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Abstract. We examine the local stable and unstable manifolds of chaotic attractors and their associated growth
rates for the quantification of (non-)hyperbolicity in low dimensional nonlinear autonomous dissipative mod-
els. This is motivated by a desire for a deeper understanding of transversality and hyperbolicity to inform key
challenges to prediction in spatially extended chaotic systems in geophysical flows. In particular, we apply lo-
cal measures of chaos to quantify the relationship between transversality, dimension, and hyperbolicity on the
subspaces of the attractors’ invariant manifolds. We consider unstable directions and growth rates determined
over finite time intervals, specifically those predicated on information over the past evolution i.e., finite time
backwards Lyapunov vectors, and those that include information from both the past and future i.e., finite time
covariant Lyapunov vectors. Our study reveals general properties across a diverse set of chaotic attractors at
short, intermediate and extended forecast horizons associated with the emergence of distinct locally evolving
regions of instability.

1 Introduction

Lorenz (1963) famously introduced his three-variable non-
linear autonomous dissipative model as a simplification of
the Saltzman (1962) nonperiodic model of convection. The
now famous L63 model is but one of a number of low di-
mensional attractors, some also derived by Lorenz himself
(Lorenz, 1993), that over the decades have transformed the
mathematical study of chaotic systems. These simple sets of
coupled ordinary differential equations describing complex
trajectories through phase space provide deep insight into
many physical phenomena, and in particular the atmosphere
– the primary inspiration for Lorenz’s exploration. Motivated
by the perspectives questions posed by Ginelli et al. (2007),
our current investigation applies a hierarchical decomposi-
tion of various chaotic attractors. This approach provides
a deeper understanding of predictability in nonlinear mod-
els via knowledge of the local transversality of the invariant
manifolds in combination with information on the past evolu-
tion of the unstable phase space trajectories. Specifically, we
are interested in how directions of contraction and expansion

in phase space (hyperbolicity) and the angles between them
(transversality) vary according to chosen temporal window
lengths, inform on and characterize the local predictability
of the flow.

Lorenz (1965) made a pioneering study of predictability in
weather prediction considering the growth of small errors in
a low order atmospheric model showing how these were re-
lated to the singular values of the tangent linear propagator.
Singular vectors (SVs) were subsequently employed in oper-
ational numerical forecasting centers implemented as empir-
ically determined combinations of finite-time right (initial)
and left (evolved) SVs (Leutbecher and Palmer, 2008). Fred-
eriksen (1997, 2000) had earlier proposed finite-time normal
modes (FTNMs) of the propagator as norm independent en-
semble perturbations in predictability studies of atmospheric
blocking. In particular, Frederiksen (2023) examines the re-
lationships between covariant Lyapunov vectors (CLVs), or-
thonormal Lyapunov vectors (OLVs), Floquet vectors, finite-
time normal modes (FTNMs) and SVs in aperiodic systems.
He established asymptotic convergence demonstrating that in
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the long-time limit, when SVs approach OLVs, the Oseledec
theorem and the relationships between OLVs and CLVs can
be used to connect CLVs to FTNMs in this phase-space. He
documents the conditions on the dynamical systems required
to establish convergence to the FTNMs, in terms of ergodic-
ity and boundedness where the FTNM characteristic matrix
and propagator is nonsingular. For additional comprehensive
reviews of that development, including applications to en-
semble prediction (Buizza et al., 1993; Molteni et al., 1996;
Kalnay, 2003; Quinn et al., 2021; Frederiksen, 2023).

For dissipative chaotic systems i.e., those with at least one
positive Lyapunov exponent whose trajectories are bounded
within a hyperbox, and whose attractor occupies zero volume
in phase space having non-integer dimension less than the
number of independent variables of the governing system of
equations, the initial evolution is governed by linear dynam-
ics, eλj t expanding in the direction(s) where the Lyapunov
exponents λj > 0 and contracting where λj < 0 forming a
hyper-ellipsoid. Periodic rescaling can be employed to main-
tain this linear growth indefinitely where the singular values
define the growth of the hyper-ellipsoid over finite time inter-
vals. Given sufficient time, for any randomly chosen initial
perturbation the growth rate converges to the norm indepen-
dent leading Lyapunov exponent. In high dimensional turbu-
lent flows it is known that the leading Lyapunov exponent
is proportional to the Reynolds number of the flow (Ruelle,
1979a; Fouxon et al., 2021).

In high dimensional chaotic systems the existence of re-
current patterns, such as periodic and other invariant solu-
tions, has motivated methods to identify reduced represen-
tations of the attractor structure and the dynamics on it -
the so-called “minimal cover” (Crane et al., 2025). Recently
Dong et al. (2025) applied recurrence to introduce a local
predictability measure in terms of the uncertainty within the
system relative to a given reference state. Local or finite time
Lyapunov exponents (FTLEs) can also be nonlinear if al-
lowed to evolve for sufficient time under the dynamics of
the nonlinear system (Ding and Li, 2007; Li and Ding, 2022;
Li et al., 2023). This evolution may also be initiated from fi-
nite size initial perturbations. Toth and Kalnay (1993) intro-
duced a simple method for ensemble perturbation generation
allowing for finite amplitude – finite time perturbations cor-
responding to stochastically and nonlinearly modified pro-
jections of the leading Lyapunov vectors via the model dy-
namics – the so called “bred” vectors. This approach was
implemented in the National Centers for Environmental Pre-
diction (NCEP) operational weather prediction system (Toth
and Kalnay, 1997). Wang and Bishop (2003) showed the cor-
respondence between bred vectors and initial forecast per-
turbations generated using the ensemble transform Kalman
filter (ETKF) approach. Iterated or cyclic variants of bred
vectors have proved even more effective as forecast pertur-
bations in coupled ocean-atmosphere tropical cyclone pre-
diction (Sandery and O’Kane, 2013) as they project onto the

appropriately chosen stochastically and nonlinearly modified
directions of error growth.

