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Abstract. This paper presents developments of the Hamilto-
nian Approach to problems of fluid dynamics, and aiso con-
siders some specific applications of the general method to hy-
drodynamical models.

Nonlinear gauge transformations are found to result in are-
duction to a minimum number of degrees of freedom, i.e. the
numbet of pairs of canonically conjugated variables used in a
given hydrodynamical system. It is shown that any conserva-
tive hydrodynamic model with additional fields which are in
involution may be always reduced to the canonical Hamilto-
nian system with three degrees of freedom only. These gauge
transformations are associated with the law of helicity con-
servation, Constraintsimposed on the corresponding Clebsch
representation are determined for some particular cases, such
as, for example, when fluid motions develop in the absence
of helicity.

For a long time the process of the introduction of canonical
variables into hydrodynamics has remained more of an intu-
itive foresight than a logical finding. The special attention is
allocated Lo the problem of the elaboration of the correspond-
ing regular procedure.

The Hamiltonian Approach is applied to geophysical mo-
dels including incompressible (3D and 2D} fluid motion mo-
dels in curvilinear and lagrangian coordinates. The problems
of the canonical description of the Rossby waves on a rotat-
ing sphere and of the evolution of a system consisting of vV
singular vorfices are investigated.

1 Introduction

In the last several decades, the Hamiltonian approach (HA)
to description of fluid motions for fundamental hydrodynam-
ical models has been very intensively developed. Previously,
the field versions of the Hamiltonian approach were consid-
ered only in connection with the needs of quantum field the-
ory (see, for example, Dirac 1950, Bogoljubov and Shirkov
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1980). The important features of the Hamiltonian formalism
are its versatility and adaptability which manifest themselves
not only in the technigues of problem fornulation and solu-
tion, but also in the conceptual approach.

This paper presents developments of the HA! o problems
of fluid dynamics, and also considers specific applications of
the general method to hydrodynamical models.

The paper was motivated by the following questions: what
is the general structure of the resulting forces permitied by hy-
drodynamical models? What is the physical interpretation of
fields that could play roles of canonical variables? What are
the general requirements of the relations between canonical
variables and the Clebsch representation for momenturmn den-
sity?

It is shown in particular that the existence of the Clebsch
representation is not a privilege of only hydrodynamic sys-
temns for which the variational principle of least action is pos-
sible, butis a typical consequence of the construction of giobal
canonical variables for the description of any Hamiltonian sys-
tems with degenerated Poisson brackets.

In the present paper the Hamiltonian description is not ab-
solutely axiomatically constructed, but rather is directly dri-
ven from physically-based presurnptions about the type of evo
lution of hydrodynamical systems and their internal propet-
ties.

Nonlinear gauge transformations are found o resull in are-
duction to a minimum number of degrees of freedom, 1.e. the
number of pairs of canonically conjugated variables used in a
given hydrodynamical system, It is shown that any conserva-
tive hydrodynamic model with additional fields which are in
involution may be always reduced to the canonical Hamilto-
nian system with three degrees of freedom only. These gauge
transformations are associated with the law of helicity con-

1Below, discussing the Hamiftonian method or the Hamiltonian ap-
proach, we will imply the version defined by (13). The version (13) of the
Hamiltenian method of the description of dynamical phenomena occupies
a prominent place in modern theoretical physics and has proved itself to be
a powerful tool for investigations of various problems in a wide range of
applications.
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servation. Constraintsimposed on the corresponding Clebsch
representation are determined for some particular cases, such
as, for example, when fluid motions develop in the absence
of helicity.

For a long time the process of the introduction of canonical
variables into hydrodynamics has remained more of an intu-
ilive foresight than a logical finding. The special attention is
allocated to the problem of the elaboration of the correspond-
ing regular procedure,

The Hamiltonian Approach is applied to geophysical mo-
dels including incompressible (3D and 2D fluid motion mo-
dels in curvilinear and lagrangian coordinates. The problems
of the canonical description of the Rossby waves on a rotat-
ing sphere and of the evolution of a system consisting of N
singular vortices are investigated.

The content of this paper is determined by the authors’ in-
Lent, on one hand, (o present some original results, and, on the
other, to give an intact view on Lhe specifics of the subjcct in
an intelligible and relatively complete form,

2 Hamiltonian Approach for Hydrodynamical Systems
2.1 Background

Any conservative hydrodynamic model describing a fluid mo-
tion possesses two principal field attributes - hydrodynarmic
velocity v(x. {) and mass density p(x, (), which satisfy the
Euler equation and the continuity equation, respectively:

ﬁ'i+6‘j(vjm) = I, (D
f+ divipv) = 0. (2)

Herei = 1,2,3, u = &;u. The first equation (1) expresses
the law of change of the momentum density # = pv under
the influence of the resulting force F. The second equation
" (2) expresses the mass conservation law.

In hydrodynamic models of a broader class, in additiontov
and p there can appear a number of new physical fields s, (x, ¢)
(x = 1,2,.... N) describing the additional properties of the
medivm (e.g., magnelic, thermal, etc.) with corresponding
evolution equations

So+L(v, p, sz)=0. (3)

The additional field variables may have a scalar, (ensor or spi-
nor nature and their presence means that the model of contin-
uous medivm possesses intringic degrees of freedom,

We remind here some well-known types of hydrodynami-
cal equations that appear in fuid dynamics.

a) The system of equations for compressible barotropic fluid
1s given by the equations

v+ (v - Viv=—p 'Vp, €y
g+ div(pv) = (), (5)

and completed by the cquation of state p = p(p). Here the
force F[p] = —Vp.
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b} For the compressible (non-barotropic) fluid in the grav-
ity field of the potential y, we can write

v+ (v Viv=—pT'Vp - Vy, (6)
p+ div(pv) = 0, (7)
14 (v T)s; = 0. (8)

Here p is the pressure, the internal encrgy is a functional of
-density and entropy, so that p — p(p, s;), s is the entropy
per mass unit?. When the fluid flow is isentropic, 1.e., there
is no dissipation of any form, the evolution operator in (3) is
defined by the cxpression £(v, p, sx) = (v - V)s;. In this
tasc, we have A = 1 and the fluid motion is defined by a set
of five functions #, p, s| under the condition that the equa-
tion of state is fixed. In this case we obtain that F[p, 5;] =
—Vp—pVx.

¢) One can consider another widely known example - the
perfect MHD equations with the lagrangian field s, , and the
frozen-in® vector ficld B/p

v+(v-Viv=
= —p~'Vp— Vy + {(47p)"'[rot B, B], (9)
P+ div(pv) =0, (1M
§1 4+ (v -V)s; =0, ()
a4 v BB oovoo (12)
P PP

completed by the cquation of state p = p(p, 5;). Here the
resulting force has the form Fip, s, B] = —Vp - pVy +
(47)~*[rot B, B].

A list of similar examples can be continued.

The questions of (1) what is the general structure of F ad-
mitted by hydrodynamical models and (ii) what is the general
form of evelution equations (3) of the system arise immedi-
ately.

Let us remind some definitions.

The Hamiltonian structure of hydrodynamical models con-
sists of the hamniltonian functional given by the total energy
H and the functional Poisson bracket { , }. The Hamiltonian
systems evolve according to the law

§H
duy(x’y)’

= {u;, H} = /dx’l(".j[u; x, X'] (13)
where the Hamiltonian # of the system is the quantity func-
tionally depending on the fields w;.

Conscrvation of energy follows [rom the given formula-
tion, since {H, H}.

The Poisson bracket of quantities F and G given on a phase
space of the differentially - independent field variables u; (¢, x

2The function s, is a so-called Lagrangian invariant. By definition, the
Lagrangianinvariantis governed by the equation similar 1o (8). The physical
meaning of Lagrangian invariants is reduced to their advection by the fAow.
For an example of such invariants, the Entel invariant [ = p— ' Vs, rot v
(Ertel 1942) can be considered. This invariant is of great importance in geo-
physical hydrodynamics and dynamical meteorology.

1t is well known that the field rot v for incompressible fluids, B/ lor
MIID models of compressible fluid, the fields J., = u:"l (roive, L
{e/mq c)H] into the electron ¢ion) fluid, eze. arc frozen.
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i=1,2, ..., N is specified with the tensor field 2/ [u; x, x']
by the rule
&r . 6G
Gy = | dxdx’ e x, X 14
{F. G} f xdx M_(X)u [u; x x]()Uj(x’) 14

The notation I4/* [u; x, x'] means that the so-called Poisson
tensor /% is, generally speaking, not only a function of the
coordinates x and x’, but also a functional of the fields u;. The
substitution of F = u;(t.x), G = u;(t,x’) in (14) brings
about the relation

{slx), u; ()} = U

It follows from (15) that the Poisson tensor is given if a com-
plete set of the fundamental Poisson brackets {u;{x), u;(x')}
arc given. Using (15), we can rewrite (14) in the form

(15)

“lu; x, x'].

(), g3} 5.7

(%) i (x')

By definition, the Poisson brackets, (i), possess the property
of skew-symmetry

{u(%), u;{(x")} = —{u;{x"), wi(x)},

that is equivalent to the requircment of skew-symmetry for
the tensor field 24' , and, (ii), saiisfy the Jacobi identity

T = {wi(x), {u;(x), us (x")}} + cp. = 0.

{F, G} = /dxdx (16)

(n

(18)

Here the abbreviation c.p. denotes the terms derived from the
first term by a cyclic permutation of the indices and the argu-
ments.

Whenever we speak about the Hamiltonian structure of the
equations describing dynamics of a continuous (i.¢. infinite-
dimensional) system, we shall in essence imply that there are

specific forms of writing these equations. The canonical form
* of writing is the most familiar of all. In this case, a system is
described with an even number of equations

L0 L
= PiT =

dp; da; (19)

for two groups of field variables - the gencralized coordinates
¢1, ..., gn and the momenta pq, ..., py which are functions
ol time ¢ and space coordinate x. The variables ensuring such
a structure of equations are named canonical and the quan-
tity A under functional derivatives which depends funclion-
ally on those variables, is named the Hamiltonian.

Other versions of Hamiltonian systems arc also possible.
As example of systems with the odd number of fields one can
present the Korteweg-de Vries equation

Ju’

= {,

20

The canonical Hamiltonian formalism (19} corresponds to
the Poisson brackets of the following form:

Win o ] ={pi. pj} =0, {m, p }=di;d(x—x"). 2D
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In the second instance, the Hamiltonian structure is defined
by the Poisson brackels of another type

{u, u'} = 8,6(x — x'). 22)

Both examples are the simplest in respect to the fact that the
corresponding Poisson tensor 4*/ is functionally independent
of the field variables and, therefore, condition {18) is satisfied
automatically.

There are classes of nontrivial Hamiltonian systems with
SU fdu £ 0.

An example of a Hamiltonian system with the nontrivial
Poisson bracket

fwiwi} = P efMe? i fpw Brd{x — x'), (23)

where ¢*7* i3 the Levi-Chivittasymbol, is the equation (Amolc
1969)

(24)

. &
w=rol [w rot —Zé]
aw

This equation describes an evolution of the vorticity field & =
rot v (v is hydrodynamic velocity field) in a homogeneous
incompressible fluid.

