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Abstract, In this study we present theerctical concepts
and results concerning the hypothesis test of (hc
magnetospheric chacs. For this reuson we compare the
obscrvational behavior of the magnelospheric system with
results obtained by analyzing different types of stochastic
and deterministic input-output systems. The results of this
comparison indicate that the hypothesis of Iow-
dimensional chaos for the magnetospheric dynamics
remains a possible and fruitful concept which must be
devcloped further.

1. Introduction

Ten years age we used the concept of strange attractor
dynamics as explicative paradigm of magnetospheric
substorms (see Pavlos, 1988). By this it is implied that the
magnetospheric  substorms can be explained as the cffect
of nonlinear dynamics of the magnetospheric physical statc
on a strange attracting subset of the (phase-space)
corresponding to the magnetospheric dynamics. Buker et
al. (1990) have studied the solar-wind magnctosphere
coupling problem using a nonlinear dripping faucet
analogy of the system. This approach was motivated by the
laboratory study of the dripping faucet (Shaw, 1984) and
also by the dripping faucct description of plasmoid
[ormation and release discussed by Hones (1979). Baker's
medel of the magnctospheric dynamics is a mechanical
analog. Klimas et al. (1991, 1992) developed the Faraday
loop response model. Pavlos el al. (1994) extended the
linear magnetospheric equivalent electric circuit of Liu et
al. (1988) to a nonlinear one. The nonlinear modcling of
magnetospheric dynamics has given results supporting
the concept of magnetospheric  chaos  (see also
Vassiliadis et al,, 1990; Shan et al., 1991: Roberls ct al.,
1991: Prichard and Price, 1992; Pavlos et al., 1992a, b
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Vassiliadis et al., 1992; Sharma =t al.. 1993 and Takalo
and Timonen, 1994),

Paraliel to these studies a fruitful criticism has been
developed about the supposition of magnetospheric chaos
especially in relation to its experimental evidence.
Prichard and Price (1992, 1993) showed (hat many of the
previous resulis supporting the concept of low-dimensional
magnclospheric dynamics were caused by the long
decocorrelation time of the AE index and therefore were
not the result of low-dimensional dynamics. Osborne and
Provenvzale (1989), Provenzale et al. (1992), Theiler
(1991). Pavlos ct al. (1992a, b) used many tests in order to
exclude the pseudo-chaos of colored noises. The termn
pseudo-chaos was introduced by Pavlos et al. (1992a.b) to
discriminate the rcal low-dimensional chaotic dynamics
contained in aperiodic time series from stochastic time
series (nonchaotic and aperiodic time serics) which can
mimic almost indistinguishably the phenomenology of
chaotic time scrics, Moreover, Vassiliadis et al. (1992)
used the Theiler’s test in the casc of magnetospheric data
and showed that, when the parameter w of Theilcr
becomes comparable to the decocorrelation time, the
scaling in the corrclation integral disappears and there was
no convergence of its slopes. Pavlos et al. (1994)
cxtended the chaotic analysis to the AE index by using
singular value deconposition (SVD) analysis according to
Broomhead and King (1986). Sharma ct al. (1993) had
also uscd SVD analysis for the estimation of the eigenvalue
spectrumm of thc AE indcx. The combination of SVD
analysis and the Theiler test in the work of Pavlos et al.
(1994) has given strong evidence for the exislence of
magnetospheric chaos especially when the Theiler's
parameter w is equal 1o the decorrelation time. Prichard
(1995) in a short comment strongly criticize the resulls
presented in the work of Pavlos et al. (1994). In their
criticism they use the method of surrogate data and the
method of Takens (1983) for the estimation of correlation
dimension. Their conclusion was that there is no evidence
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that the AE index can be described by a low-dimensional
strange attractor. An extended review of studies of
nonlinear dynamics of the magnetosphere is given by
Klimas et al. {(1996). Our intention in a serics of papers is
to present a possible answer to the criticism about the
magnetospheric chaos. In two studies (Pavlos ct al., 19993,
b) we show that the detailed statistical comparison of
geometrical and dynamical magnitudes corresponding to
the AE index time series and its nonlinear surrogate data
(Theiler et al, 1992a,b) reveal significant differences.
These results indicate strongly the non-lingarity and low
dimensionality of the AE index. Here we extend our
previous work aiming at confronting further the dilemma
about the hypothesis of magnetospheric chaos. In section 2
we summarize the crucial points of the above criticism. In
scctions 3, 4 and 5 we introduce significant theoretical
concepts about the magnetospheric system and its
dynamical interaction with the solar wind. In section 5 we
describe important aspects of classical and modern time
scrics analysis as well as aspects of stochastic systems and
input-output  dynamical systems rclated lo  the
magnetospheric dynamics. In section 6 we present new
results concerning stochastic dynamics and input-output
dynamics by using appropriate systems which in a way
can mimic the magnetospheric system. In section 7 we
present results by applying the nonlinear time series
analysis on two new magnetospheric time series. Finally in
section § we summarize the theoretical concepts and the
experimental results for a comparison and better
understanding of the magnetospheric dynamics,

2. A brief description of the criticism against
magnetospheric chaos

The criticism of Prichard (1995) is based on the method
of surrogate data. According (o this method the
geometrical or dynamical characteristics of an
experimental time series must be compared with stochastic
signals which have the same power spectrum and
amplitude distribution as the original daita. IT the difference
is not significant then we are unable to conclude chaotic
behavior in the experimental data (Theiler et al., 1992ab).

Prichard (1993) have used this method for the correlation

dimension of the AE index and they assert that:

a) The correlation dimension of AE index time series
cannot be distinguished from that of a stochastic signal
with the same power spectrum and amplitude
distribution as the original data.

b) There is no cvidence for the existence of low-
dimensionality according to their estimate of
correlation dimension obtained by using Takens’
method.

c) There is some evidence for nonlinearity in the AE
index timc scrics, Tt 1s nol clear whether the
nonlingarity of the AE index is the result of the
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intrinsic dynamics of the magnetosphcre or the result
of the nonlinearity in the solar wind,

d) Because the magnetosphere is largely controlled by the
solar wind this alone should provide evidence against
the existence of a strange attractor in the AE index as
the magnetosphere is a randomly driven non-
autonomous systetn.

e} There is no evidence for low dimensionality of the AE
index and no cvidence that the AE index can be
described by a low dimensional strange attractor.

In two previous studies by Price and Prichard (1993} and
Price et al. (1994) we can also notice contradicting  rcsults
concerning the coupling of the magnctosphere with the
solar wind. Firstly, Price and Prichard (1993) by using
non-linear statistics and non-linear prediction of the
response to the input signals of the solar wind conclude
some evidence for deterministic non-linear responce of the
Earth’s magnetosphere. Secondly Price et al. (1994) by
using also nonlinear input-output analysis in the form of a
prediction scheme and for different combinations of the
solar wind variables as input functions they conclude that
in no case the evidence for nonlinear coupling between the
input and the output is particularly strong. Moreover we
must notice (wo different declarations in the criticism by
Prichard (1995). In the frst they declare that ”... the
original data cannot be distinguished from the surrogate
data sels using the Takens estimator ..." and in the second
a few lines later they write *...if is clear that the original
data can be distinguished from the surrogafes, so there is
some evidence for nonlinearity ... ”. Thereforc we nolice a
kind of theoretical and obscrvational obscurity in the
existent criticistn about the internal dynamics of the
magnetospheric system, as well as about its externai
coupling. This is obvious especially when the driven and
non autonomous character of the magnclosphere is taken
as cvidence against the hypothesis of magnetospheric
chaos as it was summarized previously (see point d).
However the last remarks cannot reduce at all the fertility
of the criticism about the magnetospheric chaos hypothesis
by the above scientists. In contrast the existed criticism
presses for a deeper theoretical and experimental study of
the magnetospheric system. For this we look at the
question spherically in the following by examining the
theoretical and experimental characteristics of the
magnetospheric dynamics especially from the point of view
of an externally driven systcm.

3. Modeling the magnetospberic dynamics and the
magnetospheric randomness.

The earth’s magnetospheric system is caused by continuous
and self-consistent electromagnetic intcraction of the earth
magnetic field and the solar wind plasma. The result of
this interaction is the earth’s magnetosphere. a complex
system with many internal subsystems and processes. In
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this system the magnetotail® plasma sheet is of central
importance. Other importance subsystems are the lobes,
the plasma sphere, the plasma mantle, the higher
ionosphere, the boundary layers and the magnctopause
(Kan, 1991). Either as a plasma system or as an electric
current system the magnetospheric system 1s strongly non-
linear and dissipative. That is the Maxwell-Vlasov
equalions and their macroscopic magnetohydrodynamical
(MHD}) expression taken for the magnetospheric system
correspond to a non-linear and dissipative plasma system.
In a ocollisionless plasma, as it is the magnetospheric
plasma, microturbulent clectric and magnetic fields excited
by plasma instabilities produce irregular transport
cocfficients such as resistivity, viscocity, diffusion and heat
conduction, (Papadopoulos, 1980). These irregular
transport coefficients can introduce strong nonlinearity and
dissipativity in the internal magnetospheric processes. On
the other hand we know that nonlinearity and dissipativity
are two necessary conditions for the existence of chaotic
dynamics (Argyris et al., 1994; Tsonis, 1992).

The first natural paradigm of chaotic dynamics was the
study of the flow in fluids (Lorenz, 1963) by the Navier-
Stokes equations, which includes the temperature and the
velocity fields, as well as the density and the fluid pressurc
fields as the crucial physical magnitudes. Lorenz used
appropriate boundary conditions and rctained only the
lowest order forms in Fourier expansion of fields to get the
famous Lorenz 3-dimensional dynamical system. The
solution of the Lorenz system bifurcales gradually from
stable (limit point) to periodic (limit ¢ycle) and chaotic
attractors a5 we increase the wvalues of its control
parameters. The above paradigm of chaotic behavior
permits us to suppose that chaos can be a possible
hypothesis for a bounded magnetized fluid as happens with
the magnetospheric plasma system. For space plasmas the
Navier-Stokes equations will need 1o be altered in order to
take into account, besides gravity, the electrodynamic force
F=pE+pvxB cxercised on the charges. Maxwell’s
equations will have also to be considered in order to get a
closed system of equations, The gencralization of Navier-
Stokes equations besides the mechanical variables must
also include variables connected to the electromagnetic
field {E¢x, £, B(x, t}}. After this similarity with the Lorenz
system chaotic solutions for magnetized and electrically
conducting fluids or magnetized plasmas have been found
too (Bhattacharjee, 1987; Weiss et al., 1984; Spiegel and
Weiss, 1980; Weiss, 1990; Spiegel, 1985, Summers and
Mu, 1992). An active area of dynamical systems is devoled
to proving the existence of finite dimensional attractors in
various partial differential equations (Haken, 1983 ;
Tsonis, 1992; Argyris et al., 1994) The central manifold
theory is a candidate theory for explaining the reduction of
dimensionality in an infinite or finite dimensional system.
This theory permits to describe different kinds of
macroscopic spatio-tcinporal patterns in a system with
infinite degrees of freedom as happens with space plasmas
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in thc magnetosphere, solar wind or the convective zones
of stars like the Sun. Although, for the magnetospheric
system we have not a developed form of the central
manifold theory, in the following we present some crucial
points as a general support of the magnetospheric chaos
hypothesis. A magnctized plasma system (described as a
fluid) has infinite degrees of freedom consisted of physical
(observable) variables as temperature, density, velocity,
pressure, clectric and magnetic fields, defined at every
point x of the space. All these variables constitute the
physical state Uix,t) given by

U ={Vixe.t). Pes, 0t t), Tex ), Ete,t), Bix,0)... } (3.1)

which evolves through an infinite dimensional phase
space.

