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Abstract. We present a geometric analysis of a quasi-static
single degree of freedom elastic slider with a state and rate
dependent friction law. In particular, we examing and charac-

terize the regime of chaotic motions displayed by the Dieterich-

Ruina model. We do so by numerically reducing the chaotic
attractors to a family of unimodal maps and discuss why this
suggests complex behavior in the dynamical system.

1 Introduction

In this note, we examine and classify the quasi-static chaotic
motion of a single degree of freedom elastic sysiem undergo-
ing frictional slip. Our interest is in friction laws of the state
and raie dependent type, wherein the constituiive law has
a fading-memory functional dependence on velocity paths.
The functional dependence can be well approximated by a
nonlingar dependence on current rate of slip together with a
number of internal state variables; for a fixed normal stress
o, the constitutive rclations may be expressed as

_T = F('Ua 31)923 )'J
B‘l - GI(UE 9159'35 )}
02 = Ga(v, 01,02, ...), L
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where 7 is the shear force transmitted across the frictional
surface, v is the current rate of slip or velocity, and where the
state variables ¢, are intended to describe the changing fea-
tures of the slipping surface. The functions F and (; are, in
general, phenomenologically derived, and chosen such that
the state variables evolve toward a steady-state value.

Such friction laws have been studied cxtensively in the re-
cent literature in the context of nonlinear sliders, with and
without inertia, and with varying numbers of internal state
variables. We refer the reader to Ruina (1983), Gu et al.
(1984), Blanpied and Tullis (1986}, Gu and Wong (1991),
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Gu and Wong (1994), Weeks (1993), and the references
therein, for detailed studies of the generated dynamics as
well as discussions regarding the effectiveness of such mod-
els for predicting and reproducing observations and experi-
ments in rock mechanics.

Herein, we focus on the characterization of the chaotic
motion produced by the simplest and perhaps most popular
of the friction models from the general class of constitutive
laws described in (1), the Digterich-Ruina or D-R model. To
the best of our knowledge, such a charactenzation has not
previously been made, even though it is essential to those
interested in the route taken by friction towards complex be-
havior.

In the absence of inertia, the simplest D-R model that al-
lows us to investigate the chaotic regime of the dynamics is
the two state variable model which we express for a constant
normal stress o by

T = F(v,01,02) = 1 +th + 02 + alog -,
0] = Gl(‘U, 91,92) = *‘I"—Ul 9] + bl lOg T:—i— .
02 — Ga(v,61,62) := — 1~ (B2 + bz log 3},

T = k('f)n - ’U)
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where v,, 7., a, by, by, L1, and L, are constants which are
determined from experimental fit, and in addition to the al-
ready defined variables, the elastic stiffness is denoted by k,
and the given slider velocity by vg.

As is discussed in great detail in Gu et al. (1984) and
Blanpied and Tullis (1986), this model exhibits many of the
important characteristics of the behavior observed in previ-
ous laboratory experiments on rocks. In particular, step in-
creases in slip rates of stcadily sliding surfaces lead (o sud-
den increases in the frictional stress followed by exponential
decay towards a substantially smaller value. The length pa-
rameters L, and Lo in this model can be thought of as some
representative decay slip distances for the relaxation process.
Similarly, the internal state variable may be interpreted as re-
sistive stress which define the internal state of the frictional
surface. Herein, we study the qualitative behavior of (2) as
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the spring stiffness & varies, and fix the other parameters to
be Yo — .5, a = .33, b]_/a = 1., bg/a = .84, L1 = 5.'2,
{2 = .25, v. = 1, and 7. = 0. The description of how this
data was obtained by a numerical fit of the experimental ob-
servations can be found in Ruina (1983), Gu et al. (1984),
and Blanpied and Tullis (1986).

As with most highly nonlinear non-integrable dynamical
systems, we must rely on computational schemes to provide
insight on the behavior of our model. Although this issue has
not been widely addressed in the geophysical literature, the
point must be made that the solutions obtained numerically
are not solutions of the actual dynamical system, but rather
of its discretized counterpart. One may consult any book on
numerical methods to convinee oneself that an appropriately
chosen computational algorithm can provide excellent ap-
proximations to the actual solution for a finite time interval;
however, one must be very careful in making any inferences
about the actual attracting sets of the dynamical system from
those which are computed numerically, as this would require
the numerical scheme to approximate the dynamics for in-
finite time intervals, and in general, this does not occur, In
the rare instance that the numerically computed attracting set
converges to the actual attracting set as the discretization size
(or time step) tends to zero, we say that the family of numeri-
cally computed attractors is continuous. In general, however,
the numerically computed attracting sets either converge to a
set that strictly contains or is strictly contained in the actual
attractor, but not both. The reader is referred to Jones and
Shkoller (1997) for examples and further discussion of this
phenomenon.

