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Abstract. This study investigates the impact of very high frequency data assimilation on analysis and forecast
accuracy with the local ensemble transform Kalman filter for idealized deep convection. Previous studies showed
that assimilating every 30 s data from Phased Array Weather Radar (PAWR) alleviates the problem of strongly
non-Gaussian error probability distribution due to rapid nonlinear evolution of deep convection in real-world
cases. This study performs perfect model observing system simulation experiments to understand better the im-
pact of assimilating radar reflectivity every 30 s focusing on non-Gaussianity. The idealized experimental settings
have unique advantage in verifications for unobserved variables since it was unclear in the previous studies with
real-world data. The results show that every 30 s data assimilation contributes to a significant improvement of
the analysis accuracy, particularly for vertical velocity associated with strong convection, although the impact
on the forecast accuracy is limited. We also find a significant reduction in the non-Gaussianity of first guess
ensemble. The impact of assimilation frequency on reducing non-Gaussianity is enhanced when the uncertainty
in background wind or stability is included in the initial ensemble perturbation.

1 Introduction

The use of convection-permitting numerical weather predic-
tion (NWP) models is now becoming a standard practice
for short-range precipitation forecast. It is complementary to
nowcasting based on simple extrapolation of the precipitation
image motion or optical flow. The forecast by NWP models
is expected to provide a better representation of precipitation
than the forecast by optical flow for a lead time beyond a few
hours (Sun et al., 2014; Clark et al., 2016).

Important information on precipitation in convection-
permitting NWP models is provided mainly by data assimila-
tion of Doppler weather radars. Currently, most operational
centers apply a variational data assimilation method at a 1-
hour interval, with radar reflectivity incorporated through la-

tent heat nudging (Gustafsson et al., 2018). Alternatively, the
ensemble Kalman filter (EnKF) has also been extensively
studied because of its low implementation cost without the
need for adjoint models. As EnKF favors sequential data as-
similation with a shorter interval than the window length of
four-dimensional variational data assimilation (4D-Var) (Fer-
tig et al., 2007), it is common to perform data assimilation
cycles with the same frequency as the available observation,
typically 5 min for most current operational weather radars
(Schraff et al., 2016). In addition, another possible option is
to use the four-dimensional extension of EnKF, which assim-
ilates observations in a time window of a specified interval. It
enables us to use the full information of frequent observation
while maintaining the longer data assimilation interval.
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The non-Gaussianity of error probability distribution is a
major problem for the convective scale EnKF with radar data.
Here, the strong non-Gaussianity can be caused by nonlinear
observation operators and rapid nonlinear evolution of state
variables. The non-Gaussianity makes the analysis based on
the EnKF suboptimal (Lei et al., 2010). In this study, we
are motivated to investigate the impact of non-Gaussianity
on analysis and forecast accuracy with convective-permitting
NWP.

Assimilating radar data at an interval shorter than 5 min
can mitigate the non-Gaussianity problem. Previous studies
used the phased array weather radar (PAWR) in Japan with
observation interval of 30 s. They assimilated PAWR data
every 30 s using the local ensemble transform Kalman fil-
ter (LETKF) to capture the rapid growth of localized intense
thunderstorms in metropolitan areas of Japan (Miyoshi et al.,
2016b, a; Maejima et al., 2017; Honda et al., 2022; Miyoshi
et al., 2023). Other studies also performed high-frequency
data assimilation with different phased array radar systems
(Kuster et al., 2015; Wu et al., 2018; Huang et al., 2020;
Stratman et al., 2020; Huang et al., 2022; Palmer et al., 2022).

Some studies have demonstrated the advantage of frequent
data assimilation with an interval of less than 5 min. Xue
et al. (2006) discussed the possible use of the Collaborative
Adaptive Sensing of the Atmosphere (CASA) radar system
with a frequent observation mode, showing improved anal-
ysis accuracy of dynamical variables by assimilating radar
data with 1 or 2 min intervals. Maejima and Miyoshi (2020)
studied the impact of changing the window size of the four-
dimensional LETKF in the real case observed by Osaka
PAWR and reported the advantage of an assimilation inter-
val of less than 3 min. Maejima et al. (2022) performed an
observing system simulation experiment (OSSE) for a hy-
pothetical network of PAWR in western Japan and showed
that the assimilation of radar observation every 30 s is more
effective than the case with every 5 min in predicting the ob-
served heavy rain distribution. Ruiz et al. (2021) investigated
the non-Gaussianity by assimilating the Osaka PAWR data
using the LETKF with 1000 members and showed a sig-
nificant reduction of non-Gaussianity and differences of the
analysis mean value of vertical winds by the assimilation in-
terval of 30 s compared with 1, 2 and 5 min. However, the
previous studies used real-world data without sufficient ver-
ification data for unobserved variables. Additionally, in real-
world cases, it is difficult to distinguish the effect of non-
Gaussianity from other factors which may degrade the analy-
sis and forecast performances, such as the errors in the model
physics and observation operators, limited observation cov-
erage, and multi-scale background error structure.

In this study, we perform a series of idealized OSSEs to
investigate the impact of assimilating radar observation at
very high frequency on the non-Gaussianity, the analysis ac-
curacy for the variables which are not directly observed, and
the accuracy of extended ensemble precipitation forecast. We
carefully design the OSSEs so that we exclude other com-

plex real-world factors as possible. The findings of this study
would provide insights into future designs on convection-
permitting NWP with radar data assimilation, even though
every 30 s radar data assimilation is a very limited practice
at this moment. Also, the investigation on the impact of non-
Gaussianity would encourage future studies on non-Gaussian
data assimilation methods.

This paper is organized as follows. Section 2 describes ide-
alized OSSEs with the assimilation of radar reflectivity every
30 s. Section 3 shows the results of the experiments in terms
of analyses and extended ensemble forecasts, followed by an
investigation on the impact on 30 s data assimilation on the
non-Gaussianity of the ensemble perturbation and its impact
on the analysis fields. Section 4 discusses the influence of
larger-scale uncertainty based on the results of additional ex-
periments. Section 5 provides a conclusion.