For the Landau-Lifshitz equation (Lifshitz and Pitaevskii
1978)

oH )
n = —1, 25
n=[n, in 1, (25)
with (n?(x.#) = 1), the brackets arc determined by the ex-
pression
{ni, n}} = e npd{x — x'). (26)

The transformation (Faddeev 1976) from the vector field of
vorticity & to n—field

a = M gmr‘hn ' [(').;311, (“}7111, (27)

where 1 is a dimensional constant, maps equations (25) and
(24) one inle another and, thus, sets up one-10-one correspon-
dence between vortex and spin dynamics.

2.2 Resuliant of The Hydrodynamic Forces

What is the general structurc of the resulting forces Flp. s, .. |
permitted by hydrodynamical models?

From the point of view of the Hamiltonian formalism (HA),
the dynamics ol hydrodynamical systems is described in the
phase space of fields 7, p, 7. ..., s» and is determined by
the complete set of the Poisson brackets

{me. w5} {mi @' {7 si
S PRVNCN PR DN (28)

and by the Hamiltonian . Here /. j = 1.2.4; o.d =
1.2, ..., N

The general structure of H is taken {rom physical consid-
erations in the form

)

H=T+U= /dx—[—i—(l(p 1o 8N). (29)
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Here 7, U are the functionals representing kinetic and po-
tential energies?,

Keeping in mind the structure of the Hamiltonian (29), we
write the motion equations that describe evolution of the ficlds
£, 81, ..., Sy, 7 interms of the Poisson brackets

p= j dx'[ul {p. i} +

U vi.z , U ,
= [axleigoi nt) +
U v’ ./
7R A R el L (32)
T = /dx’[vfc{'n',-, )+
su v’ o U ,
+(3;)7—T){7T=,P} + E{m'sk}]' (33)

Here, as above, the prime denotes that field variables depend
on the space coordinate x* and the summation convention is
implied for repeated indices.

By comparing (31) with (2), it is easy 10 find that (31) re-
produces the continuity equation (2) if

{p Pt =1p. s} =0,
{p, m} = —8k(pd).

Here the symbol ¢ defines the Dirac-function: § = §(x —x’).

Using (35) and comparing the Euler equation (1) with thc
equation (33), we obtain the condition for the resultant of hy-
drodynamic forces

(34)
(35)

Fo=A{m U} +
+/dx’vk[{1r,—,7r,’;} — G (7)Y + B (m:d)], (36)

where

(o) = [dltn o) S im0 @D

Like all mechanical systems obey laws of classical mechan-
ics, hydrodynamical systems should satisfy the basic princi-
ples of hydrodynamics including Galileo’s relativity princi-
ple. In accordance with the latter principle the equations of
motion should be invariant with respect to space-time transla-
tions, spatial rotations, and changes to an arbitrarily-moving
coordinate frame,

*We note that in the relativistic casc we should take the [ollowing expres-
sion for the kinetic energy

TI7) = / dx pc[L + (#/pe)?]H12, (30)

where ¢ is the velocity of light. "The relation of hydrodynamie velocity and
momentum is given by the universal formula v = §7 /87, which leads to
relationship pv = 7 in the case of nonrelativistic fluid dynamics and to
pv = T[4+ {7/ 2c)?)~ 12 in the relativistic case.
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However, Galileo’s relativity principle does not fix all nec-
essary Poisson brackets, but rather merely defines more pre-
cisely their gencral structure and gives the zero-th order term
inio the brackets with the momentum:

{71',';, 775‘} =d0m + -
{7, snt = 8858, + ... (38)

‘Here dots denote the additional terms including the delta func-
tion derivatives of the first and higher orders .

Thus, the Hamiltonian description remains incomplete un-
til the Poisson brackets

{Trfl ”Tg‘}! {Tfi, 5:1}' {'SCY’ S,’ﬁ}

are fixed.

To solve this problem let us adopt a number of assumptions
regarding the physical character of the evolution of additional
fields and the hydrodynamic forces.

First, we consider the comparatively simple models with
additional fields s, evolving only due to hydrodynamic trans-
fer. In other words, if in (32) # = 0, then independently of
specifics of the functional ¢4 it must follow that 5, = 0. Ac-
cording to (32), such a statement implies that

151, s} =0. (39

Therefore, the fields describing the additional properties of
the medium cvolve according to the law

o= My = [ @i (o, ). (40)

Secondly, let us restrict the analysis (o the systems whose
resultant of the hydrodynamic forces ¥ is functionalty inde-
pendent of the velocity or the momentum®, ie. §F; /v, =
0. It can be easily shown that for such systems the bracket
{F;, p'} turns to zero. Taking account of relations (34), (35),
we obtain

LY

F o pfy =6 —. 41
On the other hand, using (36) we can calculate the same bra-
cket directly

{Fg',P’} =
= O [{me, mi} — 8{(mi.6) + B (mid)]. (42)

In the class of local Poisson brackets, the condition{41) is sat-
isfied if the expression between square brackets is zero. Thus,
for the hydrodynamic systems under consideration, the fol-
lowing relations take place

{me, m.} = 0i(m}, §) — Ok (m:d), (43)

Fi = {m, U). (44)
Thus, the first relation, (43), defines the Poisson bracket for
the momentum components and the second, (44), means that

the resultant of the hydrodynamic forces is delermined in full
by the functionall{, i.e. by the intrinsic properties of medium,

The case §F; /8u, # 0 will be considered below.
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Note that a good many traditional conservative models of
continuous media fall within the framework of the adopted
restrictions on the characier of the additional fields and the
forces.

2.3 Canonical Variables. Clebsch Representation for Hy-
drodynamic Momentum Dcensity

The comprehensive answer Lo the questions about the general
relation between canonical variables and the Clebsch repre-
sentation for momentum density, and about choice of Poigson
brackets {s,,,. 7, } may be obtained within the framework of
the procedure of constructing the canonical variables,

Let us assumc the possibility of the canonical description
for hydrodynamic systems determined by the Hamiltonian (29)
and the brackets (34), (35), (39), (43). In essence, there are
canonical variables — generalized coordinates ¢,, and gener-
alized momenta p,,, (n = 1, .., V), so that:

a) the following canonical conditions are held

{4, g} = {pmi, P} = 0,
{9i, pi} = dux 8 (x — x').

b) all physical fields #. p. s, may be expressed in terms of
qn, Pn and the equations of motion take the form of (19).

Maoreover, as variables p, sy, arc in involution and as there
is a certain freedom in a choice of the canonical variables g, ,
P, we can always proceed to a more convenient canonical
hasis in which the first & + 1 canonical coordinates are iden-
tified by the set of commutative physical variables

i=1,2,... N,

(45}

(46)

Such a choice considerably simplifies the problem since it es-
sentially reduces the problem to a search of the functional de-
pendence 7[q, p] expressing the hydrodynamic momentum
in terms of the canonical variables. For historical reasons (see,
for example, Clebsch 1859, Lamb 1932, Serrin 1959, Seliger
and Whitham 1968) this dependence is often called the Cleb-
sch representation for momentum density, and the canonical
variables gy, , p, are called the Clebsch potentials.

The choice of (46) indicates that only the first & + 1 gen-
eralized coordinates make physical sense. The others canoni-
cal variables are unphysical and arise in the Hamiltonian im-
plicitly through the intermediary of the dependence 7[g, p].
It is obvious that such a reformulation guarantees the gauge
invariance of the theory since the canonical transformations
which leave the physical quantitics invanant 7, p, s, do not
change the Hamiltonian 7. '

The relation (43) may be considered as the functional equa-
tion in which the bracket {=; , 7}, } is written in the canonical
basis ¢,,, pn according to the rule

qo = £, §: = 8y,

g s &
oy = [ eS0T Om Iy
{me. mi} fx(oq:;ép:; 5o 5a)

p (47
n

Let us now supposc the scalar or vector character of the

ficlds forming the canonical basis. In other words, we assume

that the original canonical basis 1/ is adirect sum of mutually-

orthogonal phase subspaces Vi, { = 0,1,2, ... . Each of these
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subspaces has its own independent canonical basis formed by
either a scalar or a vector pair of the canonically conjugated
ficid variables, so that in cvery subspace V; the equation (43)
has an independent solution 7 possessing the property

[r, 7"} =0, I £m. (48)

Such solutions, here and below called fundamental, satis{y
the superposition principle, it means that the general solution
of the equation (43} is derived by the formula

ﬁ:?-ﬁ‘.
i

Thus, suffice it 1o consider the fundamental solutions of two
types, namely, those that are realized on a scalar canonical
basis g , p, and those that are realized on a vector canonical
basis q. p.

Let us consider first the fundamental solution on the scalar
basis. We shall seek those solutions in the form

(49

T = @ik g Oxp + bix p Ox gy, (50)

where a;, bix are tensor constants, and the indices 7, & run
from 1 to 3.

Ansatz (50) can be justified in the following way. Let the
required dependence T[q , p] represent the power-type func-
tional that has orders of m, n and ! with respect to the vari-
ablcs ¢, p and the differential operator §. Let us express it
in the symbolic formuia # ~ ¢™p™d. Then, carrying out
the operations in accordance with (43), (47), we obtain the
power functional ¢~ p*"~15% on the left sidc of (43) and
¢ p 8+ onthe rightside of (43). Comparing the exponents,
we can find that m, n, { = 1.

In order to find the tensor constants a;i, b;;, we substitule
(50) in equation (47). If we compare the similar terms and
carry out the property calculations, we obtain the system of
equations. As the analysis shows ( see in morc detail (Gon-
charov and Paviov 1993)), the sclutions of this system have
a very sirnple form

aix = ik, bikx = (e — 1) du, (51)

where the constant ¢ takes only two values: O and 1.

Note that constants a;k, b;x can be chosen based on sym-
mctry. It follows from the invariance of the hydrodynamic
equations with respect to the spatial rotations of the coordi-
nate frame that the representation (50) must possess the samc
symmetry property. Obviously, the latter will be provided, if
a;x, by are isotropic tensors. From here, taking into account
that d;, is a unique isotropic tensor of the second order with
an accuracy to any scalar multiplier, we can casily reproduce
formulae (51).

Since in the case ¢ = 1 the motion equation for the canon-
ical variable ¢ coincides with the continuity equation (2). 1t
is convenient to rename the canonical variables. We shall as-
sume herethatg = p, p= gifc= l,andg =, p = A
for notation of alternative scalar fields if ¢ = (. Then, due to
the superposition principle, we may write down the Clebsch
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representation on the scalar sector of canonical basis in the
form

F=pVep+7". (52)

Here V¢ i3 the contribution stipulated by the field of density
(¢ = 1), and the summand

7 = —AVa (53)

is the fundamental solution for case ¢ = 0, and is the contri-
bution stipulated by the alternative scalar fields.

Let us consider now the fundamental solutions realized on
the vector canonical basis. We shall seek those solutions in
the form

i = Giknm Gn 8kpm + biknm P aﬁchs (54)

where ¢ixnm, biknm are temsor constants, the explicit form
of which is to be determined and indices ¢, k, m, n run from
1to 3.