The main result of the work of Pliss and Sell (1991) states
that hyperbolic attractors persist under numerical perturba-
tion. The term hyperbolic simply means that the linearization
of the dynamics along the attractor has eigenvalues whose
imaginary parts are not equal 10 zero. By numerical perturba-
tion, we mean that the discretized equations may be thought
of as being a small perturbation of the actual equations in
some appropriately chosen norm or measure, when the nu-
merical scheme is a “nice” one. Our objective in understand-
ing the route 1 chaos and the type of chaotic attractors that
the simplest D-R model provides is accomplished by reduc-
ing the attracting set in the three-dimensional phase space to
a simple family of unimodal maps defined on an interval in
one-dimension. Although we do not a priori know how small
our numgerical discretization must be in order to know that the
numerically computed attractors do indeed approximate the
acteal chaotic attractor, our numerical reduction to piecewise
polynomial unimodal maps and their convergence to smooth
unimodal maps in the limit of zero time step is very convinc-
ing evidence that we have captured the true chaotic motions
of the nonlinear slider.

The paper is struciured as follows. In Section 2, we re-
¢xpress the D-R model in the form of a three-dimensionat
vector field and then provide a complete geomerric analy-
sis of the dynamics, from the regime of stable steady slid-
ing, through the Ilopf bifurcation, where the stable steady
sliding solution bifurcates into unstable steady sliding along
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with stable periodic motions. This is determined by a non-
linear anatysis using center manifold and normal form tech-
niques, and is quite straightforward since the phase space is
only three-dimensional. In Section 3, we perform some Lya-
punoy exponent calculations to get some insight as to the crit-
ical elastic stiffness where stable petiodic motion becomes
chaotic, and we give some discussion concerning what we
have learned from numercus numerical experiments. Finally,
in Section 4, we use a Poincaré map to construct numerically
our family of unimodal maps, and from this we discover the
pericd doubling route to chaotic dynamics.

2 Analysis

We begin be rewriting the D-R model in (2) as an evolation
equation for a single vector x € IR® with the elastic stiffness
k as a parameter. By defining the vector x := (r,8,0;)
where , 81, and ¢; are ils components i the usual basis,
equation (2) takes the form

&= f(x, k), feC=(Rx R, R?),
—et/a i

>d D
(o — /%), =52 a4 ), =62, 1 tad)

d:I'] — Tz — I3,

fla) =
)

where the rate of slip or velocity v = %2, and the nota-
tion C°(R* x R!,R®) means we are considering smooth
three-dimensional vector ficlds whose domain are the points
in three-dimensional space and a scalar parameter.

We begin our nonlinear stability analysis by noting, as in
Guetal. (1984), that the fixed-point T where steady sliding
occurs corresponds 1o

T = (a— by — ba, —b1,—b3) log(vy). (4)

A complete local stability analysis of this equilibrium point
is made by linearizing or taking the first variation of equation
(3) about the steady state solution T

t=Df(z,k)z, ze R

Figure T shows the eigenvalues of Jf(%, k) as a function of
k. For large positive £, all the eigenvalues of Df (%, k) have
negative real part indicating that the fixed point 7 is stable;
however, as k decreases 10 k., = .1061, the fixed point be-
comes non-hyperbolic meaning that the complex conjugate
pair of eigenvalues have zero real part. For £ < k..., the con-
jugate pair have positive real part and the fixed point is un-
stable, Thus, at k = k., the orbit structure of the linearized
vector field near (#, &.,.) may reveal liftle or possibly incor-
rect information regarding the stability of the fixed point.
Corresponding to the conjugate pair of eigenvalues located
on the imaginary axis when & = k.., are two generalized
eigenvectors whose span defines what is called the center
subspace. The remaining eigenvalue is strictly real and nega-
tive; associated to it is a single generalized eigenvector whose
span is called the stable subspace. As we will discuss be-
low, in a small enough neighborhood, of the fixed point # at
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Fig. 1. Eigenvalues of the the dynamical system linearized about the fixed
point as a function of the stiffness parameter k.