The temporal evolution of this plasma system is
described by nonlinear partial differential equations of the
general form

& Ut - LU, )-NUtx, (3.2)

The control parameters 4 = (4;, A,,.. ) describe the
tmpact of the surrounding on the system, while internal or
external fluctuations can cause dependence of A on the
time. L; is a linear operator and &, is a non-linear
operator. A similar system of non-linear equations is found
if instcad of the fluid description, we use Boltzman-Vlasov
model, where the fluid variables are substituted by
distribution functions f,(x, #, ¢ for every kind of charged
particles of plasma state. The essence of non-linear
dynamics as we understand it, is the efficiency of non-
linear systems to bring about spatial and temporal or
functional structures on the macroscopic level. In
particular as the control parameter A change and the
system moves away from equilibrium, its asymptotic
motion gets more and more complicated through
successive bifurcations at critical values of A, while after
amplification of stochastic fluctuations and development of
instabilities, new spatial-temporal patterns can be revealed
{Prigogine and Nicolis, 1985; Haken, 1988),

The general solution of the non-linear plasma equations
at a bifurcation point 1, is supposed to have the general
form

Utx, o) =Uys+ D & (1) 4 (%) (3.3)
J

where gyx) arc the spatial modes with cigenvalues 4,
according to linear stability analysis around the stable
solution U, (Haken, 1983; Spiegel, 1985). The wvariables
&t describe the infinite dimensional space state of the
system. Through adiabatic approximation which lcads to
the slaving principle we can identify a finite number of
order parameters ;=g for which Ref !> 0. These are
unstable (slow) modes which slave the stable {fast} modes
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8= with Re{4;}< 0, so that we may express syt by uyt),
according to st)=ffu;(t)}. That is, at crilical points the
plasma physical stalc  Uxn={E),E),.. ) moves
asymptotically to finite dimcnsional subspace described by
the order paramcters {fu,(t), us(t), ... }.

The development of spatial patterns as the system crosses
the bifurcation points (or critical points) can be described
by the order parameters u,() through the skeleton relations

Uix, t) =const +Zuj it) g ,(x) 3.4
]

Generally the order parameters can be determined by
certain nonlincar equations which are similar to Ginzburg-
Landau equations (Haken, 1983). Different kinds of
spatio-temporal patterns can occur after instability as the
plasma sysiem moves away from equilibrium. If we
consider only temporal patterns we may find successively
time-independent states (point attractor), periodic motion
(limit cycle), quasiperiodic motion (torus) and finite
dimensional turbulence (chaos with strange attraclors)
{Gaponov-Grelhov and Rabinovich, 1992).

In order from this gencral (scheme) to obtain physical
realism we must use the appropriate boundary conditions.
In the case of the magnetospheric plasma, if this gencral
theory corresponds to a reality, some of the order
parameters ;1) correspond to unstable slow modes which
constitute the macroscopic low dimensional phase space of
the magnetospheric system satisfying the reduced system of
cquations with general form:

dx ‘ _
o Fix).z) (3.3)

Now the vector x¢#} describes the internal dyvnamic state of
the magnetospheric system in its macroscopical phase
space, while z/7} describes those order parameters which
cause the coupling of the magnetospheric system with the
solar wind system, and arc named exiernal control
parameters. For the existence of low magnetospheric
chaos, the flow Fix, z) must be nonlinear. After this,
especially for the variable x, thc observation of the
magnetospheric  systcm  through the AE index, the
energetic particle densitics ctc. corresponds Lo an equation
of the form

Y1) = hixit), 5(1) (3.6)
where p(t) is the mecasured magnclospheric variable. The
system described by (3.5) and (3.6) is known as input-
output system. Input-output systems constitutc a crucial
part of the gencral theory of dynamical systems. (Cook,
1994; Casdagli et al., 1992; Abarbanel et al.. 1993), and
they have been proposed for the modeling of the
magnetospheric dynamics (Vassiliadis and Daglis, 1993;

Pavlos, et al.: Magnetospheric chaos hypothesis

Vassiliadis and Klimas, 1995; Price et al., 1994; Prichard
and Price, 1993; Klimas et al., 1996; 1997). Generally the
mput variable z(f) can be deterministic or stochastic.
periodic or random. For the magnetospheric system 1he
input variable z(t) corresponds to dynamical variables of
the solar wind systemn (velocity, magnetic licld, density
elc.) Moreover it is natural to suppose that the dynamical
variables x/t) and z(r) contain slochastic components
according to the relations

X{t)=<x(t)> 1 dx(t)
tj==z(t) = i dz{t) (3.7)

where < o > denotes the slatistical mean valuc, The
stochastic components dx and 6z may be Gaussian white
noise, non-Gaussian white noise or colored noise. In this
case the cquation (3.5) corresponds to a stochastic system
with a possible expression

d{x)
dt

=F(<x > <g>) v g(<x > <15 wit)) (3.8)

where F is the deterministic flow of the system and g is the
stochastic diffusion. In the following we use the variables
X, z to represent the mean values of the macroscopic order
parameiers. Generally wiz) is a white noise signal since
every colored noisc can be transformed 1o a series of white
noisc under certain condilions (see paragraph 5.7). The
relation (3.8) corresponds to a general stochastic process
and helps us to understand the imporiance of the criticism
against the magnelospheric chaos as il was reviewed
previously.  That is the central problem of the
magnetospheric dynamics is (o understand the cause of the
randomness of the observed magnetospheric magnitudes. Is
the observed randomness of the wmagnetospheric
magnitudes (as the AE index, the energetic parlicle
densitics ctc.) caused by the stochastic components gix, z,
w(t}) in the above equation (3.8), or by the deterministic
flow Fix, )7 In the sccond case the questions becomes as
follows. Is the magnetospheric randomness caused
externally by the random input variable zit) or by the
sensitivity to the initial conditions of the deterministic
flow F even if thc input variables remain constant?
Morcover if the magnclospheric signals reveal nom-
linearity and low-dimensionality, which is the cause? Arc
these characteristics caused by the input variable z¢t) or by
the form of the deterministic flow F which describes the
internal dynamics of the magnctospheric system? As we
show in the next sections the modeling of the
magnetospheric dynamics by the equation (3.8) is (he basis
for the nonlinear analysis of experimental time series.

In answering the above questions by using experimental
observations we must decide upon the delerministic flow
Fix, z) in (3.8) as follows:

a) il is infinite dimensional or low dimensional
by itis linear or non-linear and in which term between
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Fig. 1. The AE index (solid line) and the solar wind energy input function £
(dashed line) during October 3¢, {978, Enorgy input remains fairly constant
for about 727 hours while the AE index reveals several impulsive changes.
The AE index also reveals an enhanced level component which follows the
energy input and is directly driven by the solar wind.

intcrnal statc variable x and the input variable g
¢) if it is non-linear in the state variable x then the
evolution in the phase space is periodic or chaotic.

In addition concerning the input variable 7 we must
decide upon its influence on the dynamics of the
magnetospheric system, as well as upon its influence on
the experimenially observed magnetospheric variables yit)
according to (3.6). Finally we must decide upon the
function A¢x, z) in (3.0) if it is linear or nonlincar and in
which term. Although at this stage of research it is not
possible to answer all these questions, however in the
following we try to clarify them.

4.  Solar wind and magnetosphere interaction

In magnetospheric dynamics there is a ground state of the
magnetosphere during quite times. Energization of the
magnetosphere above the ground state can be observed
when  the  interplanetary magnetic field shifts from
northward to southward and the magnetic merging at the
subsolar magnetopause is identified. The expansion phasc
is the result of an explosive rcleasc of cnergy stored in the
geomagnetic tail (McPherron, 1979, Klimas et al., 1996).
A substorm features two distinctly different components of
activity. The first component corresponds to the externally
driven activity and reflects the dircct deposition of energy
from the solar wind to regions of the high latitude
ionosphere. The second component of the substorm
dynamics corresponds (0 a random scquence of events
related to stored energy release and is known as loading-
unloading or storage-release process (Rostoker, 1991). The
Earth’s magnelotail is the space where the inward energy
is stored. Therefore if low-dimensional chaos has
something to do with magnetospheric dynamics this is due
to the second process, that is the loading-unloading process
that could be chaotic. The first kind of process known as
the driven deposition of energy is weakly related to the
internal dynamics of the magnetosphere and it can be
supposed to be a Tincar process, Oppositely the loading —
unloading process is a more synthetic process including a
series of connected plasma phenomena in  the
magnelospheric magnetotail (McPherron, 1979). This kind

- ﬁ\“ 1020
AE 730 \ 13
) B J_Z_’_‘I{ﬂ w_n—' M 410 : E} )
= E-“‘ 18 ergiesec
I & ? 3
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of magnetospheric processes has been testified by an
existing rich phenomenology of the magnetospheric
substorms which are assumed to be nonlinear and chaotic,
as il has been also supported by theoretical studics, (Baker
et al., 1990; Klimas et al., 1991, 1992; Pavlos ¢t al., 1994,
Klimas et al., 1996; 1997). This peint of view is verified
by the study of isolated substorm events which reveal that
the AE indcx consists of two distinct components. The one
component corresponds to the driven process and it is
manifested as smooth incrcase and decrease of the AE
index with clear correlation to the solar wind changes. The
other component corresponds to unpredictable and
repeatable burst of AE index to high values. The second
component is related to the inner magnetospheric
dynamics which is not driven externally and can be a
chaotic unloading of the stored energy. This mixing of two
different characteristics of the magnetospheric dynamics
becomes a source of obscurity for the experimental
verification of magnetospheric chaos by using only the AE
index time series.

Already Lee ¢l al. (1985) examined the magnetospheric
system and the interplanetary space for the day October 30,
1978, during which the energy input (E) remained fairly
constant at high values for about 12 hours as shown in Fig,
1. As we can see in this figure during the period that there
is strong coupling betwcen the solar wind and the
magnetosphere  (E>10"" erg/sec) there is an smoothly
enhanced level component of the AE index as well as a
randomly impulsive component associated with auroral
substorms as it was described previously. In Fig. 1 we can
sce that as the rate of energy flow rcmains constant at
~10"%crg/sec substorm events can be observed in a random
way. According to Lee et al. (1985) the smoothly enhanced
level of AE index is directly driven by the solar wind
through the enhancement of the polar cap potential drop,
while the random and impulsive component is related to
the repeated occurrence of plasmoids in the magnetotail.
The last process is undriven and corresponds to the
internal magnetospheric dynamics according to the
previous description. Price and Prichard (1993) have also
studied the same day with the follow remark: "dlthough
the magnetosphere s not autonomous svstem, when the
mput forcing function is relatively steady the system may
have ftime lo converge to an attractor”. The above
experimental event as well as other resulls (Pavlos ct al..
1994; 1999a,b) are in an excellent agreement with the
genera! concept of chaos for a nonlinear low dimensional
system as it will be described below.

