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Abstract. Atmospheric blocking exerts a major influence on mid-latitude atmospheric circulation and is known
to be associated with extreme weather events. Previous work has highlighted the importance of the origin of air
parcels that define the blocking region, especially with respect to non-adiabatic processes such as latent heating.
So far, an objective method of clustering the individual Lagrangian trajectories passing through a blocking into
larger and, more importantly, spatially coherent air streams has not been established. This is the focus of our
study.

To this end, we determine coherent sets of trajectories, which are regions in the phase space of dynamical
systems that keep their geometric integrity in time and can be characterized by robustness under small random
perturbations. We approximate a dynamic diffusion operator on the available Lagrangian data and use it to cluster
the trajectories into coherent sets. Our implementation adapts the existing methodology to the non-Euclidean
geometry of Earth’s atmosphere and its challenging scaling properties. The framework also allows for statements
about the spatial behavior of the trajectories as a whole. We discuss two case studies differing with respect to
season and geographic location.

The results confirm the existence of spatially coherent feeder air streams differing with respect to their dynam-
ical properties and, more specifically, their latent heating contribution. Air streams experiencing a considerable
amount of latent heating (warm conveyor belts) occur mainly during the maturing phase of the blocking and
contribute to its stability. In our example cases, trajectories also exhibit an altered evolution of general coherence
when passing through the blocking region, which is in line with the common understanding of blocking as a

region of low dispersion.

1 Introduction

Atmospheric blocking represents a critical phenomenon in
the dynamics of Earth’s atmosphere, characterized by the
temporary obstruction of prevailing westerlies in the mid-
latitudes, potentially influencing weather on a planetary scale
(Lupo, 2021). These events are notable for their role in
causing extreme weather conditions, such as heat waves,
cold spells and sustained periods of precipitation, impact-
ing both human activities and natural ecosystems (Kautz

et al., 2022; Pfahl and Wernli, 2012). The mechanisms lead-
ing to atmospheric blocking are complex, involving interac-
tions between the atmosphere, cryosphere (Tyrlis et al., 2019;
Woollings et al., 2014), ocean (Drijfhout et al., 2013; Hakki-
nen et al., 2011) and land (He et al., 2014; Kurgansky, 2020;
Tilly et al., 2008) and are a subject of ongoing research.
Despite their significance, predicting atmospheric blocking
events and their impacts remains a challenge, due to the in-
herent variability and the multifaceted processes that gov-
ern their formation, maintenance and dissipation. Weather
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Figure 1. Schematic showing a WCB air stream stabilizing a high
pressure blocking, which is depicted as an upper-level negative po-
tential vorticity (PV) anomaly. The line with 2 pvu (potential vor-
ticity units) indicates the tropopause. Reproduced from Steinfeld
(2019) with permission.

and climate models’ inability to correctly represent block-
ing (Matsueda, 2009) also causes considerable uncertainties
in its predicted response to climate change (Woollings et al.,
2018).

Though traditionally conceived as an adiabatic phe-
nomenon, recent studies have pointed to the role of di-
abatic processes in blockings (Croci-Maspoli and Davies,
2009; Hauser et al., 2023; Pfahl et al., 2015; Tilly et al.,
2008). More specifically, a line of study has been concerned
with moist processes, arguing that a considerable fraction
of the air masses constituting the blocking originate from
warm sectors of neighboring surface cyclones and travel
into the blocking via warm conveyor belts (WCBs) (Pfahl
et al., 2015; Steinfeld and Pfahl, 2019; Yamamoto et al.,
2021; Zschenderlein et al., 2020). WCBs are moist, rapidly
ascending air streams and are subject to research in their
own right (e.g., Joos et al., 2023; Madonna et al., 2014),
among other things due to their contribution to forecast un-
certainty (Madonna et al., 2015; Pickl et al., 2023; Wandel
et al., 2021). According to Steinfeld and Pfahl (2019), the air
parcels conveyed by such WCBs considerably influence the
blocking by stabilizing and potentially intensifying the neg-
ative potential vorticity (PV) anomaly characteristic for the
blocking, especially in the onset and maintenance stages of
its life cycle (negative PV anomalies are associated with an-
ticyclonal circulation and thus high pressure). This happens,
firstly, through a material change in PV of the respective air
masses via latent heating induced, cross-isentropic vertical
motion and, secondly, through the divergent outflow of the
guiding air streams in the upper troposphere. Evidence that
moist processes might become more important in a warmer
and moister climate underlines the need for further investiga-
tion (Steinfeld et al., 2022). A schematic depicting the pro-
cedural connections is reproduced from Steinfeld (2019) in
Fig. 1.

The notion of a WCB suggests a geometrically coherent
flow of the air masses involved, but such a coherent behavior
has not been explicitly addressed in the studies above. The
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backward trajectories attributed to such air streams are typ-
ically identified using thresholds for ascent (change in pres-
sure) or diabatic heating (change in potential temperature)
such that a common pathway is not guaranteed. In addition,
the methodology employed does not allow for statements
about the size, location, time of existence or even the num-
ber of WCBs implicated in the process. Another drawback of
the identification method is its subjective nature implied by
selecting an arbitrary threshold for the decrease in pressure
(Madonna et al., 2014, use 600 hPa in 48 h) or increase in
potential temperature the air parcels have experienced (usu-
ally a threshold of Af > 2K is used). To the best of our
knowledge, an objective identification method for coherent
medium- to large-scale air streams that allows these draw-
backs to be addressed has not been presented in the context
of atmospheric sciences.

In this study, we want to tackle these issues focusing
on the exact spatio-temporal nature of trajectories passing
through a blocking and how individual trajectories align with
each other. By grouping the set of trajectories into subsets
(clusters) based on only their geometric coherence, we iden-
tify synoptic-scale air streams and analyze their individual
dynamical properties and interrelation with the large-scale
flow configuration. The perspective introduced also allows
for statements about the overall spatial configuration and
coherence of the air parcels traced, especially with respect
to the blockings’ life cycles. A blocking’s stabilizing and
dispersion-suppressing nature affects individual air parcels,
which can be identified through our Lagrangian lens (Eh-
stand et al., 2021).

To accomplish the above, we make use of the mathemati-
cal concept of coherent sets. A coherent set is a time-evolving
region in the state space of a dynamical system that keeps its
geometric integrity to a large degree. This is particularly in-
teresting when the underlying system is such that individual
trajectories diverge and any set eventually becomes highly
filamented under evolution through the dynamics. We char-
acterize coherent sets based on their stability under small
perturbations. Coherent sets hence resist dispersion, persist
longer in complicated flows and have thus an outstanding ef-
fect on the transport of physically relevant quantities. The
fundamental idea is that in a coherent set the individual tra-
jectories stay relatively close together as a whole, such that
particles remain within the coherent set when they are sub-
jected to small random perturbations. In contrast, if a time-
evolving set is filamented, particles are likely to leave the set
under the influence of random noise — and hence mix with
its exterior. To formalize this heuristic and numerically com-
pute coherent sets, we follow the work of Banisch and Koltai
(2017) (based on theory developed in Froyland, 2013, 2015),
which characterizes the robustness of coherent sets under
small perturbations using a data-analysis framework called
diffusion maps. Their method yields a single time-averaged
operator whose spectral properties contain the necessary in-
formation to extract coherent sets.
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The visual idea of coherence (i.e., “trajectories staying to-
gether”) can be cast into diverse objectives, which can then
be used to partition available trajectory data into such sets.
For a sample of the ideas that have been implemented, please
consult Froyland and Padberg-Gehle (2015), Allshouse and
Peacock (2015), Hadjighasem et al. (2016), Schlueter-Kuck
and Dabiri (2017), Padberg-Gehle and Schneide (2017), and
Koltai and Renger (2018). A related notion is that of La-
grangian coherent structures (Haller and Beron-Vera, 2013;
Haller, 2015), aiming to describe barriers of transport. For
their computation from finite trajectory data, see for in-
stance Mowlavi et al. (2022).

The main foci of this study are the adaptation of the
methodological framework of Banisch and Koltai (2017) to
real-world trajectory data of air parcels in the atmosphere
and its deployment for case studies of atmospheric block-
ings. This is motivated by the question of spatial coherence
in WCBs in the context of blocking. As such, the presented
work does not endeavor to give a one-size-fits-all solution
to the problem of finding coherent air streams regardless of
scale, geographic location and synoptic condition but should
rather be understood as a proof of concept. We think atmo-
spheric blocking is a phenomenon well suited for the applica-
tion of the developed methodology, since it is large enough to
feature a handful of distinct, coherent air streams (given the
resolution of our data) but small enough to be well resolved
by the number of trajectories computationally feasible. We
have thoroughly analyzed two cases of atmospheric blocking
differing with respect to both geographical location and time
of year and show that differences between the two examples
at similar points in their life cycles are notably smaller than
differences within the same example between different points
in the life cycles. This goes for the occurrence of WCBs, the
overall trajectory density and the traced air masses’ filamen-
tation.

The paper is organized as follows. Section 2 introduces the
mathematical foundation relevant to the methods employed.
Section 3 covers details about the implementation of our al-
gorithm as well as the data used. We show results from the
application of the algorithm to test cases in Sect. 4 to both
elucidate the concepts and methods introduced before and
investigate the problems and questions posed above. Finally,
Sect. 5 summarizes the findings.