2 Methodology

2.1 Overall experimental design

We first describe the overall strategy of the OSSEs in this
study. We focus on the impact of assimilating radar observa-
tion with a very high frequency on the non-Gaussian char-
acteristics of the background error of state variables and the
accuracy of analysis and extended forecast. Therefore, in the
first set of experiments, we exclude other factors which we
usually have in real-world applications and significantly af-
fect the performance of data assimilation.

First, we perform perfect-model OSSEs, in which the na-
ture run is generated by the same model as the one used in
data assimilation experiments. We also use the same obser-
vation operator for generating synthetic observations to be
assimilated and for the verification purpose in the observa-
tion space.

Second, we study the ideal case of a single deep convec-
tion triggered by a warm bubble in a conditionally unstable
atmosphere. This simplifies the causal relationship between
the evolutions of hydrometeors and winds. This causal re-
lationship is often complex with multi-scale interactions in
the real world. In addition, we assume only convective-scale
uncertainty in the initial ensemble by perturbing only warm
bubbles while using the same vertical profiles for the initial-
ization of each member.

Third, we use a large ensemble size for ensemble data as-
similation to reduce the effect of sampling error. Also, infla-
tion methods are not applied such as additive or multiplica-
tive covariance inflation, relaxation to prior spread (RTPS),
and relaxation to prior perturbation (RTPP), even though
these applications might improve the analysis accuracy. This
enable us to avoid additional modifications to the form of
propability distribution function of the ensemble perturba-
tions and to focus more on the impact of analysis frequency
on non-Gaussianity.
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In addition to this highly idealized set of OSSEs, we also
perform complemental experiments with more realistic set-
tings, which apply perturbations in the thermal and wind
background vertical profiles. This is closer to a real-world
data assimilation problem where the first guess has uncer-
tainty not only at a convective scale but also at larger scales.

2.2 Model and the nature run

In this study, we use the Scalable Computing for Advanced
Library and Environment Regional Model (SCALE-RM;
Nishizawa et al., 2025) as a NWP model. The SCALE-
RM employs a single-moment 6-category cloud micro-
physics parameterizaion of Tomita (2008), a Smagorinsky-
type subgrid-scale turbulence parameterization of Smagorin-
sky (1963), and the level 2.5 closure of Mellor-Yamada
Nakanishi-Niino type boundary layer parameterization
(Nakanishi and Niino, 2004). Radiation and convective cloud
parameterizations are not used in the experiments of this
study.

We simulate the development of a deep convective cloud
with a following idealized setting. The computational do-
main is 3-dimensional and has a 160 km× 160 km horizon-
tal extent with a 16 km model top. The grid spacing is regu-
lar, 1 km horizontally and 200 m vertically. Lateral boundary
conditions are periodic in both the X and Y directions. Verti-
cal profiles of horizontal wind, temperature, and specific hu-
midity are prescribed to set the initial condition. To trigger
a convective cell, a warm bubble is imposed near the center
of the domain, namely, at 75 km from western and southern
boundary of the domain and 3 km height from the surface.
The warm bubble has a positive temperature anomaly with
the maximum intensity of 1 K and a 3-dimensional Gaussian
shape, with horizontal and vertical length scales of 25 and
1.5 km, respectively. With these settings, we first performed
a single forecast to create a time series of model state vari-
ables which is considered the truth. We hereafter call it the
“nature run”.

Figure 1 shows the skew-T plot of the vertical profile of
the initial background state of the atmosphere. It has convec-
tion available potential energy (CAPE) of 1655 J kg−1 and
a strong westerly wind shear. Figure 2 shows the time evo-
lution of the nature run in radar reflectivity calculated by
the observation operator, which is described in the next sec-
tion. The warm bubble triggers an intense deep convective
cell that reaches the maximum cloud top height in about an
hour. Then the area of strong reflectivity starts to unfold and
eventually evolves to two major cells, while the entire system
moves eastward.

2.3 Data assimilation system and the synthetic
observations

We use the data assimilation system known as the SCALE-
LETKF, which is the combination of the LETKF with the

Figure 1. A skew-T plot of background atmospheric thermal pro-
file of the experiment. The red shaded area corresponds to the con-
vective available potential energy (CAPE). The profile of horizontal
wind is shown on the right side of the figure.

SCALE-RM. The SCALE-LETKF for radar data assimila-
tion was developed and utilized in previous studies (Miyoshi
et al., 2016a, b; Maejima et al., 2017; Amemiya et al., 2020;
Honda et al., 2022). The SCALE-LETKF directly assim-
ilates radar reflectivity using the observation operator ob-
tained by the radar simulator using the same particle size
distribution settings with the microphysics scheme of the
model (Amemiya et al., 2020). The SCALE-LETKF was im-
plemented for successful real-time demonstrations of 30 s re-
fresh NWP in 2020 with 50 ensemble members (Honda et al.,
2022) and in 2021 during Tokyo Olympic and Paralympic
games with 1000 ensemble members(Miyoshi et al., 2023).

We briefly introduce the calculation procedure of the
LETKF, cf. Hunt et al. (2007) for details.

In the LETKF, the Kalman filter calculation is performed
in the ensemble subspace formed by the background ensem-
ble perturbations. We denote the background perturbation
matrix as Xb

= [xb(1)
−xb, . . .,xb(K)

−xb
] consists, whereK

is the ensemble size. The background error covariance matrix
in the model space is

Pb
=

1
K − 1

Xb(Xb)T , (1)

and the corresponding expression in the ensemble subspace
is

P̃b
=

1
K − 1

I. (2)

Then the analysis error covariance matrix in the ensemble
subspace is

P̃a
= [(K − 1)I+ (Yb)TR−1Yb

]
−1, (3)
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Figure 2. Radar reflectivity (color shades) and vertical velocity (thin black contours with an interval of 5 m s−1) of the nature run at (a, b)
2 km height level and (c, d) the vertical cross section along Y = 80 km (horizontal black lines in a, b). The snapshots at (a, c) 50 min and (b,
d) 80 min from the initial time are shown.

where Yb is the matrix whose columns are the background
ensemble perturbations in the observation space, and R is the
observation error covariance matrix.

