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Abstract. Simulations in three dimensions of a Harris cur-
rent sheet with mass ratio, m;/m,. = 180, and current sheet
thickness, p;/L = 0.5, suggest the existence of a linearly
unstable oblique mode, which is independent from cither the
drifi-kink or the tearing instability. The new oblique mode
causes reconnection independently from the tearing mode.
During the initial linear stage, the system is unstable to the
tearing mode and the drift kink mode, with growth rates that
arc accurately described by existing linear theories. How-
ever, oblique modes are also linearly unstable, but with smal-
ler prowth rates than either the tearing or the drift-kink mode.
The non-linear stage is first reached by the drift-kink mode,
which alters the initial equilibrivm and leads to a change in
the growth rates of the tearing and oblique modes. In the non-
linear stage, the resulting changes in magnetic topology arc
incompatible with a purc lcaring mode. The oblique mode is
shown 1o introduce a helical structure into the magnetic field
lines.

1 Introduction

Asis well-known, electron compressibility stabilizes the (ear-
ing mode in magnetic field structures, likc the magnetotail,
that have a perpendicular field component across the neu-
tral sheet (Quest et al, 1996). In fact, a recent paper sug-
gests that the conventional model for substorm onset involy-
ing reconnection due to the collisionless tearing instabilily
now appears to be untenable because of this stabilization (Wu
et al., 1998). However, simulation results appear to ¢ontra-
dict this conclusion. The simulations show that reconnection
proceeds even in the presence of a perpendicular magnetic
field (Pritchett ef al., 1996), and that the drift-kink instabil-
ity is somehow involved. It is important to understand how
the kink instability and reconncetion are related, if one is to
understand the role of collisionless tearing in reconnection in
the magnetolail.

Correspondence to: Lapenta

The drift-kink instability is observed in plasma simula-
tions by several groups (Ozaki er al,, 1996; Pritchett and
Coroniti, 1996; Zhu and Winglee, 1996). Current under-
standing of the instability rests on the results of these sim-
ulations, on two-fluid theories for the drift kink mode devel-
oped by Pritchett et al.(1996) and Yoon ef al.(1998) and on
kinetic theories developed by Lapenta and Brackbill (1997)
and Daughton (1998). Sausage-like modes have also been
obscrved by Biichner er al. (1999} in accordance with the ki-
netic theory by Lapenta and Brackbill (1997) and with the
fluid theory by Yoon et al.(1998). There are unresolved dif-
ferences between the simulation results and theoretical pre-
dictions. There is, however, general agreement that the drift-
kink mode causes a long-wavelength rippling or kinking of
the current sheel with a wave vector in the general direction
of the current flow, has growth rates on the 1on cyclotron time
scale and real frequencies on the order of the drift frequency,
and may be unstable under conditions that are observed in
the magnetotail.

It is important to understand how the drift kink instabil-
ity acts to allow reconnection to proceed even when there
is a perpendicular field. Analysis of electron compressibil-
ity must include variation in the direction of current flow,
if it 15 to shed light on the effect of the drift-kink instabil-
ity on reconnection in three dimensions, Pritchett (Pritch-
ctt, 1997) comments that the results of 3-D electromagnetic
plasma simulations indicate that this mode can act as a pre-
cursor to the growth of tearing modes and subsequent re-
connection, and elsewhere that the growth of the kink mode
reduces the electron compressibility effect by moving the
plasma across flux tubes, which then allows tearing to oc-
cur at the underlying 1-D neutral sheet rate (Pritchett and
Coroniti, 1996). There is evidence in Pritchett’s results for
a long latent period before reconnection begins (Pritchett,
1997). However, the nature of the nonlinear interaction be-
tween the drift kink instability and the tearing instability is
still unresolved. It is to contribute to the resolution of this
question that the present study is undertaken.