In the case of the vector canonical basis, the ansatz (54) is
justified in the same manner as that (49) for the scalar basis.
Substitution of (54) in (46) leads to the system of the form

@iknm — Diknm = 6ikdnm, (55)
ikmp Ujpn — Qikpn Uimp +
+ Gikmn 45 — Qijmn 00 = 0. (56)

The invariance requirement for the representation (54) with
respect to rotations in the three dimensional space denotes thal
@iknm » Diknm must be the isotropic tensors of the fourth or-
der. By virtue of this, a;;,m, has representation of the general
form

Qiknm — Q 61:111 Jkn + bé_in ka + Céik l:ﬁkn'm- (57)

As the analysis shows (Goncharov and Pavlov 1993), three
versions of solutions for a and b are possible:

lNa=b6=0, 2)a=0,b6=1, Ja=-1,6=0. (58)

At the same time the constant ¢ remains free and from the
very beginning may be equated to zero without loss of gener-
ality and any restrictions. Such a possibility had been shown
by Goncharov and Pavlov (1993) to be a consequence of the
parametric arbitrariness in the choosing of & constant ¢, which
may be interpreted as the freedom in choosing the variables,
playing the role of canonical coordinates, with an accuracy 1o
a muluplier that is proportional to an arbitrary power of the
density p. Thus, we have three possible types of fundamental
solutions

ﬁ"l = —ay ka, (59)
72 = b, VS + Ok (bk S), (60)
7= —g; VI — 0ok J). (61)

Each momentum representation is defined on the correspond-
ing sector of the vector canonical basis: (a,I), (b, S), (g, J),
and is characterized by the choice of constants a, b.
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The general solution for the Clebsch representation that may
be construcied by the complete set of the fundamental solu-
tions (minimal Clebsch representation) obvigusly takes on the
form

T=pVe+a 47 470+ 7, (62)

where each type of fundarmental solutions is accounted for onls
once.

In order to find the equations that describe evolutions of so-
called commutative hydrodynamic fields o, I, S, J play-
ing the role of canonical coordinates, we calculate the mutual
Poisson brackets, which involve momentum (62), and find thai
the following evolution equations are admitted only

G+ (v-Vie=0, T4 (v-V)I=0,
S+ (v-VIS+(S - V)v+[S, rotv] =0,
J+(v- VI —(I-V)v=0. (63)

In the above analysis, for simplicity, we restrain ourselves
to the minimal sct of different types of canonical coordinates
one scalar field ¢ and three vector ficlds I, S, J, making
up together p the sector of canonical coordinates. To gener-
alize the results on an arbitrary number of fields it is enough
to consider that the variables o, I, S, J, and conjugate to
them A, a, b, g depend of not only x but also of discrete
indices, which number the fields of the same type.

The above-obtained results can be extended to the case of
more complicated hydrodynamic systems whose force resul-
tant I has a linear functional dependence of velocity v (Gon-
charov 1990; Goncharov and Pavlov 1993). Such a situation
can be realized in the presence of a magnetic field for plasma
motions (the Lorenz force) or for hydrodynamical motions in
rotating frames (the Coriolis force), i.e. F ~ [w, v].

With this purpose we slightly generalize the Clebsch rep-
resentation for momentum (62) by adding toit the term — pA

m=pie+mt +mt At —p A (64)

Here the vector field A is a function of x, ¢ and a functional
of the fields that play a rale of physical canonical coordinates.
(Note that A is assumed to possess the same intrinsic charac-
teristic of the medium as the potential energy ¢/. The choice
of this characteristic is determined by the medium model in
cach specific case.)

We shall follow the above-stated assumptions regarding the
Hamiltonian structure of H and the physical character of the
ficldse, I, S, J, 7 that compose together a natural phase spac
for traditional description of fluid dynamics.

If earlier in order to define the Clebsch representation (62)
we specified the character of hydrodynamic forces (i.c. as-
surned their independence of velocity), now we will address
the inverse problem, i.e. we will define the character of hy-
drodynamic forces from the given representation (64).

Above all, let us note that modification of the Clebsch rep-
resentation does not change the Poisson brackets for the fields
g, o, I, 8, T Therefore, their evolution is described by equa-
tions (2), (63) as before. However, this modification changes
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the Poisson bracket {m;, 7'y} that now takes the form

{71‘;', :‘T"k} = a’;(ﬂ"kd) - ak(ﬂ',&) +

+o'{A"x, mi} — plAi, ®i} +

+ p( 0 A — O Ag)d. (65)

Using this result, we find directly from Euler equation (1), the
expression for the hydredynamic force

Fy = p(lv, rot A, — Ag) +

" ] dx'w {Aly, i} + (s, U). (66)
If A 1s not dependent on the field o, p, I, S, Jandisa
function of x and ¢ only then we arrive at the force of Lorentz

type

Fi = pl[v, rot Al, — A;) + {m, U}, (67)

where A plays the role of the usual vector potential.

2.4 Physical Meaning of Commutative Fields Playing Role
of Canonical Coordinates

It is well known that in fluid dynamics many laws of con-
servation are formulated as assertions that the integral of a
field or a field combination over an arbitrary domain mov-
ing together with the fluid and, therefore, consisting of the
same fluid particles, remains constant in time, i.e., is invari-
ant. Such integrals arc called substantial in order to empha-
size the specificity of the integration domain.

There are four topologically-different domains of integra-
tion - a volume, a surface, a circuit and a point, which can be
consequently described by generalized theta functions,

Let us consider a closed volume moving with a fluid. This
volume can be characterized by the function f(x, t) posscss-
ing by the following propertics: f{x,¢) > 0, if point x is
inside the volume; f(x,1) < 0, if point x 1s outside the vol-
ume; and f(x,¢) = 0 on its surface. Besides, if this surface
is to move with fluid, as known (Serrin 1959), function | has
10 satisfy equation

fHiv-v)f=0. (68)

The substantial theta function, cerresponding to the vol-
ume under consideration, is defined as 6{f] = 0,if f < 0,
and #(f] = 1,if f > 0, where # is known as the Heaviside
function and has the property

28/8F = 6(F).

With due account of this property and (68), the substantial
theta function satisfies the equation

(69)

6+ (v -V)0=0 (70

If the theta function deiines a finite fluid volume, then the
closed surface bounding this volume is naturally defined as a
gradient of the theta function

V6 =48(f)V/. (1)
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The geometrical meaning of this formula consists of the
fact that the function §{ f) marks the surface f(x,¢) = 0, and
n = — Vf/IV f| specifies the outer normal to this surface.

Using the geometrical interpretation of the gradient of the
theta function, one can construct the quantity describing the
oriented closed fluid circuit

[V81, Vo] = 6{f1)6(f2)[V fr, Vfal,

where 61 3 = 6(f1,2) are the theta functions for two inter-
crossing fluid volumes, one of which must be finite. The ge-
ometrical sense of (72) lics in the fact that V8, and V&, give
two surface fi(x,1) = 0 and fo(x,t) = 0, the crossing of
which originates the circuit such that {V f1, V fo] is the tan-
gent vector to it.

The crossing of the fluid circuit and the surface is obviously
the point moving with fluid. By means of (71) and (72), we
can construct the quantity

(Ve - [V, Vis]) =
= 8(HS(F)(F)VS -V F1, V1)),

which expresses this fact mathematically.

Note that the formulae (71), (72) apply only to the closed
surfaces and circuits or of an infinite extent. In order 10 pro-
ducc the quantities describing the isolated elements of those
topological objects, the left sides of (71) and (72) are 10 be
multiplied by a theta function @3 that would cut out corre-
sponding elements from the original objects.

According to the type of integration domain - a volume, a
surface element, a circuit element or a point, the four types of
substantial integrals conserved in time may be constructed:

Cy = fdx D8,

Cg = fdxp(i'g(J Vﬁ?),

(72)

(73)

C3 = /dx@s(S - [vel, Vg?])!

C4 = / dx J(VH . [Vf?]] v{)z]) (74)
Here C; are some constants (¢ = 1,2, 3, 4), and the physical
meaning of fields D, o, J, S will be established below.

Differentiating (74) with respect to time, and using the pro-
perty of substantial theta functions (70) when integrating by
parts, one can determine that equalities (74) are equivalent 1o
the following equations:

D +div(vD) =0,

J+(v- MI-J - V)v=0,

S+ (v -V)S+(S-V)v+[S,rotv]=0,
g+ {v -V)e=10. (75)
The first of equations (75) describes the fields D thatevolve

like the field p.

The sccond equation describes the behavior of the vector
field J whose force lines arc frozen into the fluid. The mag-

netic field and the vorticity field are examples of the frozen
fields in an incompressible, inviscid and homogeneous fluid.
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The third equation, which is not so well known, describes
the vector fields S evolving along lagrangian trajectories sim-
ilar to oriented elements of fluid surface (Batchelor 1967). The
Lamb’s momentum density can exemplify the fields of the gi-
ven type in homogeneous ideal fluid (Kuzmin 1983).

The forth equation describes the law of conservation of the
scalar quantity o when it is conveyed by fluid particles along
their Lagrangian trajectorics. For this reason, such fields are
called the Lagrangian invariants. There exist two types of the
invarianis - scalar, &, and vector, L.

Thus, we can draw a conclusion that in addition to field
density p there exist other four kinds of the commutative fields
o, I, J, 8 whose physical meaning has been established above
and, which may be realized in the Hamiltonian systems under
consideration,

2.5 Invariance of Hydrodynamic Systems to Gauge Trans-
formations

As mentioned above, gauge symmetry or invariance of any
Hamiltonian theory implies a constancy of all its physical cha-
racteristics under canonical transformation and permits vari-
ations of only those canonical variables that have no physical
meaning. As applied to the Hamiltonian systems of the hy-
drodynamic type, gauge invariance of a Hamiltonian theory
is equivalent to the invariance of the Clcbsch representation
for momentum. This conclusion follows directly from the ob-
tained results, in accordance with the fact that the hydrody-
namic velocity v is a unique physical quantity depending on
the unphysical canonical variabies in the theory.

If all cancnical momenta are unphysical by construction,
the classification of the canonical coordinates as physical and
unphysical cannot occur unambiguously without additional
information, Namely, only those canonical coordinates are
physical which explicitly define the functional I/ - polential
energy of the hydrodynamic system. Clearly such a classifi-
cation of the canonical coordinates cannot be carried out with-
out a detailed specification of the medium model.

Let us first examine the gauge transformation that varies
solely the canonical momenta.

We write the suitable generating functional in the follow-
ing general form

f:—/dx(p¢+m~:+l-a+

where ¢ is a functional depending on the canonical coordi-
nates. Then, the new momenta ¢'. «/, a’, b’, g’ are defined
as

g G, 4G
d)—d’ 5;) K =K S?;)
. G o, G, Y
a'=a JI,bﬁb—as,gmg—ﬁ. (77

Using (77) we obtain that in the terms of new variables, the
Clebsch represcntation of hydrodynamical momentum takes
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the form
F= 7 R, G} F = Flomg . (78)

Obviously, the gauge invariance implying the equality 7 =
7' will take place if

{#, G} =0. (79)

The relation (79) is obtained from the condition that G is a
generator of gavge transformation and therefore is conserved
by virtue of the Noether theorem. To find G by directly solv-
ing the functional equation (79) is quite difficult cxcept for
some particular cases.