For the consistency with Eqs. (1) and (3), the analysis en-
semble perturbation is obtained as follows.

Xa
= XbWa (4)

Wa
= [P̃a

]
1/2, (5)

The analysis ensemble mean is obtained by the Kalman
filter formula.

xa
= xb

+Xbwa, (6)

wa
= P̃a(Yb)TR−1(yo

− yb), (7)

where yo is the observation vector and yb is the background
ensemble mean in the observation space.

Equation (6) is derived from the Kalman filter formula,
which calculates the Kalman gain that minimizes the trace
of the analysis error covariance matrix. The analysis coin-
cides with the maximum likelihood solution only when the
background and observation errors follow Gaussian distribu-
tions. Therefore, when the background error is strongly non-
Gaussian, the analysis increment would be suboptimal.

Synthetic observation is generated from the time series of
the nature run every 30 s. In this study, we assume that the

radar reflectivity is observed throughout the domain, at every
grid point of 1 km interval both horizontally and vertically.
For simplicity, the scanning geometry and the attenuation
effect depending on the radar location are not considered.
The assimilation of Doppler velocity is also not considered.
Radar reflectivity is calculated from the density and hydrom-
eteor mixing ratios of the nature run using the same obser-
vation operator used in the SCALE-LETKF, adding random
errors from the Gaussian distribution with the standard devi-
ation of 5.0 dBZ.

Following the method of Aksoy et al. (2009), for both ob-
servation and each member of the first guess ensemble, re-
flectivity values below 10 dBZ are adjusted to 5 dBZ and con-
sidered as “no-precipitation” signals, separated from “pre-
cipitation” signals which are equal to or above 10 dBZ. Re-
flectivity observation is assimilated only where at least one
ensemble member of the first guess has “precipitation” sig-
nal at the grid point. The localization with an approximate
Gaussian function of Gaspari and Cohn (1999) is applied,
with horizontal length scales of 4 and 2 km for precipitation
and no-precipitation observations, respectively. The vertical
length scale is set to 2 km for both of them. These settings are
the same with Ruiz et al. (2021). We use 100 ensemble mem-
bers for all experiments, which we consider large enough for
this study, with the small localization length scale limiting
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the effective degrees of freedom of the background error.
We set the threshold of the number of members which has
a “precipitation” signal at a grid point for the observed radar
reflectivity to be assimilated. We also set the upper limit of
the number of observations assimilated at a grid point to 100,
which is equal to the ensemble size.

We perform data assimilation experiments with three dif-
ferent configurations, namely, (i) 5 min 3D-LETKF (here-
after called 5MIN-3D), which uses only the reflectivity ob-
served every 5 min, (ii) 5 min 4D-LETKF (hereafter called
5MIN-4D), which uses observations of every 30 s within the
5 min time window from the previous to the current analy-
sis time, and (iii) 30 s 3D-LETKF (hereafter called 30SEC),
which assimilates the observation every 30 s. The 5MIN-4D
case does not use temporal localization, namely, we set the
same weight to all observations in a time window. Therefore,
the 5MIN-4D and 30SEC use the same observation informa-
tion in total, while they differ in the assimilation frequency.
Although this choice might not be practical, we prioritize ex-
ploring the underlying relationship between assimilation fre-
quency and non-Gaussianity in an idealized setting.

2.4 Initial ensemble perturbation

The design of initial ensemble perturbation is crucially im-
portant for the data assimilation with the LETKF, as it largely
determines the characteristics of the multi-scale and multi-
variable background error covariance. In this study, as men-
tioned above, we simplify the problem by setting the ideal-
ized initial perturbation. We use the same vertical profile with
that of the nature run, to initialize the state variables of all the
members. We perturb the location and intensity of the warm
bubble, with a spatial scale comparable to the size of the con-
vective cell. Further, we add the small random band-pass-
filtered potential temperature perturbation over the entire do-
main to create the non-zero ensemble spread in the area out-
side the convective cell. With these initial perturbations, the
first guess ensemble at the time when high reflectivity is first
observed is expected to have strongly non-Gaussian pertur-
bations with a spatial structure at a convective scale. The pa-
rameters used for these perturbations are summarized in Ta-
ble 1.

2.5 Verification methods

For each of the three experiments, we perform data assimila-
tion cycles for 50 min from the initial time (corresponding to
Fig. 2a and c) and evaluate the analysis. We also perform a
30 min ensemble forecast from the analysis ensemble at that
time step. We focus on this particular analysis time because
the maximum value of vertical velocity in the updraft reaches
its peak value around 40 ms−1. We assume that the data as-
similation runs long enough from the initial time to make the
error and ensemble spread values evolve stably, although the

rapid evolution of the convection makes it difficult to see the
convergence of those values.

We compare the performances of the analyses and ex-
tended forecasts among different data assimilation settings.
We particularly focus on the non-Gaussianity of first guess
ensemble vertical velocity and the accuracy of analysis mean
vertical velocity in comparison with the nature run, as it is
thought to be one of the most difficult variables to prop-
erly estimate from radar observation (Fabry and Meunier,
2020), and has been shown to have a strong sensitivity to
the data assimilation interval in the real-world case (Ruiz
et al., 2021). For extended forecasts, we mainly evaluate the
ensemble mean accumulated surface precipitation, as it is
the most important forecast variable in practice. To quantify
the non-Gaussianity of a univariate probability distribution,
we use the Kullback–Leibler divergence (KLD) against the
Gaussian distribution having the same mean and variance.
As we calculate the KLD from the ensemble of finite size, we
approximate it by kernel density estimation. Suppose that we
have a standardized ensemble of a variable xk (k = 1. . .K).
The estimated probability density using Gaussian kernel is,

p(x)=
1
Kh

1
√

2π

K∑
k=1

exp
(
−(x− xk)2

2h2

)
, (8)

where h is a kernel bandwidth, which is determined adap-
tively as follows (Silverman, 1988).

h= 1.059 ·K−0.2 (9)

Then the KLD is calculated numerically as follows.

