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Abstract. Recent observations from satellites crossing re-
gions of magnetic-field-aligned electron streams reveal soli-
tary potential structures that move at speeds much greater
than the ion acoustic/thermal velocity. The structures appear
as positive potential pulses rapidly drifting along the mag-
netic field, and are electrostatic in their rest frame. We in-
terpret them as BGK electron holes supported by a drifting
population of trapped electrons. Using Laplace transforms,
we analyse the behavior of one phase-space electron hole.
The resulting potential shapes and electron distribution func-
tions are self-consistent and compatible with the field and
particle data associated with the observed pulses. In partic-
ular, the spatial width increases with increasing amplitude.
The stability of the analytic solution is tested by means of a
two-dimensional particle-in-cell simulation code with open
boundaries. We consider a strongly magnetized parameter
regime in which the bounce frequency of the trapped elec-
trons is much less than their gyrofrequency. Our investiga-
tion includes the influence of the ions, which in the frame of
the hole appear as an incident beam, and impinge on the BGK
potential with considerable energy. The nonlinear structure
is remarkably resilient.

1 Introduction

As a new generation of satellites explore the magnetosphere
with instruments faster at measuring electromagnetic fields, a
growing body of observations report the presence of rapidly-
moving solitary potentials. The structures have the electro-
magnetic signature of a positive charge surrounded by a neg-
ative cloud. They appear as positive potential pulses that
move along the ambient magnetic field with speeds substan-
tially greater than the ion acoustic velocity. Due to these
space observations, phase-space electron holes have recently
garnered a lot of interest (Omura et al., 1996; Krasovsky et
al., 1997; Miyake et al., 1998; Goldman et al., 1998; Muschi-
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etti et al.,, 1999a). The topic had hitherto been investigated
in some specialized laboratory plasma experiments (Saeki
et al., 1979; Lynov et al., 1979), in early computer simula-
tions of the two-stream instability (Morse and Nielson, 1969;
Berk et al., 1970), and in analytical detail for a special class
of electron holes (Schamel, 1979, 1982; Korn and Schamel,
1995).

So far, the best space data have been collected by the FAST
satellite and its high-resolution plasma and field instruments
in the downward-current regions of the auroral zone. The
observed potential structures (Ergun et al., 1998a) can have a
large enough amplitude (~ 100 Volts) to modulate the entire
electron distribution function (e® ~ T.) and have a paral-
lel size of a few Debye lengths. Moving along the magnetic
field opposite to the current with a speed on the order of the
electron drift, they create a bipolar electric signal with am-
plitudes typically ~ 100 mV/m.

Similar solitary structures have been observed at higher al-
titudes in the auroral zone by the POLAR satellite. There are
reports of observations at 2 Rg (Mozer et al., 1997; Bounds
et al., 1999) as well as at 5-7 Rg (Franz et al., 1998; Cattell
et al.,, 1999). In the plasma sheet boundary layer at large
distances into the magnetotail, the GEOTAIL satellite has
measured similar potential spikes, albeit with a smaller as-
sociated electric field (~ 0.1 mV/m). The spikes were iden-
tified as the components of the broadband electrostatic noise
(Matsumoto et al., 1994; Omura et al., 1996). Finally, con-
vective, positive potential pulses have also been reported at
bow shock crossings by the WIND satellite, and interpreted
as possible electron holes (Bale et al., 1998).

In analysing a nonlinear solitary wave it is customary to
distinguish between the particles which are trapped in the
frame of the wave, or interact strongly with the latter, and
those which just pass it and interact weakly. Even the FAST
satellite cannot measure a full particle distribution in the short
time (0.1 ms) when a potential spike passes by. The measure-
ments, however, reflect well the characteristics of the passing
electrons. The distributions are drifting and broad in the di-
rection parallel to the magnetic field with a flat-top (Carlson
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et al., 1998). By contrast, the information about the trapped
electrons is much less clear. Cuts in the distributions, avail-
able on a much shorter time scale, display strong modula-
tions at the passage of a potential spike. These modulations
can be interpreted as a brief broadening accompanied by a
decrease in the flat-top.