2 Theory

To extract coherent sets from Lagrangian trajectory data, we
employ the method proposed by Banisch and Koltai (2017).
It uses local distances between data points to construct a dif-
fusion operator that is used to estimate coherent sets by per-
forming spectral clustering. In the following, we give a brief
introduction into coherent sets and diffusion maps. Our aim
is to provide a good intuitive understanding. For a formal and
mathematically rigorous introduction of coherent sets using a
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transfer-operator-based framework, we refer to Banisch and
Koltai (2017) and Froyland (2013). A thorough introduction
to diffusion maps is given by Coifman and Lafon (2006).

2.1 Coherent sets

Informally put, coherent sets are time-dependent regions in
space that remain largely intact as the system evolves. They
exhibit a “natural” separation from their surrounding in the
sense that flow across the boundary is small and geometric
integrity is kept to a large degree. We characterize the ge-
ometric integrity of coherent sets by their robustness with
respect to the addition of small noise. We first introduce the
heuristics of coherent sets in an abstract setting before pro-
ceeding to the computation of coherent sets from trajectory
data.

Consider the evolution of points over a finite number
of time steps in a non-autonomous dynamical system. Let
X; C R” be bounded sets which denote the domain of the dy-
namical system at each point in time. Here, ¢ ranges over the
integers from 0 to 7. A non-autonomous dynamical system
in discrete time over these time-evolving domains is given
by a sequence of bijective maps @41 : X; — X4, where
0 <t < T — 1. Before characterizing coherent sets of the dy-
namical system over the entire time frame from O to 7', we
study sets that are coherent under a single step.

Consider a bijective map ¢ : X — Y, with bounded do-
mains X, Y C R”. We say that a set A C X is coherent under
@ if the relation (&1 o ®)(A) = A is robust under the addi-
tion of small noise at both initial and final time. As a con-
sequence, we require that the sets A and ®(A) are not too
filamented, i.e., that they possess high geometric integrity.
Let D, be a diffusion operator that applies an e-small ran-
dom perturbation to any given point. The domain which D,
acts on will be clear from the context, i.e., D, : X — X or
D¢ : Y — Y. A coherent set A C X of the map & has to sat-
isfy DA ~ A as well as (®~! oD 0 ®)(A) ~ A. This heuris-
tic is formulated more precisely in the language of transfer
operators in Banisch and Koltai (2017).

The above heuristics describe coherent sets of a single map
®. We return to the setting of a non-autonomous system over
T time steps given by the maps @, ;. A coherent set is a
family of sets (A;)o<;<7, where A; C X; and ®,41,(A,) =
A 41. Define the maps ;0= ®;;—10...0P1 . Forr =0,
the map P ¢ is simply the identity. A coherent set is com-
pletely characterized by Ay, in the sense that A; = &; o(Ap).
We say that the family (A;)o</<7 is coherent if

(@, 0 De 0 D1,0)(Ao) & Ag (1)

for all ¢ from O to 7. We remark that this concept can be
generalized to continuous time systems, e.g., Matthes et al.
(2016).

Note that we assumed that D, maps from X, into X;
i.e., the random perturbation cannot map points outside of
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the domain X,. This corresponds to, e.g., reflecting bound-
ary conditions. For the purposes of our application, reflect-
ing boundary conditions are physically not justifiable, since
there are no physical boundaries for particles to be reflected
at. Instead, we assume that D, can transport points outside
of X,. Since we assume no information about the dynamics
outside of X;, we consider points that are mapped outside of
X; as lost and hence unable to contribute to coherence. This
corresponds to absorbing boundary conditions. We discuss
how absorbing boundary conditions are implemented in the
next subsection.

2.2 Diffusion maps

In the following, we give a brief introduction to diffusion
maps. A mathematically rigorous derivation can be found in
Coifman and Lafon (2006) and Ghojogh et al. (2022).

Assume the data of m trajectories of a non-autonomous
dynamics are provided in the form of data points x! € R",
where 1 <i <m and ¢ ranges over the integers from 0 to
T. We assume that in each time frame the point cloud X; =
{xti | 1 <i <m} approximates a bounded manifold X; C R”
and that the data points are sample trajectories of a — poten-
tially unknown — non-autonomous dynamics ®;41,: X; —
X1, i.e., D 5(x1) = x! for all s <. Our goal is to charac-
terize coherent sets of this dynamics, in particular to formal-
ize the heuristic in Eq. (1) in the setting of discrete trajectory
data. A coherent set consists of a certain subset of the point
cloud, i.e., A; := {x,i |ieZ}C X;, where ZC {1,...,m}is
a set of indices. In order to formalize the heuristic in Eq. (1),
we introduce a discretization of the operator D, : X; — X;
acting on the point cloud X;.

Since X; is a finite set of size m, we construct a transi-
tion probability matrix 131,6 € R™>™ that simulates diffusion
on X; of strength €. The rest of this section is devoted to
constructing the matrix P; . for each 0 <t < T, as well as
discussing the implementation of boundary conditions. We
remark that we do not need to approximate the dynamics
®,41 to use Eq. (1), since we assume to have the data al-
ready in the form of trajectories.

Let k. be a symmetric diffusion kernel with scale param-
eter €. This kernel encodes the proximity of two data points;
ie., ke(xt, x7)is large if x! and x/ are close and small if the
points are far apart. In the following, we use the Gaussian
kernel for an arbitrary metric dist(-, -) on R",

sot(xl )2
ke(x',x7) = exp <—M). )
In general, it is natural to use the Euclidean distance
dist(x, x/) = ||x* — x/||. However, for the application to at-
mospheric data, which is a non-isotropic setting, we are
going to use an alternative distance aiming to establish
isotropy with respect to turbulent diffusion; see Sect. 3.4. For
each time step 0 <t < T, we construct the similarity matrix
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Kt,e c R™ ><m’

[Kie; ;= ke(x, x)). 3)

Note that K, ¢ is symmetric, and all diagonal entries are 1,
while all off-diagonal entries are between 0 and 1. In prac-
tice, a cutoff radius is used to increase the sparsity of the
matrix by setting entries [Kf,e]l.j that are below a speci-
fied threshold to 0. Since the value [Kf’é]i i decays mono-
tonically in the distance between x! and x;, we may equiv-
alently choose a cutoff radius r and set [K,,e]ij to 0 if
dist(xti,xtj) > r. Here, we choose r = 3,/€, which is an ap-
propriate scaling for a Gaussian kernel k.

To account for differences in the density of the point cloud,

we pre-normalize the similarity matrix:

4 [Ki.e]

[”ﬁe]iIZZ[K%f]i,j* [KM] = “4)

= bi fue]funel

Finally, the diffusion matrix IA’E is obtained by row normal-

ization:
m I:Kl,€:| ..
i,J

o] =20 [Ree], o [Pee], =

®)

=1 J - [vr.];
The matrix IA’,,€ is non-negative and normalized such that it
is row-stochastic (often called left-stochastic); i.e., the entries
of each row sum to 1. Hence, P; . can be understood as tran-
sition probabilities on the point cloud {x;' | 1 <i <m} that
simulate a discretized diffusion on the point cloud X;. In the
data-rich limit, IA’M is a self-adjoint operator, i.e., a symmet-
ric matrix.

Lastly, we address the implementation of boundary condi-
tions. Since P; ¢, as constructed above, is a stochastic matrix,
all points in X, remain in X;; i.e., there are reflecting bound-
ary conditions. However, in the context of atmospheric flow
of air masses, where X, is a bounded, time-dependent region
of the atmosphere, it is unnatural to assume turbulent dif-
fusion would not act across the boundaries of X;. Since we
assume no information about the dynamics outside of X;, we
assume absorbing boundary conditions; i.e., all points on the
boundary of X; are removed. Hence, we need to determine a
set of boundary points dX; C X,. Determining these point
algorithmically is the content of Sect. 2.6. Given a set of
boundary points 9X;, we integrate absorbing boundary con-
ditions into the transition matrix P; by removing the rows
and columns corresponding to the boundary points. In order
to keep the dimensions of the matrices compatible across dif-
ferent time steps, we implement this by setting the respective
rows and columns to O instead of removing them:

0, x,i € 00Xy, orx,j € 00Xy,
P P N
[Prc];.; [Pm] - 6)

i,j
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];:’uy construction, P; ¢ is a substochastic matrix. In summary,
P; . corresponds to a discretized diffusion matrix with re-
flecting boundary conditions, while P; . corresponds to a
discretized diffusion matrix with absorbing boundary condi-
tions. For the purposes of our application, we will go forward
using the substochastic matrix P; .

2.3 Spectral clustering

Having constructed the diffusion matrices P; «, we describe
how to compute coherent sets using a spectral clustering
method. A coherent set A;, where 0 <t < T, is given by
A, ={x! | i €T}, where T C {l,...,m} is a set of indices.
In particular, we find ®; 0Ap = A;. Hence, the heuristic in
Eq. (1), using the diffusion matrix P; ¢ introduced in the pre-
vious section, requires that indices i € 7 have a high transi-
tion probability to Z, i.e.,

[Pf’é]i,I = Z[Plvf]i,j ~ 1.