KLD(P ||Q)∼
J∑
j

pj ln
pj

qj
, (10)

where pj and qj are the values at the center of each bin, for
the estimated density p(x) and the normal distribution q(x)
respectively.

Mutual information is used to evaluate the functional rela-
tionship between the ensembles of two variables. It is defined
for two probabilistic variables x and y as follows.

I[x,y] = KLD(p(x,y)||p(x)p(y)) (11)

=−

∫ ∫
p(x,y) ln

(
p(x)p(y)
p(x,y)

)
(12)

In this study, it is used to evaluate the nonlinear relation-
ship between two variables in the first guess ensemble. For
this purpose, this is applied after removing the linear regres-
sion of y on x from the original y.

3 Results

3.1 Analysis and first guess fields in reflectivity and
vertical velocity

Figure 3 shows the time series of the total number of as-
similated reflectivity observation and averaged analysis en-
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Table 1. The initial perturbation properties.

Variable Perturbation type mean and standard deviation

Warm bubble Potential Maxmimum intensity Mean: 1 K
temperature Std. dev. : 0.2 K

Center location Mean: 75 km in X and Y
Std. dev. : 25 km in X and Y

Whole domain Potential Additive noise Mean: 0 K
temperature Std. dev. : 0.2 K (domain average)

3-D bandpass filter: 4–40 km

semble spread in reflectivity for every 5 min. The assimila-
tion starts at 00:10:00 as the initial convection develops and
reflectivity over 10 dBZ emerges in the observation and the
first guess. The first The number of assimilated observation
peaks around 00:15:00 to 00:20:00, as a large number of
“no-precipitation” observation is assimilated to suppress the
emergence of convection at random locations triggered by
initial random perturbation. Except for the initial peak, the
number of observations gradually increases as the high re-
flectivity area extends over time as the convective cell devel-
ops. The 5MIN-4D and 30SEC assimilate much larger num-
ber of observations than the 5MIN-3D case, as expected. The
5MIN-4D has generally larger number than 30SEC because
it often has larger number of grid points where some mem-
bers show artificial “precipitation” signals to suppress. The
time series of averaged ensemble spread indicates that the
analysis largely follows the observation, not causing the filter
divergence. The average ensemble spread is not significantly
different between 5MIN-4D and 30SEC after 00:50:00. Note
that these metrics are for reflectivity, which is a variable di-
rectly observed. They could be different for other variables
as we examine later.

Figure 4 shows the analysis mean reflectivity at 00:50:00
for 5MIN-3D, 5MIN-4D, and 30SEC. The analysis ensemble
mean reflectivity is closely similar to the nature run in all
the cases. The ensemble spread of analysis reflectivity has
at most 6.6, 5.0, and 3.2 dBZ in the 5MIN-3D, 5MIN-4D,
and 30SEC case, respectively. This simply reflects the total
number of assimilated observations, with more observations
leading to a smaller spread.

Figure 5a–c compare the analysis mean vertical velocity
and its deviation from the nature run. Note that the figures
show the area between X = 60 and 100 km, which is nar-
rower than Fig. 4. The 5MIN-3D case underestimates the up-
draft near its maximum position. The 5MIN-4D has slight
errors around the updraft, whereas the 30SEC case almost
reproduces the true vertical velocity field. The largest error
is located around the maximum of the updraft near 10 km
height and not large enough to change the structure of deep
convection. The errors in the 5MIN-3D and 5MIN-4D cases

Figure 3. Time series of (a) the total number of assimilated obser-
vations and (b) the analysis ensemble spread in reflectivity averaged
over the grid points where nature run shows values over 10 dBZ.
Black, blue, and red curves indicate the results of 5MIN-3D, 5MIN-
4D, and 30SEC, respectively.

are considered to be the remainders of the error in the first
guess ensemble shown in Fig. 5d and e.

Figure 5g–i show the ensemble spread and the KL diver-
gence in vertical velocity for each case. The case 5MIN-3D
shows the largest spread and KL divergence in vertical ve-
locity. The 5MIN-4D shows smaller values, though they are
still significantly larger than those of 30SEC. In the case of
5MIN-3D and 5MIN-4D, large values of KL divergence are
found near the location of the maximum updraft, the lower
troposphere below the updraft, and in the right part of the
figures (X = 95 km, Z = 8 km). The area below the updraft
is thought to be associated with downdraft caused by precip-
itation in some members, and the right part may correspond
to the border of the convective system. However, there are no
significant differences of KL divergence around the area of
the maximum updraft between 5MIN-4D and 30SEC cases.
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Figure 4. Vertical cross sections of (a–c) ensemble mean and (d–f) spread of analysis reflectivity at 00:50:00, for (a, d) 5MIN-3D, (b, e)
5MIN-4D, and (c, f) 30SEC cases respectively. Black contours in (a)–(c) indicate the difference between analysis mean and nature run, with
contour interval of 0.5 dBZ.