The plasma environment of the spikes observed by FAST
is collisionless and characterized by a markedly low density.
This results in a ratio gyro-to-plasma frequency Q. /w, ~5-
15 and a rather large Debye length of order 100 m. Because
the electrons are tightly tied to a magnetic field line, their
one-dimensional dynamics is what mainly determines the ob-
served potential spike.

In Sect. 2 a one-dimensional BGK solution (Bernstein et
al., 1957; Turikov, 1984) is constructed which displays the
characteristics of the observed potential and electron distri-
bution. Its stability is tested in Sect. 3 by loading it as ini-
tial condition in a particle-in-cell (PIC) code. Our simu-
lation code is two-dimensional, electrostatic, and designed
with mixed open and periodic boundaries (Sect. 3.1). We
carry out the simulations in the frame of the spike and inves-
tigate also the influence of the ions (Sect. 3.3). Some of the
results have been recently published in the short form of a
Letter (Muschietti et al., 1999a).

2 Localized BGK electron hole

Following the BGK scheme we assume that there exists a
frame in which both potential and electron distribution are
in a self-consistent steady state. Working in this frame, we
write the electron distribution function in terms of the nor-
malized constant of motion w = v? — ¢ to satisfy the sta-
tionary Vlasov equation. The constant of motion w is twice
the energy of an electron with mass m and charge —e while
¢(z) denotes the normalized potential profile along the am-
bient magnetic field. One uses the standard dimensionless
units where length is normalized by the Debye length Ag4
and velocity is normalized by the electron thermal velocity
Ve = /T./m = we/Aq. In these units ¢(z) is normalized
by T, /2e.

Let fi(w), fe(w), be the distribution functions of respec-
tively the trapped and the passing electrons. Due to the hy-
pothesis of steadiness the trapped electrons must be symmet-
ric with the same flux of right and left moving particles in
phase space. By contrast, the passing electrons need not have
that symmetry and split into f} (w) + f; (w). Poisson equa-
tion can be rewritten as

0 2
fe(w) 1d%¢
——dw = -——-—— +1

/_4, w+@™ T a7 T

o0 + -
[Ewrs,,

o 2w+ ¢)/?

The terms on the RHS are supposedly known by properly

modelling the observations from the FAST satellite. The sec-
ond term on the first line (+1) represents the ions, which we
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assume to be unaffected for the moment and to create only
a neutralizing background. By contrast, the LHS is virtually
unknown, save for a few hints in the particle data. We for-
mally define it as an unknown function of 4,

_ [’ _fi(w)
me(g) = /_¢ m/—zdw- @
Note that n,(¢) is the density of trapped electrons expressed
as a function of the potential profile. Our aim is not only
to obtain this density but also to solve explicitly for the de-
tailed distribution function f;(w), the expression of which
will be used in Sect. 3 to load the particles in the PIC simu-
lation code. From (1) it is clear that there are two contribu-
tions to n¢(¢): one is the net density perturbation required
by the shape of the potential, n,(¢) = 1d?¢/dz?, the other
is the density of passing electrons, ny(¢) = [° L(fF (w) +
fZ (w)}(w + ¢)~*/2dw, a density which naturally decreases
as these electrons are accelerated about the potential spike .
The two contributions,

n4(¢) = ns(4) — np(¢) + 1, 3)

are straightforward to evaluate for given models of potential
profile ¢(z) and passing electrons f} (w), f (w).

2.1 Potential profile

After analysing several hundreds of the rapidly-moving po-
tential spikes from the FAST dataset, it was concluded (Er-
gun et al., 1998b) that a Gaussian provides a reasonably good
fit to their spatial profile in the parallel direction. We there-
fore introduce the following ansatz,

#(z) = Yexp(—0.5 zz/Az) , 4)

which results in
n(¢):_¢_[21n(f)—1] with 0<¢<4. (5
¢ 2A2 @ =7 =

Where ¢ < 9, the term above is negative: there must be
a dearth of electrons at the center of the spike. A numeri-
cal value of 5% is typical for our model and the FAST data.
Where ¢ < 1e~%5 (or |z| > &) there is a surplus of electrons
screening the positive charge left in the center.