JjeT

for all i € Z. This approximation should be as accurate as
possible for all 0 < < T. We construct the averaged diffu-
sion operator

1 T
= P; .. 7
Q. T+1;“ @)

This averaged diffusion operator was introduced in Froyland
(2015) and it was shown that coherent sets can be extracted
from the dominant eigenvectors of Q.. Equation (7) should
be understood as a quantitative version of averaging the left-
hand side of Eq. (1). Thus, eigenvectors of Q. for eigenval-
ues close to 1 represent functional representations of sets that
satisfy Eq. (1) on average for0 <t <T.

To better understand how coherent sets are related to the
eigenvectors of Q,, assume that there are K idealized co-
herent sets Aff , for 1 <k < K, corresponding to the sets of
indices Z*. These sets are idealized coherent sets in the sense
that [Qc¢]; 7 =1foralli € TF. Since Q. is substochastic, this
implies that Q. has a block-diagonal structure with blocks in-
dicated by the sets 75 In particular, for each 1 <k < K, the
matrix Q. has an eigenvector with eigenvalue 1 that is sup-
ported only on the set Z¥. Hence, the K coherent sets Z¥ can
be extracted from eigenvectors to the K largest eigenvalues.
Additionally, there is an (K + 1)th set, which is the comple-
ment of the union of the Z¥, which we call the residual set.
The temporal evolution of X; and, equivalently X;, implies
that X, is time-dependent as well, such that the residual set
is not necessarily equal to dX,. The residual set, together
with the coherent sets Z*, forms a partition of the set of all
points {1, ..., m}.

Returning to the general setting, we compute the eigenval-
ues of the matrix Q.. In the data-rich limit, the matrix Q.
is symmetric and, thus, only has real eigenvalues. If complex
eigenvalues occur numerically, we discard the imaginary part
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and only consider their real part. We order the eigenvalues
from large to small. Since Q. is substochastic, all eigenval-
ues lie between 0 and 1. We say that there is a spectral gap
after the K'th eigenvalue if the (K + 1)st eigenvalue is signifi-
cantly smaller than the first K eigenvalues. We call these first
K eigenvalues the dominant spectrum and the corresponding
eigenvectors the dominant eigenvectors. After identifying a
spectral gap, we perform a k—means clustering of the set
of points {1,...,m} using the information of the dominant
eigenvectors. Assuming that the dominant spectrum consists
of K eigenvalues, each point in {1, ...,m} has K character-
istic values, namely the entries of the K dominant eigenvec-
tors. Using the k—-means algorithm, we group the m points
into K + 1 clusters Z*, for 1 <k < K + 1. Motivated by the
idealized setting, K of these sets corresponds to coherent
sets, while there is an additional (K + 1)th residual set. See
Fig. 5 for an example of the spectrum of Q. as well as the
spectral clustering of the point cloud. The residual set is col-
ored in gray.

2.4 Quantifying coherence

To evaluate and interpret the computation of coherent sets
in application, it is crucial to introduce a quantification of
coherence of each of the clusters Z;. Given a set of indices
Ty C {1,...,m}, we restrict the averaged diffusion matrix Q.
to the indices 73 and compute the sum of its entries, divided
by the size of 7. Heuristically, this corresponds to the proba-
bility that a point that is randomly chosen from Z is mapped
to another point in Z;. As a notion of coherence we use the
complementary probability, namely

1
Pexit(Ty) =1 — —
| Z | =

[Qcli, ;- 3)

Note that since Q. is substochastic, Pexit(Zy) is between 0
and 1. A value close to 0 corresponds to high coherence
because the trajectories are tightly bundled with respect to
the averaged diffusion matrix Q¢. By construction, the exit
whose probability is quantified can be to another coherent
set, to the residual set or out of the set of all trajectories
(see the discussion of boundary conditions in Sect. 2.2).

In the idealized setting where [Qcl; 7, =1 for all i € 7y,
the restriction [Qelz, 7, is a stochastic matrix, and we find
Pexit(Zy) = 0. For the spectral clustering method described
in the previous subsection, we expect to obtain K sets with
relatively high coherence and one residual set with a lower
coherence. We verify this for two case studies in Sect. 4. For
comparison, for each coherent or residual set found, we also
calculate Peyj; for 100 test sets and show their distribution as
box-and-whisker plots. Each of these test sets is generated
by picking a random trajectory and selecting the m closest
points (with respect to the custom metric to be introduced in
Sect. 3.4) in the initial distribution (¢ = 0), where m = |Z|
is the number of points in the set to compare. Therefore, at
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t = 0, the test sets resemble sets with minimal surfaces for a
given volume (more specifically, intersections of balls with
the initial distribution), which we consider a suitable basis
for comparison.

Another option to quantify coherence is to compute the
largest eigenvalue of the restricted matrix [Qelz, 7,, which
determines the complement of the exit probability defined
above under the stationary distribution of the respective set
instead of a uniform distribution. Since Q. is substochastic,
the largest eigenvalue of the restricted matrix lies between 0
and 1, where a larger value corresponds to higher coherence.
We provide this measure in the Supplement.

2.5 Choosing €

Recall the definition of the similarity matrix K; € R™>*™ in
Eq. (3) with the diffusion kernel introduced in Eq. (2), where
dist(-, -) is a metric on R". Under the assumption that the
points x,i are distributed uniformly with respect to dist(-, -),
it is argued in Appendix A.2 of Koltai and Weiss (2020) and
following Berry and Harlim (2016) and Coifman et al. (2008)
that € > 0 should be chosen, if possible, such that the follow-
ing approximation is valid:

Si€) = [Krel;

iJ

P2
~Y " C / exp (_M) dy )
= €
RA®
= mC(em)? /2,

where C > 0 is a constant that depends on how densely the
points in X; populate X;, and d(¢) is the dimension of the
manifold X;. To better understand the constants C and d(¢),
assume that X, is a large d-dimensional grid of grid length
¢ and consider the Euclidean distance dist(x, y) = ||lx — y]||.
Then, the sum S; (¢) corresponds to a Riemannian integral ap-
proximation, and the approximation in Eq. (9) is valid, with
C being the average number of points per unit of volume,
which is given by C =~ ¢4 je, 0 =C"Vd,

Taking the logarithm on both sides of Eq. (9) reveals an
affine linear connection between log(S;(€)) and log(e):

log(Si(€)) ~ @ log(e) +10g(C) +log(m) + ? log().  (10)

Hence, in order to determine a range of suitable values for
€, we plot the function S;(¢) versus € in a log—log plot for
each time ¢ and look for a range of € in which the graph
is linear. See Fig. 3 for an example. Additionally, we can
read off the dimension d(¢), as well as a measure of density
£(t) = C~1/4® of the point cloud X;.
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o max 0102(5,(€))

d(r):=2 0" 3 log(e) (In
§,e%\ /40

o) =0 = (—) (e*m)'/2, (12)
m

where €* >0 is the value that maximizes the slope
dlog(S;(€))/d1og(e). We note that the derivations of d(¢) and
£(t) are not mathematically rigorous and are used heuristi-
cally. In particular, the dimension d(¢) does not have to be an
integer, and £(t) is just an approximate measure of (inverse)
density when the point cloud X; is not a perfect grid. We
stress that since £(¢) approximates a grid length, higher val-
ues correspond to lower point densities. In addition, we note
that d(¢) is invariant under isotropic contraction/expansion of
X, (it is scale-invariant), but £(¢) is not.

2.6 Boundary handling with a shapes

The estimation of coherent sets requires proper handling of
boundary points d X; C X;. Hence, a method is needed to de-
termine which points lie on the boundary of a given point
cloud X;. This problem reduces to the well-researched prob-
lem of surface reconstruction from point cloud data. The sim-
plest approach is to use the uniquely defined convex hull
of X;. This method is too coarse for our purpose, since
the point cloud X; is in general not a convex object. Once
concavity is permitted, detection of a bounding surface of
a set of points is ambiguous, and several algorithmic ap-
proaches exist (Berger et al., 2017). We have decided on
using the established alpha shape algorithm first intro-
duced by Edelsbrunner et al. (1983) (see Edelsbrunner, 2011,
for an overview), since it does not require surface normals
and can be conveniently tuned by only one parameter o > 0.
Large values of « correspond to a structured surface, while
small values of « result in a smooth surface. For a thorough
derivation and details on algorithmic implementation, con-
sult Edelsbrunner and Miicke (1994).

Let X; C R" be a finite set of points, 0 < o < oo, a real
number. We denote open balls in R" of radius « by b,. An @
ball b, is said to be empty if it does not contain any points
from X;. The « hull H, is then defined as the complement of
the union of all empty « balls:

Hy :=R"\ ) ba. (13)
beNX; =2

We define the boundary of X, to consist of those points that
lie in the boundary of Hy, i.e.,

3X; = {X (S Xllx (S 3Ha}

An equivalent definition of the boundary is that x € X, lies
in X, if and only if there is an empty open « ball b, such
that x € 9b,. As @ — oo the set Hl, recovers the convex hull,
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whereas o = 0 results in H, = X,. Hence, the set d X; grows
as o — 0, and for o small enough, we find 0 X; = X;.

This sparks the question of choosing « appropriately such
that 0 X, defines a boundary of the point cloud X; of the de-
sired coarseness. As discussed in Sect. 2.5, v/e* provides a
measure of the typical distance between points in the point
cloud. Therefore, it is natural to choose « in the same mag-
nitude as v/¢*.