3.2 Forecast fields in reflectivity and surface
precipitation rate

Figure 6a–c show cross sections of the ensemble mean radar
reflectivity of 30 min forecasts from 00:50:00. The differ-
ence from the nature run is shown in black contours. The
three cases show almost similar patterns of large reflectiv-
ity area. Some differences among the cases are found in the
rear part of the precipitation system, where relatively low re-
flectivity remains below 4 km and around Y = 70 to 80 km.
The 30SEC case shows a higher accuracy in reflectivity in
this part, although the difference is small. Figure 6d–f show
the accumulated surface precipitation for 30 min between
00:50:00 and 01:20:00 for each case. All of them show a
common spatial pattern of error against the nature run. The
difference among the cases is not as significant as the system-
atic error of the forecasts. In addition, the ensemble spread
shown as blue contours indicates the similar spatial pattern
and magnitude among the three cases, although the analysis
ensemble spreads in reflectivity and vertical velocity shown
in Figs. 4 and 5 are significantly different.

3.3 Non-Gaussianity and non-linearity

In this section, we examine the error probability distribution
and discuss how it impacts on analysis accuracy. Figure 7
shows the example scatter plots between first guess ensemble
of graupel mixing ratio and vertical velocity for each case.
The blue markers correspond to the values of each of the 100

ensemble members, indicating the joint probability distribu-
tion, and the red markers indicate the nature run. They are
extracted from the same grid point (X = 78 km, Y = 80 km,
Z = 12.1 km), where the 5MIN-3D case shows large KL di-
vergence of vertical velocity. The 5MIN-3D case shows the
joint distribution with a bended shape, whereas the 5MIN-4D
and 30SEC cases show the distribution that would be more
fitted by a straight line. This is due to the difference in the
ensemble spread as seen in Fig. 5d–f. The rapid error growth
produces not only the non-Gaussianity in a single variable
but also the nonlinearity in cross-variable relationships in the
first guess ensemble. This may be the cause of the analysis
error in state variables, as the LETKF calculates the analysis
increment using the linear superposition of the ensemble per-
turbation of the first guess. That treatment is unable to esti-
mate the optimal analysis increment value for both of the two
variables when they have a nonlinear functional relationship.
To quantify the occurrence of the joint distribution showing
nonlinear relationship such as Fig. 7a, we calculate the mu-
tual information between the ensemble members of graupel
and vertical velocity at every grid point, after removing the
linear dependency. Figure 8 shows the cross section of the
mutual information. Large values are found in the upper part
of the main convective cell in the 5MIN-3D case, indicating
strong nonlinear relationship between the two variables. This
tendency of a strongly nonlinear joint distribution between
the graupel mixing ratio and the vertical velocity may be one
of the factors which contribute to the larger error in analysis
mean vertical velocity in Fig. 5a. This approximately non-
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Figure 5. Vertical cross sections at Y = 80 km of (a–c) analysis ensemble mean and deviation from the nature run, (d–f) first guess ensemble
mean and deviation from the nature run, and (g-i) first guess ensemble spread and KL divergence, of vertical velocity at 00:50:00, for (a, d,
g) 5MIN-3D, (b, e, h) 5MIN-4D, and (c, f, i) 30SEC cases respectively. Black contours in (a)–(f) indicate ensemble mean of vertical velocity
with contour interval of 5 m s−1. Red contours in (g)–(i) indicate first guess ensemble spread of vertical velocity with contour interval of
0.5 m s−1.

linear relationship, as well as large ensemble spread in first
guess vertical velocity itself, can introduce suboptimal anal-
ysis increment.

4 Additional experiments in the presence of
larger-scale errors

4.1 Initial ensemble with perturbed background profiles

To extend the discussion in the previous sections to more
realistic situations, we conduct additional experiments with
background errors at a larger scale. We perform two addi-
tional experiments using the same observation data, one with
perturbation in the background wind profile, and the other
with perturbation in the background thermal profile. In both

cases, the background profile of the nature run was perturbed,
so that 10 different profiles shown in Fig. 9 for each 10 mem-
bers of the ensemble are used to create a 100-member initial
ensemble. The random perturbation described in Sect. 2.4
(Table 1) is imposed on each ensemble member in the same
way as before. Both of those 10 sets include one true profile,
indicating only 10 members in the ensemble have accurate
background wind or stability profile. The other 90 members
are biased and are expected to have significant errors in the
evolution at a convective scale.

The same LETKF setting is used in these additional ex-
periments, although the previous setting includes parameters
such as small localization scales, which may be suboptimal in
the presence of background errors of a larger scale. Our pur-
pose of these experiments is to find implications that help in-
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Figure 6. (a–c) Vertical cross sections at Y = 80 km of ensemble mean radar reflectivity and (d–f) ensemble mean accumulated surface
precipitation of 30 min forecast from 00:50:00. They are of (a, d) 5MIN-3D, (b, e) 5MIN-4D, and (c, f) 30SEC cases respectively. Black
contours in (a)–(c) indicate difference from the nature run with a contour interval of 5 dbz. Black contours in (d)–(f) indicate the difference
from the nature run with a contour interval of 2 mm. Blue contours in (a)–(c) indicate the ensemble spread in reflectivity with a contour
interval of 5 dbz. Blue contours in (d)–(f) indicate the ensemble spread in surface precipitation with a contour interval of 2 mm.

Figure 7. The examples of scatter plots of 100 ensemble members between graupel mixing ratio (QG) and vertical velocity (W ) for each of
(a) 5MIN-3D, (b) 5MIN-4D, and (c) 30SEC cases, at 00:50:00 as in Fig. 5. The blue dots indicate values of each ensemble member. The red
star marker indicates the value of nature run. Histograms of QG and W are shown on the top and on the right of each panel, respectively.

terpret the previous real-world experiment (Ruiz et al., 2021),
which was performed with initial and boundary conditions
downscaled from the parent model ensemble forecasts with
considerable larger-scale uncertainty.