In unpublished simulations in three dimensions with CE-
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LESTE3D at higher electron/ion mass ratios, reconnection is
observed to occur in two-dimensional equilibria that are sta-
ble to the tearing instability in simulations in two dimensions
(Lapenta and Brackbill, 1997b). However, there is some in-
dication that the pure tearing mode is not responsible for the
observed reconnection. To understand better the mechanism
by which reconnection occurs in such cases, it is argued that
a re-examination of the stability of the 1D Harris equilibrium
in three dimensions with no perpendicular field can be useful,
especially at higher ion/electron mass ratios. First, Fourier
analysis in both the kink and tearing directions is meaningful
in such cases, the results can be compared directly to lin-
ear theory, and oblique modes can be comnpared directly with
those in the principal directions. Second, stabilization of
the tearing mode by electron adiabaticity is eliminated, and
reconnection rates in 21D and 3D calculations can be com-
pared directly. Third, simulations show that the growth rate
of tearing relative to the drift kink mode i5 smaller as the
mass ratip and current sheet thickness increase. Thus, al-
though one is not comparing stable and ynstable cases, there
is a distinct separation of timescales. It is important to note
that in simulations with low mass ratios and thinner current
sheets, the relationship between the time scales can be re-
versed. In particular, for a Harris equilibrium at a mass ratio
of m;/m,. = 16, as used in Pritchett er al.(1996) the growth
rate of the pure tearing mode is faster than that of the kink
mode (Lapenta and Brackbill, 1997). For m;/m. = 180
and p; /L = 0.5, where L is the current layer thickness, the
drift-kink instability has the higher growth rate. It must be
noted that the scaling with the mass ratio of the drift-kink
and tearing mode described above is supported by indepen-
dent simulations (Lapenta and Brackbill, 1997; Ozaki et al.,
1996; Horiuchi and Sato, 1999) as well as by some kinetic
and fluid theories (Lapenta and Brackbill, 1997; Yoon et al.,
1998), but it disagrees with the linear theory by Daughton
(1998).

Results for the Harris equilibrium reported here with more
realistic mass ratios suggest that an oblique, three-dimension-
al mode explicitly noted by Pritchett and Coroniti {1996), and
suggested by the helical field structures displayed by Zhu and
Winglee (1996), directly causes reconnection in three dimen-
sions.

2 Numerical Simulation of the Harris Equilibrium

‘We consider the time evolution of a plasma initially in a Har-
ris equilibrium. The Harris equilibrium is characterized by
the following particle distribution function for species s

: 3/2
= Ma . o= Tty Vi (v —u )+l
.fOI ﬂ(Z) (ZWkT,) € (1)
The initial magnetic field By, is aligned with the z axis. The
initial current Jg is aligned with the y axis. Gradients of the
current and magnetic field are aligned with the z axis. The
plasma density is given by

n(z) = n,sech®(z/L) (2)
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where L is the width of the current sheet. The magnetic ficld
varies in z as

B, = B, tanh(z/L) 3

In the simulations reported here, we choose m;/m, = 180,
T,;/Ts =2, wc,-/wp,- = 0183 and p,‘/L = u,-/?.v”.,,- = 0.5
where p; is the ion gyroradins. We assume also that the
plasma is non relativistic v . /c = 0.1,

The Harris equilibrium is simulated with the tmplicit par-
ticle in cell code CELESTE3D, which solves the full Viasov-
Maxwell set of equations using the implicit moment method
{Brackbill and Forslund, 1985). The Maxwell’s equations are
discretized in time implicitly:
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where the new (old) time level is labeled 1 (0). The equations
of motion for the compuiational particles are also discretized
implicitly:

xl =x0 + ul/?At

a0 (5
u, =uj + [E1+u11,/2 xBO] At

Mg

where the intermediate time level is labeled 1/2. Details of
the implicit particle in cell method can be found in the liter-
ature (Brackbill and Forslund, 1985).

The implicit formulation makes it possible to simulate phe-
nomena on the ion time scale while retaining electron kinetic
contributions. The implicit formulation of the Maxwell’s
equations removes the speed of light time step limitation,
At < Ax/e (Brackbill, 1990). And the implicit formula-
tion of the particle equations of motion removes the plasma
frequency time step constraint, At < 2/wp.. The simu-
lations described below use wpi At = 1, corresponding to
wpe At ~ 134, i.c., 10 a time step 134 times larger than typ-
ical in explicit codes. Further reduction of the cost of three-
dimensional simulations results because the implicit formu-
lation allows one to use coarser grids, if one needs only to
resolve long wavelength phenomena, than are permitted with
explicit codes. The explicit stability conditions on the time
step above are replaced by an accuracy condition on the im-
plicit time step, tyhermu &t < Az, When one can satisfy this
constraint with wp, At >> 1, the Debye length can be much
smaller than the mesh spacing, Apepye << Az. By compar-
ison, an explicit calculation typically requires that the Debye
length be comparable to the mesh spacing to avoid the finite
grid instability. Compared with earlier explicit calculations,
the implicit calculations reported here use 1/50 the number
of celis (Pritchett et al., 1996). Thus, despite the significantly
greater cost and complexity of each time step in the implicit
formulation, implicit plasma simulations can be an efficient
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tool for the study of low frequency, long wavelength phe-
nomena.