Let us consider the solution x=x¢t) of the differential
nonlinear equation system described by the vector field
Fix, 4), according to the autonomous equation

dx(t)_F . A
T_ {x(t),A) +.D
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which describes the dynamics of a physical system with
initial condition x(f))=x, corresponding to the ground state
of the system. We are interested in the behavior of x(1) as

{—> 0. In the general sitnation ¥ depends on some
physical parameter A which describes the external
perturbation and the coupling of the sysiem with other
physical systems. The variable x(#) belongs to the phase
space of the system which is the R" space in the finite-
dimensional case and a Hilbert space in the infinite-
dimensional case. In general, for small A, there exists a
unigue stationary solution which corresponds to a
thermodynamical equilibrinm of the system. When 4 gets
larger, then something similar to a Hopf bifurcation can
occur in time periodic and quasi-periodic solutions.
Finally, for large values of 2, chaos can be observed where
x(t) looks completely random for all time and a Fourier
analysis lcads (o a wideband continuous spectrum, This
corresponds to the phenomenon of turbulence from the
dynamical point of view. Of course the above scenario of
the sequence of transient states being similar with
turbulence is very schematic while the situation can be
more complicated. (Argyris et al, 1994, Hao Bai-Lin,
1984: Teman, 1988).

However the modeling of the magnetospheric dynamics
as it was described in section 3 (relations (3.5)-(3.8))
reveals that the magnetospheric system behaves as a non-
autonomous system, This can create doubts aboul the
importance of the previous description as a possible road to
magnetospheric chaos (rel. 4.7) and create problems with
the physical meaning of nonlinear analysis of
magnetospheric lime scrics by using embedding methods
(sce the following paragraph 5.2) (Takens, 1981). As we
have noticed in Fig. 1 the crucial parameter for the
description of the solar wind-magnetosphere coupling is
the energy input function K¢r) which can be expressed as
function of the input (solar wind) variables such as, the
interplanetary magnetic field (IMF) B or the solar wind
bulk wvelocity V. Furthermore according to the above
description, part of this energy is directly deposited in
polar cap and the rest is deposited in the earth’s
magnetotail. The second process corresponds to the
magnetotail dynamo and causes the cross-tail potential
drop which is given by the relation
Doy - BVl 4.2)
where B, is the normal component of the magnetic field on
the tail magnetopause, V., is the solar wind speed near to
the tail magnetopause and 7, is the width of the open
magnetotail. @,y is the external electric motive force
(driving force) and a typical value of which is 20 kJ” during
quite times and /00-750 kV during substorms (Liu ct al.,
1988; Klimas et al., 1992, 1996; Pavlos ct al., 1994, Baker
et al, 1995; Vassiliadis and Klimas, 1995). The IMF B
and the solar wind bulk velocity V' constitute the main
components of the external input parameters z for the
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magnetospheric system, while the energy input () or the
cross polential drop @or are functions of these input
variables (Acasofu, 1981.). Therefore the control
parameter 4 included in (4.1) in the case of the
magnetlospheric system depends upon time and coincides
with the solar wind input variables z. In the next sections
we develop an appropriate strategy in order to study the
magnetospheric  dynamics by using experimental time
series especially from the point of view of the questions
raised in the last part of the previous section as well as in
relation to the solar wind input variables z. We must also
note that the external driving force @7 of the
magnetospheric system is a random variable becanse the
solar wind variables B and ¥ reveal random behaviors
(Pavlos et al., 1992a.b).

5. The concepts of lincarity, non-linearity and
dimensionality in the modern analysis of time
series

The main purpose of time series analysis is to extract
significant information for the underlying dynamics of the
obscrved signal, as well as to develop effective methods for
modeling and prediction. Classical time series analysis
confronts these problems by using lincar or nonlinear
input-output methods (Priestley, 1988). On the other hand
the modern analysis of time series which is named chaotic
analysis includes; a) Estimation of the geometrical and
dynamical characteristics of the trajectory of the system in
its phase space (Pavlos et al., 1999ab, Abarbanel et al,,
1993, Grassberger and Procaccia, 1983; Tsonis, 1992) b)
Testing techniques for the discrimination of low-
dimensional non-lingar determinism and linear stochastic
processes (Provenzale et al., 1992; Theiler, 1991; Theiler
et al, 1992ab, 1993). ¢) Forecasting algorithms
(Gasdangli ¢t al., 1991; Farmer and Sidorowich, 1987,
Weigend and Gershenfeld, 1994). The above chaotic
algorithm have Dbeen applied recently for  the
magnetospheric AE index by Pavlos ct al. (1999a, b).

5.1 Classical analysis of time series and input-output
systems

The fundamental theorem of classical time scrics analysis
lies on the Wold decomposition theorem (Priestly 1988,
Tong 1990; Theiler et al., 1993). According to this
theorem any stationary process wilh continuous power
spectrum can be described by an autoregressive moving
average model of the form

V) =yt 3boy(t-ii+ Y get—i) (35.1)

i=l i=

The first sum corresponds to a deterministic linear
process 1) with finite or (possibly infinile) combinalion
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of past values. The second sum corresponds (o a
probabilistic process R(t) and is written as an infinite
sequence of random uncorrelated white noise variables eft).
It can be shown that the aulocorrelation function Cp, of the
deterministic component of time series will be nonzero for
large lagtime while for the probabilistic component, the
autocorrelation Cr decays to zero sufficiently fast (Theiler
ct al., 1993). Moreover, if feqt)} constitutes a sequence of
independent random variables, then the random process
R¢t} underlying the time series is of infinite dimension.
However when {e(i)} is not a sequence of independent
random variables, then it is possible to exist a function #{.}
such that

AV Y goViea) =€ (5.2)

where {e,! is a strict white noise (Priestlcy, 1988) The
index (#-d) must be near the decorrelation time of the time
serics, The function #/} describes the wunderlying
deterministic dynamics of the system and may be linear or

nonlinear. Therefore using (5.1) and (5.2) we obtain a
Markov process as follows

X = Fxe.e,) (-3)
where x; and &, denote the vectors
X =(Veros Veart) € (€ra..... €y (5.4)

and x, corresponds {o the reconstructed state of the
underlying system in a d-dimensional state space. The
function F, can be linear or nonlincar and include the
dynamical and stochastic components of the underlying
random process (Priestley, 1988; Tong, 1990). The state x;
of the d-dimensional system is relaled to the observed time
series by a relation

YVe=mHY,, o Veaer €y, o)) T e (5.5)
(Priestley, 1988). The Markov process defined by (5.3)
reflects the dynamics of the physical system contained in
the observed time series v(1). When the underlying physical
system is non-autonomous then there must exist an
external forcing or input time series z(#) according to the
(3.6). The external driving z(# can also be described by an
autoregressive moving average model in accordance with
the Wold decomposition theorem. In this case (5.3) and
(5.5) can be extended and are written as a general input-
output stochastic process of the form

X =Fix;, 2:, €, e,y (5.6)

Vi=Hx, 3, e) +e (5.7)

where x, = (x,, ..., 4+,) corresponds 1o the d-dimensional

105

internal state of the syslem; z; =(Z; ,....Zmm+y) IS the m-
dimensional input and e, is the purely stochastic
component, Therefore according to the classical theory of
time series every experimental signal, which reveals a)
stationarity and b) autocorrelation function decaying to
zero must be related to a dynamical system perturbed by a
stochastic whitc noise. When the deterministic component
F is low-dimensional and non chaotic, then the stochastic
component constitutes the main cause of the broadband
spectrum and makes the autocorrelation function to show
short time decay. On the other hand, when the
deterministic component is chaotic or high dimensional
then the determinism can caunse the same characteristics on
the power spectrum and the auntocorrelation function.
However the classical time series theory cannot help us to
extract significant information about the deterministic
component, especially when the function Frx) is nonlinear.
In contrast the chaotic analysis of time series based on the
embedding theory, permits us to extract useful results
about the deterministic component Fx).

5.2 Embedding theory and time series analysis.

The embedding theory permits one to study the dynamical
characteristics of a physical system by using experimental
obscrvations in the form of time scries (Takens, 1981;
Broomhead and King, 1986). Let x(2) =f (x(0)) denote
the dynamical flow underlying an experimental time series
x(t)=h{x(t,)) where h describes the measurement function.
When there is a noisy component w(t) then the observed
time series must be given by x¢t)=hix).wit)). On the
other hand Takens (1981) showed that for autonomous
and purely deterministic systems the delay reconstruction
map @, which maps the states x into m-dimensional delay
vectors

Dix)=(hix), h ), AT R (5.8)

is an embedding when m>2n+ 1, where n is the dimension
of the manifold M of the phase space in which evolves the
dynamics of the system. This means that interested
geometrical and dynamical characteristics of the
underlying dynamics in the original phase space are
preserved invariable in the reconstructed space al well.

Let X,=#”(X) be the reconstructed phase spacc and
x.(t;)- D(x(t)) the reconstructed trajectory for the
embedding @. Then the dynamics evolved in the original
phase space is topologically equivalent to its mirror
dynamical flow in the reconstructed phase space according
to

fr(xp =)o ff(x)od ™ (x,) (5.9

of the reconstructed phase space X, . In other words the
embedding @ is a diffeomorphism which takes the orbits
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f'(x) of the original phase space to  the orbits

t - .
fi{x, )in the reconstructed phase in such a way of

preserving their  orientation and other topological
characteristics as eigenvalues, Lyapunov exponenls or
dimensions of the attractors. According to the above
theory, in the reconstructed phase space we can estimate
geometrical characteristics as dimensions, which
correspond to the degrees of freedom of the underlying
dynamics of the experimental time scries ,as well as
dynamical as Lyapunov exponent, mutual information and
predictors (Pavlos et al., 1999a.b). In the next seclions we
show that embedding theory can be also applied for non-
autonomous ot stochastic systems fruitfully.

5.3 Chaoticily versus stochasticity

Many authors have also supported the view that stochastic
time series (colored noises) can produce in many cases the
profile of chaotic systems rtevealing low correlation
dimensions or positive Lyapunov exponents without the
underlying physical system to be really chaotic, (Osborne
et al., 1986; Provenzale et al., 1992; Theiler et al., 1991;
Theiler et al., 1992ab;). Also, according to Theiler the
concept of correlation dimension can be applied in two
quite distinct ways to the time series analysis: (1) to
indicate the number ol degrees of freedom in the
underlying dynamical system, and (ii) to quantify the self-
affinity or  crinklesness of thc trajectory in the
reconstructed phase space (Theiler et al., 1991). In the
second case, more crucial than the high frequency crinkles
is whether or not the trajectory is recurrent through phase
space. For a non recurrent colored noise the dimension of
the full trajectory will be equal to the dimension of a local
segment, while for a recurrent colored noise (if the time
series is long enough to be recurrent) the estimated
cotrelation dimension will be that of the embedding space.
For this reason and in order to exclude the case ol signals
without recurrent character in the rcconstructed phase
space we restrict our estimations of the correlation integral
to time uncorrelated  rcconstructed states x(f), x()
according 10 /i-/ /> w with valucs of w higher than the
decorrelation time serics. This means that we exclude all
the correlated pairs included in a sphere with diameter 2w.
The parameter w was introduced by Theiler and is named
as Theiler parameter. The exclusion of time corrclated
pairs must leave invariant the estimated value of the
correlation dimension and other magnitndes if the
underlying process of the observed signal is low-
dimensional. However the above test of Theiler can not
help to decide about the linearity-nonlincarity and
chaoticity of the underlving process. The stochastic
component of a timec series can increase the Lyapunov
exponents, causing some of them to be positive, while the
underlying deterministic process have no positive
Lyapunov exponent (Argyris et al, 1998). Also it is
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possible for an original time series which is related to a
lincar process to obtain nonlinear characieristics after a
nonlinear static distortion. In order to decide upon these
questions we can use the method of surrogate data (Theiler
et al., 1992a,b; Schreiber and Schmitz, 1996). According
to this method we comparc cvery result estimated in the
reconstructed phase space with similar resull estimated for
stochastic time scries which mimic the original in respect
to the autocorrelation function and the amplitude
distribution. For the magnetospheric time scries of the AE
index we have used the above tests and we have obtaincd
significant cvidence for low dimensionality, non-lincarity
and chaoticity (Pavios et al., 1999a.b).

