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Abstract. We investigate trapping of mirror modes in a mag-
netic slab. This model is a simplification of a real situation in
front of the magnetopause where mirror waves may become
trapped in a region close to the magnetopause for tangen-
tial discontinuity conditions and an unidentified (hypotheti-
cal) boundary deeper in the sheath which we, for simplicity,
assume to be another tangential discontinuity. Such magnetic
slabs may trap mirror modes selecting a particular perpendic-
ular wave lengths which foliows from a quantization condi-
tion on the perpendicutar wavenumber.

1 Introduction

For about four decades since the pioneering work of (Chan-
drasekhar et al., 1958) the mirror mode has been known as
one of the two basic macro-instabilities in plasma containing
an anisotropic thermal pressure p, # py;, the other and com-
plementary instability being the celebrated firehose mode.
The subscripts L, |} in the above expression refer to the direc-
tions perpendicular and parallel to the local (average) mag-
netic field B. Both their physical mechanisms have been clar-
ified first by (Rudakov and Sagdeev, 1961). The firehose mode
arises under the condition that 8y — 3, > 2, where 3 =
2p0p/ B2 is the ratio of thermal to magnetic energy density.
Because the paraliel pressure p = nm(vﬁ) /2 is proportional
to the (ensemble} averaged parallel energy corresponding to
the centrifugal force on a bent magnetic field line, its mech-
anism is easily understood to result from the excess in cen-
trifugal energy exerted on the field over its restoring force
energy. This is a branch of the ordinary Alfvén wave which
may be driven either by the paralie] excess in ion or also elec-
tron pressure anisotropies (Hollweg and Volk, 1970, 1971).
In contrast, the mirror mode does not present such an easy
interpretation (Southwood and Kivelson, 1993). The fluid the-
ory of the mirror instability has been given by e. g. Barnes
(1966) and Tajimi (1967). In the fluid picture in.anisotropic
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plasma (p, > py) any disturbance in the perpendicular pres-
sure is in anti-phase with the corresponding disturbance of
the magnetic field. For large enough anisotropies the plasma
responds by pressure imbalance to changes in the magnetic
pressure leading to instability. However, the fluid concept
does not give the correct growth rate because it does not take
into account the effect of the resonant particles with paral-
lel velocities ky{vy| < |v! as has been shown by Southwood
and Kivelson (1993). The particle distribution consists of two
components: those trapped resonant particles and untrapped
particles at higher parallel speed. Kivelson and Southwood
(1996} analyzed the nonlinear evolution of the mirror mode.
They have shown that in the nonlinear state increasingly more
particles become trapped in the mirror mode. The mirror mode
saturates when their contribution becomes more important
than that of the resonant component. It should also be noted
that observation of Lion roars (Tsurutani et al., 1982) re-
lated to magnetosheath mirror modes provides evidence of
a trapped electron component (Baumnjohann et al., 1999) in
the mirror modes.

There are plenty of observations of the mirror mode in
the environment of Earth, Jupiter, and comets (Tsurutani et
al., 1982, 1984, 1992; Hubert et al., 1989; Lacombe et al.,
1992; Glassmeier et al., 1993; Fazakerley and Southwood,
1994a.b; Fazakerley et al., 1995; Hill et al., 1995; Lacombe
and Belmont, 1995; Lucek et al., 1999a, 1999b; Titrallyay
and Erdis, 1999). A favored place of the mirror mode is
the magnetosheath. In addition field line draping arcund the
magnetopause provides another free energy source for the
mirror instability close to the magnetopause. Hill et al. (1993)
have shown that the instability criterion for the mirror insta-
bility is marginally satisfied from about half way to the bow
shock up to the magnetopause. For a timely review on the
most abundant observations obtained in the magnetosheath
and their interpretation the reader is referred to Schwartz et
al. (1996). Recent measurements at the dawn side of the mag-
netopause and AMPTE IRM measurements have demonstrated
that the mirror mode reaches relative amplitudes of |[§B/B| =~
1 while the direction of the magnetic field changes only shghtly
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(see Lucek et al., 1999a,b}. Early numerical simulations (Price
et al., 1986} have confirmed this feature. The mode is nearly

purely compressive and its wavelength along the magnetic

field is much larger than the perpendicular wavelength, k; <

k| . The observation of such large amplitudes in |B| sug-

gest that the mirror mode is rarely observed in its linear state

though Lacombe et al. (1992) reported some cases of linear

mirror instability.