The implicil equations give approximately quasi-neutral
solutions when the the time step is large compared with the
electron plasma frequency and the mesh spacing is large com-
pared with the electron Debye length (Brackbilt and Forslund,
1985). In one dimension using CELEST1D (Vu and Brack-
bill, 1992), some cooling of the electrons and a tendency for
ion and electron temperatures to equilibrate was noted with
very large time steps. This tendency is reduced if the num-
ber of electron particles is increased. Unpublished tests with
CELESTID for non-relativistic plasmas and large time steps
give excellent agreement between a Darwin formulation and
a fully electromagnetic formulation. It should be noted that
it is possible in principle, if not in practice, to recover all
time and length scales by reducing the time siep and mesh
spacing.

With large time sleps compared with the electron gyrofre-
quency, electron motion across magnetic field lines is sup-
pressed, and only moltion along the field lines is allowed
{Brackbill and Forslund, 1985). Accurate guiding center mo-
tion is recovered with a moedified particle equation of mo-
tion (Vu and Brackbill, 1995). Guiding center and gyroki-
netic equations have also been used successfully (Cohen ct
al.,1996).

One may ask what is the coniribution of kinclic clectrons
in the implicit solutions. Certainly, wave particle interac-
tions on the clectron plasma frequency time scale are lost.
However, there is evidence the electrons contribute in im-
portant ways on the ion time scale. Electron pressure can
cause thermal magnetic waves in strongly heated plasmas
(Forslund and Brackbill, 1982). Electron heating appears
to cause nonlincar saturation of the lower hybrid drift in-
stability (Brackbill er al.,1984). Direct comparisons of hy-
brid (fluid electrons) and kinetic switch-off simulations with
large time steps show that electrons are responsible for de-
cay of the trailing magnetic wave (Vu and Brackbill, 1993).
Comparison of hybrid and kinetic simulations of contact dis-
cotinuitics show that the absence of electron thermal trans-
port in hybrid simulalions gives nonphysical results when
the electron and ion temperatures are comparable (Lapenta
and Brackbill, 1996). Generally speaking, kinetic electrons
contribute inertial effects, anisotropic pressure, and clectron
thermal transport on the ion time scale that would otherwise
have to be modeled if Aluid electron equations were used.

The implicit moment method has been applied to many
problerns in space plasma physics in two dimensions (Quest
etal , 1983, Forslund et al.; 1984, Dreher er al., 1996; Tanaka,
1995). In three dimenstons, CELESTE3D gives comparable
results to those published in previous studies of the drift-kink
instability (Lapenta and Brackbiil, 1997) where comparisons
of the simulation results with linear theory were also per-
formed. In two dimensions, results with CELESTE3D for
the tearing instability agree well with (hcory as described be-
low.

The simulation domain has dimensions 12.5L x 12.5L x
8L. The domain is resolved by a uniformly spaced grid with
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25 x 25 x 64 cells in 2, y, and z respectively. (By compari-
son, Pritchett ef al., 1996 used a grid with 128 x 128 x 128
cells for a somewhat larger domain.) Approximately 2.2 mil-
lion particles are used to model the electrons and ions. On
average, this provides 27 particles per cell per species. This
number of particle per cell is adequate as second order b-
spline particle assignment functions are used to reduce the
noise fluctuations (Vu and Brackbill, 1992).

The computational domain is periodic in 2 and y. In the z
direction the fields are subject to a Dirichlet boundary con-
dition and the particles are reflected at the wall, This lat-
ter boundary condition is not particularly important, as the
plasma density is small at the boundary of a Harris equilib-
rium.

No background plasma is used in the calculations presented
below. In presence of a background, a Kelvin-Helmholtz in-
stability may cause kinking of the current sheet similar to
the drift kink instability (Kuznetsova et al., 1997). However,
comparisons of calculations with CELESTE3D without and
with a background Maxwellian plasma of 111 the peak den-
sity of the Harris equilibrium, as in (Ozaki et al., 1996), yield
no significant differences in the cascs tested.

3 Results

Both the tearing and kink modes are 2D modes that originate
from a perturbation in the y component of the vector poten-
tial:

Ay (SC, ¥, 2, t) — A(z)ei21rm,z/L.+i21rmvy/Ly —iwi (6)

Modes with m; # 0 and m, = 0 are tearing modes and
A, has even parity in 2; modes with m; = 0andm, # 0
are kink modes and A, has odd parity in z. In addition, in a
3D calculation m, and my, can both be different from zero
{oblique modes). The primary result of the present work is
to show that modes with nonvanishing m, and my, exist and
that their parity is even, causing reconnection.