4.2 Analysis and first guess in vertical velocity

Figure 10a–c show the analysis mean, and Fig. 10d–f show
the first guess mean vertical velocity in the presence of back-
ground wind perturbation. As the ensemble includes mem-
bers with weaker upper-level wind, they are expected to have
convection location shifted to the left. Consequently, 5MIN-
3D and 5MIN-4D cases have a significant dipole pattern of
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Figure 8. Vertical cross section at Y = 80 km of the mutual infor-
mation between ensemble values of QG and W after removing lin-
ear dependency in the 5MIN-3D case.

first-guess error in vertical velocity. Additionally, the loca-
tion shift of the maximum updraft causes a skewed error
distribution of vertical velocity in nearby grid points, caus-
ing high non-Gaussianity seen in Fig. 10g and h. The anal-
ysis mean of 5MIN-3D has a remaining dipole-shaped er-
ror, whereas 5MIN-4D has larger errors with complex spa-
tial pattern. This might be caused by the absence of tempo-
ral localization of 4D-LETKF, which assimilates all previous
5 min observations with equal weight, leading to the subopti-
mal instantaneous field at the analysis time. The 30SEC case
has significantly smaller first guess mean error and KL diver-
gence, leading to smaller analysis mean error.

The results of perturbed stability experiment are more
complicated. The first guess mean error in vertical veloc-
ity shown in Fig. 11d–f indicates a significant negative bias
over the area of updraft in 5MIN-3D and 5MIN-4D cases.
This is caused by members with less intense convection un-
der weaker background instability. The KL divergence fields
show large values in the upper part of the convection, im-
plying a strongly non-Gaussian distribution among the en-
semble. The analysis mean of the 5MIN-3D case has signifi-
cant remaining negative error in the upper part. Although the
background vertical velocity is expected to be correlated with
reflectivity, the analysis mean error still remains especially in
the upper part, indicating the possibility of a non-Gaussianity
effect. On the other hand, the analysis mean vertical velocity
of 5MIN-4D has a significantly smaller error than 5MIN-3D
in the upper part, whereas it has somewhat larger negative er-
rors in the lower troposphere. The 30SEC case has a smaller
first guess error and KL divergence in the area of the updraft.
However, the area of larger negative error behind it (around
X = 70 km) is found both in the first guess and the analysis
mean fields. It might be a side effect of frequent assimila-
tion, possibly triggering artificial convection cells by accu-

mulated unbalanced analysis increments. In summary, in this
perturbed stability case, the comparison among different data
assimilation frequencies has more complex features, and we
have to consider other possible factors than non-Gaussianity,
although 5MIN-3D still shows the largest analysis error.

4.3 Forecast in surface precipitation rate

Finally, we compare the impact of frequent data assimilation
on surface precipitation forecast in these experiments with
perturbed background profiles. Figure 12a–c show the accu-
mulated surface precipitation for 30 min between 00:50:00
and 01:20:00 for each of the three cases with perturbed back-
ground wind. The common feature of forecast errors among
these three cases is that the area of high precipitation is
slightly shifted to the left in these figures, as we can see in
the areas of large positive errors (X = 70–80 km, Y = 70–
80 km). In contrast, the area around the peak of accumu-
lated precipitation (X = 70–90 km, Y = 80–85 km) has neg-
ative errors. Compared to these common features, the differ-
ences among the three cases have a smaller spatial scale and
less significant. Figure 12d–f show those of the experiments
with perturbed background stability. The common error pat-
terns are the higher peak value (X = 80 km, Y = 80 km) and
the smaller values in the surrounding area. This is caused
by weaker development of convection and concentration of
precipitation in a smaller area. These common error patterns
in both the perturbed background wind and stability cases
coincides with the patterns of the forecast ensemble spread
shown in blue contours respectively. In these experiments,
the difference among cases with different data assimilation
frequency is less significant than the common errors. In over-
all, in these experiments with perturbed background profiles,
the ensemble mean precipitation forecasts have more realis-
tic amplitude of errors than the case with the true profile. The
wind and stability perturbations produce characteristic spa-
tial patterns in the forecast error. Meanwhile, the difference
among the three data assimilation methods does not cause
significant differences in the forecast precipitation, despite
the difference in the analysis errors in vertical velocity fields.

5 Summary and discussions

In this study, the idealized experiments were conducted to ex-
amine the impact of assimilating radar reflectivity every 30 s
on the non-Gaussianity of first-guess error distribution and
the analysis and forecast accuracy. As we focused on convec-
tive scale errors, we designed the experiment to exclude other
factors such as errors in the forecast model and the observa-
tion operator, uncertainties in background vertical profiles of
atmospheric variables, and modifications on the background
error covariance in the EnKF such as covariance inflation.

We performed perfect-model OSSEs of an idealized su-
percell development from a warm bubble. Synthetic radar
reflectivity observation data was created from the time se-
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Figure 9. Background atmospheric profiles of (a) horizontal wind and (b) atmospheric stability (buoyancy frequency) used in the experiment
in Sect. 4. Each panel shows 10 different profiles, which are randomly assigned to the initial condition of 100 members. Red curves indicate
the profiles used for the nature run.

Figure 10. Same with Fig. 4 but for the experiments with background wind perturbation. Purple contours in (g)–(i) indicate first guess
ensemble spread of vertical velocity with contour interval of 1 m s−1.
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Figure 11. Same with Fig. 9 but for the experiments with background stability perturbation.

ries of the nature run every 30 s. We compared the analyses
produced by the data assimilation cycles with three differ-
ent manners, namely, 5 min 3D-LETKF (5MIN-3D), 5 min
4D-LETKF (5MIN-4D), and 30 s 3D-LETKF (30SEC). We
found a significant reduction of the non-Gaussianity for ver-
tical velocity in 30SEC compared to other cases, along with
the reduction of the ensemble spread. We also found the im-
provement of the analysis accuracy for vertical velocity in
30SEC. The impact was larger when compared with 5MIN-
3D. Smaller but still significant differences were found when
compared to 5MIN-4D.

The significant difference between the cases was found
mostly in the upper part of the main convective cell, where
the vertical velocity has the largest value. In contrast, the
dynamical variables in the lower levels that mainly control
the evolution of the supercell system did not change signif-
icantly. The ensemble mean reflectivity and surface accu-
mulated precipitation of 30 min forecast from the analysis
ensemble did not show significant differences between the
cases.