Alignment of the aforementioned vectors can lead to a loss
of hyperbolicity in the phase space, or the dynamics acting in
a dimension smaller than the full phase space. The physical
consequences of loss of hyperbolicity are closely associated
with the dynamics and hence predictability of the system.
The relative utility and general applicability of different dy-
namical vectors in application to ensemble forecast initializa-
tion is dependent on their ability to project onto the directions
of growth and contraction of the emergent organized struc-
tures of interest. Smaller spatial scales typically exhibit rapid
development whereas those with initially larger spatial scales
grow more slowly making the task of choosing the appropri-
ate dynamical vector to characterize error growth and con-
vergence rates for differing spatial and temporal scales chal-
lenging. Kalnay (2003) (see also Sect. II, Quinn et al., 2022)
discuss the use of singular and covariant vectors to define the
perturbations to the initial states for ensemble forecasts in-
cluding implementation in the European Centre for Medium-
range Weather Forecasting (Leutbecher and Palmer, 2008).

Our study will show that over shorter finite time win-
dows error growth can be more complex than projection of
the dominant growing error mode onto the asymptotic lead-
ing Lyapunov vector, therefore requiring several alternate
measures such as transversality, hyperbolicity and growth
in terms of changes in local Kaplan–Yorke dimension to
fully characterize the dynamics and predictability. Over fi-
nite times, the fastest growing unstable direction may not
necessarily correspond to the leading Lyapunov vector even
for low dimensional chaotic systems. Where alignment to a
given dominant direction of growth occurs, predictability is
typically low. A paradigmatic case is atmospheric blocking
where predictability is typically low during onset and often
associated with a collapse in diversity across ensemble pre-
diction members as hyperbolicity is lost.

Synoptic weather systems are embedded in the larger
Earth system with increased complexity to incorporate inter-
actions between different domains and spatial and temporal
scales i.e., interactions between background state, nonlinear
dynamics, stochastic forcing, coherent resonances etc., all in-
fluencing where and when the emergence of persistent co-
herent features preferentially occur. Recently Axelsen et al.
(2025) showed that for atmospheric blocking in the South-
ern Hemisphere, persistent synoptic features are in fact of-
ten associated with the appearance of a transient slow mani-
fold or local low dimensional attractor characteristic of the
physical modes manifesting in regions where blocking is
frequent (O’Kane et al., 2016). In this regard, the general
properties of transversality and hyperbolicity on low dimen-
sional chaotic attractors, some derived directly from more
general representations of physical systems i.e., L63 from
Rayleigh–Bernard convection Lorenz (1963), are potentially
instructive. Data assimilation (DA) methods fundamentally
require information on time dependencies of the background
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error covariances. In application of ensemble Kalman filters
(ETKF variants) to examine strongly coupled DA in a 9 di-
mensional multiscale chaotic attractor, Quinn et al. (2020)
applied a measure of the local attractor dimension in terms
of a finite-time Kaplan–Yorke dimension (dimKY) to pre-
scribe the time-dependent rank of the background covari-
ance matrix constructed by projection onto FTCLVs. This
measure was constructed via a variable number of weighted
finite time covariant Lyapunov exponents where the align-
ments of the associated FTCLVs were shown to be key to
understanding diverse dynamics of disparate regions of the
chaotic attractor despite having very similar and even nearly
identical local dimension. They specifically investigated the
ability to track the nonlinear trajectory in each of the respec-
tive subsystems of the 9-component “ENSO coupled with an
extra-tropical atmosphere” of Peña and Kalnay (2004). They
showed that, in order to accurately track the trajectory, sim-
ply spanning the subspaces of the respective global unstable
and neutral modes is not sufficient at times where the non-
linear dynamics and intermittent linear error growth along
a stable direction combine. This is due to the fact that the
unstable subspace is a function of the underlying trajectory
and hence locally defined (Bocquet and Carrassi, 2017). Us-
ing observed weather variables Fraedrich (1986) estimated a
dimensional value of between three and six for synoptic at-
mospheric flows and predictability up to 14 d. This approxi-
mate range was given further support by the subsequent study
of Essex et al. (1987). Using machine learning methods,
Axelsen et al. (2025) derived reduced order chaotic mod-
els of coherent synoptic atmospheric flows in the Southern
Hemisphere of similar dimensionality to those reported by
Fraedrich (1986) with lifecycles of ≈ 10 d.