There is a morc judicious way to achicve this goal. In view
of the invariance of the quantity G , i.e. G = 0, it is logical to
seek this quantity in the form

G- fdqu», (80)

where on one hand @ is the scalar Lagrangian invariant and,
on the other hand, & is the sought functional of the fields p,
o, IS, 1

Thus, to construct the functional & it will be necessary to
develop a procedure for constructing Lagrangian invariants
that are functionally dependent on fields g, o, I, S, J. This
problem is a special case of the more general approach (Gav-
rilin and Zaslavskii 1970; Moissev e al. 1982: Kuzmin 1983)
that is stated below.

Let us consider four types of fields - density p, scalar La-
grangian invariant /, frozen field J and Lamb’s type field S.
We shall use primes or indices when necessary to distiaguish
a few named alike fields.

The aforesaid types of fields are connecied by the so-called
reciprocal relations which can be obtained in a few steps. On
the first step we have the most obvious rclations at our dis-
posal:

V=31, S=SI, I=II, 1" 1" .) (81)

These formulae are easily verified and imply that multipli-
cation on the Lagrangian invariant does not change the type
of fields and that an arbitrary function of Lagrangian invari-
ants is itself a Lagrangian invariant. Besides, due to quasi-
lincarity of the equations (75), the linear combination of the
same type fields gives rise (o a field of just the same type.

On the second step, one can make sure by a direct check
that there are relations

1
I:—V@M,J:%mﬂ,S:VL (82)
o

in which not only do the fields themselves come into play, but
$0 do their derivatives.
By substituting (81) in (82) we obtain

1 .
[=3.Vr, J’:;[S, v, (83
If weuse that 8" = VI, it follows

[=3.8, 1=2[8,8 J=21[vI vl (84)
P

™=
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Combining (82) - (84) we can obtain the following gener-
ation of the reciprocal relations

S =pl3, 3,

1
I=-S.[vI v,
P

1
= VI [V, v
P

(85)

In the generat case the role of @ can be played by an arbi-
trary function of any Lagrangian invariants that only may be
constructed by formulae (81) - (85). In the given situation,
when originally there are fields p, I, S, J, we can obtain
the following Lagrangian invariants of the first generation:

1

=38, [, ==8-[VL VL],
P

=(J-V, I' = %Vh-[VIg,VIg]. (86)

The Lagrangian invariants of the second generation can be
found by substituting the primed Lagrangian invariants of the
first generation for ), f», [a in (86). If this procedurc is
applied repeatedly one can obtain the Lagrangian invariants
of a higher and higher order in both fields p, o, I, S, J and
their derivatives,

The nse of gauge invariants is methodically advantageous
in quite a number of applications. These applications include,
forinstance, the nonlincar stability theory (Arnold 1969, Holm
et al. 1985, Abarbanel e al. 1986, McIntyre et f. 1987 yand
the rescarch of wave motions evolving on the background of
a given equilibrium flow regime, et al. (Salmon 1988).

Let us dwell in more detail on the application of the gauge
invariants for studying the motions in hydrodynamic systems
(Arnold 1969). We shall assume that the cquilibrium regime
is defined by the stationary distributions of velocity v, den-
sity p, as well as the remaining physical ficlds playing the
role of canonical coordinates. The characteristic propertly of
such systems is that the equilibrium values of the unphysical
canonical variables, for cxample, momenta, may cxhibit sec-
ular growth, i.¢. may possess a linear time dependence. Such
situation is clearly undesirable since it leads to certain tech-
nical difficulties arising when an expansion of the Hamilto-
nian in the perturbation theory serics around equilibrium is
performed.

Now we describe in brief the procedure by which one ¢an
exclude the effect of secular growth. For short we shall usce
purely nomenclative notation g;, p; for the fields making up
the canonical basis, Next we carry out a pointcanonical trans-
formation 1o new momenta p! (without changing the coordi-
nates ¢;) with the help of the generating functional

F = /dx qiph 4+ 1G[q} + Qly]. (87)

wherc G is a gauge invariant satisfying the relation (79). The
functional € is choscn such that

{7, Qe =T (88)
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Here and below index s marks the cquilibrium values of cor-
responding fields.

We can find the transformation formulac for the momenta
and the Hamiltonian:

§F ., 06 8Q

= — =pHt—+ —, 89)
P TR Y g (
and

H =H+G. (90)

At the same time, the Clebsch representation transforms to
the form

7 =7 {7 Q). ©1)

Thus it is easy to see from (88) - (91) that a correspond-
ing choice of the functional @ and the gauge invariant & can
ensure a transition to a new momenta which satisfies the con-
ditions p’, = 0, @, = 0 in the equilibrium state.

2.6 Reduction of Degrecs of Freedom

We can ntote that the fluid motion is defined if at any moment
we know the relation between the initial and the instantaneous
positions of the particles making up the fluid:

£ =Ex,1).

Coordinates 5 are called the Lagrangian coordinates and sa-
tisfy the equation

(92}

E4(v-V)E=0. (93)

This shows that the field Eﬁ(x t) is a vector Lagrangian invari-
ant convected with the fluid. Certain freedom in choosing the
coordinates £ can be climinated through the initial condition
£ (x t) = x, which unambiguously cxiracts the field 5 from
manifold of all the Lagrangian invariants.

It is obvious, that if we know the ficld £ (x t), 1.e.. thc mo-
tion of each Nuid particle, we have thereby exhaustive infor-
mation about the evolutions of all the hydrodynamic fields,
which evolve due to hydrodynamic transfer only. Consequentl
in principle the hydrodynamic fields g, o, I. 8, J must bere-
constructed uniquely by their own initial values and the field
£

Indeed, by using the reciprocal relations (81) - (85), we can
gstablish the following cqualities

p=p"VE - [VE V3], o4

=o%f), 1=1"(6), S=5¢ V& (95)
1 . ‘

J= %;:'OJPE““ (Ve V&, 96)

where o, o, 1%, 8, J U are functions of the Lagrangian

coordinate £ and have a physical meaning of the initial spatial
distributions, i.¢., are defined from the initial conditions

P = p(x,0), o = o(x,0),
I° = I(x,0), $” = S(x,0), J° = J(x,0). (97)
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The relations (94)-(96) allow us to reduce the number of de-
grees of freedom, i.e. to reduce the number of pairs of the
canonically conjugated variables used for the Hamiltonian de-
scription of hydrodynamic systems,

As can be shown (Goncharav 1990a: Goncharov and Pavloy
1993), the relations (94) - (96) can be presented as the resuit
of the point canonical transformation to only one canonical
coordinate £. In this case all others pairs of canonical vari-
ables

(o ), (o, k), (1, a), (5, b), (I, g)

are eliminated from description, and the Clebsch representa-
tion (62) takes the form

T=—XNVE (98)

In using (98) it is necessary to take into account that, in the
Hamiltonian

=3
H:/dxg;+u[p,cr,l,5,.]] (99)

cverywhere exceptin the fields p, o, I, S, J playing therole
of canonical coordmates we must substltute their expressions
(94) - (96) in terms of E

In principle, that implies that any conservative hydrody-
namic model with additional fields which are in involution
may be always reduced to the canonical Hamiltonian system
with three degrees of freedom. This result does not depend on
the number of ficlds of the same type in the original Hamil-
tonian system.

Besides the maximnal reduction when the number of degrees
of frecdom dwindles to three, we may carry out the partial re-
duction. In this case not all pairs of the canonical variables
(p, ), (o, &), (1, &), (S, b), (J, g) are climinated from
the description, but only some of them.

The reduction by means of the transformations (95), (96),
which do not change the density p, can be one such exam-
ple. Asaresult, we can eliminate all the fields playing the role
of the canonical coordinates from the description, except for
IR 5 In this case the corresponding Clebsch representation
takes on the form

=pVe - V. (100)

The Clebsch representation in the form (100) proved 1o be
preferable in studying the gauge symmetrics of a more gen-
eral type than those which were considered in Section 2.5.
The appearance of such symmetries should bc expected in the
case when it turned out after the transformations (95), (96)
that { - the potential part of Haxmltoman does not depend
on all or some components of the hcld£ This mcans that the
corresponding components f are nonphysical. Thus, it opens
up the possibility to carry out the additional gauge transfor-
mations varying not only the canonical momenta ¢, A;, but
also the coordinates £;.

Analogousto Section 2.5, the corresponding generaling func-

tional can be presented in the form

= [axlpo+re) +6 6= [axpe, o
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where <';'ﬂ’ is a new coordinate and < is a function of all La-
grangian invariants possible for given model.
The gauge transformation is performed by the formulae

, i®
& =¢; —/dxﬂd—)\i,

od
Py fdxo SR
K= A /xp&;_i,

d
"'=p— — [ dxp® 102
Al > / x p®, (102)
where ', A] are new momenta,
Let all the components £, (i = 1,2, 3) be nonphysical,
ie 86788 = 0.
In this case,

65; / ey e =

Consequently, the quantities p; = A;/p have the meaning of
Lagrangian invariants as well as £;. In the absence of fields
of S - and J - types, one of the Lagrangian invariants gen-
erated by way of recursive employment of the formula (85),
in which the fields &;, p; are used as a starting point, has the
form

g
b = ;piv,uk VEk, V&,

A= —V(xv). (103)

(104)

where ¢ 15 some constant with a corresponding dimension.

By virtue of the Noether’s theorem, the invariance under
transformation (102) implies that the generator of this trans-
formation, i.e. integral
G = / dxpd = / dx j; Vg - [VE,, VE] (105)
is invariant of the motion.

Using the Clebsch representation we can transform the in-
tegral helicity
G=¢ / dx(v - rotv), (106)
to the form of Eq. 105. The topological meaning of the inte-
gral helicity has been repeatedly discussed in literature (e.g.,
Moffatt 1969, 1978, 1990).

The gauge transformations corresponding (o the law of he-

Heity conservation can be written using formula (102) in the
explicit form

& = &+ —
A;:

2z

P [ng, V&} v}ika

Ai + 26 [V, V] - Vi,
2e -

¢ = - Fﬂi (V& V& - Vi

It can be casily proven that these transformations, in spite
of their complex character, do not change the hydrodynamic
momentum, i.e.,

#p, o, X E = Flp, ¢, X, &),
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Let us now answer the question what kind of restrictions
are imposed on the class of flows and, therefore, on the Cleb-
sch representation, under the requirement of the helicity ab-
sence G = 0. In this case, it follows from (105) that

,u._;V,uk . [ka, V&] =0. (107)

To satisfy this condition, the following relation is an obvious
necessary and sufficient condition
X=19¢, (108)
where n is a scalar function of x, §.

Relation (108) can be regarded as a point canonical trans-
formation to the new momentum 7 with the generating func-
tional

i
F:§/dxm§2.

Such a transformation allows us to go from the vector pair of

the canonically conjugated variables £, A to a scalar pair ¢, 9,

where the new canonical variable ¢ is determined as
oF 1o

= I 3¢

Substituting (108) in (100) and taking account of (110), we

find a modification of the Clebsch representation

7= pVe =V,

(109)

(110

(111)

which corresponds to the flow with zero helicity. It is impor-
tant to note that within the scope of the representation (111)
amore general class of flows can be described only at the cost
of using the multivalued Clebsch potentials (Zakharov and Kuz-
netsov 1982, Kuznetsov and Mikhailov 1980).