The alpha shape algorithm assumes the points live in
Euclidean space. However, in Sect. 4 we apply our meth-
ods to atmospheric data. The atmosphere, being approxi-
mated by a spherical shell, is non-isotropic and globally non-
Euclidean. Thus, constructing a hull in a Cartesian coordi-
nate system, e.g., centered in Earth’s core, is destined to fail
as the large difference in scales between vertical and horizon-
tal coordinates leads to points being sampled from a nearly
two-dimensional region in space. In such a perspective, vir-
tually all points would be boundary points. We have there-
fore decided to apply a stereographic projection centered at
the North Pole with an undistorted latitude of 50°N to the
horizontal coordinates and applied a linear vertical scaling
in accordance with the custom distance metric introduced in
Sect. 3.4 before applying the alpha shape algorithm. A
stereographic projection seems apt since the air parcels of our
examples stay in the Northern Hemisphere and are gathered
around the mid-latitudes for most of the time. Other suitable
coordinate transformations alter the selected boundary points
only to a small degree and do not change the resulting coher-
ent sets detected significantly (not shown).

3 Implementation

All atmospheric fields used in the analysis are taken from the
ERAS reanalysis product provided by the European Centre
for Medium-Range Weather Forecasts (ECMWF) (Hersbach
et al., 2020). It resolves the global atmosphere on a grid with
a roughly 31 km horizontal spacing and 137 hybrid vertical
levels between the surface and 1 hPa on an hourly timescale.

3.1 Blocking identification

The atmospheric blocking regions are defined as in Pfahl
and Wernli (2012) who utilized the algorithm introduced
by Schwierz et al. (2004). More specifically, grid points are
identified as blocked if a vertically averaged (between 500
and 150hPa; the upper troposphere) negative PV anomaly
(with respect to the monthly climatology) larger than 1.3 pvu
(107K m2 kg~ s~1) for at least 5d is observed for a poten-
tially traveling connected region (individual grid points need
not experience this anomaly for 5 full days). Data are avail-
able in 6-hourly time steps, and PV anomalies are required
to have a spatial overlap of at least 70 % to be assigned to the
same track.

Though a host of different blocking identification mech-
anisms are available (Pinheiro et al.,, 2019), this PV-
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based algorithm has been chosen since it encapsulates the
most important dynamical features of atmospheric blocking
(Schwierz et al., 2004; Croci-Maspoli et al., 2007) and di-
rectly identifies two-dimensional regions. The identified re-
gions will usually mark the areas responsible dynamically for
the blocking characteristics (i.e., the high-pressure ridge re-
gions) rather than the areas marked by a geopotential height
reversal. The focus of this study lies on the demonstration of
the methodological framework when applied to atmospheric
blocking air streams rather than in arriving at definitive or
quantitative insights into blocking consistent across different
blocking definitions, which is why we abstain from compar-
ing results between different blocking indices.

3.2 Initial points

The method for the identification of coherent air streams
described in Sect. 2 is applied to two case studies. Given
the two-dimensional, global Boolean field of whether a grid
point is blocked or not, for each case, an atmospheric block-
ing event is identified as a connected region of True values
developing in time. For an individual time step, a respective
region is “filled” with trajectory initial points with a verti-
cal distance of 7 hPa between 550 and 150 hPa (we choose
550 hPa instead of 500 hPa for a slightly broader scope; the
same does not apply for the upper limit, since it would likely
cross the tropopause) and a horizontal distance given by
the scale difference parameter « times the vertical distance
(see Sect. 3.4). In our case study, for a scaling parameter of
x = 15kmhPa~!, a horizontal distance of 105 km was used.
Such a point density has emerged as the highest possible
point density that still allowed for an acceptable computa-
tional complexity. A zero-mean Gaussian noise with standard
deviation equal to a quarter of the distance in the respective
direction is then added to each point individually to prevent
the regular structure of the initial point distribution from bi-
asing the coherent set clustering later on. Finally, all initial
points that lie above the dynamic tropopause — defined as the
2 pvu isosurface — are removed.

3.3 Trajectory calculation

The initial points are then used to calculate 3 d forward and
backward trajectories from three-dimensional wind fields
on model levels using the LAGRangian ANalysis TOol
(LAGRANTO) (Sprenger and Wernli, 2015), which employs
an iterative predictor—corrector procedure. We think of the
resulting trajectories as solutions of the dynamical system de-
scribing the motion of air parcels in the atmosphere (x; from
Sect. 2). Various dynamical variables can be traced along the
path of the air parcels’ trajectories including potential tem-
perature 6, specific humidity g, temperature 7', and all coor-
dinates and velocities. These will reveal the dynamical prop-
erties present in the clusters generated from purely geometric
information.
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3.4 Distance calculation

Our methodology presented in Sect. 2 is based on point-wise
distance calculation. Here, again, the issue of vastly different
length scales in the horizontal and vertical directions arises.
Resorting to a map projection as with the alpha shapes
algorithm described in Sect. 2.6 does, however, not seem to
be the best option since errors introduced during the stere-
ographic projection can be avoided. This is because calcu-
lating distances between points does not necessarily require
the points to live in Euclidean space. In contrast to Banisch
and Koltai (2017), who relied on the Euclidean norm as a
measure of distance, we therefore construct a non-Euclidean
distance which connects the vertical and horizontal scales
through a scale parameter «:

ViZt 2 oy )+ ()2
K = = N
|l S ol

where u! and v! are the two horizontal and ! the vertical
velocity component of the ith air parcel at time ¢. For two
points x! = (¢', A, p') and x/ = (¢/, A/, p/), given by their
respective latitudes ¢, longitudes A and pressure level p, we
then define

; (14)

dist(x', x/) = \/disth(xi,xf')z + (k(pl = p))?, (15)

distp(x', x’) = 2rgarcsin

J— ¢t . A A=
\/sin2<(p 2¢ )—f—cosw’-cosgof-sinz( > )), (16)

where rg stands for Earth’s radius. The distance is symmetric
and positive. The horizontal distance disty is the Haversine
distance which approximates the great-circle distance of two
points on Earth’s surface (assuming a spherical shape) well
(Green, 1977).

For the scale parameter «, a heuristic approach has been
chosen that estimates the difference in scales by comparing
average horizontal and vertical velocities, where the aver-
age is taken over all trajectories and time steps. We think
of distances as similar if air parcels take roughly the same
amount of time to overcome them given some average ve-
locity, which is the reasoning behind the construction of «.
In addition, atmospheric turbulence — the dominant source of
diffusion at the scales investigated here — roughly scales with
velocity. The developed notion of distance relies only on geo-
metric information (if one conceives velocities as geometric),
which allows comparison of purely geometric coherence to
similarity of dynamic properties. For the construction of «,
we have deliberately abstained from including measures of
vertical stability or asymptotic methods since the phenomena
investigated feature relevant processes on the synoptic scale
as well as the mesoscale, which would further complicate the
choice of scale-connecting characteristic quantities (Klein,
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2010). Note that, due to the definition of « in Eq. (14), the
custom metric dist(-, -) is formally measured in kilometers.

We remark that estimated values of x varied only by
roughly 20 %, and results were rather insensitive to the exact
value of k applied in both the algorithm and the initial point
generation. For ease of computation and comparability be-
tween cases, we have therefore decided to choose a constant
x = 15kmhPa~! across all cases investigated. Note that re-
quiring exact equality between the empirical « and the x used
in the initial point generation would require extensive itera-
tion, since the empirical k¥ depends on the trajectories, which,
in turn, depend on the initial point locations.

4 Case studies

4.1 Canada 2016

As a first example, the strong 2 blocking observed from late
April to early May 2016 over Canada is investigated. It is
considered one of the main causes of the 2016 Fort McMur-
ray wildfire, the costliest disaster in Canadian history up to
that date (Statistics Canada, 2017). The blocking identifi-
cation data set introduced in Sect. 3 identifies blocked grid
points from 29 April 2016 at 06:00 UTC to 5 May 2016 at
00:00 UTC. Synoptic conditions along with the blocking re-
gion are shown for three time steps representative of onset,
maintenance and decay in Fig. 2. A video of synoptic condi-
tions at all time steps is provided in the Supplement.

During the onset phase (a), the co-located surface cy-
clone and upper-tropospheric trough just east of the date-
line induced a poleward transport of warm, low-PV air
masses, leading to the build-up of the strong blocking anticy-
clone. The pattern agreed roughly with the positive phase of
the Pacific-North American (PNA) pattern. Steinfeld (2019)
showed that latent heat release in air parcels transported by
the surface cyclone’s WCB played a significant role in the
formation and maintenance of the blocking. The onset was
characterized by anticyclonic Rossby wave breaking to its
western flank, amplifying the eastern Pacific ridge, which is
atypical according to Miller and Wang (2022), who identi-
fied cyclonic Rossby wave breaking as the prototypical onset
mechanism for Pacific blocking (though they only investi-
gated winter blocking).

Having acquired its large spatial extent over western
Canada (b), the blocking exhibited its prominent €2 shape
with two high-PV regions to its southwesterly and southeast-
erly sides. The configuration severely disturbed the zonal cir-
cumpolar bands of high wind speeds (jet stream) in its epony-
mous blocking behavior. The following days were charac-
terized by a low eastward propagation speed and quasi-
stationary flow conditions. The blocking eventually dis-
solved (c), accompanied by an emergence of a surface cy-
clone on its western flank (not shown).