Using the Pena-Kalnay 2004 model, Quinn et al. (2020)
showed that, given a single common assimilation cycle
length and cocycle window δt = 4, very different degrees
of hyperbolicity were found to be manifest at times where
nearly identical values of the local Kaplan-Yorke dimension
occur, and that the local dimension alone is insufficient to
characterize the finite time dynamics of the particular sub-
spaces occuring on that chaotic attractor for the particular
chosen temporal window. To broadly characterize hyperbol-
icity of a given meta-stable state in a high dimensional flow,
Axelsen et al. (2025) introduced an average measure of hy-
perbolicity in terms of the mean alignment of FTCLVs at any
given point in time calculated from a fixed cocyle window of
three days. Here we are interested in characterizing the de-
pendence of the local hyperbolic subspaces of diverse chaotic
attractors dependent on the length of the cocycle window and
in comparison to their asymptotic character. To do this we
calculate metrics of transversality, hyperbolicity and dimen-
sion at each point on the phase space trajectory considering
varying cocyle windows. Our study extends the earlier work
of Quinn et al. (2020) whose focus was primarily on appli-
cation to data assimilation in the Peña and Kalnay (2004)
model for a single representative choice of cocycle window,

to a general exploration of chaotic attractors and the conse-
quences of differing push-forwards on the manifestation of
local non-hyperbolic subspaces characteristic of highly un-
stable local dynamics.

For context, as our motivation is to better understand
geophysical dynamical systems, these are typically not hy-
perbolic (i.e., stable and unstable manifolds are not every-
where transversal), but characterized by the local expand-
ing or contracting directions of a set of leading physical
modes. CLVs can be defined from the intersection of the sub-
spaces spanned by tangent linear finite time backwards Lya-
punov exponents (FTBLEs) and their adjoint the FT-forward-
LEs (FTFLEs) (Vannitsem, 2017) hence growing in time at
the rate and directions given by the local Lyapunov vec-
tors (Kalnay, 2003). Importantly, CLVs localized in physi-
cal space, provide an intrinsic, hierarchical decomposition of
spatiotemporal chaos (Trevisan and Pancotti, 1998; Ginelli
et al., 2007) with diverse applications from the formation and
persistence of metastable synoptic weather systems (Axelsen
et al., 2025) to chaos in semiconductor lasers (Beims and
Gallas, 2016).

Based on the aforementioned explorations, we are inter-
ested here to characterize how predictability in specific re-
gions of phase space vary with the time widow for evolution
in low dimensional chaotic attractors consisting of between
3 and 9 ODEs. The methods we are employing to calcu-
late FTBLEs, FTCLEs and FTCLVs allow for identification
of various unstable subregions through a detailed analysis
of growth rates, transversality, hyperbolicity and dimension
however, at the cost of restricting our analysis to linear er-
ror growth (Nese, 1989; Eckhardt and Yao, 1993; Ziehmann
et al., 2000).

2 Method

Ruelle (1979b) first described Oseledec splitting for invert-
ible dynamics as the local decomposition of coordinate in-
dependent phase space into covariant directions of the Lya-
punov vectors. Ginelli et al. (2007) introduced an algorithm
to determine the set of points in phase space whose directions
are invariant under time reversal and covariant with the dy-
namics arguing that these CLVs are coincident with the Os-
eledec splitting for any invertible dynamical system. A dy-
namical system is said to be hyperbolic if its phase space
has no homoclinic tangencies; i.e., the stable and unstable
manifolds are everywhere transversal to each other and that
this is connected to hyperbolicity (Bochi and Viana, 2004).
The determination of the angle between any given pair of
CLVs allows for testing the degree of hyperbolicity at any
point on the attractor where increasingly larger alignments
indicates decreasing degrees of hyperbolicity and visa-versa.
Many methods for calculating Lyapunov exponents are avail-
able, including recent machine learning approaches (Ayers
et al., 2023). Here we use a QR decomposition to calculate
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Table 1. Algorithm 2.2 from Froyland et al. (2013) – approximate the set of N CLVs at time tj .

– Construct tangent linear propagators (matrix cocycles) A(xi+m,0) for every m ∈ [−N, . . ., N ]
– Compute the eigenvectors ei−N

j
of A(xi−N ,N )∗A(xi−N ,N ) where A(xi−N ,N )= A(xi ,0) · . . . ·A(xi−N ,0)

∗ denotes adjoint.
– Push forward by multiplication of matrix cocycle, φi

j
= A(xi−N ,N )ei−N

j
.

– For each j , reorthogonalize φi
j

with subspace spanned by eigenvectors ei−n
k

for k = 1, . . ., j − 1 of A(xi−n,N )∗A(xi−n,N ) every n time steps.
– φi

j
approximates the j th largest CLV at time t − ti .

the FTBLEs (Dieci et al., 1997; Van Vleck, 2010; Dieci et al.,
2011). The computation of FTLEs over a finite window of
time allows a time-dependent measure of the local unstable,
neutral, and stable exponents of the evolving system which
approach their asymptotic values as the window length in-
creases.