3.4 Input- output methods

In the case of non-autonomous svstems, as the
magnetospheric  system is observed to be the chaolic
analysis of experimental time series must be related to the
general concept of input-cutput dynamical processes. That
is, for non-autonomous dynamical system, it is not clear if
the estimated geometrical and dynamical characleristics of
an experimental lime series (as corrclation dimension,
Lyapunov cxponents and nonlinearities) correspond (o the
internal dynamics of the system or to the external coupling.
In addition, for non-autonomous dynamical systems it is
difficult to dccide which characteristics of the system
belong lo the system itself and which are causcd by the
external input of the system. In order to confront this
problem for the case of the magnetospheric system we
follow threc independent strategies: a) We consider the
input variable as a exiernal noise which perturbs the
magnetospheric  dynamics. b) We consider the input
variable as an aperiodic external driving. ¢) We consider
the input variable as a time varying control parameter of
an autonomeous system. In any one of the above strategies
the internal dynamics can be supposed 10 be linear or non-
linear, low or high dimensional, chaotic or periodic,
deterministic or stochastic in accordance to the theoretical
description of the previous sections. Also in the case of
nonlinear internal dynamics the input variable can be
coupled with different kinds of possible internal dynamics
as: limit point, limit torus or strange attractors. Therefore
the crucial point is to decide if the magnctosphere includes
an internal rich dynamics and of which kind, or if the
magnetosphere constilutes a passive filicring of the
external (solar wind) dynamics, by applying the chaotic
analysis on the magnetospheric signals. In the last cas¢ it
is possible to think that the chaotic profile of the
magnetospheric time series does not correspond to real
magnetospheric  chaos but to an  appropriate
magnctospheric filtering of the solar wind input variables.
A special kind of filtering can be obtaincd by linear
recursive filters of finite order:
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vt = iaj Z(t-ij+ ibiy(f —i) (5.10)
1=1

1=4

(Broombhead et al., 1992). In the above relation z¢f), y() are
the input and oulput signals and {a;}, {b,} arc scts of real
parameters which definc the filters. The term recursive
means the cxistence of @, b, = ¢ which implies that the
delayed output of the filter is fed back into the input. When
the parameters {b;} are functions of the output signal, then
wc have nonlinear filtering. The recursive character of a
filter implics an internal dynamics of the filter which can
be linear or nonlinear. From this point of vicw the
tecursive filtering corresponds to a general dynamical
process perturbed by the external input z(z). However this
permits us to apply the above three strategies for non-
autonomous input-output syslems in order to study the
influence of the input on the recursive component of the
filter. A general recursive filter (linear or nonlincar) can
change the dimension of the input signal in a definite way
which is studied in the following section 6, For linear and
non-recursive filtering it can be proved that the correlation
dimension of the input signal remains invariamt
(Broomhead et al., 1992). In this kind of filters belong the
low pass filters which are used for the noise reduction.
Such filters arc moving average, wavelet or SVD filters
(Abarbanel et al., 1993; Broomhcad and King, 1986). Non-
linear and non-recursive filters corrcspond to static
distortion of the inpul signal which can change its
dimension and transform a linear to a non-linear signal. So
this case of filtering can be studied by the method of
surrogate data. As we have previously noticed this method
permits us to exclude the possibility that the output signal
is a static distortion of an lincar input signal. The above
described recursive filters constitute an approximation of
general infinitc impulse response (IIR) filters. IR filtcrs
can be described by a Vollera scries:

y(’t):Zajz(t—U+z igyz(l—ljz(l—ﬂ-i-... (5.11)
0

=0 =
(Priesticy, 1988) Supposing a deterministic law of the form

Hi.yp(t-1), y(t-2), ..z(0.200-1).2(t-2)...) - w(t) (5.12)
between the input and the output signals, which
corresponds to the internal dynamics of the filter then
(5.12) can be written as a general inpul-output recursive
relation

Y=Y azt -+ S by -+ Vgt -t - )+

=0 i=0 =0 =0

Dbyt =iyt = )+

J-0

Ir

=)

(5.13)

i

The last relation reveals the existence of an inicrnal
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dynamical process of the filter as well, The recursive
component  corresponds to the internal dynamical
componenl and can cause the change of the dimension and
other characteristics of the signal,

The above description of the filtering process
constitutes an application of the general system theory
which is summarized in the cquation

dx
— = f(x(t) u),1) (5.14)
dt
for the continuous time systems and
X(ti1) = fox@), w), (5.13)

for discrete-time sysiems (Cook, 1994).
5.5  Singular value analysis

Singular value analysis has been proved to be a strong and
effective method for modern time scrics analysis. It was
used by Broomhead and King (1986) for first time and
comes from the gencralized theory of information. In this
study we use the above analysis in two cases: (i) as a time
scrics filter and (i) to decompose a time secries in the
deterministic components which can be used for the
detection of the underling dynamics. Singular valuc
analysis is applicd to the trajectory matrix which is
censtructed by an experimental time series as follows:

()t + T (t + (1 L) [ ]
) x(ty ) x(ty + ). xlt, +(n—1)7) ) xg (5.16)
xX(tyy hx(ty + 7). Xty +(n— 1y xif

where x¢t) is the observed time serics and 7 is the delay
time for the phase space reconstruction. The rows of the

. . . T
trajectory matrix constitute the state vectors x; on the

reconstructed trajeclory in the embedding space R". As we
have constructed N state vectors in embedding space R the
problem is how to use them in order to find a set of lincarly
independent veclors in R® which can describe efficiently
the attracting manifold within the phase spacc according to
the theoretical concepts of paragraph 5.2, These vectors
constitute  part of a complete orthonormal basis {e,
i~1,2.n} in R® and can be constructed as a linear
combination of vectors on the reconstructed trajectory in R"
by using the rclation

T

sI-TX =0;¢; (5.17)
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According to singular value decomposition {SVD)
theorem it can be proved that the vectors s; and ¢, are
cigenvectors of the structure matrix XX and the
covariance matrix X' X of the trajectory according to the
relations
XX's, =05, XXe=olc (5.18)
(Brogan, 1982). The vectors s, ¢; are the singular vectors
of X and o; are its singular values, while the SVD analysis
of X can be writien as
X=8zC" (5.19)
where 8 = [s;. 52, . 8., C=/[c;, €7, ..cyf and X
= diagf{o;, ¢z,..0,]. The ordering 0,2 0u2.. 2 0,2 0 i3
assumed. Moreover according to the SVD theorem the
non-zero eigenvalues of the structure matrix are equal to
non-zero eigenvalues of the covariance matrix. This means
that if »’ (where »’< n) is the number of the nonzero
eigenvalues, then rankXXT =rankX"X =n It is obvious that
the n'—dimensional subspace of R" spanned by /s,
i=1,2,..n’ is mirrored to the basis vector ¢, which can be
found as the lincar combination of the delay vectors by
using the eigenvectors s; according to ¢5./7). The
complementary subspace spanned by the set {s,
i=n"+1, . N} is mirrored to the origin of the embedding
space R" according to the same relation (5./7). That is
according to SVD analysis the number of the independent
eigenvectors ¢; that are efficient for the description of the
underlying dynamics is equal to the number »” of the non-
zero eigenvalucs o; of the trajectory matrix. The same
number #’ corresponds to the dimensionality of the
subspace containing the attracting manifold. The trajectory
can be described in the new basis {¢;, i-1,2,..n} by the
trajectory matrix projected on the basis {¢;} given by the
product XC of the old trajeclory matrix and the matrix ¢ of
the eigenvectors {e;). The new trajectory matrix XC is
described by the relation
(XC)'xc)=x* (5.20)

This relation corresponds to the diagonalization of the
new covariance matrix so that in the basis f¢;} the
components of the trajectory are uncorrelated. Also, from

the same relation ¢3. 20) we conclude that cach eigenvalue

o] is the mean square projection of the trajectory on the

T
corresponding ¢, , so that the spectrum {af} includes

information about the extending of the trajectory in the
directions ¢; as it evolves in the reconstructed phase space.
The explored by the trajectory phase space corresponds on
the average to an n-dimensional cllipsoid for which {¢;}
give the directions and {o;} the lengths of its principal
evolves in the subspace  spanned by eigenvectors ¢}
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Fig. 2. a) The stochastic limit point time series generated by equation (6.4},
b,c) The autocorrclation coellicient and the amplitude distribution for the
limit point time series.

corresponding to non-zero eigenvalucs. However when the
system is perturbed by cxiernal noise or deterministic
external input then the trajectory begin to be diffused also
in directions corresponding to zero eigenvalues where the
external perturbation dominates. As we show in the
following the replacement of the old  trajectory matrix X
with the new XC works as a lincar low pass filter for the
entire trajectory. Morcover the SVD  analysis permils (o
reconstruct the original trajectory matrix by using the XC
matrix as follows

X = Z(Xci _)c?

i=]

(5.21)
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data.

The part of the trajectory matrix which contains all the
information about the deterministic (rajectory, as it can be
extracted by observations corresponds to the reduced
malrix;

"' T
Xy = Z(X"i Jei
i=1
which is obtainced by summing only for the eigenvectors ¢;
with non-zero eigenvalues. From the rclations (5.27) and
(5.22) we can reconstruct the original time serics x(#) by
using # new time scrics v(¥,) according to

(5.22)

*)= 3 v, 5.23)

i=1
where every vif) is given by the first column of the matrix

(Xey c;" . This is a kind of n-dimensional spectral analysis

of a time series. An SVD filter of the original time series is
also given by conserving only the componenis vy
corresponding to eigenvectors wilth o; greater than the
noise floor. In this way we can obtain (he deterministic
component
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X, = iv, () (5.24)

of the original time series x(f).