Figures 1-5 display the growth from the 3D run described
abovc of modes corresponding to various values of (m, my)
described by Eq. (6). Clearly, the linear stage of the evolu-
tion continues until w.;¢ ~ 20, when the drift-kink instability
has grown to significant amplitude and alters the initial equi-
librium enough to modify the growth rates. For comparison,
Figure 6 shows the growth rate of a 2D simulation of the
tearing instability alone. When the other modes are absent,
the tearing mode grows with the rate predicted by the linear
theory until its natural saturation is reached.

The linear growth rates can be computed from an exponen-
tial best fit of the data shown in Figs. 1-5 for 0 < we;t < 20.
Comparisons of the theoretical and computed values of the
growth raies are summarnized in Table 1. The real frequencies
are w, Jwe; = 0.3 for the drift-kink mode, and wyfw.; = 1.4
for the oblique mode. (The real frequencies are calculated
from the time evolution of the phase of the complex ampli-
tude of the Fourier mode.) The tearing mode is, of course, a
purely growing mode (w, = 0). The modec m; =1, m, =0
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Fig. 1. Time history of the drift kink mode, mz = 0, my = 1. The Fourjer
component of the perturbed field, By, is plotied against time.
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Fig. 2. Time history of the tearing mode, mz; = 1, my = 0. The Fourier
component of the perturbed field, By, is plotted against time.
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Fig. 3. Time history of the oblique mode, mz = 1, my = 1. The Fourier
component of the perturbed field, By, is plotted against time.
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Fig. 4. Time history of the oblique mode, m; = 2, my = 2. The Fourier
component of the perturbed field, B, is plotted against time.
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Fig. 5. Time history of the tearing mode, my = 2, my = 0. The Fourier
component of the perturbed field, B, is plotted against time.
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Fig, 6. Time history of the tearing mode, m, = 1, my = @ in a reference
2D calculation. The Fourier component of the perturbed field, By, is plotted
against time.
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Table 1. Growth Rates of Primary Modes. Theoretical results from Lapenta
and Brackbill (1997).

MODE Growth (linear theory) Growth (simulation)
miass ratio m;/me 16 ] 180 180
TEARING 0.102 0.057 0.06
DRIFT KINK 0.109 0.140 0.13
OBLIQUE N/A NrfA 0.02

is a pure tearing mode, and m; = 0, my, = 1is a pure kink
mode. Clearly, the growth rate of the kink mode, Fig. 1, far
exceeds that of the tearing mode in three dimensions, Fig. 2.
The growthrale of the obligue mode, m; = 1,my, = 1,isthe
smallest but it is above the noise of the numerical simulation.
The growth rate of the fundamentat oblique mode (m, = 1,
my, = 1 see Fig. 3) exceeds that of other oblique modes
mg =2, my =2{Fg 4y my =1, my =2and m; = 2,
my = 1 (not shown). Higher order modes (mz,my > 2) are
responsible for other instabilitics such as the lower hybrid
drift instability (see Fig. 9 below).

The parity of the oblique modes determines their effect on
the initial equilibrium. It is interesting to note that a check
of the computational results for the oblique mode m, = 1
and my = 1 shows that A,, Fig. 7, has even parity like the
tearing mode, and thus that it can cause reconnection. By
contrast, for the pure kink mode, A, has odd parity. (The
panties of various modes are sumnmarized in Table 2).

After the initial (0 < w;t < 20) linear growth, the differ-
ent modes start to interact. The drift-kink mode is the fastest
and enters the non-linear stage first. The other modes are af-
fected also, and at later times the growth is no longer mono-
tonic. The relative level of the various modes at different
stages of the non linear evolution can be observed in Figs.
1-5.

At the end of the simulation (£2;¢ = 77) two primary
features are evident: the kink mode has produced a bend-
ing of the current sheet and the tearing and oblique modes
have changed the topology of the field lines.