Of interest here are the local dynamics of the respective
chaotic attractors as measured in terms of their finite-time
growth rates, hyperbolic splitting on the attractor tangent
space (local manifold) measured in terms of alignment of the
associated local Lyapunov vectors and dimensionality via the
local Kaplan–Yorke dimension. The FTBLEs represent for-
ward evolution over the past period defined by the chosen
time window hence directly informing on how predictabil-
ity varies on the attractor (Arbanel et al., 1991; Yoden and
Nomura, 1993). Applying the QR decomposition over finite
time windows optimizes mixed initial and evolved singular
vectors such that they are no longer infinitesimal but are also
of finite size where the chosen window enables exploration
of the attractors multiscale nature. Of primary interest here
is the application of methods for calculating covariant Lya-
punov vectors to measure the degree of hyperbolicity in the
local dynamics of the chaotic system.

As CLVs only truly exist in the asymptotic limit, FTCLVs
are more correctly described as mixed initial and evolved
singular vectors over some time window given a set of tan-
gent linear propagators. Specifically, Oseledets (1968) theo-
rem relates the Lyapunov exponents λi and a non-unique set
of vectors φ via the forward and backward mapping of the
tangent dynamics (cocycle) A(x(t),τ ) as

λi =
lim

τ →∞
1
τ

log‖A(x(t),τ )φ‖⇔ φ ∈
8i(x(t))
8i+1(x(t))

(1)

For the systems considered here, A(x(t),τ )= expτJ f (x(t))

where J is the Jacobian of the right-hand side of any given
systems of ODEs considered. For any given CLV pair, we de-
fine their alignment as θi,j∈N = |φi ·φj |/(‖φi‖ · ‖φj‖). Cor-
respondingly, θi,j = ‖cos(2i,j )‖ given 2i,j is the angle be-
tween the ith and j th CLV, hence alignment is bounded be-
tween [0, 1]. For θi,j = 0 the CLVs are orthogonal, and for
θi,j = 1 completely aligned.

To calculate the CLVs we employ Algorithm 2.2 of Froy-
land et al. (2013) described in Table 1. Following the algo-
rithm, matrix cocycles are constructed and a singular value

decomposition performed on each, after which the left sin-
gular vectors are sorted in descending order based on their
singular values. The algorithm then performs a push forward
operation over a defined window using the cocycle matrices
then reorthogonalizing and repeating until we have a com-
plete set of FTCLVs at a given point in time. For simplic-
ity, we have used a common window δt for calculating the
FTBLEs (window); FTCLEs (MGR); and for the push for-
ward cocyle window (M) used for calculating the CLVs i.e.,
δt = window=MGR =M . For a more detailed discussion of
the numerical algorithm see Froyland et al. (2013) and Ap-
pendix B of Axelsen et al. (2025). Throughout we use an
orthogonalization step of 1.

We ascertain an approximation to the local attractor di-
mension based on either the FTBLEs or FTCLEs via the
Kaplan-Yorke dimension (Frederickson et al., 1983; Kaplan
and Yorke, 2006)

dimKY := j +

j∑
i=1
λi

|λj+1|
, (2)

where j is the largest leading eigenvector such that
∑
i =

1jλi ≥ 0 and
j+1∑
i=1

λi < 0.

3 Chaotic attractors

In the results to follow, ODEs, parameters, initial condi-
tion and integration timesteps for all chaotic attractors are
described in Tables 2 and 3. The associated FTBLEs and
FTCLEs for given cocycle windows are shown in Tables 4
and 5.

Figure 1 shows FTBLEs and corresponding instantaneous
dimKY values for the Lorenz “butterfly attractor” (Lorenz,
1963: L63) for windows δt = 5, 25, 50, 100, 200. Figure 2
shows FTCLEs and corresponding dimKY and in Fig. 3 we
depict the alignment θi,j between the FTCLV pairs for each
of the five chosen windows. The differences between FT-
BLEs and FTCLEs are immediately apparent most notably
in the second exponent. In general, it is noticeable that where
FTBLE1 is unstable, FTBLE2 is largely stable. FTBLE3 is
always stable with the largest absolute values occuring where
FTBLE1 is unstable. For cocyle windows δt = 5, 25, 50, FT-
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Table 2. Attractor definitions used in all subsequent figures and analyses.
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Table 3. Attractor definitions used in all subsequent figures and analyses.

BLE1 is largely unstable in the region of the saddle and on
a restricted region of the inner orbits of each wing of the at-
tractor. As the window is increased to δt = 100, unstable val-
ues are compressed to regions near the saddle and between
the fast and slow orbits of the attractor wings. For windows
δt > 100 FTBLE2 assumes larger unstable values on the in-
ner and outer loops. As window length increases the FTBLE3
values become increasingly less stable. The Fig. 1 dimKY
plots reflect the combined contributions of the FTBLEs to

the attractor dimension. As forecast window increases the
stable subregions evident at δt = 5, 25, and 50 shrink where
upon for δt ≥ 100 the attractor is essentially unstable every-
where as expected. As δt→∞, dimKY is seen to approach
its asymptotic value at all points on the attractor.