2.2 Passing electrons

The electron distributions measured by the FAST satellite in
regions of solitary spikes are drifting and broad in the parallel
direction; they are flat-topped and drop beyond a certain en-
ergy (Carlson et al., 1998; Ergun et al., 1998b). Because the
compilation of a full electron distribution takes ~80 ms while
a potential spike moves by the satellite in just 0.1 ms, these
measurements are an average that reflects mostly the charac-
teristics of the electrons .in-between the spikes, namely the
passing electrons. In the satellite frame the electron distribu-
tions appear to have an average drift larger or comparable to
the velocity of the spikes (Ergun et al., 1998b). Hence, we
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shall assume the electron drift to be zero in the frame of the
potential spike. Furthermore, for simplicity we shall assume
that the distributions are symmetric, f}(w) = f;(w) =
fe(w), and introduce the following model. Though some-
what arbitrary, it qualitatively emulates the data and keeps
the calculations simple:

6v2
(8 + w3)

Using (6) to integrate np(¢$) (third term in the RHS of (1))
for a position where ¢ = 0, one may check that the density
is normalized to unity, which cancels exactly the ion contri-
bution. The “temperature”, or spread, 2 f;° dv v2 f.(v?), is
also normalized to unity. An electron with w = v? = 1 is
a “thermal” electron (in the spike frame). For smaller ener-
gies fe(w) is flat, while it drops as a power-law for larger
energies.

On physical grounds it is expected that the density of pass-
ing electrons decreases in the vicinity of the potential spike
as they are accelerated by the positive potential. Unfortu-
nately, there is no simple explicit expression for n,(¢) that
can be obtained using (6) in the integrand. One can, however,
after an integration by parts which brings a term in /@, write
down the first terms of an expansion for small ¢:

3\/_ 3¢? 3

Jon +4— o1 +0(¢%). ¢
While the expansion also includes a linear and quadratic re-
sponse of the passing electrons, the main one is a reduction
in density scaling as ¢!/2. It is interesting to compare the
expression above to equation (9) of Krasovsky et al. (1997),
who studied the role of passing electrons for an unspecified
distribution function. Using their notation we can rewrite (7)
as

np(¢) = 1 — 2o/ — Pp/2 + O(4?) (8)

where fo = 3/(2+/27) is the value of the distribution f,
at the separatrix, w = 0, and P = 2 f° v~ £ f.(v?)dv.
Since our ¢ is twice their ¢ due to different normahzatlons
the two expressions agree. The main reduction in density
originates therefore from those passing electrons that move
closely along the separatrix and are in some sense resonant
(Krasovsky et al., 1997).

Fortunately, we need not use the approximate relation (7)
for calculating the distribution function of trapped electrons.
Instead, as we shall see in the next section, we can restart
from (1) and manipulate the integral to obtain an exact ex-
pression that is valid for any amplitude of ¢.

fe(w) = withw > 0. (6)

np(¢) =1

2.3 Trapped electrons

We now proceed to invert (2) for fy(w). Noting that the
unknown function f;(w) is defined for w < 0 we intro-
duce the auxiliary function A(u) defined over the half space
u > 0 such that A(u) = f;(w = —u), and take the Laplace
transform of (2). This yields £[n:(¢)] = L[u~1/?] L[A(u)].
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Fig. 1. Example of a distribution function exhibiting a BGK phase-space
hole. Contours are linearly spaced with gray scale indicated on the bar. The
plot is computed from (13) with dimensionless4 = 1.6 and A = 3. Note
the phase space depletion about x = 0, center of the potential spike, and the
flat-topped distribution at large |z|.