6  Stochastic and deterministic input-output systems
in relation to the magnetospheric dynamics.

6.1  Stochastic systems
According to (3.8), (5.3)-(5.10) thc magnetospheric system

in any case includes an internal dynamics which can be
perturbed by an input signal. In the following we supposc

that the internal dynamics can be: a) a limit point b) a
torus ¢) a strange attractor. In addition the input can be
supposed to be deterministic or stochastic. In order to test
every kind of dynamics we construct stochastic and
deterministic input-output systecms corresponding  to the
above three possibilities in such a way that their output
signals mimic the magnetospheric signals in accordance
with the autocorrelation function and the amplitude
distribution. This analysis permits us to decide upon the
pature of the magnetospheric system by comparing  the
above systems and their outputs with the magnetospheric
systen.
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6.1.1  Limit poinl dynamics

In scction # was described that, when the input energy £ in
the magnetosphere is constant and at low values (X</0"*
ergfsec), then the magnetospheric system remains in a
stationary ground state. This makes us to suppose that the
magnetospheric system might be some kind of dissipative
oscillator which is externally perturbed in a random way.
More generally, we can suppose that magnetospheric
dynamics corresponds to the simple dynamics of limit
point with random extcrnal impulse. Fig. 2a shows the
time scrics obtained by a nonlincar stochastic process given
by

dy ) ‘ "
— =@=039b- +(2By@) Y wa 6.1
;

where wt) is a standard Gaussian white noise process
(Provenzale ct al, 1991). For w(t) equal to zero the
deterministic component of the above system includes a
limit point solution. The stochastic componenl does not
permit the solution to be stabilized, creating a random
nonlinear process  with  similar  profile as  the
magnetospheric time series shown in the ncxt section.
Figs. 2(b-c) show the autocorrelation function and the
amplitude distribution of the above signal. As we can see
in these figures the signal decorrelates after ~230 units of
lag time while its probability density is clearly non
Gaussian, having a lorm between exponcnltial distribution
and F-distribution (Chua ct. al., 1990). Fig. 3a shows the
slopes of the correlation integral for the stochastic limit
point time series when in the estimation of (he slopes we
do not exclude time correlaled states in the reconstructed
phase space, and we set the Theiler parameter w=0. Therc
is a saturation of the slopes at the value D =5 When we
exclude the time correlated slates the saturation profile is
destroyed as we can see in Fig, 3b. Fig. 3c is similar with
the above figurcs but an SVD filtering was applied on the
original signal. Now, although the SVD fillcr presses the
slopes to lower values than those of Fig. 3b, there is no
significant saturation of the slopes. Also there is no
significant scaling character of the correlation integrals as
there is not an apparent platcau profile of the slopes. These
results reveal that there is no dynamic low-dimensionality
in the time scries which was derived by the external
perturbation of a limit point dynamics. Figs. 3(a-f) are
similar to Figs. 3(a-c) and correspond to the surrogate
signal constructed by the method Schreiber (Schreiber and
(Schreiber and, Schmitz 1996; Pavlos ct al., 1999a,b) with
the same power spectrum and amplitude distribution as the
original data shown in Fig. 2a. Tt becomes clear that there
is no significant difference between the slopes of the
original signal and its surrogate data. This mcans that the
original signal is a purely slochastic signal caused by the
original intcrnal = dynamics of the limit point which is
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Fig. 5. a) The phase portrait of the Duffing attractor projected in the X-¥
plane which corresponds to the solution of equation (6.5) for &=0.05 and
h=7.3.

covercd by the stochastic perturbation. More extensive
study of the perturbed (input-output) limit peint dynamics
(node-focus, perturbed by white or colored noise) is going
to be included in a separate study, Here we can declare that
similar behavior has been found for different kinds of limit
point dynamics and Jor different kinds of external
stochastic perturbation. The above results support that the
magnetospheric  dynamics does not correspond to a
stochastic limit point dynamics as the bechavior of
magnetospheric timc scries was found to be extremecly
different (Pavlos et al., 1999a; section 7 in this paper).
6.1.2  Stochastic torus

The next case is to suppose that the magnetospheric
dynamics corresponds to the dynamics on a limit cycle or
on a torus with external random perturbation. The results
are similar for these two cases so that in the following we
present only the case of a three dimensional torus. The
dynamics on a n-dimensional torus can be described by a
state vector x¢f) given generally by the relation:

xi) = 2 cnel( new jt 6.2)
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where new = npw,+n,w;+ . +nywy, and »; integer. If the
w; are rational, only lines on the torus are covered. On the
other hand the trajectory fills up the whele torus for
irrational w;. The dynamics on a torus ¢an be caused either
by a lincar or non linear dynamics. In the following we use
the signal of a 3-dimensional torus corresponding to the

component:
3

x(1) = chsinw,-t
n=1

where w,-=\/5, Wo= w/_'_‘a. and w3=w/§.
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of Duffing (eq. 6.6) lor p;=1i(), p;=1000 and when a X transform has been tuken. b,c)

In order to make the signal to be as similar as possible
with the magnetospheric signals (see paragraphs 7./ and

7.2) we take the X° transform of

the above signal. The

autocorrelation function of the above signal is periedic and
the power spectrum discrete. In order the dynamics on the
torus to mimic in a closer manner the magnetospheric
dynamics, which reveals continuous power spectrum, we
introduce a stochastic perturbation according to the

relation:

x(t = Z(Cn + pn,w(t))sinwnr

(6.4)
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where p, is the amplitude of the stochastic component and
w(t} 1s a white Gaussian noise with mean value zero and
standard deviation one. Fig. 4a shows the square
transformed signal of the stochastic 3-dimensional torus.
Figs. 4(b-c) show the aulocorrelation function and the
amplitude distribution of the above signal. Fig. 4d
includes the slopes of the correlation intcgrals estimated
for the original (unperturbed) signal, while Fig. 4c is
similar with Fig. 4d and corresponds 1o the stochastic torus
signal shown in Fig. 4a. The correlation dimension of the
unperturbed signal was found o a little higher than (he
value 3 which is the number of independent degrees of
freedom of the dynamics on the 3-dimensional torus. This
deviation from the value 3 may be caused by imperfection
in the calculations. For the stochastic dynamics the slopes
of the correlation integrals (shown in Fig. 4e) are perturbed
at low values of the distance # in the reconstructed phase
space, while they tend to conserve their plateau and
saturation profilc at high values of the r. As we ascertain
in the following this is a general properly of stochastic
dynamical systems with low-dimensional intcrnal
dynamics. Fig, 4f is similar with Fig, 4e and corresponds
to the SVD filtered signal of the stochastic torus dynamics.
1t is obvious from the fignre that the SVD filter can remove
the stochastic component, permitting the reappearance of
the plateau profile and a low value saturation of the slopes.
Although the correlation dimension is about ong wunit
larger than the correlation dimension of the original
delcrministic signal the SVD filter is efficient to reveal the
low-dimensional character of the stochastic signal.
Moreover in order to exclude the case of low saturation
caused by time related states in the embedding space we
used the value w=/00 for Theiler parameter. The above
results show that the use of an SVD filter is efficient to
reveal the low dimensional character of a stochastic signal
which includes low dimensional deterministic component.
As we show in section 7 the magnetospheric system
reveals similar behavior with the stochastic low-
dimensional torus concerning its corrclation dimension
estimated using an SVD filter.

6.1.3 Stochastic strange atractors

Nonlinear dynamical systems can bifurcate to strange
attractor solutions after periodic solutions (limit cycle.
limit torus). In order 1o study the influence of stochastic
perturbation to the dynamics of strange attractors we use
the system of Duffing defined by

d‘?x dx

T Hk— x* = beost (6.5)

which describes forced damped nonlinear osciflations
(Tsonis, 1992, Argyris ct al., 1994). The external forcing is
defined by the term bcosr and the dumping by (he
parameter k. As the magnetospheric system is a non-
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autonomous system perturbed randomly by the solar wind
external coupling, a non-autonomous siochastic system of
Duffing which behaves chaotically can be used as an
approprialc model for studying the magnelospheric
dynamics. The stochastic perturbation of the Duffing
system is supposed to act at the amplitude and the
frequency of the external driving force. This can be
considered as an efficicnt imitation of the magnetosphcric
dynamo which also includes strong stochasticity caused by
the solar wind as an input according to the previous
analysis (see sections 3 and 4). The stochastic Duffing
system is described by:

dx
uiads’ S X,
dt

—Z = e, —x; +(b+ pyw(tcos(l + pw(t)x;  (6.6)

Figs. 5(a-b) show the two-dimensional phase portrait of the
original, purely deterministic strange attractor of the
Duffing system and the stochastic strange attractor of
Duffing system when a stochastic perturbation is included.
It is apparent that while there is strong distortion of the
trajectory, the system is not destroyed cntirely. Figs. 6{(a-c)
present the time series corresponding to the square
transformation of the x; wvariable, as well as its
autocorrelation function and amplilude distribution. Fig.
6d shows the slopes of the correlation integrals cstimated
for the signal corresponding to purely deterministic
component x; of the Duffing system. The slopes reveal
that the corrclation dimension of the strange attractor
structure is = 2.2, Fig. 6c shows the slopes for the
stochastic system of Duffing. This result is similar with
theresult of a stochastic torus. That is, the plateau and the
saturation profile of the slopes are destroyed gradually
from low to high values of the distance » as we increase
the stochastic coupling amplitude, and they remain
invarigble at high values of r for weak coupling. Fig. 6f
presents the slopes of the svstem estimated for the
stochastic time series after when an SVD filter was used.
This figure shows that the use of an SVD filter can also
remove the stochastic component of the above signal
bringing the slopes to their original profile as it is seen by
comparing Figs. 6f and 6d. Similar rcsults have been
observed for the x» squared signal described in Fig. Ge.

6.2 Dcterministic input-output syslcms.

In (his section we study (he hypothesis that the
magnetospheric system is a input-outpul svsiem perturbed
externally by a delerministic solar wind signal.  As a
prototype of this process we use the chaotic Duffing system
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with input signal coming from a low dimensional
deterministic dynamics. For our study we consider the casc
of the inpul signal generated by a deterministic dynamics

on a S5-dimensional torus and the final mput-output
system is given by:
dx,
—- =Xy tayi
dt
dx 5 3 ‘
== —kx, — x; +bhcosx; + a,yl) (6.7)
dt ’
dx; -
dt

In this system vt/ denotes the input generated the
dynamics on a 3-diincnsional torus and a;, a» are the
coupling ampliludes. Fig.7a shows the slopes
corresponding to the signal of the 5-dimensional torus
which is the input to the chaotic Duffing system. The
plateau of the slopes and their saturation rcveal the
corrclation dimension to be ~ 5 as it is expected. Figs.
7{b-c) show the slopes of the correlation integral cstimated
for the output of the perturbed Duffing system for weak
and strong coupling with the external dynamics. In the
first case of weak coupling we observe similar behavior
with stochastic dvnamical systems which include low-
dimcnsional internal dynamics as the stochastic torus or
the stochastic strange atlractors (see Figs. 4e and 6¢). That
is, the plateau and the saturation profile of the slopes are
destroycd at low value of » but they are conserved at high
valucs. However while [for stochastic systems the
continuous increasc of the coupling constant can finally
destroy entirely the plateau and the saturation profile of the
slopes. for deterministic input-output systems with low
dimensional input the behavior is much different. That is
for strong coupling amplitudes we can obtain the profile of
the input system at low values of » while for high values of
# the profile of the internal dynamics is conserved. This
behavior is indicated by Fig. 7¢ where for small valucs of »
there is a saluralion of slopes similar with the
corresponding  profile of the input signal (see Fig. 7a) at
value ~ 5. Moreover for large values of # (he saturation
valuec ~ 2.2 of the slopes is observed corresponding to the
inlernal dynamucs.