3 Hamiltonian Approach: Applications to Fluid Motions

Let us turn to some applications of the general ideas presented
above. This section is motivated by the following points:

1) The development of the theery would remain incomplete
if no practical application of the theoretical analysis were gi-
ven. As one of the important examples we consider a geo-
physical flow of incompressible fluid. Such a model is of spe-
cial interest to atmospheric and planetary physicists, meteo-
rologists, and specialists in fluid dynamics.

2) The questions regarding how the Hamiltonian locks and
what is the structure of the canonical equations in concrete
situalions are noi as trivial as they may appear at first glance.
Indeed they must be addressed at the very beginning of the
analysis of any practical application.

3) Another motivating point is that the necessity of using
the approximate analytical or numerical methods imposes spe-
cial requirements on the structure of the Poisson bracket. It
is evident that such methods are merely realized in the frame-
work of the Hamilionian (canonical) formulation with the Pois-
son tensor independent of field variables. In this case, there
is really the sole object for approximation - the Hamiltonian,
and corresponding calculations, which, as a rule, could have
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a cumbersome, recurrent character, are not replicated accord-
ing o the number of equations. It also should be kept in mind
that in using the approximation methods, a formal application
of finite-difference methods to systems with Poisson brack-
ets depending on ficlds (i.e. in non canonical form) can lead
to equations which are not conservative in contrast to initial
cquations. A similar attempt in hydrodynamics was the in-
troduction of 3D dimensional "vortons™ (E. Novikov 1983),
which by analogy with 2D dimensional point vortices would
serve as basic elements in constructing finite-dimensional mo-
dels describing 3D dimensional vortex flows in an ideal fluid.

In all such cases the loss of conservativity is easily explai-
ned if we call attention to the fact that the violation of the Ja-
coby property (18) is made possible, ¢.g., after using the finitc
difference approximations.

This remark is of particular significance because theoreti-
cal and computing physics widely uses discrete models with
adequate corresponding continuous analogies. In this light
the canonical formulation should be considered as one of most
mecthodically developed version of the Hamiltonian formal-
ism not only corresponding to the requirement of the structure
simplicity, but also possessing standard approaches and tools
10 solve various hydrodynamical (geophysical) problems.

3.1 Hamiltonians and Canonical Variables for Incompress-
ible Fluid Flows

We consider here incompressible stratified fluid in the grav-
ity field of potential y = gz, characterized in equilibrium by
vertical profiles of horizontal velocity v, = u(z) and density
pe = po(2). Then the integral of the total energy, and corre-
spondingly, Hamiltonian, is defined as

;rz
?{:\/dx(_+l)’
5, T PX

and the Clebsh representation for the momentum 7 is deter-
mined by the expression

(112)

T= pV¢,0+‘.’?1 = pV — V&

Here &; are the Lagrangian coordinates identifying the posi-
tions of fluid particles.

In the case of incompressible fluid, i.e. div v = 0, the den-
sity p is also a Lagrangian variable and it may be written:

pl€) = polz = €s). (113)

If we consider (113) as a canonical transformation, where
p is a function of &3, it appears that (113) describes a point
transformation, which simply redefincs momentum Az ¢

(114}

not changing other canonical variables.

As aresult, by introducing new variable ® = py and omit-
ting the prime in the new momentum A3, we lead Clebsh trans-
formation to the form

T=vVe - \VE;. (115)
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It should be noted that although the variable ® stays for-
mally in the description it is no longer a canonical variable, as
the variable p has lost its meaning as an independent canonic
coordinate. The presence of such variable ® indicates the ex-
istence of the connection, which cab be explicitly formulated
as the incompressibility condition
oH =divv = div (

dg

Expressing ¢ from (116) in terms of &; and \;, we may cx-
clude ® from the description. Appearance of this kind of pro-
blems (possibly complemented by corresponding boundary
conditions)is a typical in constructing the canonical variables
for different models of incompressible fluid (see Goncharov
and Pavlov and refs. therein).

If we know the equilibrium values of the physical fields,
which describe the incompressible fluid in the state of equilib-
rium, then from the canonical equations we can find the equi-
librium values for corresponding fields:

Live - ave)) =0 (116)

{;:X—*Iu,

X = —pUu*I‘J4(6pU)n, (117)
Az
u? i u?®  dpg :
Q’s—t(pg?-—/n dz(gz+?)(—£)) (118)

Here n 1s a unit vertical vector, n = (0, 0, 1).

The canonical transformation to new variables f’, X‘, sat-
isfying the conditions & = X' = 0 in equilibrium state, is re-
alized according to the standard scheme with the help of the
generating functional;

T:fdx)\i§i+tg+‘2,

where

(a Ve 2
= faxte [ s lny B
E)z 2p

—/ dx(pu - (€ — %)+ x - A).(120)

;2
— Ny

)(119)

Note that the density p 1s anywhere considered as a function
of &3, determined by (113), and pg is a function of 2.

In the new canonical variables the Hamiltonian and Clebsh
representation are transformed as

H=H+G=
7 ) R
= [ax(E - pery [ amie) -
0
)—\"'— B YAY:
2p
T=pu+ Ve - X — pf!Vu, — A VE (122)

where the variable $', which appcared as the resolt of combi-
nation of gradient terms, may be excluded by the incompress-
ibility condition

1 Mo AVE
div (V‘I") = div (E:Vui + M) (123
2 p

Goncharov and Pavlov: Hamiltonian approach to geophysical flows

Let us consider now several cases very important in prac-
tice, The simplest one, w = const, which indicates the ab-
sence of velocity shear in equilibrium, is analyzed absolutely
in the same manner. In the result, for the model of incom-
pressible fluid there remains only one pair of canonically con-
jugated variables (3, A4), and the expressions (121} - (123)
become more simple:

72 fats
H = fdx % —pg£é+g/ dz po(2) ], (124)
F= Ve - Mn- Ve, (125
Y !
div (1va) = din (BB XVE ) g
g

It should be noted that the presented Harmiltonian formula-
tion of the dynamics of incompressible inhomogeneous fluid
differs from the sirnilar formulations, developed in some pub-
lications, by the chooesing of much more convenient canoni-
cal variables, The transformation from one to another is con-
nected with the point canonical transformation where £4 is ex-
pressed via the function p. Such a description in terms of &5
appears to be more adequate and has an advantage for the mo-
dels with non-monotonous profile po (z), because in the latter
case the inversc function to p = po(&3) is not unique. Such
a profile of density may be meaningful for the models with
stratification in the plane perpendicular 1o the gravity vector,
or for thc models with no gravity at all.

Let us consider the Hamiltonan formulation of the incom-
pressible inhomogeneous fluid motion with a velocity shear,
i e. with the constant vector characteristics e = u/|u|, where

= |u(z)|. Then, we come to the conclusion that the mo-
tion is described by already two pairs of canonical variables
(&5, AL) and (£, A), where the latter are defined by

A= ea A
:%/dx({’-n))\:(?-e}.

Here o = 1, 2and A = (M} + A2)'/2. In terms of these
canonical variables the Hamiltonian and the Clebsh transfor-
mations for the momentum are reformulated as follows:

(127

2
”H:/dX[%—pyéé+

A - pu)?
+q/ dz po(z) —(—2;)—)], (128)
T=pu+Ve —Ae — Ajn -
—pEVu — AVE — ALVES, (129)

where ¢ is determined from the incompressibility equation

div (l V') = div {(EVu+ — {)\e +
14

+An 4+ AVE+ ,\gvgg)_ (130)

The formulation (128)-(130) becomes more simple in the
homogeneous fluid approximation, i.c. p = const. In this
case there remains only one pair of canonical variables {£, A)
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in the description of the fluid dynamics. All others are ex-
cluded due to the relation A5 = 0, which follows from the
lagrangetivity of the variable A% and the condition A3, = 0.
Finally, assuming p = 1, we obtain the following result

1 .
H= 3 / dx (ﬂ'2 +{A— u)z) , (131)
T=V® —(A—u)e—EVu — AVE, (132)
AD = div (Vu+ de + AVE). (133

For the 2-dimensional motions in the (2, z)-plane with the
background z-stratified flow u = {u(z), 0, 0), one may re-
structure the deseription (131)-(133) by introducing the sircam
function ¢, defined as
T o—u= -y, wy = . (134)
7 and ' may be excloded from considcration by the use of
the stream function 1. The result is

H = l /da: dz (—qf:Atj) TAT 4 QU,\(%E) , {135

2

A = JA —u'E+ T, N, (136)
where v = dau, and Jacobian J(£, A) is determined as
J(&, A) = (&) (Fs)) — (B:€) (G1A) . (137)

The equations for such a model obtain sufficiently simple
form

5

€ = 5—? = —udE = A+ + (£, N, {138)
5

G\ = _% = A+ u' O+ J (0. (139)

Directly, by differentiating with respect to ¢ the Clebsch trans-
formation for the stream function (136), it is easy 1o sec that
the system of canonical equations (138),(139) is equivalent to
the traditional vortex equation
a4+ J (¥, ) =10, (140)
where the absolute vortex {2 = AW and the total stream func-
tion ¥ are related by

‘I':'t;’)-}-f dzu, Q=Avp+u. (141)

In conclusion let us note that when «” = 0 there appears a
particular class of flows which is characterized by partially-
linear velocity profile, or, in other words, partially-constant
profile of vorticity . The specificity of such flows, called
tayered (Gossard and Hooke 1975), is that the description of
fluid dynamics may be narrowed (due to condition Ay = (0 to
the description of the motion of the inner boundaries, where
the vorticity €2 = «’ has discontinuity. Then, the corrcspond-
ing equations of motion of the boundaries (equations of con-
tour dynamics) may be formulated in the Hamiltonian form,
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3.2 Hamilionian Description in Curvilinear Coordinates

When the basic relations of Hamiltonian formalism in hydro-
dynamics are being derived and discussed, it is sufficient to
limit our consideration by operating within a Cartesian co-
ordinate system. When physical problems with certain types
of symmetry of hydrodynamical motions are considered, it 15
convenicnt to use corresponding systems of curve-linear spa-
tial coordinates. Thus, a method which allows us to transfer
the Hamiltonian description in Cartesian coordinates to the
Hamiltonian description in general curvilinear coordinates has
to be shown.
Consider continuous transformation

x = x((,1), (142)

which generally depends on time ¢ and describes transforma-
tion from Cartesian coordinates x = (z!, «2, %) to curvi-
linear coordinates E = (¢!, ¢%, ¢%). Itis known that from
the point of view of geometry, properties of space connecied
with curvilinear coordinates are characterized by the metric
tensor

0x dx
= — =, 143
Yik = Gr7 " Gk (143)
or the countervariani (ensor
. 8(: Bck
ik — e B 144
g ox Ox (144)

Taking into account transformation (142), in new curvilin-
car coordinates £ the Clebsch transformation for the momen-
tum may be rewritten as

_o¢

7= = (pBee - MORE).

145,
. (145)

Here all field variables acting as Clebsh potentials are func-
tions of ¢, ¢ and correspondingly 8, = 9/8¢* is a differen-
tiating operator, it is a partial derivative with respect to the
coordinate ¢*.