k = k., say U, the dynamics arc dissipative and this leads
1o the existence of a function defined on the center subspace
whose graph is called the center manifold, and which all tra-
jectories starting in {/ exponentially converge to. This is the
essence of the theory of center manifolds and we refer the
reader to Carr (1981) for a complete discussion as well as
detailed proofs of this method. The main idea is that if we are
ultimately interested in the nonlincar asymptotic behavior of
our dynamical system near a bifurcation point, we can reduce
our phase space from three to {wo dimensions by restricting
the dynamics to the two dimensional center manifold, and
hence significantly simplify our analysis.

We begin by moving Z to the origin, and letting £ = x — .
The vector field becomes £ = f(z + &), £ € B®. A Taylor
expansion about & then gives £ = Df{F)f + F(£), £ € RS,
where £'(£) = O(]¢|?) and where we have suppressed ex-
plicit dependence on k. Through a linear conjugate transfor-
mation T, the lincarized vector field can be written as

[i]:[%‘ j ][:’],(IL,'UJ)ERIXRQ.

where A, and A, are the 1 x 1 and 2 x 2 matrices of gen-
eralized cigenvectors corresponding to the stable and center
subspaces, and (u, w) = T~ 'z. The dynamical system (3)
can then be transformed to

= Asu+ Fy(u,w),
= Acu} + JF(:(U'« 'LL’),

where F,(u,w), and F.(u,w) are the first s and ¢ compo-
nents of T~ F(T(u, w)). The center manifold theorem then
asserts that there exists locally a submanifold A, such that
the dynamics restricted to the center manifold for y suffi-
ciently small, is given by the (¢ = 2)-dimensional vector
field ¢ = A.y + F.(y, h{z)), ¥ € R?. Then, stability on the
center manifold determines the stability of the fixed point.
For k near k..., we can write

Re(Mk))
Im(A(K))

—Im(AE))

Ao = Re(Mk)) |’
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where A(k), A(k) are the complex eigenvalues. The normal
form then allows us 10 remove the quadratic nonlinearities
and with A{k) == (k) + iw(k) and by a Taylor expansion
of these functions about £,,., in polar coordinates the normal
form is given by

7 = o (ker Yhr + o(ker)r® + O(kr, k7, r®)
8 = wlke) + b(k)r? + O(rt).

The coefficient o' (k... } is simply the slope of the graph of the
real part of the complex conjugate pair of eigenvalues and is
easily seen to be negative in Figure 1.

Thus, there are two possible scenarios to this Hopf bifur-
cation. In the first, a(k.) > 0 in which case for k > k., are-
pelling periodic orbit exists along with the stable fixed-point,
and as k decreases below k..., the fixed point becomes unsta-
ble. In the second case, alk..) < 0 and for k£ > k.. there is
only a stable fixed point, while below k.. a stable limit cycle
exists along with the unstable fixed point. A routine com-
puiation verifies that a(k,,) < 0, so that the transition from
simple to chaotic dynamics must occur for £ < k..

We note that since vp — D f{Z)(vo) is linear, the bifurca-
tion point is independent of the choice of steady state velocity
vp. We also remark that the spectrum of Lyapunov exponents
(which we discuss below) is a fairly reliable alternative to the
computation of the normal form, for when stable limit cycles
exist, the spectrum is (0, —, —).

3 Remarks on various parameter ranges

For k > k.., the fixed point & defined in (4) is stable. By
computing the divergence of the vector field f, we find the
condition which makes it strictly negative:

by
(ang *

k i by 1 bo
<a+L1(1 a)+Lg(l a)' )
The inequality (5) defines a plane of zero dissipation which
divides the phase space into two regions, one of which con-
tains the fixed point. In the region of space containing the
fixed point, the dynamical system is dissipative and thus a
volume ¢lement V' is contracted by the flow into a volume
clement V expdl¥/ ¢ in a time ¢. The dissipative nature of
the flow in this region implies that at east one eigenvalue of
the lincarized flow along the invariant set must have negative
real part. If this were not the case, then near the invariant
set, the flow would expand volume. For the same reason, the
exisience of invariant tor is precluded in this region of phase
space.
For the parameters used herein (5) can be written in the
simple form