The first aspect is shown in Figure 8, where the contours
of constant B, are plotted. The central region of the cur-
rent sheet (—0.5 < z/L < 0.5) has developed a kink with
dominant mode number 1. At earlier stages (f2,;¢ = 22, Fig.
9}, at the edge of the current sheet a lower hybrid drift insta-
bility is visible with dominant mode number 4. Consistent
with earlier results, the LHDI is localized where the density
gradients are largest, does not penetrate the current sheet,
and causes only minor modifications of the density profile

Table 2. Parity of Primary Modes

[ MODE T Ay,Ey | Ac Bz | Asy Bz | Bz | By | Ba |
Tearing even - - odd - even
Drift-Kink odd - even even - -
Cblique even even odd odd | odd | even

155
imaginary part
0.02 T
-0.02 i
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z/L
real part
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Fig. 7. In the current sheet, the Ry = 1, my = 1 component of By due to
the oblique kink mode has odd parity, comesponding to even parity for Ay,
Table 2, simzlar to the tearing mode.

3
y/L

Fig. 8. Contours of constant By in the y, 2 plane are shown at the end of
the simulation ;¢ = 77. The drift-kink instability has reached into the
non-linear phase.
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Fig. 9. Contours of constant Bz in the y, z plane are shown at ;¢ = 22,
The contours reflect mild kinking of the current sheet near the center of the
sheet, and a lower hybrid drift instability at the edges.

(Brackbill et al., 1984).

The second aspect is shown by the magnetic surfaces and
magnetic field lines. In Figure 10(a and b) are plotted con-
tours of A, the y component of the vector potential at ;¢ =
77, withy/L = 0 and y/L = 5 (Fig. 10a and 10b, respec-
tively). Note that the projection of B on to the  — 2 plane
is everywhere tangent to contours of constant Ay, i.e. the
closed contours of Fig. 10 represent cross-sections of the
magnetic surfaces. In 3D, closed contours of A, may corre-
spond to helical magnetic ficld lines. Note that the position
of the magnetic islands is shifted between Fig. 10a and 10b.
The effect is due to the kinking of the current sheet, which
causes variations in the vertical shifts at different positions
along y.

Figure 10 shows that higher order (m,; = 2) modes be-
come relevant in the non-linear stage of the evolution (note
the two-island structure). This results is confirmed further by
the time histories (Figs. 4-5).

As noted by Greene (1988) and others, magnetic null points
play a special role in three-dimensional reconnection, In
Fig. 11 is shown one field line originating from one null point
and ending in another. The null points are both spiral with
one real and two complex eigenvalues. The right null is type
Bg, negative real eigenvalue, and the left type Ag, positive
real eigenvalue (Lau and Finn, 1990). The null-null line is
traccd by integrating forward and backward along the mag-
netic field from a selected point (dot in Fig. 11). (There is, of
course, at least one more null-null line joining the two nulls
because of periodicity.) In fact, the presence of ficld lines
conneeting null points is in itself a result of reconnection.
While there are several examples of analytic field null solu-
tions (Lau and Finn, 1990; Pricst and Titov, 1996), Fig. 11 i
the first reported result from a kinetic self-consistent plasma
simulation. )

The magnetic lines observed in Fig. 11 are incompat-
ible with the pure tearing mode, where no B, is present.
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Fig. 10. Closed contours of constant Ay, the ¥ component of the vector
potential, plotted in an £ — 2 plane at £33t = 77 reveal that reconnection
has occurred. Two cross sections along y are shown: y/L = 0 (a- top),
y/L = 5 (b bottom).

However, they are consistent with oblique modes. Indeed,
if B = ¥ x A is calculated, all three components of B differ
from zero, yielding a 30 mode with the 3D helical structure
suggested by the field line plots in Fig. 11.

In summary, an oblique mode i5 observed to grow during
the linear and non-linear stage of the simulation (Fig. 3); it
has the right parity to causc reconnection (Fig. 7); it forms
magnetic islands with a helical structure (Fig. 11). Thus, one
can reasonably argue that the oblique mode is a direct cause
of reconnection in the 3D case.

4 Conclusions

‘We have simulated in three dimensions a system initially in a
1D Harris equilibrium using the implicit code CELESTE3D.
Our simulations consider a higher mass ratio than used pre-
viously. The higher mass ratio reduces the growth rate of the
tearing instability relative to the drift kink instability, thus
giving a clear separation of time scales. The absence of a
perpendicular magnetic field eliminates the role of electron
adiabaticity in suppressing the tearing instability. Finally, the
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Fig. 9. Contours of constant By in the y, z plane are shown at {2.;t = 22.
The contours reflect mild kinking of the current sheet near the center of the
sheet, and a lower hybrid drift instability at the edges.

(Brackbill et al., 1984).