2 Review of Linear Theory

Given a positive pressure anisotropy A; =p;1 /pj;;—1>0
of ion species j and assuming that the electrons are isotropic
and cold, it is not difficult to derive the condition for in-
stability of infinitesimally small amplitude mirror waves ei-
- ther from the double adiabatic MHD equations or from the
Vlasov equation in the extremely low frequency limit for

nearly perpendicular propagation (e.g. Hasegawa, 1969, 1975).

In the fluid picture the mirror instability arises from the per-
pendicular pressure and magnetic field variations being in an-
tiphase. At strictly perpendicular propagation the instability
does not exist. Southwood and Kivelson (1993) have shown
that a physical understanding of the mirror mode reties on
the realization. of the central role of resonant particies with
parallel velocities v ~ 0. Inclusion of finite electron tem-
peratures introduces additional electron pressure and parallel
electric field effects which affect the dispersion relation {e.g.
Pantellini and Schwartz, 1995; Pokhotelov et al., 1999).

2.1 Temporal Growth

Following Hasegawa (1975), the kinetic dispersion relation

of the combined mirror and firehose instabilities in a Maxwellian

ion plasma in the presence of a cold electron background
reads

g o 2.2
k% _ kjva Z Bin Aj
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e
+ L1428ty (1)
k3 28y \kylvs)

The meaning of the symbols is conventional. Z((;) is the
plasma dispersion function of argument (; = w/k(v),
and the prime indicates the derivative with respect to its argu-
ment. Furthermore, v 4 is the total Alfvén velocity (summed
over all species 7), and (v} = (2kpT}) /m;)'/? is the aver-
age (thermal) parallel speed. The latter can also be expressed
in terms of the component j Alfvén speed

(i) = B via/(4; +1) (2)

The general very low frequency (Jw| < £y, lw| < [ky|(vy))
dispersion relation derived from the above relation in the
limit of kv4 3 |w| and for the cold electron-proton plasma
is (Hasegawa, 1975}

BLA

ki [1 + W] -k [(BLA-1)+ (3)
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As mentioned above inclusion of a finite isotropic electron
temperature would cause an additional electron pressure ef-
fect as shown by Pantellini and Schwartz (1995) and ex-
tended by Pokhotetov et al. (1999). The instability condition
of the mirror mode in a cold electron multi-component warm
and anisotropic ion plasma has been given by Tajiri, (1967)
and Hasegawa (1969) (see also Hasegawa, 1975; Treumann
and Baumjohann, 1997}. In a pure cold electron-anisotropic
proton plasma close to perpendicular propagation it assumes
the familiar mirror criterion

BiA>1 4

Otherwise, for given A > 0 and oblique propagation one
obtains a condition on the propagation angle tan 8 = ky /k,.
as

1+ 8LA/2(A+ 1)
BiA-1

Marginal instability is obtained for the equal sign in the above
expression proving that the mirror wave is an obligue mode.

The mirror mode competes with the parallel electromag-
netic ion cyclotron instability (Gary 1992, 1993) which goes
unstable under the condition that the resonant ions have pos-
itive anisotropy A > 0 and energy larger than Alfvén energy
m;v% /2 which in the magnetosheath is the order of 100 eV.
Its growth rate is proportional to the generally small fraction
Angres/no € 1 of resonant particles ve = {{w — Qo) /Ky
satisfying these conditions. In addition, adding a few % of
Het* ions reduces the ion cyclotron growth rate due to ad-
ditional to damping. As shown by Southwood and Kivelson
{1993), the mirror mode is in contrast sensitive to the numer-
ous vy ~ 0 particles. Hence, though the ion cyclotron waves
may be unstable under similar conditions, the mirror mode
may still grow faster in the magnetosheath.

tan’ @ >

(5)

2.2 Spatial Amplification

The observations of mirror modes in space plasmas and in
particular in the magnetosheath (e.g. Tsurutani et al., 1982,
1984; Hubert et al., 1989; Lacombe et al., 1992; Fazakerley
and Southwood, 1994a.b; Lacombe and Belmont, 1995; Cza-
ykowska et al., 1998; Lucek et al., 1999a, and others) cannot
distinguish between temporarily growing and spatially am-
plified nonlocal mirror modes. Some of the observed waves
seemn to exhibit spatially growing amplitudes when passing
through the magnetosheath and approaching the magnetopause.
It is well known that such mirror modes are convected with
the plasma flow. Two-spacecraft observations are required in
order to infer about the local or convective character of the
modes. In the absence of any clear distinction between both
cases it is therefore of interest to investigate the convective
mirror mode.