4.167 — 0.1661 — 3.976, — 01 < K, 6)
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which translates into a constraint on the rate of slip of the
block w, given by

< e~3.1591-—5.9292+k. (7)

where these numbers are specific to the parameters we have
considered. Equation (6} shows that the distance from the
plane to # is 2 monotonically increasing function of &, and
so as the spring is made stiffer, previously divergent trajecto-
ri¢s now have the opportunity to converge to the steady state.
Nevertheless, it is possible that trajectories may have initial
rate of slip satisfying (7}, but ultimaiely leave the region of
phase space containing ¥ and diverge. For example, this may
occur if #,(0) and 6,(0) are positive and large while 7(0)
is small. Physically, this implies that the system starts with
a very small slip ratc compared to the steady state. In such
a cas¢, the rate of change of the internal state variables is
initiatly very small thus keeping ¢;. and &> almost constant.
When £ is small, the shear stress 7 cannot increase at a fast
enough rate to equilibrate the resisting forces of the internal
state variables; therefore, the system has difficulty reaching
the steady state as 7 and ¢; slowly diverge. On the other hand,
if the spring is very stiff, then the rate of change of the shear
stress increases very quickly relative to the rate of change of
the internal state variables, thus enabling the rate of slip o
mcrease and ultimately attain the sicady state.

An unfortunate artifact of the curve-fitting nature of this
Iriction law, is that trajectories may violate the second law of
thermodynamics. Since the rate of slip v is strictly positive,
this will occur any time the shear stress 7 is negative along
the flow. (This actually occurs for flow along the limit cycles
when & < k...) As we have already mentioned, the shear
stress is defined up to an additive reference stress 7* and the
velocity up to a multiplicative reference velocity v*. The
exact relationship is

T=7"4+0+86+ alog(:—i).

We have used 7" = 0 and ©* = 1, but it is clear that with the
appropriate choice of 7, the region in which the dynamics
are dissipative can be made “large”. For this particular choice
of reference parameters, we have numerically computed the
basin of atiraction of the fixed point # for various values of
k > k. and found bounded sets in each case, but the partic-
ular specification of the basin boundary is not of interest as
it is simply for an arbitrary choice of 7~ and has no physical
significance.

In the parameter tange & < k.., numerical integration
of the nonlinear system (3) confirms the bifurcation anaty-
sis, For k just below k., limit cycles occur with period
doubling bifurcations as & decreases (see igure 2). When
k ~ 09075, the attractor is no longer a periodic arbit, but
rather contains an infinitude of them. This appears to he the
onset of chaotic motion, and as a preliminary diagnostic, we
compute the spectrum of Lyapunov exponents 1o quantify the
attractor. This method has proven to be the most useful di-
agnostic of chaotic behavior. These exponents allow us to
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Fig. 2. Numerical integration reveals the petiod doubling route to chaotic
dynamics as the stiffness parameter k is decreased.

stmdy the geomeiry associated with the attraction and repul-
sion of orbits of (3) relative to z(f) — exponential divergence
of nearby orbits indicates a loss in predictive ability.

We consider trajectories z(t) of (3) satisfying z(0) = xy.
Let ff € C™((0,00), g{(IR?)) (a smooth path in the general
linear group of R, i.e. the space of all 3x3 marrices) satisfy-
ing

H - Df(z(tOHH, HO)=E

where K is some orthonormal frame. Then for any v €
R* and with || - || the usual Euclidean norm, we can define
the expansion associated with that direction along x(t) as
Ae{xo,v) = ||H(t)v||/||v|- Hence, the Lyapunov exponent
corresponding to the trajectory (t) is defined as

1
x(20,v) = :l—i»nglc n log A¢(zg, v). (8)

Since our phase space is not a compact manifold, and x, does
not lie in 4 positively invariant set, (8) will only have mean-
ing when the limit set itself is bounded. Our dynamical sys-
temn will always have at least one zero exponent for & < k.,
corresponding 1o the direction which is tangent to the flow;
thus, in our three-dimensional phase space, the only possi-
ble spectra for values of k below k... are (+,0, —), a strange
attractor or (0, —, —), a limit cycle. It should be clear that
an exponential expansion indicated by a positive Lyapunov
exponent is incompatible with motion on a bounded attractor
unless some sort of folding process merges widely separated
trajectories.