Similar behavior has been observed for additive input-
output sysicms. In such systems wc consider the input
signal to be coupled additively with the output signal of the
given dynamical system while no internal dynamical
coupling cxists. Such a kind of input-output dynamical
systcm can be assumed appropriate for the magnetospheric
system. According 1o ihe existed observations of the solar
wind- magnetosphere interaction ( see section ), the AE
index time secrics reveals two additive compenents which
correspond to different dynamical processes. The first is
the driven deposition process and the second 15 the
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loading-unloading process, In order to study such a
composile process in the following we construct an
additive signal composed by two dynamically independent
signals. The first is derived by the deterministic dynamics
on 3-dimensional lorus and the second by the chaotic
Dufling system described above. In this case the
correlation dimension of the composite deterministic signal
was found to be equal to the sum of the correlation
dimensions corresponding to the original signals shown in
Fig. 7d. As we can see in Fig. 7d the correlation dimension
of the signal which was constructed to be the sum of a 3-
dimensional torus signal and a ~ 2.2 dimensional strange
altractor signal (Duffing signal) was estimated to be ~ 5.

6.3 Summary and conclusion for stochastic and
deterministic input-output dynamical systcms

Before we compare the above results with corresponding
results from magnetospheric lime scrics il is usclul to
summarize some crucial results concerning stochastic
dynamics and input-output dynamics as they have been
analyzed until now.

a) For experimental time series which reveal
stationarity and broadband spectrum stochastic
input-output dynarics is probably the most general
model appropriate for the description of the
underlying physical process. In addition, when the
slopes of the corrvelation integrals reveal efficient
platean and low value saturation profile for
extended range of values of the radius v, then
there is a low correlation dimension which iy
related to the deterministic internal component of
the underlying process. In this case the low
correlation dimension indicates the cxistence ol low
dimensional intcrnal detcrmintsm of the underlying
physical process.

b) For non-autonomous systems the external
stochastic or deterministic perturbation is not able
1o destroy entircly the profile of the internal
dynamics, In both cases of stochastic (infinite
dimensional) or deterministic (low dimensional)
input the deterministic low dimensional profile of
the slopes of the correlation integrals, estimated for
output time series, is conserved at high values of
the radius » in the reconstructed phase space, when
the coupling amplitudes are not excessively large.
In particular the external stochastic coupling
destroys gradually the scaling of the correlation
integrals and the saturation of their slopes as we
increase the coupling constant and we go from low
to high values of the radius ». Therefore when
there exist noticeable plateau and saturation of the
slope values only for large values of radius » and
before the slopes begin to decrease, then this is
strong cvidence for a slochastic process with low-
dimensional internal deterministic component. In
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the case of low dimensional delerministic input and
strong coupling, the slopes reveal at low values of
radius r the dimension of the input dynamics and at
high values of radius » the dimension of the
internal dynamics.

c) The saturation value of the slopes for a
stochastic process is the same as the saturation
value of the slopes corresponding to the purely
deterministic component of the stochastic process.
That is the noise which can be an infinite
dimensional, or a high finite dimensional signal
cannot increase considerably the saturation value of
the slopes. It can only destroy the saturation profile
when it is strong enough as the values of r
gradually increase from small to large. Concerning
an experimental time serics, in which it is
unavoidable the existence of a stochastic
component, the above results are significant,
because they show that the chaotic analysis can be
used with confidence giving important
information about the internal deterministic
component of the observed signal.

d) In the case of time series derived by the
dynamics of a stochastic limit point it 1s impossible
to take low dimensional profile similar with the
profilc of a low-dimensional system. Given that the
dimensionality of a limit point is zero wc can
conclude that the coupling of stochasticity and
dynamics without rich internal structure in its
phase space can not mimic low dimensional
dynamics. Generally we can say that for the cases
which were studied it is impossible for the
stochasticity to create a fictitious low- dimensional
profile of the slopes quite different from the low
dimensional profile of the deterministic component
of the underlving dynamics.

e) The use of an SVD filter can remove effectively
the linear stochastic component of a signal with low
dimensional deterministic component. Also the use
of an SVD filler as a lincar filter leaves invariant
the dimensionality of the deterministic component
of the original signal.

Finally all these resulls indicalc that the modern
nonlincasr analysis of (he experimental time series based
on the embedding theory constitute a significant and useful
tool for the detection of the characteristics of the
underlying dynamical process. These conclusions make us
to feel more confident about the results to be discussed in
the following by studving muagnctospheric signals,

7. Magnetospheric time series and magnetospheric
dynamics.

In the studies by Pavlos et al. (1999a.b) i is shown that
there is significant difference between the magnetospheric
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Fig. 8 a) The time series corresponding to spacecraft observations of
energetic ions by the EPIC/ICS experiment. b,c) Autocorrelation coefficient
and amplitude distribution estimated for the time series shown in (z).

AFE index and its surrogate data concerning the dynamical
and geometrical characteristics of these time series. In this
study we present some new results obtained by analyzing
magnetospheric data which are associated with the results
of the previous sections, especially those of scclions 5 and
6 in order (o decide about the magnetospheric dynamics.

7.1. Encrgetic ions timc serics

Fig. 8a shows measurements of magnetospheric energetic
ions (35-46.8 kel”) as they were obscrved by the experiment
EPIC/ICS during the days 7-8 December of the vear /994
at the dawn magnetosheath of the earth’s magnetosphere.
This figure reveals strong and continuously repeatable
bursts of energetic particles during ~ 30 hours. It is known
that these particles are acceleraied in the inner
magnetosphere during periods with strong coupling of the
magnctospheric system and the solar wind, simullancously
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with strong bursts and enhancement of the AE index
(Kirsch et al., 1984; Anagnostopoulos et al., 1986; 1998).
1t can be supposed that the dynamics of the energetic ions
mirrors the inlernal magnetospheric dynamics similar with
the AE index during periods with strong coupling of the
magnetosphere and the solar wind (see Section 4). The
energetic particle differential fluxes are provided via the
Energetic Particle and Ion Composition (EPIC) instrument
of the GEOTAIL spacecraft essentially remained close to
the ecliptic plane (Williams ct al., 1994). The sampling
time for the energetic ions analysed here was 6 sec.

The time series shown in Fig. 8a countains Nr = 20.600
data points. By using timc scrics of magnetospheric
cnergetic ions we avoid some obscurities included in the
AE index that are going to be described in the next section
concerning the discrimination between driven and loading-
unloading process. Figs. 8b.c present the autocorrelation
function and the amplitude distribution of the energetic
ions time series. The first figure reveals abrupt
decorrelation of the signal during the first /50 — 200 units
ol lag time which implies broadband spectrum. The second
figure reveals that the distribution of the amplitudes is
non-Gaussian which under certain conditions (especially
when the signal is crgodic) indicates the possibility for the
existence of nonlinearity in the signal. The nonlincaritly
can be dynamical or static somcthing which will be
clarified in the following by the method of surrogate data.

Fig. 92 shows the slopes of the correlation integrals
estimated for the energetic ions time series and for
embedding dimensions m=4-7 without excluding time
correlated states (w=¢). This figure reveals plateau and low
value (D = 3) saturation of the slopes. However this profile
changes noticeably as we increase the value of Theiler
parameter w. Fig. 9b is similar to Fig. 9a but for w=50.
Now there is only a tendency for saturation at low values
while the platean is almost destroyed. The exclusion of
time correlated states in the rcconstructed phase space
included in a sphere of radius w equal to the decorrelation
time permits to discriminate between the self-affinity of
the trajectory and the dynamical degrees ol frcedom.
Therefore these results reveal the cxistence of strong
component of noise in the observed time series which can
destroy the scaling of the correlation integrals and the low
value saturation profile of the slopes although some traces
of these characteristics can survive. In order to remove the
stochastic component wc use an SVD filter described
previously. Fig. 9c (solid lines) presents the slopes that
were estimated for the SVD filtered energelic ions signal.
Now we can notice that there is a clear scaling of the
correlation integrals and a saturation of their slopes, at the
value D= 2.5 The behavior of the energetic ions when an
SVD filter is used is similar to the behavior of stochastic
dynamical systems with low-dimensional internal
determinism, (stochastic torus and strange attractror
dynamics) as they were studied in section 6 (scc Figs. (de -
), and Figs. (6e-l), This similarity leads to the conclusion
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of low-dimensional dclerministic dynamics of the
underlying process and to exclusion of a stochastic limit
point dynamics. This process may be nonlinear as it was
indicated by the profile of the amplitude distribution, and
it is supported in the following by the method of surrogate
data. The slopes of the correlation integrals estimated for
the surrogate data of the energetic ions signal are presented
in Fig. 9c. The surrogate data have been generated by the
method of Schreiber and Schimitz {1996). As it is shown
(Pavlos ct al., 199%a,b), this method generates nonlinear
stochastic data which can mimic faithfully the original
time series (as far as the aulocorrelation function and
amplitude distribution is congerned), while they are
derived by nonlinear static distortion of an original
stochastic signal. It is apparent the significant difference
between the slopes of the surrogate data and the original
signal. The slopes of the surrogate data reveal valucs
higher than the slopes of the original data while the
plateau and the saturation profile arc different. This result
indicalcs that the deterministic component of the physical
process underlyin (he energetic ions signal  physical
process is nonlinear and low dimensional, excluding the
possibility ol static nonlinearity derived by a static
distortion of an original lincar stochastic signal. The low
dimensional and dynamical non-lincarity of the
deterministic component of the underlying process is also
supported by the estimation of false ncighbors as a function
of the cmbedding dimension m for the original signal and
its surrogate data. The dynamical degrees of freedom of an
experimental time series are equal to the minimum
embedding dimension m of the reconstructed phase space
for which the false crossing of the reconstructed trajectory
and its lalse neighbors disappear (Abarbancl el al., 1993;
Pavlos et al., 1999a). Fig. 9d shows the estimated valucs
of the ratio of the false to total nearest neighbors as a
function of the embedding dimension m for the original
signal of the energetic ions (solid line) and its surrogate
data (dashed line). The ratio false/total tends to zero for
m > 6 which indicates that the independent degrees of
freedom » of the underlying dynamical proccss can be
equal to value m=6. In the same figure we can also observe
the significant difference between the original and the
surrogate data something which further supports the
dynamic character of the non-linearity of the underlying
process in the original time serics of energetic ions. This
result is in agreement with the estimalcd value of
corrclation dimension D = 2.5, According to embedding
theory (see paragraph 5.2). it is known that for corrclation
dimension £, it is cfficient to describe the underlving
dynamics by »=2D+/ independent degrees of freedom
although it can happen n to be smaller, For our case this
relation indicates #» = ¢ independent degrees of freedom.
This is in accordance with the cstimated value of the
embedding dimension =6 for which the falsc nearest
neighbors are removed.
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7.2 'The extended AE index time serics