The growth rate of FTCLE1 mirrors that of FTBLE1, how-
ever the stable subregions evident for δt = 5 are considerably
reduced in comparison. Further, we see (Fig. 2) FTCLE2 is
stable and increasingly so in the outer loops as δt→ 100.
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Figure 1. L63: FTBLEs 1, 2, and 3 values at each point on the attractor in x-y-z orientation for windows δt = 5, 25, 50, 100, 200. The far
right column displays corresponding dimKY values based on the instantaneous FTBLE values.
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Figure 2. L63: as for Fig. 1 but for FTCLEs.
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Figure 3. L63: θi,j pairs in x-y-z orientation. Values of 1 and 0 respectively indicate complete alignment or exact orthogonality.
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Table 4. Attractor FTBLEs and growth rates.

L63 Dradas Fourwing Hadley

δt FTBLE FTCLE FTBLE FTCLE FTBLE FTCLE FTBLE FTCLE

5 0.9024 4.0870 0.5532 1.2021 0.0680 0.2985 0.0016 2.2922
−0.0032 −2.2811 −1.4719 −1.9427 −0.0014 −0.0872 −0.0225 0.0556
−0.1457 −15.6224 −10.5044 −8.6167 −1.2694 −1.4005 −0.0227 −2.4052

25 0.9022 2.7985
−0.0023 −2.4165
−0.1457 −14.8132

50 0.9015 1.7964 0.5532 0.9469 0.0013 1.1120
−0.0022 −2.3656 −1.4721 −1.3270 −0.0225 −0.7318
−0.1457 −14.5736 −10.5044 −7.9628 −0.0273 −2.0670

100 0.8998 0.8028 0.0676 0.2226 0.0010 0.0269
−0.0013 −1.7310 0.0014 −0.1270 −0.0230 −1.2879
−0.1465 −14.3193 −1.2689 −1.3837 −0.0267 −1.6414

200 0.8964 0.8870
−0.0050 −0.9483
−0.1456 −14.1702

400 0.5538 0.9456
−1.4718 −0.7541
−10.5047 −0.7756

However, at δt = 200 the extent of the most stable regions
of FTCLE2 reduces by ≈ 55 %. The FTCLE-based dimKY
largely reflects the subregion structure of FTCLE1 values on
the attractor. In general, the mean values of the FTBLEs do
not change appreciably however, those for the FTCLEs are
highly variable. Considering θi,j (Fig. 3) we see the region
of very low dimension evident in dimKY for δt = 5 (Fig. 2)
corresponds very closely to the highly localized region of
alignment evident between θ1,2, otherwise there is minimal
to no alignment elsewhere on the attractor. At δt = 25 align-
ment near the same region becomes very low forming a lo-
cally hyperbolic subregion in addition to one near the saddle.
As the window δt > 25 increases, θ1,2 alignment becomes
ubiquitous in all regions away from the saddle. For δt = 5,
θ1,3 and θ2,3 exhibit values> 0.5 only on the same two sub-
regions of the outer orbits of the attractor. For δt = 100, 200,
θ1,3 and θ2,3 values≤ 0.5 correspond to subregions on the at-
tractor where dimKY > 2.0 (Fig. 2). Hence at δt = 200 it ap-
pears that regions with large FTCLE1 values i.e., > 0.7, are
permissible due to the correspondingly low alignments θ1,3
and θ2,3 compensating the high alignments θ1,2.

Next we consider the three wing Dradas attractor. Dradas
FTBLEs and FTCLEs are shown in Figs. 4 and 5 for δt = 5,
50, and 400 respectively. Both FTBLE and FTCLE growth
rates show very similar subregions for each of the consid-
ered values of δt . For δt = 5 FTBLE1 and FTCLE1 two dis-
tinct unstable subregions are visible on two of the attractor
wings while the third lobe is everywhere stable. FTBLE2 and

FTCLE2 have similar corresponding regional structures al-
though the unstable FTCLE2 subregions are more restricted
relative to FTBLE2. FTBLE3 and FTCLE3 are stable every-
where on the attractor with mean values many times larger
than that of the leading exponent signifying a highly ex-
tended system. At δt = 50 the values of the leading expo-
nent becomes unstable on the inner orbits of the attractor as
those of the second exponent become stable. As δ→∞ all
FTBLE and FTCLE values at any given point on the attrac-
tor approach their mean asymptotic value. While the mean
FTBLE values are relatively unchanged as δt→∞, the ab-
solute values of FTCLE2 and 3 reduce as they become in-
creasingly less stable and the system less extended. Despite
this the dimKY values (Fig. 5) on the attractor are very simi-
lar regardless of being calculated using FTBLEs or FTCLEs.
The Dradas alignments (Fig. 6) are substantially more com-
plicated and less easily interpreted with respect to those ob-
served for L63. However, for δt = 5 we can recognize re-
gions where all three FTCLVs are aligned such as the lower
wing of the attractor, corresponding to stable subregions on
the attractor with dimKY values approaching zero. At δt = 50
we see these subregions contract to distinct bands on the
lobes after which the alignments θ1,3 and θ2,3 respectively
break down becoming diffuse and unstructured at δt = 400.

The fourwing (Qi et al., 2009; Wang et al., 2010) and
Hadley (Sprott, 2003) attractors for δt = 5 are both hyper-
bolic at all points on the attractor with no stable subregions
evident i.e., dimKY > 0 everywhere (Figs. 7 and 8). Both at-
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Table 5. Attractor FTBLEs and growth rates. Bracketed values indicate approximate asymptotic backwards Lyaponov Exponent (LE) values
(δt = 400) previously reported by Quinn et al. (2020).