If we assign

pe = g2 (pBs — MOK(Y),

where g is the determinant of the metric tensor g.5, the equa-
tion (145) may be rewritten in the more compact manner

(146)

k
— Dk- (147

The obtained result allows us to rearrange the Kinetic part
of the hydrodynamical hamiltonian in the following form

1 21 o .
5 / dx T =< / dC ("% p) " 9" pips.
2 o P

In the derivation of {148) we used, besides equation (147), the
fact known from tensor analysis that in transformation (142)
the volume element is transformed to

(148)

dx = g"2dct det de. (149)
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Also, equation (149) indicates that the quantity ¢'/%p has a
meaning of density in the curvilinear coordinates, In fact, if
an element of liquid mass dm in x-coordinates has volume
dx and corresponding density dm/dx = p, in ¢-coordinates,
taking the volume d¢, it will have a density of g1/2p. Tak-
ing this into account and comparing left- and right-hand sides
of equation (148), we may conclude that p; are the covariant
components of hydrodynamical momenium in the local basis
of curvilinear coordinates.

It should be noted that where in Cartesian coordinates there
existsa very simple relation between hydrodynamical momen-
tum and velocity, in curvilinear non-stationary coordinates this
relation is essentially modified.

Using the invariant definition of a hydrodynamical velocity

o
dt’
which has a meaning for any coordinate systcms, we may de-
lermine so-called countervariant components of the velocity
u* in a curvilinear coordinale system C.
Assuming that in (150) ¢* is related to x and ¢ by the trans-
formation, reversed to (142), we may find
ack
C + Bx 5
where v = dx/d{ is a Hamiltonian velocity in Cartesian ¢o-
ordinates.
Finally, taking into account that v = 7/p and (147), we
obtain
dek ki
u* = L =kt g Pi-
dt gl /2 P

(150)

(151)

(152)

This relation together with (148) allows us to express the hy-
drodynamical hamiltonian % in the form

"= [

Itis known that while transforming from Cartesian to curvi-
linear coordinates the canonical basis is not conserved. Hence,
it can be easily recalculated with the use of point canonical
transformation.

Let us define new canonical variables ¢* and £*' by ex-
pressing each of them only as follows

~ e + UL (153)

= /dxgoﬁ(x-— X(Ea t))l

¢! = fdxg‘a(x_x(c“, t)). (154)
This means only a simple variable transformation.

Taking into account the fact that  and £ are of different
types { ¢ is a canonical momentumn, £ are canonical coordi-
nates in a Cartestan system), we may establish that the corre-
sponding generating functional has the form

F = fdxdf(pgo

"= NEEx — x(C 1)), (155)
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As aresult, all other canonical variables, conjugates to ¢* and
£*, and the new hamiltonian of the hydrodynamical system
may be found in a standard manner as

§F 8F

p e a'Pp, A = 5 =g'/?p. (156)
!
Here x = x({, 1), and
1 .
H =H+F= §]dC(uk+Ck)Pk +U. (157)

Here, in terms of canonical variables (p*, ¢*), (&, A*!) for
the vector of hydrodynamical velocity and momentum ¢on-
vector there are the following transformations which are gen-
eralizations of the Clebsch transformations in curvilinear co-
ordinates

gik

uf = ¢t P pi= P8 — Ar9E.

(158)

Besides a general theoretical interest, such a covariant for-
mulation of Hamiltontan method of description of (156)-(158)
has a practical meaning. The set of problems, for which this
formulation appears to be very useful, is broad. As an exam-
ple we may mention problems conmected with the studying
of fluid motions developing on the basic (main) flow. Such
motions are usually considered as perturbations on the basic
flow and are convenient to be studied in the moving system
of coordinates, "frozen” in the fluid in such a way thatin each
point in the steady state the fluid is locally in rest. The [atter
circurnstance determines the following choice of curvilinear
coordinates:

¢ = Cix, 1),

where ¢! are lagrangian coordinates of the fluid parcels in a
steady state.

(159)

3.3 Canonical Hamiltonian Description in Lagrangian Co-
ordinates

Let us now formulate a canonical Hamiltonian description in
lagrangian coordinates. The mathematical specifics of such
a transition is that transition (142) represents now the law of
motion of the fluid. This means that the function x(g t) de-
termines a mutually unique continuous image, which corre-
sponding to the equations of motion, transports each parcel
of fluid from a certain location ¢, where it was initially, to an-
other location x where it will be at moment ?.

The transformation from canonical variables (p, ) and
(A, &, in terms of which the Hamiltonian description in
Cartesian coordinates is formulated, to the basis where the
canonical variableis x(gr, t) may be performed as point trans-
formation with the generating functional
F= /dx" (0 — N EYY, (160)
where prime in the field variable means dependence on the
primed argument x’. Here the components of a new canontical
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momentum, conjugated to %, may be found according to the
formula;

Bty = (161)

da*(C. 1)

It should be kept in mind that when operating §/z* with
respect to functional (160) the old canonical variables 5/ and
A; are considered to be fixed functions, so only the field vari-
ables " and E"’ vary with z* ((f', t). As a resuit, formula (161)
may be rewritten as

a9 iyt ‘590(’(’) ! 6£t(x’)
Bi(¢) = /dx (p ok Al Jajk((,?) ).

Here, variational derivatives should be interpreted as the ex-
istence of functional dependence of ' and £ ¥’ which occurs
because the coordinate x” of these fields is considered as the
result of image ¢’ — x' according to (142),i.e.

x' = x(g?’, t).

(162)

(163)

For any field f{x'), the argument x’ which satisfies condi-
tions (163), we will have

6f) _ (@) _ O s g 164
Taking into account (164),(149), we may find that
Bie({) = g'mi(x = x(C. ). (165)

Under Hamiltonian description of hydrodynarnical systems
in terms of &* (f .1}, A (C, %), which, evidently, have adirect
meaning of physical coordinate and momentum of the fluid
parcel, there is an obvious analogy between the fluid and a
systemn of discrelc particles with the only difference being that
the role of the counting index is played by the continuous pa-
rameter ¢.

In conclusion, let us present an expression for the Hamilto-
nian and the equation of motion. Taking inlo account that the
generating functional (160) (with fixed canonical variables)
does not depend on time (&;F = 0), we oblain

* 1 ","33

2
where p* is the density of the fluid in lagrangian coordinates.
Asithas been shown (Serrin 1959, Landau and Lifshitz 1987),
p* does not depend on time and is a function of only a la-
grangian variable .

The equations of motion obviously have the form

PRI PR I
e 5,81 - o 51’;’ B (5‘:1"qL

, Bi=— (167)
3.4 2-Dimensional Models of Incompressible Fluid. Canon-
ical Equations for Rossby Waves on 2 Rotating Sphere

2-dimensional hydrodynamics studics a special class of mo-
tions, representing itself a 3-dimensional motion of a fluid stra-
tified into motionless (stationary), non-crossing surfaces which

uf = g7 23, T,
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fix the motion of the particles. A pai particular case of such
motions is, for example, flat, or spherical, or axis-symmetric
moiions. Depending on the geometry of the 2-dimensional
motion of fluid it is natural to study itin a corresponding sys-
tem of curvilinear orthogonal coordinates ¢!, ¢2, ¢® which pos
sesses the following properties. The coordinate lines ¢* are
orthogonal to the fluid surfaces {* = const in such a way that
¢3 plays the role of a continuous parameter identifying these
surfaces. Other coordinates ¢* and ¢? form on each such sur-
face a system of curvilinear orthogonal coordinates which de-
scribe the motion of the fluid. The metric tensor ¢;. , charac-
terizing geometrical properties of space connected with this
system of coordinates, has a diagonal form with components
911, g22, ¢33 and determinant ¢ = g;;922¢33 DOt equal 1o
7e10.

Based on the results from the previous section, the initial
rules of the hamiltonian description of 2-dimensional hydro-
dynamics in such a coordinate system may be written as

= %ijIdCQuO‘pa +U[p],

o = p*aoﬂp* _ Agaag*ﬁ

where p,, and w* are correspondingly the components of the
covector of hydrodynamical momentum and vector of hydro-
dynamical velocity, which are related by

H (168)

(169)

Pa = P gapts®, (p,€%) , (A, €9)

are canonically conjugated pairs of variables, Greek indexes
of vectors and tensors have the values o, 7 = 1, 2.

In the frame of description (168),(169) the model of incom-
pressible inhomogeneous fluid is realized under the ¢condition
p = p(¢?), i.e. if fluid surfaces are surfaces of equal density.
In this case, similar to the case of flai models, the potential
part of the hamiltonian is excluded because §i4 = 0. The pa-
rameter * may be excluded via the incompressibility equa-
1on

D (gllguﬁ) =0.

Condition (170) allows us to introduce a stream function ¥

(170)

(171)

where £ is an antisymmetrical unit tensor of second order.
Using equation (171), the hamiltonian # may be rearranged

as
H = _g /dcl de O gt/ g, (172)
Q=g 2299, up = AT, (173)

Here the quantity €2 is a generalized vortex on a non-flat 2-
dimensional flow, wz are covariant components of the hydro-
dynamical velocily, ug = ggo u™, A is a 2-dimensional op-
erator similar to the Laplace operator:

A =g V% (B1g20g7 V201 + Bugrng™00a) (174)
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Notice that density g, which is a fixed function of {3, may be
excluded from the description by using the canonical trans-
formation

u_/\t/pacr_ *a!rH:%*/p_

Taking this comment, (173)and (169) into account, we may
formulate the Hamiltonian description on the canonical basic

£%, A

H= ——/dg d¢? gt/ (175)
Q=AW =g V278, g712)) (176)
J(a, b) = (1 a) B b — (Bra) B b. Q77

Here J{a, ) is aJacobian of two functions, and relation (176)
has a dual meaning. On one hand, it establishes a correspon-
dence between ¥ and €2, and on the other hand, it presents
Clebsh transform for 2 by expressing a voriex field viacanon-
ical variables.

It is casy to see directly that the canonical equations of 2-
dimensional hydrodynamics

oH
8 _ — —1/° B
3¢ =g = JE7, ¥),
H _ .
BAs = ~ 5 = = J(T, g712)) (178)

are equivalent to the vortex evolution equation for nonflat 2D
motion of incompressible fluid

8+ g™ V2I(E, Q) = 0. (179)

‘We may show that (179) which is written in terms of vortic-
ity represents hamiltonian, but not canonical system, which
evolves in phase space of only one field variable {2 and is de-
termined by Poisson bracket {2, £'}. We can wrile

dtQ = {Q? ’H} -
/d*l’dcz’glﬂ’qﬂ{g, '}

The Poisson bracket may be easily calculated, as we know
the Clebsh transformation for the vortex (176):

{Q, QY=g (g7 2% - ), Q). (181)

As an illustration let vs use the results for canonical ha-
miltonian deseription of fluid motions (for example, Rossby
waves) on a rotating with angular velocity w sphere. In this
case, due to the symmetry of the problem, it is natural to use
a spherical coordinate system ! = 8, (% = ¢, 2 = 7
assuming that r is the radius of the sphere, and 6 and ¢ are
correspondingly latitude and longitude.