Fot £ in the interval (.090755, k..,.), we have computed a
(0, —, =) spectrum (see Figure 3), while for £ < .090755,
the spectrum contains a positive exponent indicating, in all
likelihood, chaotic bebavior, In particular, for & = .0905, the
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Fig, 3. The chaotic attractor at a stiffness k = .0905.

exponents were found to be (.025,0,-.245) with a Lyapunov
dimension d; = 2.1, which is obtained by the following
relations:

. '.jﬁ &Iy, €y

i sy Shoxlee)
[x{wo, € 1)l

’ .’Eo,e‘g) >0,

2o, €5) < O,

7
2
i=1
Jj+l
> xd
=1
where ¢; form the standard basis in R3.

4 Reduction to unimodal maps

In order 1o prove that the attractors are chaotic when & <
09075, we must show that the flow ¢, of (3) is sensitive to
initial conditions, topologically transitive, and that periodic
orbits are dense in the attractor. Since the chaotic atiractor
Ay (see Figure 3) graphically appears as though it lies on a
Mobius strip, it should be possibie to find a Poincaré section
¥} in which the dynamics live on an invariant set that is a one
dimensional manifold, i.c. 2 M Ag. We remark that although
trajectorics along A; for & < .09075, comprise a geometrical
shape resembling a Mobius strip, the attractor tiself is not a
Mobius strip as period doubling cannot occur on such a con-
figuration manifold. In particular, the retem map associated
with a flow along the Mobius band cannot be unimodal.

As we are unable to solve for the actual invariant set an-
alytically, we shall, in what follows, abuse terminology and
use the term invariant set whenever the set is mapped within
& of itself, where & refers 1o maching (single) precision. By
this we mean that for a given fixed &, if P is the Poincaré map
associated with the flow ¢; which maps the Poincaré section
¥ back into £, then we shall call the set £ M A, invarnant
if dist(E M Ay, P(x)) < o forany x € £.M A, We also
note that our computation of the invariant set requires inter-
polation between discrete dala, and $0 we have made every
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Fig. 4. Graphs of the family of unimodal map F for & = .0907,
.0906,.0805, .0904, .09036 in increasing order from lowest to highest peak
value. The mapping k—+ Fi{r) is monotonically decreasing where c is the
critical point. For & small enough, Fi{c) > L, and in this case, all of the
interesting dynamics oceur on sorne Cantor set.

effort to be as precise as possible, using data points which
are scparated by (0(4), and higher order polynomial inter-
polation. See Dahlquist (1974), for example, for efficient
higher-order numerical schemes.

We choose our Poincaré section at #; = .2, and param-
eterize the invariant set of the Poincaré return map onto the
unit interval f of the real line using arclength along the nu-
merically computed one-dimensional manifold. This invari-
ant set is the intersection of our Poincaré section with the
attractor for the smallest value of k,,;, that we could nu-
merically integrate. The invariance obviously only holds in
some bounded interval of the stiffness parameter containing
Euins 1€ dr(@,k) € Tforz € I k € (kmin, K] C
(Krmin, ker), where T'(x) is the return time for x back to the
Poincaré section . Henceforth, whenever we refer to the
return map, we shall mean the one dimensional mapping de-
fined on the parameterized unit intcrval 1.

Thus, as & varies in the interval {ky.n, K], we can nu-
merically computc the one dimensional family of maps Fy -
I—1 on this interval T by tracking the first iterate of the
Poincaré return map for initial conditions along the Poincaré
seclion. Figure 4 shows that the family £} is unimodal,
and numerical computation gives us that Fy has negative
Schwartzian derivative; hence, there is at most one attracting
periodic orbit for each k in this range, and when k& becomes
small enough, no attracting periodic orbits exist. We note
that points in the complement of I on the one dimensional
manifold eventually diverge 1o —co along the manifold un-
der iteration of F.

The period doubling bifurcations which occur as & de-
creasces can be secn by examining the graphs of the iterates
F of Fy. Let py be the attracting fixed point for F, when
such a point exists and let 5. be its preimage under F.. Then,
the graph of F on the interval [py., py] resembles the graph
of Fi. on I. Since we know that for & < k.., ¢, limits o
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a periodic orbit, F}, must have an atiracting fixed point for
some range of k below k... Hence, the first period doubling
bifurcation occurs at the value of & where F experiences a
saddle node bifurcation on [py, py]; the “hump” of F? grows
until a period two point is born. This process is continued
as k decreases until all the period 2” points are born, and
infinilely many periodic points with distinct periods exist.