Threescroll Caputo Pena–Kalnay2004

δt FTBLE FTCLE FTBLE FTCLE FTBLE FTCLE

5 0.0607 34.0406 0.01876 3.7769 0.9059 5.0825
−0.0014 5.7347 0.0022 0.1727 0.2848 2.2879
−0.5065 −45.9772 −0.0033 −0.4129 −0.0001 0.7411

−0.0564 −0.9096 −0.0093 −0.4965
−0.9607 −4.1289 −0.3861 −1.8623

−0.7855 −2.4140
−1.7706 −3.3905
−12.3690 −12.6146
−14.5700 −15.7245

50 0.0568 5.2889 0.1741 0.1297 0.9075 1.1619
−0.0021 −7.6030 0.0013 −0.6292 0.2861 −0.3507
−0.4931 −15.5595 −0.0036 −1.4028 0.0006 −0.7403

−0.0564 −1.6979 −0.0088 −1.0320
−0.9609 −2.3770 −0.3856 −1.9801

−0.7836 −2.7733
−1.7719 −3.5542
−12.3722 −13.2860
−14.7200 −15.1305

100 0.9077 (0.9071) 0.3869
0.2881 (0.2670) −0.7620

0.0029 (−0.0056) −0.6998
−0.0081 (−0.0060) −0.9757
−0.3843 (−0.4326) −1.5272
−0.7826 (−0.7706) −2.3517
−1.7734 (−1.8263) −3.3014
−12.3753 (−12.2691) −12.7425
−14.5751 (−14.5640) −14.5800

tractors show distinct FTCLE2 subregions of either growth or
decay whereas those of the leading FTCLE1 are everywhere
unstable and for the FTCLE3 everywhere stable. At δt = 100
fourwing θ1,3 and θ2,3 alignments occur in the same localized
outer regions of the attractor wings with the largest align-
ment values for θ1,2 (Fig. 7). Fourwing dimKY values resem-
ble those of FTCLE2 being largest where FTCLE1 and 2 are
coincidentally unstable and smallest where FTCLE2 and 3
are stable. Similar relationships between the growth rates and
vector alignments occur for the Hadley attractor (Fig. 8) with
one noticeable difference. For δt = 100 we see the leading
FTCLE1 indicate distinct regions of contraction and θi,j val-
ues correspondingly indicative of significant alignment be-
tween all vectors. In this case dimKY > 0.5 occur over a very
restricted region where FTCLE1 growth rates are ≥ 0.75.
FTCLE2 becomes everywhere stable with mean value ap-
proaching that of FTCLE3 hence determining the generally
low dimKY values.

The threescroll attractor (Fig. 9) exhibits similar charac-
teristics to those of Hadley and fourwing. At δt = 5 the sys-
tem exhibits low alignment values everywhere with nearly

uniform growth rates at points on the attractor. FTCLE1
and 2 are everywhere unstable and FTCLE3 stable. This
is reflected in dimKY at points on the attractor are close
to the average dimKY ≈ 2.5. At δt = 50 mean values in-
dicate contraction on most of the attractor as the ratio of
FTCLE1/FTCLE3≈ 0.74 at δt = 5 changes significantly to
FTCLE1/FTCLE3≈ 0.34 as δt→ 50. Hence the system be-
comes more extended with regions of high dimKY occurring
where alignments θ1,2, and to a lesser extent θ1,3, are < 0.5.
The FTBLEs do not display this behavior with relatively
small variations in mean values as δt is increased.

The five variable Caputo and nine variable Pena–
Kalnay2004 attractors display very complicated relation-
ships between alignment, growth rates and dimKY. The
Caputo attractor is hardest to visualize as, unlike Pena–
Kalnay2004 which is comprised of three 3-component at-
tractors coupled, it cannot be reduced to smaller coupled sub-
models. As in the case for Fig. 9, in Fig. 10 we have chosen
to visualize alignment and dimKY in 2D on particular axes.
At δt = 5 the attractor alignments are approaching zero ev-
erywhere except for highly localized regions where θ1,2 (x-
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Figure 4. Dradas: FTBLEs 1, 2, and 3 values at each point on the attractor in x-y-z orientation for windows δt = 5, 50, 400. The far right
column displays corresponding dimKY values based on the instantaneous FTBLE values.

y axis); θ3,4 (w-z axes); and θ4,5 (u-w axes) all approach 1.0.
The relationship between alignment and dimKY is less ob-
vious than was observed in the case of the three-component
systems, although we can recognize the attractor dimension
is higher where dimKY is large and the sum over the align-
ments small. In that sense, the relationship between transver-
sality, hyperbolicity and local attractor dimension appears to
hold as the dimension of the ODE system is increased.