As is transparent from the above derivation of the tempo-
ral locally growing mirror mode, linear mirror mode analy-
sis yields a purely imaginary frequency w = i given, for



Treumann and Baumjohann: Collisionless mirror mode trapping

instance, in Hasegawa (1975). Generalization of the mirror
instability to a plasma streaming with velocity V is trivially
done by replacing w — w — k - V. This attributes a real part
to the frequency yielding

w=k-V+iy (6)

The derivation of the dispersion relation (1) is, however,
valid for general real or complex wave numbers. Suppose
that w is real while k is a complex vector. We define , a =
1+ %HLA/(A +1),e = (BLA-1)/a > 0and b =
(mB3L.)(A + 1)%/a®. Taking w and k, real and setting ky =
K| — iT'|, with positive ' corresponding to spatially am-
plified disturbances the dispersion relation (4} can be split
into real and imaginary parts. This leads to the following two
equations

2
Ky

3Tf + ke (7N

bw
ki (el"” d a) (8)

In the low frequency parameter domain these equations can
be shown to have no solution for the wave numbers of inter-
est, Ky < k1. The only solution is one where K| > /ek,,
and this is amplified (evanescent) along the field for w < 0
{w > 0).

Let us consider perpendicular amplification. We assume
thatk) = K —il' | is complex and k), w are both real. The
real and imaginary parts of the dispersion relation (4) yield
the following expression for the perpendicular amplification
rate

F“(SKﬁ - I’ﬁ) =

Il = K} - Qk) 9

where Q@ = ¢/(e? + b%w?/kjv}) is a positive quantity. For
€ = 0 conditions the perpendicular amplification length is the
same as the perpendicular scale of the mirror mode, while for
€ > Gonehas '} < K. Clearly, this expression limits the
perpendicular wavenumber from below:

LSHN : (10)
kﬁ e2 + (b{.d/k“’u‘q)2

This estimate is valid for ¢ > 0. At € = {} there is no restric-
tion on K ;. The general equation for K| is a bi-quadratic
equation

Ki —aK% —ay, =0 (11)
where
k4Q2b2 2
—_ k2 - H
@ = Qky, a2 4e2 kﬁvﬁ
The only one real solution is
1
. QK B ow? \°
Ki:T” 1+ 1+é—2k—ﬁ‘;}-§ (12}
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It yields a perpendicular amplification rate
k2 62w2 %
r2="120hs 2| -1 1
2 " ks (13)

Since this is always positive, one of the modes is amplified in
the perpendicular direction. In the very low frequency limit
w K kyvae/bone has Q =~ ¢!, and the amplification rate
is just

D ug =~ b(w/26%)2, WL kjva (14)
In this case the parallel phase velocity of the mode is small
against the Alfvén speed and the waves are relatively short
parallel wave length but longer than the ion inertial length,
A > A = efwp;, since w « (1. The mirror mode propa-
gates slower than Alfvén speed along the field and has per-
pendicular wave number

Ky = ky/e (15)

This must be large compared to the paraliel wave number. So
€ must be small. These approximations hold close to marginal
conditions. In the opposite case one has

k“'UA
2hw

3
' =K, ( ) k“, w k”UA (16}
which is practically independent of €. This case applies to
very long parallel wave lengths, A > A,. Mirror modes of
this kind form cigars extended along the field. Finally it is
worth mentioning that no mode can propagate for k = 0.

2.3  Convective Growth Rate

The local growth rate for the above siowly oscillating modes
can be found when observing the relation between the spatial
amplification rate and the local temporal growth rate

7L = —vguly (17

which we have written here only for the perpendicularly am-
plified mode. The group velocity vy, = dw/0k can be cal-
culated from the equation (12). This equation is conveniently
written as

_ k(@Y 3
Ki=7% (?) (1 + \/eQ) (18)
In analogy the amplification rate assumes the form

by (Q)° 7\

Using these expressions for the wave number and the ampli-
fication rate one obtains

= ? (é)% (1+12v/eQ) " (20)
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Since this is given in terms of ¢ which 1s a function of w one

can aiso express it solely through the perpendicular wavenum-
ber

YL e C

Kiva d(Cc—-1)} @0

where C = (1 + 8¢K2 / kﬁ) % This is a complicated expres-
sion. It simplifies whenever K| is sufficiently large com-
pared with k) so that it is justified to neglect the one in the
expression for C. Then the nonlocal growth rate which is re-
lated to the amplification rate becomes

va Bk [e5\*
vy w2V (i) (22)

4b 8

For the physical understanding one may note that the per-
pendicular group velocity in {17) is negative for the growing
mode. This fact implies that energy is flowing into the mode
along the perpendicular direction and out of the mode along
the magnetic field. This perpendicular inflow is another ex-
pression for the inflation of the mirror bubbles experienced
during amplification.