A solid body rotation of a fluid with the angular velocity w
may be presented as a flow where lagrangian coordinates of
fluid parcels change according to the law

= =t

where u{ are the components of cquilibrium velocity of the
flow and have the values ! = 0, u? = w. The correspond-
ing equilibrium values of other variables which determine the

(180

(182)
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dynamics may be found from the conditions of equilibrium
similar to the way it was done for flat models. In the result
we have

A =0, doy = —rtw sin? 4,
(183)

Due to lagrangevity of variable A; it follows from the con-
dition Ay, = 0 that Ay = 0. Thus, the pair (¢!, A;) may be
excluded from the Hamiltonian description of the considered
model. ‘

In order to describe a flow of a fiuid as perturbations on a
stationary flow which simulates a solid body rotation of the
sphere, first, following the developed method, transfer 1o the
corresponding (rotating) coordinaie system

o =¢ - wt, (184)
and, second, reformulatc the description in terms of variables
C=¢T =2 A= 20— A,

Pp=U—-¥,, Ad=0-1,, (185)
which cbviously mean the fluctuations from the equilibrium
values,

Because the Jacobian of transformation (182) is equal to
one, the canonical variables (€, A) will remain the same. The

time-dependence of the transformation will modify only the
hamiltonian. In particular, according to (157) we have

U, = —rPw cost, Q, = 2w cosl.

H =H —wr /d’l‘)dq‘) sin? 8 8,v =

= w—/dé’da‘)' H{AY), (186)
3
Ay = qlf’ 2w cos b cif -
i 2
o 07N+ (g7, (187)
where ¢*/? = r? sind and
1 /& L, O
= - (% san% +sin" 4 3(&’2)
A=glita, (188)

The canonical equations of motion in this case will have the
form
oH

OhE = = T

Y g, ),

atl
A = —E

g*l/'A‘A)

_ "1/2

i C
5 (189)

! ‘)'fj)
= g% cosfor + J (1
=y w cos - S,
4 e v

and are fully equivalent to the equation

A#J = —2w sIin g g;fl" -+ J(g_l/QA’;[}’ 'd)}
which is used for the analysis of planetary nondivergent Rossb
WHVES.

(150}

(191)
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3.5 Evolution Equations for a System Consisting of N Sin-
gular Vortices

For now in our consideration in the frame of the method of
hamiltonian formalism for different hydrodynamical models
we based on the reduced Clebsh transformation. However, in
certain cases the application of one of the nonreduced forms
of Clebsh transformation may be more reasonable. Examples
are 2-dimensional models, which permit the existence of sin-
gular point vortices, the equations of motion of which may be
wrillen in canonical form of Hamilton equations. In princi-
ple, this derivation from the point of view of canonical trans-
formations has a methodical interest.

An expanded version of Clebsh transformation might have
been introduced since the very beginning by generalizing re-
lation (169) by simple expansion of the number of pairs of
canonical variables £, §;, and by assuming that the index ¢,
counting these fields, has values 1,2, ...V, and that £’ are la-
grangian variables of a general type. It is easy to see that all
the previous results including the formulation (175)-(177) stay
valid.

Evolution Equations

Consider now in the frame of such a modified hamiltonian
formulation an evolution of a system consisting ol V singu-
lar vortices. In other words, let us assume that the field 2 is
characterized by the following distribution of vorticity

Q:g*ﬂE:mﬂf—dun

h_era #; are independent of time inten._s‘_ities of the vortices, and
¢; depend on time theirs coordinates §; = (¢}, ¢7) . Notwith-
standing this, let us agree that the repetitive index in this chap-
ter will not mean a summation, which will be shown as 3 .
Analysis of (176) with consideration of (192) shows that
the necessary distribution of vorticity is reatized if Clebsh po-
tentials from the right-hand side of (176) arc choscn as

(192)

a; b; = K (193)
where a;, b; are time-independent parameters which satisfy
the condition
E=af(C"=¢), A=¢""00 (7). (194)
The relations (194) may be interpreted as a transition from
the description of system dynamics in canonical basis £ , A
to the description in phase space ¢ (a = 1,2) . The evolu-
tion of the system in terms of variables (* from the perspec-
tive of hamiltonian formalism is defined by the full set of Pois-
son brackets

_ - 8¢z 867
B zfd‘f(oust oA

e =

968 867
5 0€T )

(195)
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Let us calculate Poisson brackets (195). Taking into ac-
count that the variables C;’ and £ , M; are related as
86: s 1,12/\1,)
acr 6(2 ’
which follows directly from (194), we find variational deriva-
tives

(196)

667 8izda1 B
663' - a (C C‘L ):
ot -1/253}5&2 1_ 1
IV b 8¢ -G (197)

In the result, the substitution of (197) into (195) yields

(e &=

6,;,5

(198)

14

where g; = g(f= G

Thus, in terms of the variables ¥ the dynamics of a system

of singular vortices will be described by the equations
&% GH

rigt/? (':?Cf !

where the hamiltonian J (175), equal to kinetic energy of the

medium, must be expressed in terms of (.

In order to solve this problem, let us define Green’s func-
tion G (¢, ¢') as a function of two variables and which satisfies
the equation
9?2168, 0 =800 (200)
and which, by expressing ¥ via €2, allows us to write for the
hamiltonian the gxpression

H__%/@@QQ@m“wﬁf)

or
:__ZHJ (-3,

The final expression for H via implicit Green's functionis ob-
tained by substituting (192) into (201).

A =A{¢7, H} = (199)

(20D

(202)

Problem of the Self-Action of Vortices

This expression, however, has a shortcoming by having an
uncertainty which arises from turning into infinity of the terms
of series (202) when { = j. These terms describe the proper
energy of the point vortices. Obviously, only in the case when
the character of these infinities does not depend on the loca-
tion of the vortices, the seif-action corresponding to the infi-
nite energy which do not affect the evolution of the vorlices,
may be excluded from the hamilionian (202},

The mathcmatical nature of these infinities is universal. It
1s defined by the fact that when |g:' — f’ I -~ 0 Green’s func-
tion which satisfies (200) is described by an asymptotic ex-
pression

1z -
G = 9_323:“- Inr{C, '3,
= gn(ct = ¢t

a9

2 4 gaalC? = CY)? (203)
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which has a logarithmic divergence.

Because the above-described divergence appears only un-
der the assumption of singular vortices, when the vorticity dis-
tribution 1s described by delta-function, finite objects should
be considered where this problem does not occur. Let us con-
sider that the vorticity distribution near the vertex center ¢; of
i-vortex is determined by a local radially-symmetric function

- Ky
=g 1/2;29(6 -7,

(204)

which in the limit, when the size of the vortex tends to zero,
describes the singular distribution for the singular vortex.
Because the problem of divergence is related to the proper
energy of the vortices, let us evaluale the integral (201).
Taking into account the local character of distributionof ©,
and using the asymptotic form for Green's function (203), we
may show that

? 1
H = - :—;r(lﬂE - 5)9;42 + O(E)

It is easy to see that the effect of self-action is absent (at
least in first order approximation), if dgsa /8¢ = 0. Strictly
saying, only under this condition the regularization of the ha-
miltonian for the assumption of point vortices, which is based
on truncating the infinite terms of the series (202), is valid.
Spherical coordinates may be considered as an example of a
system of curvilinear coordinates which satisfy this require-
ment.

Letus remind that the different aspects of evolution of vor-
tices on a sphere has been studied in numerous works (for ex-
ample, see Bogomolov 1977, Zabusky and McWilliams 1982,
Reznik 1992 and Refs. therein).

(205)

4  Discussion

Generally speaking, there are different versions of the method
of Hamiltonian Formalism. That is why when talking about
this method it is necessary (o fully realize which one of the
versions is implied,

The point of the departure of one of the verstons is the ac-
tion integral taken in the form

S = /dtﬁ[u;, ui] =

[t f s x, xliy(x) ) = H1).

Variations of the action .5 with respect to the variables u =
(ux) lcad to the evolution equation®
: OH
dxiwie[u x, X)) te(x1) = ———.
f 1Wik 1 1]t (x1) Fus ()
Here ¥ is the Hamiltonian of the considered hydrodynami-
cal system, uy = &, uy is the partial derivative with respect

(206)

207)

8 The approach based on the use of the equations {207), and which, by the
way, may be reformulated in terms of 2-forms, has a wide dissemination (see
Refs of the presenl paper).
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to time, & /du,, are the functional derivatives and w,; is the
symplectic form defined by the condition

@ik [x, x1] = 8 A; [ulx1))/Sur(x) — 8 Ak [u(x)]/dus (x1).

The version of the Hamiltonian description which proceeds
from the evolution equations

zhi(x) = {T.t;', ?‘[} =

IH
=/d (), uy — 208
e 0, s ) (208)
hag been considered in the present paper,
Equations (207) and (208) would have become equivalent
if there existed a one-to-one transformation, 1.e. if there ex-
isted the relation

/ dxzwii[u;x1, xa] {u; (%), ue(xs)} =

= 5:‘k 5(3(1 - X3). (209)

Such a scenario is realized when Poisson brackets are non-
degenerated. In this case, il would be absolutely irrelevant
which of the formulations was taken as a point of departure,
However, for degeneraled brackets {u;, uj }, transformation
(209) are impossible for a great number of hydrodynamical
medels (examples can be found for the traditional hydrody-
narmics of compressible and incompressible fluids, magneto-
hydrodynamics, spine-fluid models, etc.).

In this case, if from the beginning one is forced to work
within the class of models determined by the evolution equa-
tions (207), it is necessary to go through the process of nol
only searching for the canonical variables, but also ascertaing
their conmection with physically observed field quantitics (for
example, one needs to elucidate the sense of the multivalued
Clebsch representations), and then inventing the models of
hydrodynamic systems with unusual properties, and so on.

Even if the necessary structure of the Lagrangian is guessed
or selected in some intuitive way, the use of variational prin-
ciple (206) requires the formulation of additional postulates
concerning latent constraints, the physical argumentation of
which is nat always obvious. In our paper the Hamiltonian
description is not absolutely axiomatically constructed, but
rather is directly driven from physically-based presumptions
about the type of evolution of hydrodynamical systems and
their internal properties.

5 Appendix
5.1 Transformation of Canonical Variables

The fact that Hamiltonian systems exhibit a stiffness of equa-
tions structure, 1.e., keep the propertics (17), (18) under var-
ious transformation, arrests our attention at once as a feature
of great importance. In other words, new equations gener-
ated by the transformations remain a Hamiltonian character
although not only Poisson brackets but also the Hamiltonian
itself can be changed. This peculiar feature of Hamiltonian
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systems opens up considerable possibilities for different ap-
plications.

From this standpoint, a significance of a Hamiltonian for-
mulation with one or another structure may be different. A
degree of its importance is defined by availability of such meth-
ods in its body as should be adequate to the problem under
study. This circumstance must always be kept in mind when
there are alternative possibilities for choosing of Hamiltonian
formulation.

The important class of transformations, which do not change
the structure of Poisson brackets and consequently the struc-
ture of equations (19), is concerned with the canonical formu-
lation. For finite-dimensional systems, such transformations
named canonical are fully described in any textbook of clas-
sical mechanics (Arnold 1978, Goldstein 1980).

