity-like
approach such that of Deardorfl (1967) appears quite
appropriate.

Also, for the pure mechanical waves, no saturation
of the correlation integral function is observed. But as
already said in section 4.4, the existence of a finite di-
mension is not excluded. If such dimension exists, then
it is certainly smaller than that of pure wind waves. A
striking difference with the latter case is the presence
of interactions between the fundamental component at

frequency fo = 1.69Hz and the sideband components
at frequencies fi = 1.69 + 0.2H z as clearly shown by
tricoherence function. Recalling that the order value
of the wave steepness is 0.2, the condition required for
a Benjamin-Feir instability (Benjamin and Feir 1967)
is well satisfied. Note however that, strictly speaking,
the actual stage of evolution of the observed wavefield
would be beyond the domain of such instability theory
which is linear and, in addition, which predicts a sym-
metrical development of the sidebands energy. These
facts suggest that the observed field of pure mechani-
cal wave is dotinated by a cubic wave resonant inter-
actions process. According to recent advances on the
interaction processes, the asymmetry could be associ-
ated with dissipation by viscosity and/or breaking waves
{Lake et al, 1977; Trulsen and Dysthe, 1990; Tulin and
Waseda, 1999). But higher order effect (Dysthe,1979)
and multi-wave interactions (Krasitskii, 1994; Krasit-
skii and Kalinykov, 1993) may be involved as well. The
detailed examination of this observed asymmetry, ac-
counting especially for these recent analyses, is behound
the scope of this work.

Despite the small value of the correlation dimension,
the dynamics involved in the evolution of the mixed
wavefield appears the most difficult to understand. The
bicoherence function shows high phase locking between
the fundamental mode and the other modes present in
the spectrum in addition to the higher harmonics. This
means that the wind generated modes propagate also
at the velocity of the fundamental, mechanically gener-
ated mode. As a result, the field is quasi non dispersive.
This is not in contradiction with the small value of the
correlation dimension mentioned previously. This would
also agree with the phase portrait which is reminiscent
of that of a process with a limit cycle. The tricoherence
function shows no evidence of efficient ‘modal resonant
interactions. We believe that, in this case, the dynam-
ics is dominated by the flow interactions between the
wind and the waves rather the intrinsic nonlinearity of
the wavefield. The interactions would have two effects:
i.) the amplification of the wavefield which reach a sta-
ble quasi-periodic state: ii.} the annihilation of resonant
maodal interactions because of the presence of the wind
wave components (Alber,1978).

6 Conclusions

Considerable progress has been made in the develop-
ment of concepts and techniques in the field of the so-
called nonlinear dynamical systems with applications to
various physical systems (see e.g. Tsonis, 1992). Sur-
prisingly, there are few applications only to water sur-
face waves despite the fact that their dynamics are in-
trinsically nonlinear.

This work is concerned with applications to laboratory
water surface wave fields for which cvidence of nonlinear
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behaviour has been shown by various authors through
extensive use of the harmonic analysis. Of particular
interest is the lack of dispersion observed in wind gen-
erated waves (see e.g. Ramamonjiarisoa and Coantic,
1976; Ramamonjiarisoa and Mollo-Christensen, 1979).
The lack of dispersion has been attributed to the genera-
tion of higher harmanics of the so-called dominant com-
ponent in the spectrum. This quite naturally yielded
to try to model this dominant component in terms of
Stokes-like waveform (see Lake and Yuen, 1978). As
consequence, it has been often suggested that much of
the laboratory wavefields are dynamically dominated
by such waveform. Surprisingly, our results concern-
ing three typical fields do not confirm this statement.
Rather, the evolution of the fields appear to be domi-
nated by distinct physical processes as proposed in the
previous section.

We found the use of the concepts and the techniques of
nonlinear dynamic system to be of main interest in com-
paring various ficlds to identify some eventual commaon
behaviour. On the other hand, in considering a par-
ticular field, the corresponding quantities (correlation
dimension, optimum time lags,...) are for the moment
difficult to express in terms of simple physics and much
have to be done in that respect. Example of such diffi-
culty can be found in Mayer-Kress and Elgar (1989).

A prospective task concerns the applications to field ex-
periments in order to compare with the actual results.
One specific question of current interest concerns the
strength of the nonlinearity involved in both type (lab-
oratory and field) of observations.
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