3 Mirror Mode Trapping

Under conditions as those near the magnetopause the mirror
mode has been observed to reach large amplitudes and be-
ing concentrated mainly close to the magnetopause (Hubert
et al., 1989; Hill et al., 1995; Lacombe and Belmont, 1995,
Lucek et al., 1999a,b). Similarly, short wavelength mirror
modes hasve been identified close to the bow shock (La-
combe et al., 1992; Czaykowska et al., 1998). We here in-
vestigate another possibility which relates to the gross inho-
mogeneity of plasma conditions near the magnetopause and
bow shock. Since the mirror mode is little affected by den-
sity perturbations we consider the case of mirror modes being
captured between two magnetic walls.

Let the width of the magnetic trough between the walls be
L. We assume the walls are standing discontinuities one of
them the magnetopause the other a hypothetical discontinu-
. ity situated inside the magnetosheath. This could of course
be served by the bow shock itself, however in most cases it
is too far away from the magnetopause in order to affect the
evolution of mirror modes. Thus the latter requires 2 more
lengthy discussion as there are no really good theoretical
reasons for assuming discontinuities to exist in the magne-
tosheath. Observations have sometimes shown (cf. Hill et al.,
1993) though that the nature of the turbulence in the magne-
tosheath abruptly changes character when approaching the
magnetopause. Steepened standing mhd wave like a slow
mode wave or and Alfvén wave could cause temporary and
comvecting discontinuities in the sheath. On-the other hand
closer to the magnetopause and for Petschek reconnection
one would expect standing slow mode shocks to exist at a
narrow opening angle in front of the magnetopause. In this
case the following discussion applies to the narrow region
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between these shocks and the magnetopause. Hence, in ap-
plication to the sheath there is no satisfactory justification of
such a second boundary. We nevertheless investigate what
will happen to mirror modes inc ase such a magnetic wall
existed.

The pressure balance condition p; + B2/2uy = coust
holding between the plasma and magnetic fields inside and
outside the two magnetic walls implies that 3 will be high
enough for the mirror mode to evolve only in the inside re-
gion. We consider the case of perpendicular amplification.
Trapping of the mirror mode between the magnetic walls
implies that the perpendicular wave number of the trapped
modes vanishes at the two discontinuities at z = +L/2.
Hence the existence of the walls will select a certain discrete
spectrum of mirror modes which can exist inside the trough.
In order to determine the spectrum of mirror wave modes we
can apply the quantization condition

L/2

[ K\ (z)dz :(e + %) . (23)

—L/2

where £ = 0,1, ... is the quantum number, and = is the trans-
verse spatial coordinate. For a rectangular trough B = B >
By forx <« —Lf2, B = By for —-L/2 < x < L/2, and
B = By > By forz > L/2,and By = const < By, By, the
wave number K| does not depend on x, and we obtain

LK, = (£+1/2)n (24)

which shows that the perpendicular wavelengths follow a
Ale o< 2L(€ + 1/2)~! dependence. After substitution from
{12) for K| into the above equation the following condition
is obtained:

2
VeQ(L+ VeQ) = Iﬁi% (€+ %) (25)

which is a quadratic equation for 1/¢@}. The only physical
reasonable solution for () is

4eQ = [(1 +4qf — 1]2 (26)

where g is the right-hand side of equation (25). Solving for
the frequency yields the following expression:

( b )2=4—[\/1—+'71§—1]% o
ekyjva [vI+4g - 1]2

For the numerator to be positive the parallel wavelengths
have to satisfy the inequality

(£ +1/2)ez i ( 1)
kL > Yt = 00562 [ 4 = 28
! 2v/112 ¢ 2 (28)

Actually, this is & condition either on the quantum number ¢
or on the parallel wavelength. For the latter it requires

40r L

i = 207\ € ¥ (29)
3 (e +1/2) +

A<
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The allowed range of parallel wavelengths thus exceeds the
perpendicular wavelength A, = 2L/{£ + 1/2) by roughlya
factor of 60/+/¢. For the equal sign in the above conditions
the frequency is exactly zero. In the case of small g the fre-
quency follows the quantization law

wy — 2¢ *g i :;_ k“L )%
k']iUA - b{Qq)% b\ m £+1/2

The frequency spacing of two adjacent quantum harmonics
thus follows the nonlinear law