The AE index describes the Auroral-zone magnetic activity
which is related with the global magnetospheric dynamics
through a complex system of currents. The magnctospheric
dynamics during subslorms is manifested as strong
variability of the magnetospheric and ionospheric electric
currents especially the auroral electrojets (McPherron
R.L.. 1995). Disturbances in the Earth’s magnetic field
produced by currents in the magnetosphere and ionosphere
are commonly described by a number of magnetic activity
indices, which arc derived from  certain physical  the
disturbance. The indices AU, AL and . AE give a measure

of the strength of the auroral electrojets and are defined
with the use of traces of the horizontal component (H) of
the geomagnetic field measured by a world-wide chain of
auroral-zone magnetic observatories (Davis and Sugiura,
1966). AU is the maximum positive disturbance (upper
envelope) recorded by any station in the chain. AL is the
minimum disturbance defined by the lower envelope of the
traces of the chain. AE is defined by the separation of the
envelopes (AE = AU-AL) in order (o obtain a better
measure of the strength of the auroral electrojets. The
magnetospheric AE index time series has been used
repeatively as a tool for the delection of the underlying
magnetospheric dynamics and the testing of the hypothesis
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of magnetospheric chaos (Vassiliadis ct al., 1990; 1992;
Shan et al., 1991; Roberts et al., 1991; Prichard and Price
1992, Pavlos et al., 1992a,b; Sharma et al., 1993: Takalo
and Timonen, 1994; Pavlos et al., 1994). In the two
studies (Pavios et al., 1999a.b) we have uscd a long period
of AE index during the second semester of the ycar 7978,
in contrast to previous studies in which much shoricr
periods of the AE index observation were used. In this
paragraph we present results from the analysis of the
much longer AE index observations. Fig. 10a presents the
values of the AE index averaged per hour for the period
1978-1984, while the sampling rate of the original signal
was one minute. This time scries has much longer length
than the time series used in our previous work (Pavlos et
al., 1992b; 1994, 1999a,b) as well as in the works of other
scientists. Figs. 10(b-c) show the autocorrelation function
and the amplitude distribution of the AE index. It is
apparcnt the random character of the AE index with
broadband spectrum as the autocorrelation cocfficient
shows an abrupt decay during the first ~ 200 minutes. The
amplitude distribution (Fig. 10c) is non-Gaussian
indicating poessible nonlinearity (static or dynamic) similar
to encrgetic ions. The slopes of the correlation integral
estimated for this time series are shown in Fig. 10d for
embedding m=6-20 and w -100. The profile of the slopes
remains invariant for much larger values of w. In this
figure we can see that the slopes of the AE index reveal
similar profile with the slopes of low dimensional
deterministic signals perturbed by a stochastic component.
That is for low values of distance r there is no plateau or
saturation of the slopes while these characteristics can be
appearcd at high values of r, (Inr = 5.00 — 6.00), where
there is a saturation value D = 3.5 of the slopes. This value
is sensibly lower than the value D = 5 cstimated in our
previous study (Pavlos et al., 1999a) by using the AE index
time series observed during a much smaller time period
(only one semester). This dilference can be understood to
be caused by the long time period of the AE index that was
used (/7 semesters), while the longer period implies better
observation of the underlying dynaniics. Fig. 10c shows a
comparison of slopes for the original time series and its
surrogate data. In this figure it is apparent the difference
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between the AE index and its surrogate data, especially at
low values of ». Such a difference indicales the exclusion of
the case of static non-linearity derived by a static distortion
of an original lincar stochastic signal. The exclusion of
static mon-linearity supports the hypothesis of dynamic
non-linearity. An SVD filter also used for the case of the
AE index. The result is included in Fig. 10f where the
slopes of the filtered signal of the AE index and its filtered
surrogate data are presented. For the AE index becomes
obvious the removing of the stochastic component as the
platcau and the saturation profile of the slopes appeared
now at low vatucs ol r. The absence both of them (plateau
and saturation) for the surrogalc data after the SVD
filtering confirms the dynamical non-linearity and the low-
dimensionality for the process underlying the AE index.
The final saturation value of the slopes is D = 3.5, The
above results revcal that the behavior of the AE index
when an SVD filter is used is similar with the stochastic
and low dimensional dynamics of a torus and a strange
attractor. That is the saturation value of the slopes (D =
3.3) observed at large values of r before the use of an SVD
filter is reappeared at small values of  after the application
of the SVD filter. The ratio of false/total nearest neighbors
cstimated as function of embedding dimension for the AE
index in ils rcconstructed phase space is shown in Fig. 11
(solid line), while the dashed line corresponds to the
falsc/total nearest neighbors estimated for the surrogate
data of the AE index. This ratio tends to zero for m>7,
while for m>5 we obszrve coincidence of the ratios
corresponding to the AE index and its surrogate data. The
above results indicates at least # = 7 significant degrees of
freedom and it is in accordance with the above value of the
correlation dimension [ = 3.5, which rcveals that the
degrees of freedom cannot be smaller than 4. These results
about the AE index time series are also in agreement with
the results about the energetic ions time scries. As these
time scrics are observed at different regions of the
magnetospheric  systems the above coincidence it
strengthens significantly the hypothesis of nonlinearity and
low dimensicnality of the magnetospheric system.

7.3 The SVD spectrum of the AE index.

According to the theoretical concepts included in
paragraph 5.5, the SVD analysis is appropriate to be used
in order to obtain the delerministic components v; (2) of the
AE index. In the estimation involved wc lave used
observations only for the first six months of the above
pericd 7978b-1984 described in Fig. 10a.  Fig. 12a
presents the first six months of AE index and its v,
autocorrelation function. Figs. 12(b-d) show only three
(i = 1,4,10) time series of the ten corresponding to the
SVD spectrum of the AE index. As we can sce in this
figure the amplitude of the values of the components are
decreasing for increasing values of /. Figs 12(f-h) show
the autocorrclation coefficient for the three v, time serics.
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The decorrelation times of the signals are decreasing flor
increasing values of /. According to SVD analysis every
time serics vt corresponds to the projection of the
trajectory on the cigenvectors ¢; with eigenvalues o,

respectively (see (3. 17)-(5. /18)). From the theoretical resulls
of paragraph 5.5 the eigenvalues o; also decrease passing
from low to high values of the index / so that the amplilude
of the extension of the trajectory along the axis ¢
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decreases as we go through from low to high values of the
index /. Fig. 13a shows the spectrum of the singular values
o;. In this figure it is clear that for i> ~/9 the spectrum
corresponds to the noise background. This indicates that
approximately the deterministic components of the SVD
spectrum are the first /0 components ¢v, i=/-10) and the
nontrivial eigenvectors in the embedding space arc the ¢,
i-=1-10. As the number of the nontrivial eigenvectors
corresponds to the number of the degrees of freedom of the
underlying dynamics we can conclude that the
determinism of the underlying dynamics of the AE index
shown in Fig. 12a includes ~ /0 independent degrees of
freedom. This result can not be considered much different
from the previous estimated number of ~ 7 degrees of
freedom (see paragraphs 7./ and 7.2), since the AE index
time series used here is only a small part of the time series
presented in the estimations of the paragraph 7. 2.

The SVD spectrum () can be also used for the
estimation of the dimension of the underlying process and
for comparison with their surrogates data. In accordance
with this, the slopes of the correlation dimension estimated
for (i< &-10) reveal the characteristics of low
dimcnsionality and non-lingarity. Fig. 13b presents the
slopes estimaicd for the component vyt and ils surrogate
dala. Two things are clear, the low value saturation (D = 3-
#) of the slopes and the significant difference with the
slopes of the surrogate data. The same result was found for
all the components except the first. As we can see in Fig.
13c the v,1) component deviates from the above bchavior,
since the estimated slopes reveal that there is no saturation
and no significant difference with the surrogate data. This
anomaly can be interpreted as being caused by the
existence of a component of the AE index which is
externally driven by the direct coupling of the
magnetosphere and solar wind and is only included in the
first component of the SVD spectrum. In Fig. 12b it is seen
that the v,(¢) component corresponds mainly to the trend of
the AE index time serics shown in Fig. 12a and at the
same time the v;#) time series rcveals long time
decorrelation profile in comparison with the other
components of the SVD spectrum. That is, the components
v; for i > ! correspond to fast decorrelated processes (see
Figs. 12(g-h), while the component v; is slowly
decorrelated with decorrelation rate much slower than the
original signal (see Figs. 12e-f). As the externally driven
component corresponds to a smooth process (see Fig. 1 and
descriptions in section 4}, it is reasonable to supposc (hat
the driven component of the AE index is related mainly
with the v; component. Therefore we conclude that SVD
analysis can hclp to distinguish between the internal
magnetospheric determinism related mainly with v; (i>/)
and the external determinism which is mainly observed on
the first component of the SVD spectrum. More details
about this will be published elsewhere. We suminarize now
the results of time serics analysis for the magnetospheric
time series. In the studies (Pavlos ct al.. 1999a,b) we have
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shown significant difference between the AE index
observed during (he second semester of the year /978 and
its surrogate data. As discriminating statistics we had used
geomclrical and dynamical characteristics of the AE index.
Here we have extended our analysis for two new time
series concerning the estimation

of the underlying dvnamics of the magnetospheric system,
In the estimation of the dimension referred to dvnamical
characteristics of the time scrics we have used three
independent methods: 1) The slopes of the corrclation
integrals 1i) the ratio false/total nearest neighbors and iii)
the singular spectrum o; of the eigenvalues obtained by
using SVD analysis. All these methods have given
convergent results for the dimensionality of the supposcd



122

magnetospheric attracting manifold at a low value D = 3-
4. Moreover, we have found significant difference between
the original time series and its surrogate data. These
results are indicative for the magnetospheric dynamics and
present an answer 10 a previous criticism, while the
complete analysis of the magnetospheric encrgetic ions and
the extended AE index will be published in a separate
study.

8. Summary and conclusions

In this work we have included theoretical analysis and
new experimental data in order to be able to acquire
knowledge for understanding the magnetosphcric
dynamics. In section 2 we have reviewed the recent
criticism against the hypothesis of magnetospheric chaos.
One of the main objections was about the nenlinearity of
the internal dynamics. That is, it is not possible to
distinguish the magnetospheric AE index time series from
surrogate data by using the correlation dimension as the
discriminating statistic. The other objection was about the
internal low dimensionality and chaoticity of the
magnetospheric system, These characteristics (nonlinearity
and low dimensionality) have been rejected because of the
coupling between the magnetospheric system and the solar
wind system. In addition a hypothesis was made that any
non-linearity of the magnetospheric signal should be
caused externally by the input signal, something which is
expected as the magnetospheric  system must be described
as an input-output system according to recent studies (Price
et al., 1994; Price and Prichard, 1993; Vassiliadis et al.,
1992; Vassiliadis and Klimas, 1995; Pavlos et al; 1994).
Therefore, in this and two other studies (Pavlos et al.,
1999a.b) we have formulated the problem about the
magnetospheric dynamics in the following way. At first we
have asked if there is any separate internal magnetospheric
dynamic. If something like this happens, them it must
happen in combination with the external coupling of the
magnetospheric system and the solar wind system. This
makes the magnetosphere to be a complex input-cutput
system. In this case it is more difficult to discriminate the
internal dynamical characteristics from the coupling with
the external dynamical characieristics. We believe that the
theoretical and the experimental analysis included in this
study and in two other studies (Pavlos et al., 199%a,b) can
help significantly to clucidate these obscurities. In the
following we summarize and discuss the crucial results of
this study referred to the problem of the magnetospheric
dynamics.