We further examined the first guess ensemble where sig-
nificant non-Gaussianity is found. We compared the joint dis-
tribution between graupel mixing ratio and vertical velocity
among the three cases and found a significant difference in
the relationship between the two variables. In 5MIN-3D, not
only the non-Gaussianity of the background error of a single
variable but also the nonlinearity in the approximate relation-
ship between the two variables was found, whereas in 30SEC
they were significantly reduced. We suggested the possible
impact of this nonlinearity to the difference of analysis error
in vertical velocity among the three cases, besides the differ-
ence of first guess ensemble spread.

We concluded that assimilating radar reflectivity every 30 s
indeed has a significant impact on the analysis accuracy for
unobserved variables, and that it could be caused by the joint
non-Gaussian background error probability density of mul-
tiple variables. However, at the same time, we also found
that the importance of the analysis accuracy improvement is
not significant for short-period precipitation forecasting, as
it does not essentially change the evolution of the convec-
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Figure 12. Ensemble mean 30 min accumulated surface precipitation of forecasts from 00:50:00, of the experiments with (a–c) background
wind and (d–f) background stability perturbation. They are of (a, d) 5MIN-3D, (b, e) 5MIN-4D, and (c, f) 30SEC cases respectively. Black
contours indicate the difference from the nature run with a contour interval of 2 mm. Blue contours indicate the ensemble spread in surface
precipitation with a contour interval of 2 mm.

tive system itself. The 30 min forecast of 5MIN-3D already
showed a highly accurate precipitation forecast, suggesting
that radar reflectivity of every 5 min is sufficient in the ide-
alized setting of this study, where errors from the model and
observation operator, and the uncertainty in larger-scale at-
mospheric fields are all ignored. Therefore, where the impact
of non-Gaussianity is considered separately, it is likely to be
less significant than other factors.

We further performed a similar comparison under more
realistic situations where we have uncertainty at a larger
scale. To mimic realistic settings, 10 different background
profiles were used to create a 100-member initial ensemble.
In the two experiments, background wind and stability pro-
files were perturbed, respectively. These experiments showed
a more significant difference between assimilation frequen-
cies of 5 min and 30 s in first guess vertical velocity. The bi-
ases in background profiles caused larger deviations among
first guess members and thus large non-Gaussianity during
5 min integration. On the other hand, the 30SEC case has sig-
nificantly reduced non-Gaussianity. It produced significantly
smaller analysis errors than 5MIN-3D. However, in these
experiments, we also found more complex features in first
guess and analysis errors which we did not find in the previ-
ous experiment. First, the analysis error of 5MIN-4D has pat-
terns that are significantly different from those of 5MIN-3D.
This might be caused by 4D-LETKF method which attempts
to optimize the time series within the window instead of the
instantaneous analysis value. Second, we found some pat-
terns in first guess and analysis error in 30SEC which were

not seen in the others. This was supposed to be caused by
frequent data assimilation and possibly driven by the accu-
mulation of unbalanced analysis increment. The issue of im-
balance caused by frequent data assimilation with ensemble
Kalman filter was discussed in previous studies such as He
et al. (2020). A recent work by Huo et al. (2025) discusses
the application of incremental analysis updates to tackle this
issue in the context of every 30 s assimilation of PAWR ob-
servation.

The findings in these additional experiments may pro-
vide more insights into the interpretation of previous stud-
ies. For example, in the experiment using the Osaka PAWR
data (Ruiz et al., 2021), they found a significant difference in
first guess mean vertical velocity not only in magnitude but
also in structure (their Fig. 2a and d). The situation may be
explained by the case shown in Fig. 10, indicating that the
large uncertainty in background thermal profile might cause
a large difference in analysis vertical velocity field.

We changed nothing in the LETKF when we performed
the experiments with perturbed background profiles, for
comparison with the previous studies. However, assimilating
the observation only with a small localization scale was inef-
ficient in constraining larger-scale fields and did not improve
the forecast accuracy, which is supposed to be mostly driven
by larger-scale atmospheric states. We can consider more ad-
vanced approaches to deal with this problem. Some studies
proposed methods of multi-scale data assimilation (Zhang
et al., 2009; Miyoshi and Kondo, 2013; Fabry, 2022). Also,
finding the optimal parameter of covariance inflation, RTPS,

https://doi.org/10.5194/npg-33-1-2026 Nonlin. Processes Geophys., 33, 1–16, 2026



14 A. Amemiya and T. Miyoshi: Impact of every 30 s assimilation

or RTPP would have a significant impact in this case, as it
compensates the underestimation of model error. The appli-
cation of those methods to frequent radar data assimilation
problems will be examined in future studies.

Data assimilation methods without the assumption of
Gaussianity, such as particle filters (van Leeuwen et al.,
2019), are another potential approach to deal with the prob-
lem of non-Gaussianity. Particle filters can avoid the error
caused by linear superposition when the errors in the state
variables have nonlinear relationships, as seen in Fig. 6a.
Therefore, this approach has the potential to improve the
analysis accuracy in such situations.
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Kirstetter, P., Zhang, G., Yu, T. Y., Kumjian, M., Cheong, B.,
Collis, S., Frasier, S., Fulton, C., Hondl, K., Kurdzo, J., Ushio, T.,
Rowe, A., Salazar-Cerreno, J., Torres, S., Weber, M., and Yeary,
M.: A Primer on Phased Array Radar Technology for the Atmo-
spheric Sciences, Bulletin of the American Meteorological So-
ciety, 103, E2391–E2416, https://doi.org/10.1175/BAMS-D-21-
0172.1, 2022.

Ruiz, J., Lien, G.-Y., Kondo, K., Otsuka, S., and Miyoshi, T.:
Reduced non-Gaussianity by 30 s rapid update in convective-
scale numerical weather prediction, Nonlinear Processes in Geo-
physics, 28, 615–626, https://doi.org/10.5194/npg-28-615-2021,
2021.