In agreement with a magnitude of the scale parameter
of k = 15kmhPa~!, a horizontal distance of 105 km is ap-
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Figure 2. Synoptic conditions at three time instances (all at 00:00 UTC) during the 2016 Canada case. Upper-level PV (shaded), 2 pvu
contour (tropopause) in black, upper-level wind (blue vectors, only shown for wind speeds larger than 30 m s—1), surface cyclones (sea level
pressure; yellow contours from 980 to 1000 hPa every 5 hPa) and blocking region (magenta contour; see Sect. 3.1 for definition). Upper-level
fields are vertically averaged between 500 and 150 hPa. Note that horizontal wind velocity is indicated by the quivers’ length. Denser quivers

towards the poles result from denser longitudes.

plied for the initial point generation. After stratospheric point
removal, the number of initial points varies from 648 to
13661 according to the size of the identified blocking re-
gion. The measured scale parameter varies between 12.60
and 18.51 kmhPa~!, a departure from the assumed value of
15kmhPa~! that is deemed insignificant and unlikely to al-
ter the results (cf. Fig. A1). In fact, calculating « individually
for every set of trajectories has been tested and did not alter
the results considerably. Apart from the first few initializa-
tion dates, which feature only few trajectories, the tempo-
ral development of « indicates larger horizontal than vertical
motion in trajectories passing through the blocking earlier,
but qualitative interpretations are hard to formulate given the
complex spatio-temporal dependence of x. Mean horizontal
and vertical velocities over the 6 d length of the trajectories
for sets of trajectories initialized on any of the dates are pro-
vided as Fig. S1 in the Supplement.

4.1.1 Trajectory density

The atmosphere being a turbulent, chaotic system, we gener-
ally expect trajectories to disperse approximately symmetri-
cally forward and backward away from an initialization con-
figuration (# =0h; ¢ denotes the hours away from the ini-
tialization time). Individual cases will, however, exhibit par-
ticularities and, more specifically, asymmetric evolution of
d(t) and £(¢), which measure the dimension and density of
the point cloud and thus quantify the general coherence and
dispersion of the air parcels (see Sect. 2.5).

Figure 3 gives an example where this is the case. At any
point in time, the sum of diffusion similarities S;(¢) varies
from m to m2. For low diffusion strengths €, the diffusion
similarity matrix K; ¢ is only populated on the main diago-
nal (approximates the identity matrix), whereas for high val-
ues, the matrix has 1s everywhere. The approximately poly-
nomial (cf. Eq. 9) intermediate regime appearing linear on a
log—log plot, however, is described by parameters, the slope
d(t)/2 and offset £(¢), which were shown to be heuristically
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connected to the dimension and inverse density of the point
cloud {x/}.

In the example presented here, the curve for the initial-
ization time ¢ = 0h has the highest slope, which is be-
cause points are placed approximately in a regular three-
dimensional grid (see Sect. 3.2). With increasing |¢| in both
positive and negative direction, slopes reduce similarly, but
curves for positive ¢ saturate earlier. Therefore, the point
cloud traced by forward trajectories (¢ > Oh) stays more
densely packed than the same point cloud traced by back-
ward trajectories ( < 0h). Hence, while d(72h) ~ d(—72h),
£(72h) < £(—72h) (recall that £(¢) approximates a grid
length and is therefore inversely related to density).

The inset illustrates what is happening: not only do the air
parcels diffuse more rapidly horizontally before entering the
blocking region compared to after, they also tend to spread to
a larger degree in the vertical. A larger spread is related to a
smaller density of the points in space and thus larger £. The
slope of individual curves is hard to determine from Fig. 3,
which is why both d(¢) and £(¢) are displayed for the whole
life cycle of the blocking and the according 3 d forward and
backward trajectories in Fig. 4. The data are ordered accord-
ing to the initialization time along the vertical axis and ac-
cording to the trajectories’ time steps along the horizontal
axis. Since trajectories are initialized every 6 h and trajec-
tory data are hourly, white lines with a slope of 1/6 indicate
isochrones. Data belonging to the initialization date 29 April
2016 at 06:00 UTC have been omitted due to the low number
of trajectories.

The dimension heuristic d(¢) is higher the closer the air
parcels are in time to the initialization configuration (t =
0h). Even then, however, the theoretically achievable dimen-
sion of 3 is not reached, which is a boundary artifact, since
for points near the boundary, the Gaussian function in Eq. (9)
is not fully resolved. This is also why a higher number of tra-
jectories leads to higher values of d(¢). Furthermore, Fig. 4a
bears testimony to the fact that points tend to arrange more
two-dimensionally the further they get away from the initial-
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Figure 3. Normalized sum of pointwise diffusion similarities Sy (e)m_2 plotted versus diffusion bandwidth € on a log—log scale for trajec-
tories initialized on 2 May 2016 at 00:00 UTC. Green horizontal axis ticks indicate evaluated values of €. Inset: trajectories in stereographic
projection with vertical coordinate (p) color-coded. Parcel locations at + = —72,0,72h as black dots. Only every 50th trajectory is shown

for clarity.
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Figure 4. (a) d(¢) and (b) £(¢) plotted as a function of initialization time (23 initializations, vertical axis) and time step (144 time steps from
—72 to +72h, horizontal axis) for the Canada 2016 case. Data corresponding to trajectories initialized on 29 April 2016 at 06:00 UTC have
been removed. White diagonals indicate isochrones (all 00:00 UTC). Vertical white line indicates initialization time.

ization time, though two distinct regions may be identified,
where this is not the case.

Trajectories passing through the blocking during its late
maintenance phase (* 3 May; lower center left region in the
plot) exhibit a higher dimensionality during their journey into
the blocking (¢ < 0), and trajectories passing through the re-
gion during its early maintenance phase (=2 May; upper
center right region in the plot) exhibit an increased dimen-
sionality during their journey out of the region (¢ > 0). The
size of the blocking is of first-order importance for this phe-
nomenon, since high-pressure regions suppress both horizon-
tal and vertical motion (at least in their centers; Ehstand et al.,
2021). The larger the blocking, the larger the fraction of air
parcels that are under its influence.

Inspection of the individual trajectories confirms that the
quasi-stationary flow field reduces the amount of filamenta-

Nonlin. Processes Geophys., 32, 51-73, 2025

tion the point cloud is subjected to. This is because both spa-
tial and temporal small-scale variability will shear — and thus
filament — a spatially extended point cloud. In contrast, the air
masses traced here behave more like a rigid body being trans-
lated and rotated by the lateral large-scale jet and the flow
inside the blocking. Recall that d(¢) is scale-invariant and
isotropic contraction/expansion will, therefore, not change
d(t) (see Sect. 2.5). These assessments agree with those made
by Ehstand et al. (2021) using similar trajectory-based meth-
ods, though on a larger scale and disregarding the vertical
dimension.

The level sets of d coinciding with the isochrones for
2.4 > d > 2.2 in the bottom right of panel (a) in Fig. 4 in-
dicate that several traced air masses that pass through the
blocking from 2 May onwards experience a considerable
decrease in d roughly at the same time, on &~ 5 May at
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00:00 UTC. The associated straining motion is related to the
disintegration of the blocking and its accompanying lateral
wind bands, followed by the reestablishment of the zonal jet.
The reorganization of the large-scale flow field exposes the
air masses to considerable shear, effectively filamenting the
individual point clouds and reducing d(¢).

The density measure £(t) shown in Fig. 4b sheds more
light on the spatial nature of the investigated trajectories. Im-
portantly, £(t) does not measure the general density of the
point clouds (cf. Fig. A2 in Appendix A for mean nearest-
neighbor point distances) but rather the inverse density of the
points X; populating X, respecting its dimension. This ex-
plains why £(¢) does not assume its lowest values uniformly
at t ~ 0, where values equate to roughly 105 km, in agree-
ment with the initial point generation.

The approximated grid length £(¢) tends to be lower for
forward trajectories compared to backward trajectories. This
is especially true for trajectories initialized during the second
half of the blocking’s life cycle. In Fig. 4b, we find coinci-
dence of level sets of ¢ with isochrones between 1 and 2 May
in the bottom left of the plot and around 5 May in the bot-
tom right of the plot. In both cases, £ decreases with ¢, in the
first instance with only a slight change in d and in the sec-
ond instance with a concurrent decrease in d. Hence, the first
case hints at isotropic contraction of the point cloud, which is
caused by the traced air parcels’ arrival in the blocking. For
the second instance, the straining imposed on the point cloud
of air parcels by the reorganizing flow field makes X; ap-
pear more two-dimensionally without (sufficient) concurrent
isotropic expansion, such that £(¢) decreases.

All in all, evolution of the air parcel point clouds traced
by the trajectories can be differentiated with respect to the
blocking’s life cycle: parcels passing through the blocking
during onset experience filamentation and straining in both
directions in time away from the initialization time (¢ = 0)
but are a little more densely packed after leaving the block-
ing (¢ > 0), which is partially due to a smaller vertical ex-
tent. Parcels passing through the blocking during its main-
tenance phase experience less straining, especially once in-
side the blocking, but become more densely packed. And
parcels passing through the blocking during its decay expe-
rience strong and abrupt filamentation upon the blocking’s
disintegration, which coincides with a decrease in both d and
L.