I) Theoretical concepts
The magnetospheric svstem can firstly be described as an

non-linear infinite dimensional spatio-lemporal system
corresponding to a magnetized plasma system. In the
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section 3 we have supposed thal the general theory of (he
order parameters and the slaving principle, which have
been introduced for non-linear systems described by partial
deferential equations, can also be applied to the
magnclospheric system. In this theory the magnetospheric
system is distinguished from other plasma systems by it
own boundary conditions. The order parameters constitute
the internal and the input dynamical magnitudes which
could be identified with (hose magnitudes which arc
included in (he macroscopic modeling of the
magnclospheric dynamics (Baker et al., 1990; Pavlos et al,
1994) Although in this direction much work remains to be
done, we can conclude that the theoretical description of
the non-linear infinite dimensional magnetospheric plasma
systemn may lead to a low dimensional macroscopic input-
output description. According teo this the macroscopic
description of the magnetospheric system must include a
low dimensional deterministic componcnt F¢x, z) and a
stochastic component g, I w (see eq. (3.7) and (3.8)),
with x describing the internal dynamics of the
magnetospheric system, z the deterministic inpul dynamics
of the solar wind and w a stochastic component. Both x
and z constitute (he order parameters of (he
magnetospheric system. Moreover the inpul z(4) can be
interpreted as a changing external control parameter,
which makes the magnclospheric system to behave
chaotically when it takes certain values. On the other hand
the Wold's decomposition theorem of the classical time
series analysis permits lo separate a time series with
continuous power spectrim to a purely linear deterministic
componcnt and to a purely stochastic component, while
the whole process is a Markov process with both linear and
nonlinear dynamnical components. In the Wold’s
decomposition the linear deterministic. component could
be related with the external driving of the system while
the random component could be related with the internal
magnetospheric dynamics. This was found to bc in
agreement with the general profile of the AE index during
substorm events (Fig. 1). The macroscopic stochastic
component can be caused by an external or internal
microscopic stochastic process. Moreover, according to
time serics theory, the magetospheric system can be
assumed to behave as a recursive filler. This filter can be
analyzed in a linear recursive component and a nonlinear
recursive onc. All the above theoretical descriptions could
be possible models for the magnetospheric dynamics,
which  in general are input-output systems with a
determinislic or stochastic input and a detenministic
internal dynamics. Finally the SVD analysis, when
examined from a theoretical point of view can be used in
two ways. First as a filter and second to detect the
deterministic dynamical component of the sysiem, The
above theoretical analysis has lcad us to formulate the
problem about the magneiospheric dynamics as follows:

a) Is there a macroscopic magnetospheric dynamics which
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Fig. 14. This figure shows all the time series used in this study for comparison. It is noticeable the similarity of the different magnetespheric serics and the
stochastic systems, especially for the cases of the stochastic limil point and the stochastic quasi-periodic torus.

can be distingnished by the external solar wind
dynamics?

b) If such a scparate dynamics exists then is it low
dimensional or high-dimensional, linear or non-linear
and finally chaotic or non chaotic?

c) What is the relation between the internal
magnctospheric dynamics and the external dynamics
of the solar wind system

In order to answer these questions for the magnetospheric
dynamics we have studicd characteristic cases of siochastic
systems and input-output dynamical systems which can be
assumed to mimic the magnctospheric dynamics and some
of ils observed characteristics. Also we have estimated the
correlation integrals, their slopes and the corrclation
dimensions of the time scrics derived by the above

characteristic stochastic systems and input — output
systems. The first system was rclated with a stochastic
limit point dynamics. In this case we have shown that it is
not possiblc for a stochastic system, with deterministic
the second case we have used a non-autonomous system
with external driving in order to obtain the greatest
possible similarity with the magnetospheric system. It is
shown that the stochastic periurbation cannot change
dramatically the low dimensional profile of the
detcrministic component except when it is too strong, so
that the stochasticity, becomes predominant and causes
high dimensional profiles. The study of low-dimensional
input-output dynamical systems has shown similar results,
while the stochastic systems can be regarded as input-
output systems with infinite dimensional input dynamics.
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For this reason when we use as input to a dynamical
system a low dimensional deterministic signal the results
are analogous to the case of stochastic systems. That is, for
weak input-output coupling the low-dimensional profile of
the internal dynamics is conserved, while for strong
coupling it is apparent the low-dimensional character for
both the input signal and the internal dynamics. As a final
case we studied input-output systems without an internal
dynamics coupling where a simple additive system of two
independent input dynamics is used. In this case the
dimension of the output signal was found to be the sum of
the dimensions of the original signals. Therefore we have
concluded that it is not possible 1o obtain  low-
dimensionality and chaotic profile by stochastic or input-
output processes if such things do not exist in the internal
dvnamics of the system at least for the cases that have
been analyzed until now. As we have shown these results
have been found to be crucial for understanding the
magnetospheric system.

II) Experimental evidence

Moreover we have studied two new experimental
magnetospheric time  series.  The first corresponds to
energetic ions observed in situ by spacecraft at the outer
magnclosphere and the second to an extended AE index
time series observed during /3 semesters. The analysis of
both time serics has shown similar results although the
time series correspond to much different magnetospheric
magnitudes. The slopes of the correlation integrals
estimated for these time series behave similarly as the
slopes of the two stochastic systems, the stochastic torus
and the stochastic strange attractor. That is, the platean
and the saturation profiles were observed only for high
values of the distance r, while at low values of r the
perturbation of noise was detected. For the AE index this
behavior is quite cicar. On the other hand the use of an
SVD filter removed this anomaly at low distances r for
both time series. That is, the plateau and the low-value
saturation of the slopes which correspond to the filtered
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time series were observed to be present also at low values
of distance r. Moreover these characteristics are absent for
the surrogate data and remain invariable when we exclude
enough number of time correlated points in the
reconsiructed phase space according to the test of Theiler.
The low-dimensionality of the magnetospheric time series
has also been supported by the method of falsc neighbors.
Thereforc these characteristics reveal similarity between
the magnetospheric system and the stochastic systems with
low-dimensional deterministic component. Figs. 14-15
show the profile of the magnetospheric tim¢ series and
their statistical characteristics (amplitude distributions) in
the comparison with time series derived by the stochastic
systems described above. As these figures reveal there is
noticcable similarity between time series derived from
models and the cxperimental time series related to the
magentospheric system. However the behavior of the above
signals concerning their chaotic analysis is much different.
The case of stochastic limit peint is excluded as a
candidate for the magnetospheric dynamics as its slopes do
not reveal low-dimensional profile. The case of the
stochastic torus can also be excluded by comparing the
behavior of its time scries and the magnetospheric time
series from the point of view of prediction algorithms, Fig.
16 presents the cross-correlation of the predicled and the
original values for the magnetospheric and the stochastic
torus time series. For this method we have used local linear
prediction mecthods (Pavlos et al., 1999b). In this figure we
observe that the predictability for energetic particle time
scries is better than the AE index times series, while in
both cases is a smooth decrease of the cross-correlation
coefficicnts when the prediction time step increases. On
the other hand for the first ten steps ahead the
predictability of the stochastic torus time series, which is
by construction a linear signal, is almost the same with
that of the energetic particles but much better than the
predictability of the AE index. For prediction time larger
than 72 steps ahead the predictability of the stochastic
torus signal decreascs abruptly to values close to zero,
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whilc the energetic particles show best predictability,
Therefore, we conclude that a) the emergetic particle time
series include stronger determinism than the AE index
signal b)the long term predictability of the magnetospheric
signals compared with the stochastic torus indicate low-
dimensional chaotic dynamics.

Finally we believe that the arguments discussed above
help us exclude the stochastic limit point and stochastic
torus as candidate models of the magnetopsheric system
Ieaving the stochastic strange attractor dyanamics as the
only possible model of the magnetospheric system. We
belicve that the results of this comparison study will not
alter significantly cven if the above-studied low
dimensional stochastic systems can mimic much better the
magnetospheric time series. Moreover the Duffing system
is significant for the above conclusions as it is non-
autonomous and externally driven, similar with the
magnetosphere. That is, the stochastic perturbation of the
amplitude and the frequency of the external driving of the
Duffing system can simulate satisfactorily the random
character of the solar wind driving on the magnetospheric
system.

Furthermore description of the low-dimensional input-
output modeling has been indicated for the magnetospheric
system. We have already indicated that input-output
systems are distinguished from stochastic systems from the
point of the view of the dimensionality of the input signal.
For stochastic systems the input signal is infinite
dimensional while for low dimensional input-output
systems the input is a deterministic (inite dimensional
signal. In this work we have studied two different kinds of
input-output  systems in  comparison with  the
magnetospheric system. The first input-output system
includes a rich low-dimensional dynamics corresponding
to the Duffing system with input a deterministic 5-
dimensional signal. The second input-output system is
much simpler and corresponds to the addition of two low-
dimensional deterministic signals. The first can simulate
the magnetospheric system only in the case that the
coupling is weak, which makes the input-output model to
be equivalent to a stochastic model. For strong coupling
the first kind of input-output system can clearly reveal the
low-dimensicnal character of the input signal at low values
of distance r in the reconstructed phase space. However
such a character is absent in the profile of the slopes of the
magnelospheric time series. In the second casc of the
additive input-output modeling dynamics we must suppose
that the saturation value D = 2-3 of the slopes estimated
for the magnetospheric signals must be the sum of the
dimension of the internal and the dimension of the external
signal. This could be true only if the correlation
dimensions of the solar wind input signal and the
dimension of the magnctospheric signals are much lower
than the above estimated valuc 0 = 2-3. However such a
supposition cannot be true as the solar wind signals do not
reveal  correlation  dimension lower than  the
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magnetospheric  dimensions (Pavlos et al, 1992ab).
Finally excluding the low-dimensional input-output
modeling, we can suppose that thc magnetospheric
system behaves as a recursive filter for the solar wind input
signal. It is shown that linear and non-recursive filtering
leaves invariant the correlation dimension of the input
signal (Broomhead at al., 1992). For recursive linear or
nonlinear filtering it is possible {o observe change in the
correlation dimension as we move from the input to output
signal. However the cxistence of recursive character in the
filter is cquivalent to the existence of internal dynamics
separate from the dynamics of the input signal. In this
case the recursive filter corresponds to a input-output
system with rich internal dynamics which can be mirrored
at the correlation dimension of the output signal, in
accordance with the above results for input-output systems.
Also the non-linear and non-recursive filtering can cause
change in the correlation dimension of the input signal but
this case corresponds to static nonlinear distortion and can
be cxcluded by the method of surrogate data. Furthermore,
for the magnetospheric system it has been indicated that
there is small evidence for the presence of non-linear
deterministic coupling between the solar wind input and
the magnctospheric output (Price et al., 1994). As the solar
wind time series reveal much higher correlation dimension
than the magnetospheric time series (Pavlos et al,
1992a,b) we can suppose that the internal magnctospheric
process is the main cause of the low correlation dimension
for the magnetospheric time series.

Another interesting point is that the SVD spectrum of
the AE index for one semester observations has shown low
value of independent degrees of freedom (n=/0). The vi(1)
components (i<70} reveal significant low dimensional
determinism much different than the corresponding
surrogatc data, except for the first component v,¢f). The
v,(1) component describes the projection of the trajectory
on the eigenvector ¢; which corresponds to the larger
value of determinism. We have interpreted this anomaly as
being caused by that component of AE index which is
externally driven although this supposition must be worked
further in a forcoming paper. These results support further
the existence of low-dimensional magnetospheric internal
dynamics. Finally we conclude that the random character
of the magnetospheric time serics could be caused by the
chaotic low-dimensional internal dynamics of (he
magnetospheric system, while this character only appears
when the solar wind input takes appropriate vatues, As the
solar wind is changing continuously its state, the
magnetospheric dynamics can live intermittently on a low-
dimensional chaotic attractor. However we believe that,
although we have revised in a noticeable degree of
confidence the hypothesis of magnetospheric chaos, much
work remains to be done in different directions before we
accept certainly this point of view.
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