Schraff, C., Reich, H., Rhodin, A., Schomburg, A., Stephan,
K., Periáñez, A., and Potthast, R.: Kilometre-scale ensemble
data assimilation for the COSMO model (KENDA), Quarterly
Journal of the Royal Meteorological Society, 142, 1453–1472,
https://doi.org/10.1002/qj.2748, 2016.

Silverman, B. W.: Density estimation for statistics
and data analysis, Biometrical Journal, 7, 876–877,
https://doi.org/10.1002/bimj.4710300745, 1988.

Smagorinsky, J.: General circulation experiments with the primitive
equations: I. The basic experiment, Monthly Weather Review, 91,
99–164, 1963.

Stratman, D. R., Yussouf, N., Jung, Y., Supinie, T. A., Xue, M.,
Skinner, P. S., and Putnam, B. J.: Optimal Temporal Frequency

https://doi.org/10.5194/npg-33-1-2026 Nonlin. Processes Geophys., 33, 1–16, 2026

https://doi.org/10.1029/2021MS002823
https://doi.org/10.1175/MWR-D-19-0391.1
https://doi.org/10.1175/MWR-D-21-0199.1
https://doi.org/10.1175/MWR-D-21-0199.1
https://doi.org/10.1029/2024MS004802
https://doi.org/10.1175/WAF-D-14-00142.s1
https://doi.org/10.1175/WAF-D-14-00142.s1
https://doi.org/10.1175/2009MWR3133.1
https://doi.org/10.2151/SOLA.2020-007
https://doi.org/10.2151/sola.2017-032
https://doi.org/10.2151/SOLA.2022-005
https://doi.org/10.2151/sola.2013-038
https://doi.org/10.1175/BAMS-D-15-00144.1
https://doi.org/10.1109/JPROC.2016.2602560
https://doi.org/10.1145/3581784.3627047
https://doi.org/10.5194/gmd-8-3393-2015
https://doi.org/10.5281/zenodo.17142028
https://doi.org/10.5065/D6WW7G29
https://doi.org/10.1175/BAMS-D-21-0172.1
https://doi.org/10.1175/BAMS-D-21-0172.1
https://doi.org/10.5194/npg-28-615-2021
https://doi.org/10.1002/qj.2748
https://doi.org/10.1002/bimj.4710300745


16 A. Amemiya and T. Miyoshi: Impact of every 30 s assimilation

of NSSL Phased Array Radar Observations for an Experimen-
tal Warn-on-Forecast System, Weather and Forecasting, 35, 193–
214, https://doi.org/10.1175/WAF-D-19-0165.1, 2020.

Sun, J., Xue, M., Wilson, J. W., Zawadzki, I., Ballard, S. P.,
Onvlee-Hooimeyer, J., Joe, P., dale M Barker, Li, P. W., Gold-
ing, B., Xu, M., and Pinto, J.: Use of nwp for nowcasting
convective precipitation: Recent progress and challenges, Bul-
letin of the American Meteorological Society, 95, 409–426,
https://doi.org/10.1175/BAMS-D-11-00263.1, 2014.

Tomita, H.: New Microphysical Schemes with Five and Six
Categories by Diagnostic Generation of Cloud Ice, Jour-
nal of the Meteorological Society of Japan, 86A, 121–142,
https://doi.org/10.2151/jmsj.86a.121, 2008.

van Leeuwen, P. J., Künsch, H. R., Nerger, L., Potthast, R., and
Reich, S.: Particle filters for high-dimensional geoscience appli-
cations: A review, Quarterly Journal of the Royal Meteorological
Society, 145, 2335–2365, https://doi.org/10.1002/qj.3551, 2019.

Wu, C., Liu, L., Liu, X., Li, G., and Chen, C.: Advances in Chi-
nese dual-polarization and phased-array weather radars: Ob-
servational analysis of a supercell in southern China, Jour-
nal of Atmospheric and Oceanic Technology, 35, 1785–1806,
https://doi.org/10.1175/JTECH-D-17-0078.1, 2018.

Xue, M., Tong, M., and Droegemeier, K. K.: An OSSE Framework
Based on the Ensemble Square Root Kalman Filter for Evaluat-
ing the Impact of Data from Radar Networks on Thunderstorm
Analysis and Forecasting, Journal of Atmospheric and Oceanic
Technology, 23, https://doi.org/10.1175/JTECH1835.1, 2006.

Zhang, F., Weng, Y., Sippel, J. A., Meng, Z., and Bishop, C. H.:
Cloud-Resolving Hurricane Initialization and Prediction through
Assimilation of Doppler Radar Observations with an Ensem-
ble Kalman Filter, Monthly Weather Review, 137, 2105–2125,
https://doi.org/10.1175/2009MWR2645.1, 2009.

Nonlin. Processes Geophys., 33, 1–16, 2026 https://doi.org/10.5194/npg-33-1-2026

https://doi.org/10.1175/WAF-D-19-0165.1
https://doi.org/10.1175/BAMS-D-11-00263.1
https://doi.org/10.2151/jmsj.86a.121
https://doi.org/10.1002/qj.3551
https://doi.org/10.1175/JTECH-D-17-0078.1
https://doi.org/10.1175/JTECH1835.1
https://doi.org/10.1175/2009MWR2645.1

	Abstract
	Introduction
	Methodology
	Overall experimental design
	Model and the nature run
	Data assimilation system and the synthetic observations
	Initial ensemble perturbation
	Verification methods

	Results
	Analysis and first guess fields in reflectivity and vertical velocity
	Forecast fields in reflectivity and surface precipitation rate
	Non-Gaussianity and non-linearity

	Additional experiments in the presence of larger-scale errors
	Initial ensemble with perturbed background profiles
	Analysis and first guess in vertical velocity
	Forecast in surface precipitation rate

	Summary and discussions
	Code and data availability
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