The filamentation of X; can also be understood from a
more theoretical perspective. Under the influence of the dis-
integrating blocking, the air masses exhibiting a rapid de-
crease in d and £ undergo material elongation due to the well-
researched enstrophy cascade present in turbulent systems
with two-dimensional configuration, which is an approxima-
tion of the atmosphere due to the scale difference between
horizontal and vertical motion (Ditlevsen, 2010; Boffetta and
Ecke, 2012). Such an enstrophy cascade to smaller scales and
an energy cascade to larger scales involve the elongation and
eventual scattering of vortical structures, which explains a
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decrease in dimension towards d = 2. The reconfiguration of
the jet stream from a wavy shape (energy at high wavenum-
ber) to a more zonal one (energy at low wavenumber) sup-
ports this hypothesis.

The vortex scattering represents a break-up of stability ag-
gregated during the blocking onset and maintenance. The
quasi-stationarity of trajectories visible mainly in the main-
tenance phase of the blocking has to come to an end eventu-
ally, already from an entropy perspective. In a structureless,
random and turbulent fluid dynamical system, one would ex-
pect a more or less symmetric distribution with respect to
distance from ¢ = 0 in d(¢) (see Fig. 4a). Thus, the stability
attributed to blocking mainly with respect to flow configu-
ration also seems to be applicable to the material air parcels
passing through the region.

4.1.2 Coherent air streams

In order to objectively identify WCB air streams stabiliz-
ing the blocking as hypothesized by Steinfeld and Pfahl
(2019), we construct the averaged diffusion operator Q. us-
ing m = 11 774 backward trajectories initialized in the block-
ing region on 2 May 2016 at 00:00 UTC (—72h <t <0h)
for a range of values of € between 2 x 10* and 1 x 10° km?,
the range for which the curve of S;(¢) over € appears lin-
ear in a log-log plot (see Fig. 3). For boundary point de-
tection, we apply a value of « = 10> km, which is on the
conservative (higher) side of /€ for the given range of val-
ues of €, and find that the edge lengths of the resulting sim-
plicial complexes at any ¢ stay between 10> km and 10° km
(see Fig. A3).

The resulting spectrum of L, = (Q¢ —I)/€ is shown in
Fig. 5a. We show the spectrum of L, instead of Q, because
€ controls how close Q¢ is to the identity matrix (cf. Fig. 3)
and, hence, how close the eigenvalues are to 1. The largest
eigenvalues are close but not equal to zero, which is caused
by the application of boundary conditions to the normalized
matrices IA’G, ; before averaging them to obtain Q.. We iden-
tify a moderate spectral gap after the sixth eigenvalue (dis-
regarding spectral gaps at i =2,3 in order to achieve suf-
ficient detail) and perform k-means clustering of the data
points into seven clusters in the coordinate space spanned by
the first six eigenvectors using a value of € =5 x 10* km?.
We found that the resulting clusters are remarkably robust to
variation of € and the number of clusters.

Figure 5b depicts the resulting clusters differentiated by
colors. Shown are locations of the air parcels at both the ini-
tialization (f = O h) and the end point (f = —72h) as well as
each cluster’s average trajectory (calculated by all points’ av-
erage location for each time step). The gray cluster represents
the set of points for which all eigenvectors of Q. simultane-
ously show values close to zero. This implies that the points
in the gray cluster are, most of the time, boundary points,
which is why we regard the gray cluster as a residual cluster.
The remaining six clusters show remarkable coherence upon
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Figure 5. Coherent sets for backward trajectories initialized on 2 May 2016 at 00:00 UTC. (a) The 10 largest eigenvalues of L, = (Qc —I)/€
for various values of €. (b) Clustered trajectories for € =5 x 10* km?: colors and according numbers show the clustering, points are shown
for t =0 and r = —72h, and lines show average trajectories. Residual set in gray. Horizontal coordinates are in stereographic projection.

Black contour shows location of identified blocking at # = Oh.

visual inspection of the points at each ¢, though the coherence
tends to be stronger the closer the parcels are to the initial-
ization, which seems natural as the points more strongly re-
semble a three-dimensional continuum the further they have
traveled towards their initialization point in the blocking.

We give estimates of the coherence of the resulting clus-
ters by showing their exit probabilities as defined in Eq. (8),
along with the exit probabilities of 100 random test sets as
described in Sect. 2.4. Figure 6 confirms that the coherent
sets found using the presented methodology are considerably
more coherent than the randomly chosen test sets. The resid-
ual set stands out starkly, which gives us further confidence
in discarding it for the ensuing analysis. Remarkably, the co-
herence of the sets as measured by the exit probabilities cor-
relates negatively with the clusters’ size for the test sets but
does not for the coherent sets found. The largest eigenval-
ues of the restricted matrices [Q¢]z, 7, displayed in Fig. S5a
present the same picture, though the differences between co-
herent and test sets are smaller.

Figure 7a provides insight into the dynamical properties of
the individual clusters, though the gray residual set has been
omitted. Importantly, we identify a considerable increase in
potential temperature for the air parcels in the purple (2; note
that the clusters’ labels are arbitrary, since k—-means clus-
tering does not imply a ranking between clusters) and pink
(5) clusters. The purple cluster starts at the eastern flank of
X_77 in the lower troposphere and travels to the northern,
lower flank of X( undergoing significant upward motion. In
absence of other strong diabatic effects, the large positive
change in potential temperature can only be caused by latent
heating, which is confirmed by its change in specific humid-
ity (cf. Fig. S3). The change occurs mainly during the 24 h
leading up to the arrival in the blocking, which is in contrast
to the pink cluster, which experiences latent heating earlier.
The magnitude of the heating in the pink cluster is also a lit-
tle lower, since the cluster initially extents in the vertical to
a larger degree. The cluster undergoes vertical compression
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Figure 6. Exit probabilities Peyjt(Zy) for each of the clusters shown
in Fig. 5 (full circles). For each of the clusters, the distribution of
exit probabilities of 100 randomly generated test sets of the same
size is presented by a box-and-whisker plot. These show the median
(horizontal line), first and third quartiles (box limits), and the far-
thest data point lying within 1.5 times the interquartile range from
the box (whiskers).

over the course of the 3 d and ends up in the lower southeast-
erly corner of the low-PV anomaly region, adjacent to the
purple cluster.

The diabatic lifting of both clusters is due to large-scale
ascent typically associated with warm fronts. The pink clus-
ter “overtakes” the purple, red (0) and brown (4) clusters as
it reaches the region of strong lower-tropospheric winds ear-
lier and remains in the blocking region after its earlier arrival
while slowly progressing under anticyclonal movement. The
behavior of both clusters strongly suggests the existence of
a warm conveyor air stream caused by the strong adjacent
surface low (cf. Fig. 2a), which supplies the blocking with
anomalously low PV air masses at two distinct points in time.
We remark that cross-isentropic ascent may in principle also
be caused by small-scale convection (Zschenderlein et al.,
2020), but such events are on spatial scales unresolved by our
data, which makes it unlikely these processes are responsible
for the behavior seen in the coherent sets here.
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Figure 7. (a) Median (line) and interquartile range (shading) of potential temperature distribution among individual clusters from Fig. 5.
Boundary point cluster (gray) not shown. (b) Median (line) of potential temperature distribution among clusters that exhibit a difference
between initial and end values larger than 5K for different initialization times indicated by line color. Line thickness is according to the
number of trajectories in a cluster (m). Gray bar chart in the background shows the ratio between the number of trajectories contained in
WCB clusters and the total number of trajectories for each arrival (initialization) time.

Forward trajectories for the same initialization time exhibit
synchronized behavior similar to the example discussed next
and will thus not be discussed here. Changes in potential tem-
perature are almost exclusively negative, hinting at radiative
cooling typical for air masses in the upper troposphere. The
synchronization of movement is also indicated in Fig. 4 — the
air masses barely separate and are thus rather similar both
geometrically and dynamically.

To understand the occurrence of WCBs across the life-
time of the blocking, we automatically identify them for each
set of trajectories. To that end, we apply our algorithm with
o = 10° km, € = 5 x 10* km? to backward trajectories initial-
ized at each of the 6-hourly time steps. We identify the spec-
tral gap we are interested in by finding the largest absolute
difference between two sequential eigenvalues, starting from
the third eigenvalue. For the trajectory clusters identified, we
select those whose median potential temperature 3 d before
arriving in the blocking (f+ = —72h) is at least 5K below
the median potential temperature when arriving in the block-
ing (t = 0h). The results are shown in Fig. 7b. We note that
this diagnostic suffers from the ambiguity of the concept of
the spectral gap and, hence, the number of clusters selected,
which is why we also show the clusters’ sizes (number of
trajectories in a cluster; m).