Therefore, using L[u~1/?] = (~1/2)!s7/2 as well as the
relation ((—1/ 2)!)2 = =, one obtains in succession

LlA(w)] = 75y £lme(@)] = —C[¢ 2] sLine(¢)]

(- 1/ 2)!
The term on the RHS is substituted with the transform of
the derivative of ny(¢) while using the property n:(¢) =
(ns(@) — np(¢) + 1) — 0 for ¢ — 0,4, which assumes
neutrality away from the spike. One then takes the inverse
Laplace transform and finally obtains the convolution inte-
gral:

fulw) = %/0_ 1 ra(¢) dob - (10)

V-u—-¢ d¢
The expression above can be integrated exactly for our

model of potential profile and distribution of passing elec-
trons. Substituting (5) for n,(¢) and

6v2 [ 1
np(9) = m /0 (w+¢)1/2(w3+8)dw an

into (3), we obtain from (10)

fi(w) = \/—;[1+21n(—)]
0+ (Vv uVTE
(V2 + V)4~ 2w+ w?)

with — 9 < w < 0.

The term on the first line comes from n,(4). It is negative
near the hole center w — —1), becomes positive at the pe-
riphery, and vanishes for w — 0_. It reflects the requirement
of net density perturbation between the hole center and the
periphery that is imposed by the different curvatures of ¢ at
its peak and on its flanks. The term is very sensitive to the
width A. The term on the second line remains positive and is
independent of A. It comes from the passing electrons whose
density decrease about the positive potential needs be offset




214

by a contribution of trapped electrons. In the limitw — 0_
one has f; — 3/(2v/2x), which matches continuously with
the passing distribution f. from (6). Fig. 1 provides an illus-
tration of the complete distribution function in (z, v) space.

| fi(w =% - #(z), fw<O
Flz,v) = {fe((w:vz_qb((z)))), ifw <0 (13)

Considering F as a function of v, note how the distribution
is strongly depleted around & = 0 where the solitary poten-
tial is centered, while flat-topped for positions away from it.
Note also how F bulges where the potential is large. This
feature is expected to translate into a brief broadening of the
electron distributions observed in the spacecraft frame. In
fact, cuts in the distributions recorded by the FAST satellite,
which can be obtained on a much shorter timescale than the
full distribution, reflect this broadening at times when a po-
tential spike passes by.

2.4 Width-amplitude characteristics

Even though the solitary potential is due to a deficit of deeply
trapped electrons, the trapped distribution f; cannot be neg-
ative at its minimum for w = —1. This imposes a relation
between width and amplitude. Substitutingw — —+ in (12)
and balancing the term on the first line with that on the sec-
ond, one finds

1+V®+ @
3+4V/3®+2%

Here, A, which is expressed in Debye units, is the half-width
defined by (4) and @ is the amplitude of the potential in usual
T, /e units. Clearly, A ~ ®'/% for® <« 1and A ~ $1/2 for
& >> 1. The width must increase for increasing amplitudes
(Turikov, 1984).

Fig. 2 shows the boundary limit defined by (14) together
with data points out of a statistical study of the FAST mea-
surements (Ergun et al., 1998b). Over 1000 solitary poten-
tials from 30 different orbits were binned by size. The size
was defined as the Gaussian half-width normalized to the
local Debye length while the amplitude was normalized to
the local electron temperature. Nearly all data points lie to
the right of the boundary curve showing good agreement.
The behavior differs from that of a classic soliton, where the
structures with the larger amplitudes are the narrower. An
electron hole, and its associated solitary potential, is a dif-
ferent nonlinear structure for which the electrons trapped in
a phase-space vortex play the dominant role. Interestingly,
even ion-acoustic solitons may behave non-classically. In the
wake of the Viking results, Berthomier et al. (1998) showed
that there exist regimes in a two-electron temperature plasma
where they can be refractive and display an anomalous rela-
tion between amplitudes, propagation velocities, and widths.