(30)

Ap=wi, ~wi=—(0+3/2)7 W} (31)

It is negative implying that the frequencies in the spectrum
decrease with increasing £. Moreover, the spacing between
the frequencies also decreases. The highest possible frequency
trapped in the slab yields the first order spacing

Ag = —1.5w¢. (32)
with
2 {e\*? T
Wo 3 ( . ) “L, KJ_O ) L (33)

Because kL. is limited this equation implies that the zero
order frequency must be larger than

- 2 €
w —
0= 571'% ]
which gives an estimate for the lowest order frequency spac-
ing of the trapped modes:

(34)

0.24 ¢*
v b

Though it is rather simplistic, the current model provides
some basic insight into the trapping of mirror modes. It as-
sumes that the mirror wave is trapped in a rectangular mag-
netic trough with two tangential discontinuities representing
its boundaries. A more realistic model may assume a Gaus-
sian profile of the magnetic field B/ By = exp(z*/L?). In
this case the wave is reflected at the positions x = +xg where
the perpendicular wavenumber vanishes. It can be shown that
this happens first for 25 = (L/2} In(1/AB 1) where B¢ =
1 (Bp). Solution of the resulting complicated quantization
integral can be performed only numerically and will be given
elsewhere.

|Ag| > (35)

4 Discussion

Trapping of mirror modes in a magnetic trough is an interest-
ing case. Since mirror modes need high 3 conditions, mirror
waves will be trapped inside magnetic boundaries of strong
magnetic field. The magnetopause under tangential discon-
tinuity conditions may act as one such boundary. Clearly,
3 generally drops to low values when crossing the magne-
topause from the magnetosheath into the magnetosphere. Mir-
ror modes will therefore be heavily suppressed inside the
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magnetopause and will be reflected when encountering the
magnetopause. In modeling a magnetic trap, the bow shock
may act as another external boundary under conditions when
the magnetosheath is sufficiently compressed due to high so-
lar wind pressure conditions. This may not happen very fre-
quently but when it happens trapping of long perpendicular
wave length mirror modes should become possible.

Some kind of boundaries and changes in the character of
sheath waves have also been found in the magnetosheath re-
gion adjacent to the magnetopause. Song et al. (1992a, b)
have interpreted these structures as slow shocks. Though in
the Petschek model of reconnection at the magnetopause slow
shocks should naturally appear, there is still much disagree-
ment about their observational reality. The magnetic field is
known to decrease across slow shock waves which would
provide conditions for mirror mode trapping. Observations
sometimes also indicate changes in the plasma parameters
and magnetic field even deeper inside the sheath though still
far away from the magnetopause in relation to the observa-
tion of mirror modes (e.g. Hill et al., 1995, Lucek et al,,
1999a,b). However, these observations are all to vague in
order to being taken as evidence for magnetosheath mirror
mode trapping of the kind argued for in the present paper.

A more conincing possibility for mirror mode trapping
arises in the external cusp region where the high- 53 anisotropic
pressure magnetosheath plasma is confined between the equa-
torward and poleward edges of the cusp provided by the mag-
netopause. Whithin the slab model developed in this commu-
nication one can understand the observation of cusp mirror
waves as modes trapped between these boundaries. We have
shown that only particular wavelengths can exist inside such
a trap. The slab selects the possible modes and may be re-
sponsible for the appearance of only a few well distinguish-
able wavelengths in observations of mirror modes.

A slab model is of course not the best approximation to
real conditions. However, in view of the difficulty of solving
a more realistic Gaussian model for the spatial dependence of
the magnetic field, such a simplistic model may give insight
into the trapping physics. The interesting conclusion is that
the spacing in wavelength space of the few trapped modes
inhibits a broad spectrum of mirror modes Lo evolve.

Trapping of mirror modes leads to the formation of stand-
ing mirror bubbles. It supports the mirror mode to quickly
reach a nonlinear state that is characterized by large ampli-
tude variations in the magnitude of the magnetic field and the
splitting of the particle distribution function inside the bub-
bles into two components, a trapped component and a pass-
ing component. Quasilinear theory (e.g. Shapiro and Shev-
chenko, 1964) is unable to describe this phenomenon. Very
promising nonlinear approaches have been presented by Kivel-
son and Southwood (1996) and Pantellini (1998).
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