The strongest large-scale lifting and, thus, diabatic heat-
ing occur during the onset of the blocking, governed by the
strong surface cyclone west of it. This is in accordance with
findings from Miller and Wang (2022), who highlighted di-
abatic heating as a key mechanism for the onset of Pacific
blockings (though, again, they only studied winter cases). We
find coherent bundles of trajectories with median changes in
potential temperature of up to 20 K within a day, which does
not seem to be atypical (e.g., Madonna et al., 2014). In that
phase, the majority of trajectories are part of some cluster
featuring considerable heating, as indicated by the gray bars
in the background of Fig. 7b. The continuous decrease in the
ratio of such trajectories inside WCBs to the total number
of trajectories comes about for four different reasons. The

https://doi.org/10.5194/npg-32-51-2025

first reason is the general enlargement of the blocking. The
quasi-stationary nature of blockings implies that air parcels
can get “trapped” inside it (see also the following example),
which means that even parcels that have experienced latent
heating at some point will not be identified as such as soon
as this heating is more than 3 d past. The second reason is
the decay of the neighboring surface cyclone, which is the
dynamic cause of the WCBs. The third and fourth reasons
are unavailability of moisture as the blocking travels over
land and large-scale subsidence caused by the blocking it-
self. Higher occurrence of WCBs during onset is confirmed
by existing research (Steinfeld and Pfahl, 2019; Hauser et al.,
2023)

The plot also shows that WCB clusters identified in sets
of trajectories initialized at different times tend to exhibit
strong latent heating at the same time. This is because WCBs
are synoptic-scale structures, extensive in both space and
time. Their intermittent occurrence is linked to presence and
absence of surface cyclones and their corresponding warm
fronts (Madonna et al., 2014; Catto et al., 2015). Note also
that the general decrease in potential temperature is related
to the blocking traveling poleward.

In addition to identifying WCBs, we want to further under-
stand the behavior of d(¢) and £(¢) discussed in Sect. 4.1.1. To
that end, we apply our algorithm to m = 9882 connected for-
ward and backward trajectories (—72h <t < 72h) passing
through the blocking on 4 May 2016 at 00:00 UTC, which
is close to the end of its life cycle, using the same range
of values for € and the same value for o (see Fig. A3 in
Appendix A for distribution of « hull edge lengths). We
identify a moderate spectral gap after the fourth eigenvalue
(see Fig. S4a) and again apply k—-means clustering using
€ =5 x 10* km? but looking for five clusters this time. The
resulting clusters are shown in Fig. 8a 3d before and after
initialization (+ = —72 and ¢ = 72 h) along with their mean
trajectories and the blocking’s location at # = 0 h. A residual
cluster has been removed from Fig. 8a, ¢ and d but is shown
in b. Given its average exit probability at the upper extremal
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end of the distribution, we are confident in its classification
as residual despite is large size. It contains trajectories that
are at the boundary often but also trajectories that are very
well mixed (especially in the horizontal), which is a feature
observed more often in combined forward and backward tra-
jectories. Our alternative metric (the largest eigenvalue of the
restricted matrices) offers the same indication (cf. Fig. S5).

In contrast to the example above, the clusters are sepa-
rated to a larger degree in the vertical, which is caused by
predominantly synchronized movement in the horizontal as
well as absence of any updrafts, as will be shown below. The
air parcels move considerably less far both in the horizon-
tal and in the vertical, especially during their approach into
the blocking. In fact, the bulk of the air parcels are already
within or in close vicinity of the anomaly region 3 d before
— some are even east of the blocking. Therefore, it comes as
no surprise that latent heating does not play a role in the air
parcels traced (see Fig. 7b).

The vast majority of parcels stays in the upper troposphere
between 300 and 600 hPa the whole time. While the orange
(3) cluster undergoes descending motion throughout, the pur-
ple (2) and brown (4) clusters perform a moderate ascent
into the blocking, though all clusters descend after passage
through the blocking, which is no surprise since the initial-
ization points populate the whole upper troposphere, and pas-
sage through the tropopause is generally unlikely.

To investigate the movement of the parcels more closely,
Fig. 8c and d display the horizontal velocities of the respec-
tive clusters. Most of the air parcels experience zonal veloc-
ities below a magnitude of 10ms~! throughout their jour-
ney but especially during their approach (—48h <t < Oh),
which reflects the blocking’s eponymous obstruction of mid-
latitudinal westerlies. The obstruction also explains the larger
meridional velocity magnitudes visible in Fig. 8c.

Judging from both Figs. 4 and 8, the 6d journey of the
clusters (or more precisely, the air parcels) can be roughly
divided into four phases:

1. Day 1 (1 May; —72h <t < —48h). The purple (2)
and the orange (3) clusters are already in the vicinity
of the blocking region, while the brown (4) and blue
(1) clusters contain “tails” that gradually travel east-
ward. The brown cluster is quite distributed, which is
also imprinted in its relatively high escape probability
(see Fig. 8b). Those parcels already within the vicinity
of the blocking are subject to the quasi-stationary anti-
cyclonal flow field, such that X, seems to curl in. The
purple cluster is located on the southern flank of the
blocking and, therefore, experiences westward veloci-
ties. The increase in d and a decrease in £ (see Fig. 4)
are a result of convergence horizontally and vertically
and the advent of the trailing air parcels into the block-
ing, reducing the amount of filamentation of X;,.

2. Days 2-3 (2-3 May, —48h < t < Oh). All four clusters
are quite close horizontally, but both the purple and the
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blue clusters still gather some trailing parcels vertically,
resulting in the continued convergence and increase in
d. Shearing deformation is not present; rather all clus-
ters stay within the blocking region, sequentially expe-
riencing the same velocities. In Fig. 8, both horizontal
velocities show parallel curves for the different clusters,
indicating a simple time shift between similar move-
ments.

3. Day 4 (4 May, Oh <t <24h). The movement pat-
tern of the different clusters continues under addition
of (mostly) meridional translation as the air masses
travel out of the blocking into the northerly jet on the
blocking’s eastern flank. Vertical motion is almost non-
existent, but transport out of the blocking starts to shear
X¢, reducing d and £.

4. Days 5-6 (5-6 May, 24h <t < 72h). Under combined
isentropic downward motion caused by movement out
of the high-pressure region, all clusters get strained hor-
izontally along the cyclonic flow field to the southeast of
the blocking’s last position above the Great Lakes. Both
trailing air parcels belonging to the (purple) cluster clos-
est to the surface and leading air parcels belonging to
the (blue) cluster furthest from the surface experience a
strong westerly flow, caused by a cyclone located above
northeastern Canada. Both of these effects elongate and
disperse X, resulting in a rapid decrease in both d and
£ as the anticyclonic vortex has been scattered by neigh-
boring cyclones working towards the reestablishment of
the westerly jet stream.

4.2 Northern Europe 2017

The second example revolves around a blocking originat-
ing over the North Atlantic during winter, suggesting differ-
ent characteristics than the case discussed above. The boreal
winter 2016/2017 was marked by a number of severe cold
spells over central and eastern Europe and Russia, accompa-
nied by warm conditions in the Arctic, a low sea ice extent es-
pecially in the Barents—Kara Sea and an exceptionally weak
polar vortex. The conditions were likely both favored and
enhanced by notably high blocking activity throughout mid-
latitudinal Eurasia (Tyrlis et al., 2019). The conditions dras-
tically influenced the lives of millions of people (Anagnos-
topoulou et al., 2017; Demirtas, 2022; Kostopoulou, 2023).
The blocking investigated here was just the last in a num-
ber of strong European blockings but has reached a consider-
able extent both spatially and temporally. This suggests low-
frequency variability as a possible cause for onset as con-
cluded by Nakamura et al. (1997), though Miller and Wang
(2022) pointed to high-frequency components as key fac-
tors. Our blocking data set recognizes blocked grid points
between 23 January 2017 at 12:00 UTC and 30 January 2017
at 12:00 UTC. Figure 9 shows the synoptic conditions over
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Figure 8. (a) Coherent sets for combined forward and backward trajectories initialized on 4 May 2016 at 00:00 UTC. Points are shown for
t = —72h (right bulk) and ¢t = 72 h (left bulk). Black contour shows location of identified blocking at # = O h. Horizontal coordinates are in
stereographic projection. (b) Exit probabilities Pexjt(Zy) for each of the clusters shown in (a) and a residual cluster (full circles). For each
of the clusters, the distribution of exit probabilities of 100 randomly generated test sets of the same size is presented by a box-and-whisker
plot. These show the median (horizontal line), first and third quartiles (box limits), and the farthest data point lying within 1.5 times the
interquartile range from the box (whiskers). Panels (¢) and (d) show the median (line) and interquartile range (shading) of horizontal velocity
components. The residual cluster (gray) has been removed from (a), (¢) and (d).

the region of influence for three selected times representa-
tive of onset, maintenance and decay of the blocking (a video
containing synoptic conditions for all time steps is provided
in the Supplement).

During onset (a) the low-PV anomaly developed as a
vast region of low pressure over the North Atlantic and
the Arctic lets subtropical air travel north, disrupting the
jet stream. Blocking formation can be seen as an example
of anticyclonal Rossby wave breaking, which is in agree-
ment with Miller and Wang (2022). The blocking progressed
remarkably little over the course of the ensuing week and
severely obstructed the usual westerly flow of air. A typical
Q-blocking configuration is visible in (b) as two regions of
high PV develop at the lower lateral flanks of the low-PV
anomaly region. This leads to a considerable deflection of
the jet stream, and low-PV air masses are guided northwards
on the western flank just as high-PV air masses are guided
southward on the eastern flank of the blocking along strong
meridional wind bands.

The blocking eventually traveled eastward, gradually dis-
persing over the Ural Mountains and Siberia (c). Insights
gained from the previous case study corroborate the ar-
gument of Steinfeld and Pfahl (2019) that WCBs tend to
strengthen the negative PV anomaly, which would imply that
its absence makes decay of the blocking more likely. In the
present case, the blocking persisted for an extended amount
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of time over Scandinavia and eventually dissolved over main-
land Russia, such that a possible hypothesis is that the decay
of the blocking coincided with the cessation of WCBs’ feed-
ing due to a lack of moisture, a weakening of the adjacent
surface cyclone and large-scale subsidence.