A? > 4(41n2 - 1)V3(1 + V3) (14)

3 PIC simulations

The BGK scheme admits a wide variety of potential pro-
files and it is not a priori certain that the analytically con-
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Fig. 2. Amplitude-width relation. Prediction from (14) is compared to data
from the FAST satellite. Nearly all data points lie to the right of the boundary
curve showing good agreement. Reproduced from Muschietti et al. (1999b).

structed electron hole is dynamically stable. Moreover, very
early simulations of phase-space holes (or vortices) gener-
ated by the two-stream instability (Morse and Nielson, 1969),
as well as analytical calculations (Schamel, 1982), suggested
that the vortex structure disappears when phase-space is open
to more than one spatial dimension. On the other hand, in
the rarefied plasma of the mid-altitude auroral region where
the solitary spikes are observed by FAST, the electrons are
strongly magnetized and their motion restricted to the direc-
tion of the magnetic field, which may contribute to the stabil-
ity of the electron hole. Recent two-dimensional simulations
of phase-space vortices associated with the two-stream insta-
bility in a magnetized plasma (Goldman et al., 1998) show
that they are stable for many plasma periods, yet emit elec-
trostatic whistler waves at times 100< wet <1000. Another
two-dimensional simulation study (Miyake et al., 1998), in
which a cold beam instability is used to generate the phase-
space vortices, suggests that the ratio of the cyclotron fre-
quency to the bounce frequency of the trapped electrons is a
critical parameter for their stability.

Taking these considerations into account, we numerically
investigate the stability and evolution of our analytical solu-
tion by performing a series of two-dimensional particle-in-
cell (PIC) simulations. It is assumed that a potential spike
with specific characteristics has been formed and co-exists
with the populations of trapped and passing electrons as de-
scribed in Sect. 2. We follow then the evolution of the po-
tential as determined by the full dynamics of the particles in
an open-boundary, electrostatic, PIC code. The simulation is
carried out in the frame of the potential spike so as to follow
the evolution over long times without the spike moving out of
the simulation box. In the runs presented here, the cyclotron
frequency is kept constant, 2 = 5 w.. On the other hand,
the bounce frequency associated with the potential model (4)
iswp = we (e¥/T:)/?(Aa/A), which is of order 0.3 we.
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Fig. 3. Potential structure at ¢ = 0 resulting from the inhomogeneous load-
ing of the electrons in the PIC simulation. (Bottom) Nine contours from 0.0
(dotted) to 0.8 in (=, y) plane, where z is along the magnetic field. “H” and
“L” refer to high and low, respectively. (Top) Three cuts at various y. Input
parameters: eyy/Te = 0.8, A/Ag = 3.

3.1 Open simulation system

Along the coordinate z, which describes the direction paral-
lel to the magnetic field, we impose open boundary condi-
tions. At both ends we inject populations of particles with a
prescribed flux determined from f.(w = v2) (see (6)), while
exiting particles are removed from the system. The injection
scheme uses sub-timesteps so as to spread the positions of
the injected particles over the-boundary cells. Due to losses
and gains occurring at the boundaries, the total number of
particles in the system is allowed to fluctuate in time. The
resulting fluctuations in the potential at the boundaries are
calculated from the current integrated over the whole simu-
lation system. In the perpendicular direction y we impose
periodic boundary conditions. As for initial conditions, elec-
trons are loaded along x at £ = 0 in a way that reproduces
the spatially inhomogeneous function F(w = v2 — ¢(z))
(see (6), (12), (13), and Fig. 1), Their spatial distribution
in the y direction is given by a random, statistically homo-
geneous loading, while their distribution as a function of Uy
and v, is described by a narrow Maxwellian. Therefore, the
profile of the potential has initially a dependence in z only,
but it evolves in a two-dimensional simulation. We employ
a large number of particles per Debye square (of order 210)
for good diagnostic, to keep the noise level low, and, impor-
tantly, to ensure that many charges cross the box boundaries
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Fig. 4. Potential structure recorded in the PIC simulation after 350 steps
(wet =35). (Bottom) Nine contours from 0.0 (dotted) to 0.8. “H” refers to
high. (Top) Three cuts at different y are indistinguishable. Compare to Fig 3
and note the steadiness.

per timestep. The latter enables us to smoothen the injec-
tion process and limit the large fluctuations that the passage
of discrete particles through the boundaries might create (see
Muschietti et al. (1996) for details). Finally, the timestep
weAt = 0.1 is adequate to resolve the gyromotion of the
electrons.