The Pena–Kalnay2004 attractor (Peña and Kalnay, 2004)
has been employed previously in data assimilation studies by
Yoshida and Kalnay (2018) and Quinn et al. (2020). The later
study approximated the asymptotic Backwards Lyapunov ex-
ponents as averages over 400 time units with a timestep
of 0.01 and orthogonalization step of 0.25, here shown as
the bracketed values in Table 5. Quinn et al. (2020) and
the earlier study of Vannitsem and Lucarini (2016), both
found higher variability in the FTCLEs corresponding to the
asymptotic neutral or near-zero valued modes. We find that
increased variability of the FTCLEs relative to the FTBLEs is
a general property of all exponents as evident from the values
in Tables 4 and 5. While choosing to use the FTCLEs rather
than the FTBLEs does lead to differences in the structure of

the local Kaplan–Yorke dimension stable and unstable subre-
gions, these differences are most evident in the relative mag-
nitudes of the leading unstable and most stable exponents,
and tend to diminish as δt→∞ as in the limit they approach
the asymptotic LV values. Shown in the upper three rows of
Fig. 11 dimKY values calculated from FTCLEs are projected
onto each of the three subsystems of the Pena–Kalnay2004
model. Here we see regions of high dimension contracting
to the region of the saddle node (xe, ye, ze) and associ-
ated regions where alignments are generally small. The cor-
responding dimKY values based on the FTBLEs at δt = 100
are shown in last row in Fig. 11. Differences between FTBLE
and FTCLE dimKY values at δt = 100 are largely in terms of
the magnitude of the dimension with the most unstable re-
gions occuring in co-located subregions i.e., differences cor-
respond to a constant scale factor.

4 Discussion and conclusions

Takeuchi et al. (2011) provide a framework for understanding
hyperbolic decoupling of the tangent space into subspaces
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Figure 5. Dradas: as for Fig. 4 but for FTCLEs.

in high dimensional spatially extended dissipative systems in
which the entangled “physical” modes are separated from the
rapidly decaying stable modes. For prediction studies one is
typically most concerned with the trajectory of the entangled
modes on the associated finite-dimensional tangent space of
the phase-space dynamics. This slow manifold is often iden-
tified in terms of the spectral gap in the eigenvalues. From
the geometrical viewpoint, where the system is reducible to
the evolution of a few degrees of freedom, it follows that
the flow exists in a low-dimensional region of phase space,
parametrized by a finite number of degrees of freedom. For
geophysical fluids such as the atmosphere, one of the greatest
challenges is to identify the emergence of a low-dimensional
manifold in the local spatio-temporal dynamics of high di-
mensional flows. Such slow-fast hydrodynamic systems are
paradigmatic examples with deep roots in statistical physics
(Kogelbauer and Karlin, 2024).

Motivated by the work of Lorenz (1993) and Fraedrich
(1986), as well as the questions posed by Ginelli et al. (2007),
we have investigated hyperbolicity via the relationship be-
tween fluctuations of the Lyapunov exponents, transversal-

ity of their associated dynamical vectors, and dimensional-
ity. We are further motivated by the recent study of mid-
latitude persistent events in the Southern Hemisphere mid-
troposphere by Axelsen et al. (2025). They employed an ag-
gregated measure of alignment to indicate hyperbolic split-
ting of reduced local tangent space dynamics occurring at
geographic locations where atmospheric blocking is known
to preferentially occur (O’Kane et al., 2016). Here we un-
dertook a more detailed examination of the local dynamics
of a diverse set of chaotic attractors, some with characteris-
tics broadly applicable to geophysical flows, to ascertain if
commonalities exist.

Our general findings are:

– over short widows δt ≤ 5 large hyperbolic subregions
are present – sometimes over the entire attractor – where
alignment between the leading dynamical vectors is
very weak indicating a globally nearly hyperbolic sys-
tem. In such cases the value of the leading exponent of-
ten solely determines the unstable subspaces indicated
by the local attractor dimension. Additional highly un-
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Figure 6. Dradas: θi,j pair values in x-y-z orientation with elevation angle 30° and azimuthal angle 0°. Values of 1 and 0 respectively
indicate complete alignment or exact orthogonality.

stable subspace regions distinct from those determined
by the leading exponent, are generally associated with
subregions where the near neutral exponents i.e., ex-
ponents whose asymptotic average values are near to
zero, become locally unstable. The ratio of the absolute
mean value of the leading unstable and the most stable
FTCLEs is typically minimized i.e., min

{
FTCLE1st

FTCLElast

}
for

these short windows, an indication the system is at its
most extended.

– over intermediate widows 5< δt < 100 the aforemen-
tioned unstable regions are observed to contract – often

to those associated with a saddle however, absolute fi-
nite time exponent values in these reduced subspaces in-
crease. The mean growth rates associated with the most
stable exponents vary across the respective cases with
some, like L63, remaining largely unchanged whereas
others, like threescroll, becoming inceasingly less sta-
ble as δt increases. That said, the ratio of the absolute
mean values of the most unstable to most stable expo-
nents is most often observed to increase with window
length. For the higher dimensional attractors Caputo and
Pena–Kalnay2004, very complex alignments are mani-
fest such that transversality between various vectors and
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Figure 7. Fourwing: θi,j values in x-y-z orientation with elevation angle 30° and azimuthal angle 0°. FTCLEs 1, 2, and 3 and dimKY for
δt = 5, 100.

exponent growth rates are complicated. In such cases
the attractor dimension, which is an aggregated value of
the exponents, is a more readily interpretable indicator
of regions of (non)-hyperbolicity. The most complicated
dynamics are observed to occur over these intermediate
time windows.