In order to make this argument more precise, we simply
need o show that £}, is a transition family, This means that
there exisis a &’ for which the kneading sequence of F. is
(0000...), and a k" for which the kneading sequence of Ej
is (1000...), and that F} has negative Schwartzian derivative
for " < k& < K. It is clear from Figure 4 that the criti-
cal point ¢ of F}. is independent of k and that k— F(c} is
monotonically decreasing. Hence, we may choose k large
enough so that Fi(c) < ¢ and let this value of k be &', As
for k”, we may choose a value just below .0903 for which
Fin(c) = 1. Graphical analysis confirms that Fy, and Fj.
have the desired properties. As we noted, we numerically
computed negative Schwartzian derivatives of £).. This was
done for about twenty distinct values of k£ and this leads us
to conclude that the same must hold on the interval [k, £/].

As k decreases, the transition family must become topo-
logically conjugate to the shift map on the space of symbols
representing the itinerary of the map Fy, and it is well known
that the shift map is topologically transitive (see Devaney
(1989} for a discussion and proof). Then, by topological con-
jugacy of the Aow, the same qualitative behavior must occur
in any section along the attractor.

We remark that although we used vy = .5 for our numer-
ical studies, the vector field in (3) is structurally stable with
respect 10 v, so that the same qualitative behavior persists
in some parameter neighborhood. Finally, in order to relate
this attractor to the physical phenomenon, we have displayed
in Figure 5 the chaotic stick-slip motion along the attractor,
by using the rate of slip v as one of the components of phase
space. One can see that the slider sticks near zero velocity,
then slips, and then sticks again,

§ Conclusions

We have combined geometric analysis with numerical exper-
iments in an attempt to characterize the chaotic behavior of
the nonlinear D-R slider in the smallest dimension which can
exhibit such complexity, three. In particular, our analysis
has confirmed the period doubling route to chaotic dynam-
ics in the discretized D-R friction model with two internal
state variables, and our reduction of the parameterized dy-
namics along the attractor 1o a family of unimodal maps sug-
gest quite strongly that such chaotic dynamics persist in the
temporally continous limit of zero time-step.

Nevertheless, the dynamics which we have examined are,
in a sense, the “coarsest” possible, in that we only considered
one slider as opposed to a continuum of sliders, and only
two internal state variables as opposed to the spectrum of
state variables needed to represent the true functional depen-
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Fig. 5. Stick-slip chaotic motion displayed from varions angles and with
the stiffness parameter & = .0907, .0905, .0904, .0903 from top left going
clockwise.

dence on velocity histories. Some thirty years ago, Burridge
and Knopoff (1967) (see also Knopoff (1973)) proposed a
landmark mathematical model to explore the role of friction
along a fault as a factor in the earthquake mechanism, and
their model consisted of a linear array of masses and springs
representing a finite dimensional approximation to the con-
tinyum system. It is clear that as more and more sliders are
added to the system, the model limits to a wave equation with
highly nonlinear interface conditions modeling the friction.
What remains unclear, however, is an appropriate continuum
limit describing the frictional constitutive law along the in-
terface, or fault.

The importance of having a rationally derived infinite di-
mensional dissipative model of frictional sliding cannot be
overstated. First, infinite-dimensional dissipative nonlinear
evolution equations possess universal finite-dimensional at-
tractors, whose dimension can be estimated. Such an esti-
mate would permit a sufficient level of discretization in order
to capture numerically the evolution of the actual infinite-
dimensional system. Second,for such dissipative nonlinear
evolution laws it may be possible to constuct ordinary differ-
ential equations, called inertial manifolds, having the identi-
cal asymptotic behavior (see Jones and Shkoller (1997) for
a detailed account of numerical approximation to attracting
sets).

Our investigation of the simplest D-R model has been mo-
tivated by these considerations. In particular, the class of fric-
tion constitutive laws obtained by approximating the func-
tional dependence of slip has on velocity history using a finite
number of internal state variables, may serve as a sequence
of finite-dimensional models from which we may infer the
continuum limit. In this case, the finite-dimensional models
must be robust enough to capture some of the complexities
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observed in nature, amd we have shown that the simplest D-R
model does indeed meet this criterion.
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