The second aspect is shown by the magnetic surfaces and
magnetic field lines. In Figure 10(a and b) arc plotied con-
tours of A, the y component of the vector potential at (.;t =
77, with y/L = 0 and y/L = 5 (Fig. 10a and 10b, respec-
tively). Note that the projection of B on to the z — z plane
is everywhere tangent to contours of constant 4,, i.e. the
closed contours of Fig. 10 represent cross-sections of the
magnetic surfaces. In 3D, closed contours of A, may corre-
spond to helical magnetic field lines. Note that the position
of the magnetic islands is shifted between Fig. 10a and 10b.
The effect is due to the kinking of the current sheet, which
causes variations in the vertical shifts at different positions
along y.

Figure 10 shows that higher order (m, = 2) modes be-
come relevant in the non-linear stage of the evolution (note
the two-island structure). This results is confirmed further by
the time histories (Figs. 4-5).

As noted by Greene (1988) and others, magnetic null points
play a special role in three-dimensional reconnection. In
Fig. 11 is shown one field line originating from one null point
and ending in another. The null points are both spiral with
one real and two complex eigenvalues. The right null is type
Bg, negative real eigenvalue, and the left type Ag, positive
real eigenvalue (Lau and Finn, 1990). The null-null line is
traced by integrating forward and backward along the mag-
netic field from a selected point (dot in Fig. 11). (There is, of
course, at least one more null-null line joining the two nulls
because of periodicity.) In fact, the presence of field lines
connecting null points is in itself a result of reconnection.
While there are several examples of analytic ficld null solu-
tions (Lau and Finn, 1990; Priest and Titov, 1996), Fig. 11 is
the first reported result from a kinetic self-consistent plasma
simulation. )

The magnetic lines observed in Fig. 11 are incompat-
ible with the pure tearing mode, where no By is present.
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Fig. 10. Closed contours of constant Ay, the y component of the vector
potential, plotted in an x — z plane at Q.;t = 77 reveal that reconnection
has occurred. Two cross sections along y are shown: y/L = 0 (a- top),
y/L = 5 (b- bottom).

However, they are consistent with oblique modes. Indeed,
if B = V x A is calculated, all three components of B differ
from zero, yielding a 3D mode with the 3D helical structure
suggested by the field line plots in Fig. 11.

In summary, an oblique mode is observed to grow during
the linear and non-linear stage of the simulation (Fig. 3); it
has the right parity to cause reconnection (Fig. 7); it forms
magnetic islands with a helical structure (Fig. 11). Thus, one
can reasonably argue that the oblique mode is a direct cause
of reconnection in the 3D case.

4 Conclusions

We have simulated in three dimensions a system initially in a
1D Harris equilibrium using the implicit code CELESTE3D.
Our simulations consider a higher mass ratio than used pre-
viously. The higher mass ratio reduces the growth rate of the
tearing instability relative to the drift kink instability, (hus
giving a clear separation of time scales. The absence of a
perpendicular magnetic field eliminates the role of electron
adiabaticity in suppressing the tearing instability. Finally, the
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Fig. 11. A magnetic field line connecting two null points (marked with the
symbol x)is plotted at §;¢ = 22. The existence of a null point that can be
reached by following a field line is evidence that reconnection has occurred.
The field line reflects the helical structure of the magnetic island that results
from reconnection.

symmeitry of the Harris equilibriurn permits a clear identifi-
cation of the role of each mode in reconnection.

The results of the simulations agree with the linear stabil-
ity theory, with regard to the growth rate of the tearing and
drift-kink instability. The results also show that the oblique
kink instability, m; = 1, my, = 1, grows and that its par-
ity corresponds to that of a reconnecting mode. In fact, the
results show that the growth of the oblique mode is accompa-
nied by reconnection that results in a helical magnetic struc-
ture.,

The correspondence of the mode structure (parity) and rel-
atively large amplitude of the obligue mode are evidence that
the oblique mode combines properties of the drift kink and
tearing instabilities. The helical structure of the reconnected
field lines suggests that the oblique mode can be a direct
cause of reconnection in 3D. It appears from the results pre-
sented here that the role of the dnft-kink instability and of
the obligue mode is not to enable more rapid growth of the
pure tearing mode. Rather, the oblique mode appears directly
to cause reconnection. While these simulation results apply
only to the 1D Harris equilibrium, they suggest a closer ex-
amination of reconnection in a 2D, magnetotail-like equilib-
rium in three dimensions, especially at higher mass ratios.
The results certainly provide additional motivation to exam-
ine the linear stability of the drift kink and tearing instabili-
ties within a unified, three-dimensional analysis.
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