3.2 Simulations without mobile ions

Fig. 3 shows the potential structure created at ¢ = 0 by our
specific loading of the electron distribution function. The
simulation box has dimensions Lz x L, = 32 Ag x 32 Aq.
The bottom panel gives the contours of the potential ¢(z, y),
while the upper panel shows cuts at three different locations
¢(=,yi) where y; = Ly, /4, L,/2,3L,/4. Except for irregu-
larities associated with the random loading in the y direction,
the potential profile has no y dependence and is described by
(4) with A = 3 A4 and eyp/T. = 0.8. The ions form just a
homogeneous background.

Fig. 4 displays the evolved potential after 350 steps (w.t =
35). The steadiness is impressive. The potential structure re-
mains one-dimensional and maintains very well its profile.
The associated distribution function is shown in Figure 5,
which is a snapshot taken from the simulation at w.t = 35.
Three spatial bins are examined: in a region left of the spike,
in a region amidst the spike, and in a region right of the spike.
Note the depleted distribution function of the center panel
and the flat-topped distribution functions in the left and right
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0.4 bin 0<x/Ae<8 b 12<x/2q<20 bin 24<x/hg<32 0.4 Fig. 5. Distribution functions associ-
ated with the potential shown in Fig. 4
A 1 i A (wet =35). They are snapshots computed
6.3 ] It ] 93 from the simulation with the help of three
1 I |\ | 1 1 spatial bins. The central panel covers a dis-
0.2 ,' “ ,’ “ / ll ,’ “ 0.2 tance ~ A on either side of the potential
f ‘\ Al ’l “ maximum at z/ Ag = 16. Note the excel-
0.1 l’ \‘ l’ \\ 01 lfmt agreem;nt ».vnth the analytical expfactz?-
tion (shown in Fig 1) for the depleted distri-
/ \ bution: two maxima with values in excess of
S0 20 o0 20 45 40 20 00 20 40 20 20 00 20 40 " 0.3 located at Juz|/ve > 1 and a minimum
vy Ve Vy/ Vg VI Vg with value below 0.2 about vz = 0.
cuts aly/xd = 8.0 160 240
panels. From (13), or Fig. 1, one expects the value of F in the 4
hole to be between 0.1 and 0.2. The agreement is thus excel- 10
lent. Note also the symmetry between left and right moving ) [
electrons. T °° J 1\
In order to eliminate the possible effects the boundaries 02 ,I \
might have on the spike, we enlarged the box to 1284 by oz
324 and performed 102 steps with 4 x 108 particles reach- “00 160 20 480 &0 f0  sso 1120 1zme
ing the time wet = 100. The input parameters were: A = conaus fom 00 10 10 by 01
4 Ag and ey/T. = 1.0. The result is displayed in Fig. 6, 320 peTE L L
which again shows that the potential structure remains one- r
dimensional and maintains very well its profile. 240 B
Fig. 7 displays the contracted phase space of the electrons -
(z — vz ) associated with Fig. 6. All the electrons trapped ini- < 6o [
tially (i.e. satisfying w < 0 att = 0) have been tagged and -
are depicted separately in the upper panel at w.t = 100. Sim- B0 [ e .
ilarly, the bottom panel shows all the electrons that were not . 1
trapped initially. With help of the current potential we cal- 0.0 Lo L
culate the separatrix (w = 0) between trapped and passing 00 160 320 480 640  80.0 960 1120 1280