As known,any canonical transformation is characterized by
own generating functional F and can be found with the help
of it. Corresponding procedure is formulated in the following
way.

We give some examples of using the generating function-
als. Every so often in application it1s nccessary (o execute So-
called point transformations, which express old coordinates
in terms of new coordinate only

7 = [i [Qr; %, 1]

To such transformations correspond the generating functional
of type

(210)

[

F:_/dxpifin

in compliance with which the new momenta and Hamiltonian
are determincd as

(211)

s
P==8/0Qi = [ axr, 52

H = H+ Ok,

(212)

where H' is new Hamiltonian of the system, and &, I is par-
tial derivative of generating functional with respect to time at
fixed the field variables ¢;, p;, G, P

Canonical Variables for Surface Waves

In spite of relative simplicity, point transformations enable
us to obtain sufficiently profound and beneficial results. The
canonical varigbles for waves on surface of incompressible
homogeneous fluid serve as an instructive illustration. The
fact that the surface shape and the potential of velocity on the
surface are these variables had becn heuristically established
by Zakharov in 1968 and remains exotic for a long time. How-
ever, this fact may be obtained by simple and, what is more
important, by regular way.

First of all recall one result (Bateman 1932) preceded the
work of Zakharov. Following this result, for a potential com-
pressible flow of perfect unlimited fluid the density g is canon-
ical coordinate and the hydrodynamic potential i is momen-
tum. Given rule is fit for homogeneous incompressible fluid

237

limited by free surface z = 5 (I, z, y) too, if the density dis-
tribution is characterized by the generalize function

p=poll(n—2), po=const, (213)

where ¢ is the Haviside function: #(z) = 1ifz > 0 and
Alz)=0ifz < 0.

The density, thus defined, allows us in mathematically well-
posed manner to get around problem of medium finiteness and
to take account of free surface properly (Goncharov et al. 197,
Goncharov 1980). Such extension of medium definition into
whole space makes possible the using of Bateman rule, Ac-
cording 10 this rule, in describing a potential flow of incom-
pressible fluid limited by free surface, the density pof (7 — 2)
acts as canonical coordinate and the velocity potential ¢ acts
as canonical momentum.

Consider (213) as the point transformation to the new gen-
eralized coordinate 7. Note in passing that the space dimen-
sion of problem is thereby reduced by one. Then, in accord-
ing to (210)- (212), we find new momentum ;

)
W= %/dmdypw(n —z) = pof L= - (214)
This result complains with that obtained by Zakharov up
to constant factor py. Setting py equal to unily or using the
renormalization, go can be excluded without loss of general-
ity.

Transformation of Space Coordinates

Another example of using the point canonical transforma-
tion is of the transformation of space coordinates. As known,
every so often the using of corresponding curvilinear coordi-
nate system simplifies a sclution of problem essentially. Be-
cause it is desirable to have a covariant formulation of the
canonical Hamiltonian formalism. This is found to be not a
particular problem if question had been solved in a frame of
the Cartesian coordinates (Goncharov et al. 1977).

Ag an illustration, let us consider a ane-to-one, continuous,
time-depending transformation of space coordinates x and &:

x = x(£, 1).

Using (215), perform the canonical point transformation

(215)

Il

P& t) = fdxp,'(x, t)é(x—x(g, ), (216)
which expresses the simple fact that the new momenta F; are
obtained from the old p; through ordinary change of variables
(215).

Inasmuch the systemn (215) is resolvable with respect to the
coordinates £ and there exists the inverse transformation

£=£(x1), (217)
the relation (216) ¢can be rewritten in another form
pE 0 = [ EPEDSE-Ex0) (218)
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The transformation (218) corresponds to generating (unc-
tional

Flg, P]=

= [axdfax 0 PE 03 - &x. 1), (219)

Firstly, we find new generalized coordinates ¢);. Taking
into account of known property of delta-function

§(€ - €lx,1)) = 9'/78(x —x(£,1))

where g'/? is the Jacobian of transformation (215), we obtain

§ L.
0; - 5;1 :fdxqi(x,t)tf({-&(x,t))

— J1/2
= 970 e -

(220)

To find the new Hamiltonian it is necessary Lo differenti-
ate the generating functional with respect of time with ¢;, P
fixed. As a result we find

. : -~ OF
H :H+F=H+fd§£@.: azzj

(221)

wherez.;?: [8{/&] emx(£0)

From the standpoint of application not only canonical trans-
formations deserve attention but noncanonical also. For ex-
ample, for any noncanonical Hamillonian system one can con-
struct transformations of field variables, which do not change
Poisson brackets and hence a structure of equations but can
change Hamiltonian similar to canonical transformations. Con-
versely, there are transformations, which change Poisson brack-
ets in preserving Hamiltonian,

An example of such transformation is the transformation
from vector field of vorticity w to so-called n-field (Faddeev

1976)
we = A®Pn - {350, dym], (222)

where n?=1, A is a dimensional constant.

The transformation (222) maps equations (25) and (24) one
into another and thus set up one-to-one correspondence be-
tween vortex and spin dynamics.

5.2  Symmetry Transformation and Conservation Laws

Of special place among continuous transformations occupy

those realizing a variation of dynamical variables without chang-

ing motion equations of the system. Pointing to an existence
of corresponding symmetry propertics for the system, such
symmetry transformations have profound physical meaning
since the availability of symmetries is closely connected with
conservation laws.

The tool, which enables one to derive explicit expressions
for quantities conserved during time and called motion invari-
ants, is just the Noether theorem (Arnold 1978, Bowman 1987).

In general case the symmetry transformations, which are
admitted by Hamiltonian systems, are bound to satisfy two
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requirements. Firstly, they must not change the structure of
equations and hence Poisson brackets. Secondly, they must
provide an invariability of Hamiltonian.

Note that for canonical Hamiltonian systems the first re-
quirement satisfies automatically if confine oneself to canon-
jcal transformation only. Because whether or nol a canonical
transformation is symmetry transformation depends on ful-
fillment of the second requirement.

Let vs consider an infinitesimal canonical transformation
of canonical variables g;, p;. It is evident that the gencraling
functional of this ransformation differs infinitesimally from
the functional for identity transformation and thus has the forrr
F :deQ§P¢+EG[q,P;t]. (223
Here ¢ is the infinitesimal parameter of the transformation.
Then, we obtain

5 T

= Pf 'i_ E_G:

dyg;

§G

QT' = g + Em!
H = H +¢8,C, (224)

v_&_rhere (Q; are new coordinales, P; are new momenta, and 7,
H are old and new Hamiltonian correspondingly.
Introduce the quantity

g, pit] = G |p=p, -

As will be shown below this quantity called the generator of
infinitesimal canonical transformation plays an important role
in formulating Noether theorem.

Inasmuch old and new momenta differ infinitesimally from
oncs others, in equalities (224) we can replace & by 7 and
5G /8 P; by 61/dp; to within small quantities of the first or-
der. As a result, instead of (224), we find

{225

51 §I
1= FPite—, qi=Wi —e5, 22
P +E(5qi 9 = Q 3F (226)
H=H+4ed], (227)

Taking into account (226) and expanding H into a functional
Taylor serics in powers of £, from (227) we obtain the approx-
imate equality

H=H[Q P;t]+e(8T+{I,H}). (228)
Whence, considering that
dif
6;I+{[,H}:EE, (229)

we arrive at the conclusion that if an infinitcsimal canonical
transformation does not change Hamiltonian, i.e.,

ﬁ = ‘Qx=Q|, py=P,» (230)
then the generator of transformation is invariant:
4y, (231)

dt
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It is this conclusion that constitules the dominant bulk of
the subject matter of Noether theorem for canonical Hamil-
tonian systems.

As cxample, let us consider potential motion of unlimited
compressible ideal fluid. In this case the density p acts as the
canonical coordinate while the canonical momentum is -
potential of hydrodynamic velocity v. As a polential is de-
fined within an accuracy of the constant, we can make the
transformation to the new canonical variables

o =p ¢ =p+e £=const (232)
This transformation is one of symmetry because it does not
change Hamiltonian described by the same expression as the

total energy of fluid

H = ]dx[p—+U( ), (233)
where {7 (p) is the density of internal energy and v = Vip.

The generating functional, corresponding to (232), can be
represcnted in the following form

= /dxpnp’és/dxp.

From (234) in compliance with the Noether theorem follows a
conservation of the generator of infinitesimal canonical trans-
formation

:jdxp,

which has evidently the meaning of the total mass of fluid.

The symmetry transformation can be conditionally divided
on two basic types. First type transformations touch upon only
space coordinate and time. It s commonly known (Arnold
1978, Goldstein 1980, Landau and Lifshitz 1982} that space-
time symmetry properties dictate three fundamental laws of
mechanics: law of conservation of energy, law of conserva-
tion of linear momentum and law of conservation of angular
momentumn. Bnergy conservation law is a consequence of in-
variance of theory in relation to a shift of the time origin and
implies that time is uniform, i.e., laws of motion must be in-
dependent of a choice of the time origin. Just as from time
uniformity follows energy conservation, so from space uni-
formity, which implies invariance of the theory in relation to
space translation, follows conservation of the total momen-
tum. Analogously, from invariance of theory inrelation to 3D
rotation group existing by virtue of an isotropy of the coordi-
nate space, follows conservation of the total angular momen-
fum.

Other important type of symmetry transformations is the
gauge transformations, which do not touch on the space coor-
dinates and thus characterize only internal properties of sym-
metry of dynamical system. In field theory transformations
are called gauge in the widest sense if they vary unobserv-
abie field characteristics but therewith do not vary observable
guantities making a physical sensc.

(234

(235)
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As the simplest example we refer to (232) varying the ve-
locity potential ¢ by & constant &. Inasmuch as only the quan-
lity Vi - velocity makes the physical sense in hydrodynam-
ics, the transformation (232) is gauge.

According to the classification accepted in field theory, in
the first example (232) we deal with so-called a global gauge
transformation the parameter of which is a number ¢. How-
ever, such parameter can be, generally speaking, an arbitrary
function ¢ (x). This sort of gauge transformations is called
local.

Let us consider an example made it possible to trace that an
appearance of the gauge symmetries is connected with certain
ambiguity, which arises in changing the dimension of phasc
space in result of the canonical reformulation. We have faced
the similar situation in constructing the canonical basis for
the KdV equation. Recall that in this case the transformation
linking the physical variable v with the canonical variables ¢
and p takes the form

1, (236)

u:‘:cQ+2

Asis easy to see, (236) remains invariantin relation to gaugt
transformation to new canonical variables ) and F:

1
Q=q+3¢
P=p—0,e,

1
F:fda:[qP+s(§P—8$q)], (237
where £ = () is arbitrary function of z, F is corresponding
generating transformation.

Consequently, by the Nocther theorem the integral

J= /da:s(%p— B04) (238)
is conserved.
From (238), we find the local relation
1
Geg — §p =0. (239

From the geometrical standpoint, the relation (239) fixes
some surface into given simplectic phase space ¢, p. such that
all motion trajectories of the system ¢ = 6 H /dp,p = —6H /¢
must lie in this surface for they to reproduce the solutions of
the KdV equation in compliance with (236).
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