– over extended widows δt ≥ 100 the unstable subregion
of the near neutral exponents evident at intermediate
and shorter times tend to become stable on most of
the attractor such that only the leading exponent de-

termines regions where the unstable subspaces occur.
As δt→∞ the values of a given exponent approach
the mean asymptotic value at all points on the attrac-
tor and the subspace regions evident over shorter finite
time windows merge and disappear. This is most eas-
ily seen for Dradas, the attractor with the most rapid
convergence of the FTBLEs and FTCLEs to their mean
asymptotic LE value.

Ginelli et al. (2007) proposed that access to the local direc-
tions of stable and unstable manifolds and the ready charac-
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Figure 8. Hadley: FTCLEs, θi,j and dimKY on the three dimensional projection of the attractor shown at δt = 5, 100.

terization and quantification of (non-)hyperbolicity affords a
means to better model the spatial structure of the dynamics in
extended systems. In particular, they note the key challenges
to quantification of local measures of chaos and hierarchi-
cal modal decompositions of spatiotemporal chaos as well
as the potential applications to prediction in nonlinear mod-
els. In recent years these ideas, including knowledge of the
local transversality of invariant manifolds, have indeed been
combined with linear and nonlinear generalizations of dy-

namical vectors using information on the past evolution e.g.,
SVs, FTBLVs, BVs, etc., to initialize optimal forecast per-
turbations along the relevant unstable directions determining
error growth.

The chaotic attractors examined here represent paradig-
matic examples of the dynamics of low dimensional physical
systems. As mentioned in the introduction, L63 is derived
as a three variable convective system. Similarly, the Hadley
attractor is a reduced order model of the Hadley circulation
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Figure 9. Threescroll: FTCLEs and dimKY on the three dimensional projection of the attractor; θi,j pairs on chosen axes; shown at δt = 5, 50.
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Figure 10. Caputo: dimKY for given θi,j pairs on chosen axes.

Nonlin. Processes Geophys., 33, 51–72, 2026 https://doi.org/10.5194/npg-33-51-2026



T. J. O’Kane and C. R. Quinn: Local characteristics of chaotic attractors 69

Figure 11. Pena–Kalnay2004: dimKY at δt = 5, 50, 100 on each of the three component subsystems (extratropical: xe, ye, ze); (tropical: xt,
yt, zt); and (ocean: X, Y , Z).
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i.e., the global-scale zonally oriented thermally driven cells
within the troposphere that emerge due to meridional differ-
ences in insolation and heating between the tropics and the
subtropics. The Pena–Kalnay2004 system is a reduced order
paradigm model of interactions between tropical and midlat-
itude synoptic scale atmospheric variability and the ocean.
The other systems considered all have aspects in their dy-
namics of relevance to geophysical flows and more generally
to persistent properties in high dimensional systems associ-
ated with the emergence of a slow manifold. Emergent fea-
tures in high dimensional flows are often described in terms
of dynamics on a slow manifold. Frederiksen’s three dimen-
sional instability theory (Frederiksen, 1982, 1983) applies to
atmospheric blocking (see also Zidikheri et al., 2006) provid-
ing a basis to understand the lifecycle of blocking in terms of
growth rates of topographically trapped Rossby waves res-
onant with incipient baroclinic disturbances during onset;
barotropic instability maintaining the structure during the co-
herent phase; and the re-establishment of baroclinic instabil-
ity during decay. Using cluster analysis and an average mea-
sure of transversality as a proxy for mean hyperbolicity, Ax-
elsen et al. (2025) recently showed that the mature phase of
Southern Hemisphere blocking could be characterized by a
small number of emergent low dimensional on average hy-
perbolic attractor states thus making a direct connection be-
tween instability theory and hyperbolicity.

The question arises as to the impact of increasing dimen-
sionality. This goes to hyperbolic splitting, that is the sepa-
ration of the physical modes from the fast decaying modes.
For high dimensional systems, where scale separation exists,
such as occurs where there is a distinct gap between low and
high eigenvalues of the eigenspectrum, the slow manifold
is easily determined and the influence of the fast decaying
modes readily parameterized by a stochastic forcing. In the
absence of stochastic forcing, a low order chaotic attractor,
such as L63, in large part describes the dynamics of the slow
manifold. Where multiple timescales are present, systems of
ODEs where a fast attractor acts to force the slower modes,
such as the slow-fast Pena–Kalnay2004 model, are instruc-
tive. That said, the analogy becomes weaker with increasing
dimensionality and an absence of scale separation requiring
more complete systems of equations to better describe the
increased complexity.

Our study reveals that, even given the complexities of the
local dynamics of low dimensional chaotic attractors asso-
ciated with the manifestation of diverse unstable subspaces,
there are general properties identifiable in terms of the rela-
tionship between transversality and local measures of chaos.
We also note that the changing local hyperbolic structure can
provide additional information about “nearby” (in parameter
space) bifurcations potentially providing “early warning” in-
dicators for tipping points, and that this is an area for further
investigation.
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