electrons, and show it as a solid line (replaced by null wher-
ever the potential falls below rms fluctuations). Noteworthy
are two points. First, because a typical electron should have
moved ~ 100 A4 since ¢ = 0, the fact that the trapped elec-
trons remain in a clump of 16 A; demonstrates that the hole
forms an entity by itself. Second, one may observe that a
small fraction of the trapped electrons leaks through the sep-
aratrix whenever their velocity becomes small enough near
the edges of the potential spike. These electrons are sensitive
to random fluctuations in the background potential which can
then push them through the separatrix. We should add that
the small outflux of trapped electrons is balanced over time
by a small influx of initially untrapped electrons which be-
come trapped.

3.3 Simulations with mobile ions

The effects of the ions on the stability of the electron hole
depend on their relative energy vs the potential energy of
the spike. Since the observed potential spikes move with a
velocity which is a sizeable fraction of the electron thermal
speed, the ions appear in the frame of the spike as a cold
beam impinging onto the solitary potential with considerable
kinetic energy. Specifically, their energy w; is 2 — 3 orders
of magnitude larger than that of a typical passing electron
(w ~ 1). Therefore, in energy terms, the potential spike rep-

x/Xg
Fig. 6. Potential structure in a large simulation box after 1000 steps
(wpt =100). (Bottom) Eleven contouss from 0.0 (dotted) to 1. Beware
the strechted aspect ratio. (Top) Three cuts at different y. Input paramieters:
ey /T =1.0, A/ X g =4.
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Fig. 7. Phase-space view of the electrons after 1000 steps (wet =100).
(Top) Electrons that were trapped at t = 0. (Bottom) Electrons that were
untrapped at ¢ = 0. The solid line shows the separatrix computed from the
current value of the potential. See discussion in text.
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resents only a small perturbation for the ions, which results
in a brief and weak interaction. The opposite case, where the
relative speed between the phase-space hole and the ions is
on the order of the ion-acoustic speed, resulting in a strong
interaction and a break-up of the electron hole into multiple
sub-holes, has been studied by Saeki and Genma (1998).

There is no single way to initially load the ions, and their
effect on the electron hole will depend upon which way one
chooses. The results presented here are based on a homoge-
neous density of ions and a drifting velocity distribution that
is function of the parallel energy, w; = %vz +e¢ with M the
ion mass. In the potential-free region, the ions drift relative
to the electron hole with an average speed V; and a velocity
spread v;. Their distribution as a function of the perpendicu-
lar velocities vy and v, is chosen to be a simple Maxwellian
with thermal spread v;.

As the ions flow .over the potential hump, they slightly
slow down on the upslope and accelerate on the downslope.
This creates a density ripple leading to a perturbation of the
electric field which acts upon the electron hole. We stress
that the phenomenon is transient and associated with the ini-
tial conditions. Still, it interestingly perturbs and tests the
stability of our constructed electron hole.

Fig. 8 displays five successive snapshots of the potential
at wet = 0,10, 20, 30, 40. Each panel includes three cuts at
different y positions as in the upper panel of Fig. 3. Clearly,
the main effect is a drift of the potential structure towards
the right. In this run, ions with mass ratio M/m = 100 and
velocity spread v; = 0.1 v, come from the right at a speed
Vr = —0.5 v.. If the same ions come instead from the left
boundary, the potential structure moves towards the left.

Let us analyse the process taking place. Since the ions
appear as a cold beam in the hole frame, one treats them
as fluid and, combining conservation of w; and continuity
equation, describes the perturbed ion density by

Oeni + VyOpni = — exp(—0.52%/A%). (15)

ey =«

ni————5

MYV, A?
Since n; has no spatial dependence initially, the advection
term can be neglected during early times. Second, because
we look for the perturbation §n;, we replace n; on the RHS
with ng and obtain
ey —=z 2, A2
MVrEexp(—-O.Sz /A (16)
The perturbation is dipolar in space with extrema about +A.
Ions gather on the upslope of the potential hump and dis-
perse on the downslope. The perturbed electric field associ-
ated with dn; is

dni(z,t) = no

SE(z,t) = wfvexp(—0.5 z?/A%)t amn

where w? is the ion plasma frequency. The field, which max-
imizes at ¢ = 0, has the sign of V, and thus pushes the
trapped electrons opposite to the incoming ions. As a re-
sult, the electron hole, which is supported by the trapped
electrons, starts drifting against the incoming ions. From a
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Fig. 8. Five successive snapshots of the potential structure in presence of
ions coming from the right (wet = 0,10,20,30,40). Input parameters:
ey/T. =08, A/ g =4, M/m = 100, V;. /v; = —0.5. The main effect
is a drift of the potential toward the incoming ions.
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Fig. 9. Snapshot of the distribution function at wet = 28 during run shown
in Fig 8. Compare with Fig 5 (case without ions) and note the asymmetry
as well as the slight offset of the minimum toward vz > 0. The trapped
electrons are perturbed by the transient, dipolar electric field caused by the
ions (see (17)).

macroscopic viewpoint it behaves as a positive structure with
a negative mass. One should add that no growth of the hole
{Korn and Schamel, 1995) is observed.

From a microscopic viewpoint one can find a signature of
the interaction in the simulation by looking at the electron
distribution functions recorded during the run. The snap-
shot displayed in Fig. 9 shows the asymmetry that devel-
ops in the distribution associated with the perturbed electron
hole. Compare the plot to the central panel of Fig. 5 (case
without ions) and note (with help of the background grid)
the slight offset of the distribution toward positive veloci-
ties. The offset is noticeable in the concave portion of the
curve, which pertains to the trapped electrons. We also no-
tice that the right-moving electrons, which are accelerated
by the perturbed electric field, have a lower density than the
left-moving electrons, which are slowed down. After a short
while, the peak of the drifting potential spike matches the
location of the enhanced ion density, hence the dipolar, per-
turbed, electric field disappears and the ions reach a state
where n; = no/[1 — ¢/V;?]*/2. The whole structure thus
appears to adjust to perturbations applied upon it and to be
remarkably resilient.

4 Conclusion

We have constructed a BGK electron hole that displays the
characteristics of the observed potentials and electron distri-
butions. The profile of the solitary potential, which follow-
ing the observations is a Gaussian with characteristic width
and amplitude, is self-consistent with a plausible distribution
function of electrons. The latter has two components. The
passing, weakly interacting electrons are taken from the ob-
servations while the trapped, strongly interacting electrons
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are deduced from Poisson equation. The expression for the
distribution function is explicit and exact. It is valid for any
amplitude of the potential and can be used in a particle-in-
cell code.

Though it supports a solitary potential pulse, the electron
hole is a nonlinear object different from a classic soliton.
By tagging the trapped electrons in our simulations, we have
demonstrated that it is an entity with an identity at the micro-
scopic level. The solitary potential is associated with a clump
of electrons trapped in a phase-space vortex and remaining
so, unlike the potential of a soliton which is a fluid pertur-
bation. Constructing the self-consistent distribution function
enabled us to investigate the parametric dependence between
amplitude and width. The existence curve indicates that am-
plitude and width must grow jointly, in contrast to a reverse
dependence for a standard soliton.

The observations of isolated, localized potential spikes on
several satellites indicate that the potential structures are sta-
ble over significant periods of time. In order to test the stabil-
ity of the analytically constructed BGK hole, we have loaded
it in a 2-D particle-in-cell simulation. The nonlinear struc-
ture is found to be very stable, in spite of the opening of
phase space to a second dimension. The ions, in the frame of
the hole, are incident and impinge on the solitary potential.
Their influence is minor with regard to the stability, as long
as their kinetic energy is large compared with the potential
amplitude. Hence, the fast-moving potential spikes that have
speeds on the order of the electron thermal velocity can be
stable over significant periods of time.
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