To analyze air stream coherence, we apply the same value
for the scale parameter ¥ = 15kmhPa~! and obtain between
50 and 19200 initial points (see Fig. Al). The variation of «
is, again, inside a moderate range of 12.09 to 19.82 km hPa~!
and does not show a great influence on the eventual clustering
of trajectories. Temporal evolution of « indicates relatively
weaker motion in the vertical the later the trajectories pass
through the blocking. Average velocities in both horizontal
and vertical direction develop similarly and largely decrease
with time, which is related to the presence and absence of
WCBs and the traced air parcels’ vicinity of the stagnant flow
field dominated by the blocking. Mean velocities over the
trajectories’ whole 6 d time period are provided in Fig. S2.

4.2.1 Trajectory density

We show the estimates of both d(¢) and £(¢) for the present
example in Fig. 10. Data corresponding to trajectories initial-
ized on 23 January 2017 at 12:00 UTC have been removed
since the initial point generation resulted in only 50 trajec-
tories. We find that the distributions of d(¢) and £(t) over
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(c) 29 January

(b) 27 January
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Figure 9. Synoptic conditions at three time instances (all at 00:00 UTC) during the northern Europe 2017 case. Upper-level PV (shaded),
2 pvu contour (tropopause) in black, upper-level wind (blue vectors, only shown for wind speeds larger than 30 m s—1), surface cyclones (sea
level pressure; yellow contours from 970 to 990 hPa every 5 hPa; note the difference to Fig. 2) and blocking region (magenta contour; see
Sect. 3.1 for definition). Upper-level fields are vertically averaged between 500 and 150 hPa. Note that horizontal wind velocity is indicated
by the quivers’ length. Denser quivers towards the poles result from denser longitudes.

time and across the blocking’s life cycle bear some resem-
blance to the first case, though we note that values are gener-
ally slightly higher for both heuristics, which we attribute to
the higher number of trajectories. For d(¢), we identify max-
ima of well below 3 for point clouds with the most points
(see Fig. 10) and close to the initialization time and recognize
a more or less monotonic decrease away from those. Regions
of larger d(t) are, again, visible for ¢ > Oh for trajectories
initialized during the maturing phase (25-26 January) and
for t+ < Oh for trajectories initialized during the late main-
tenance phase (27-28 January). This sparks the question of
whether the same physical processes are responsible for the
observations as in the first case study.

Onset and early maintenance of the blocking were heavily
influenced by the strong low-pressure region to the west of
it. Both d and ¢ increase considerably as air is transported
into the blocking along the strong wind band on the surface
cyclones’ eastern flank. Similar to rolling up a fish net (the
rotational axis in the p direction), X; contracts and increases
in dimension as the parcels end up in the blocking and stay
there, while the approximated grid length increases slightly.
Considerable upward motion supports this process. This is
in contrast to the first case study, where ¢ stayed largely
constant during this phase. The compressed, almost three-
dimensional X, stays largely intact and inside the blocking as
it stagnates and grows over northern Europe. Consequently,
temporal development of d and £ in approaching air parcels
during the blocking’s period of largest extent is also domi-
nated by parcels already in or close to the blocking, such that
neither d nor £ changes considerably.

The blocking reached its peak extent around 27 January
(cf. Fig. Al). Subsequent shrinking means air masses un-
der the influence of the quasi-stationary flow field inside the
blocking now escape and come under the influence of a low-
pressure center in the upper troposphere at the southeasterly
flank of the blocking. This is why forward trajectories initial-
ized around 25-26 January see essentially no decrease in d or
£, but those initialized around 27 January do. This is in con-
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trast to the first example case discussed, which showed both
a later peak and a slower subsequent decline in size. Disin-
tegration of the blocking and its associated flow field leads
to decreases in both heuristics, similar to the first case study,
albeit less pronounced.

4.2.2 Coherent air streams

We apply our diagnostic presented in Fig. 7b for the present
case to study and summarize the occurrence of coherent air
streams featuring latent heating and show results in Fig. 11a.
WCBs are found almost exclusively among backward trajec-
tories arriving in the blocking during its lifetime’s first half.
During that period, however, they make up a considerable
share of all trajectories traced. Miller and Wang (2022) also
identified diabatic heating as a major cause for blocking on-
set in the European region.

Both example cases presented here feature WCBs (accord-
ing to our definition: coherent air streams with a 3 d change
in median potential temperature of more than 5K) almost
exclusively during the onset and early maintenance phase. In
both cases, these are caused by adjacent surface lows. Com-
pared to the first case study, the WCB fraction decreases less
monotonically. A possible explanation is that moisture avail-
ability is dependent on oceanic sources to a larger degree in
winter (Pfahl et al., 2014), but proving this would require
moisture source tracking, which is outside the scope of the
present study. In comparison to the first evaluation of WCBs,
the potential temperature levels tend to be a bit lower in this
case, which reflects the different seasons they occurred in.
Notably, the second blocking does not show lower levels of
potential temperature with time since it does not move to
higher latitudes.

As a last demonstration of our methodology, we pick the
set of backward trajectories initialized on 26 January 2017
at 18:00 UTC, which we understand as a turning point in the
blocking’s life cycle in several senses. Firstly, at this point
in time the blocking has almost reached its maximum ex-
tent, allowing for a total of 18349 individual initial points.
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Figure 10. (a) d(¢) and (b) £(¢) plotted as a function of initialization time (28 initializations, vertical axis) and time step (144 time steps
from —72h to +72h, horizontal axis) for the northern Europe 2017 case. Data corresponding to trajectories initialized on 23 January 2017
at 12:00 UTC has been removed. White diagonals indicate isochrones (all 00:00 UTC). Vertical white line indicates initialization time.

1.0
0.8
0.6
F0.4
—1e3 0.2
— 503
280 4 : T 0.0
21 Jan 23 Jan 25 Jan 27 Jan
Date

(b)
2
320 A

m

- /—'\-\..\
(=
o
i3]
o
&
m
[}
=

—60 —40 -20 0

t[h]

Figure 11. (a) Median (line) of potential temperature distribution among clusters that exhibit a difference between initial and end values
larger than 5 K for different initialization times indicated by line color. Line thickness is according to the number of trajectories in cluster (m).
Gray bar chart in the background shows ratio between number of trajectories contained in WCB clusters and the total number of trajectories
for each arrival (initialization) time. (b) Median (line) and interquartile range (shading) of potential temperature distribution among individual

clusters from Fig. 12. A residual (gray) cluster has been removed.

Secondly, from a process-oriented perspective, Fig. 11b re-
veals that this point in time is the last featuring a WCB with
considerable size, but the trajectories also exhibit the behav-
ior responsible for profiles of d and ¢ characteristic of later
phases, which will be shown in the following. The synoptic
conditions at the selected point in time differ only marginally
compared to Fig. 9b.

After calculating boundary points with « = 10° km again
(see Fig. A3 for resulting o hull edge length distribution),
we identify a moderate spectral gap after six eigenvalues
(see Fig. S4b) and select € = 5 x 10* km? to cluster the tra-
jectories. The result is shown in Fig. 12a, where a residual
cluster has already been removed for visibility. This resid-
ual cluster stands out drastically in Fig. 12b, attaining a very
high average exit probability of above 0.5, whereas the other
clusters are proven to be a lot more coherent than the ran-
domly chosen test sets. Again, the largest eigenvalues of the
restricted matrices show a similar but less clear picture, es-
pecially with regard to the residual cluster (cf. Fig. S5).
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Note that the positions of the air parcels are only shown at
t = —72h, whereas the blocking’s location is shown at time
t = O0h. This is because air parcel locations overlap consider-
ably for t = —72 and t = O h and would therefore be impos-
sible to distinguish.

This time, clusters are separated stronger horizontally,
owing to a larger degree of vertical mixing compared to
the previous example. Clusters at t = —72h appear rather
filamented (except for the pink cluster (5)) and even fea-
ture seemingly disconnected pockets of air (red cluster (0)),
which highlights the role the final configuration close to
t = 0h plays. The distributions of € of the individual clusters
over time shown in Fig. 11a, however, prove that all but the
red clusters are concentrated in the upper levels of the atmo-
sphere. The red cluster, on the other hand, can be identified as
one of the WCBs visible in Fig. 11b. Its air parcels undergo
latent heating, increasing their median potential temperature
by roughly 15 K. Given the fact that the synoptic flow field
and general conditions make it likely that the other clusters
have a similar “history” and have, thus, undergone a diabatic
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Figure 12. (a) Coherent sets for backward trajectories initialized on 26 January 2017 at 18:00 UTC. Clustered trajectories for € =5 x
10* km?. Points are shown for # = —72 h; black contour shows location of identified blocking regions at ¢ = 0 h. One (gray) residual cluster
has been removed. Horizontal coordinates are in stereographic projection. (b) Exit probabilities Peyit(Zy) for each of the clusters shown in
(a) (full circles) and the residual cluster removed from (a). For each of the clusters, the distribution of exit probabilities of 100 randomly
generated test sets of the same size is presented by a box-and-whisker plot. These show the median (horizontal line), first and third quartiles
(box limits), and the farthest data point lying within 1.5 times the interquartile range from the box (whiskers).
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Figure 13. Median horizontal velocities of each cluster from
Fig. 12a displayed as a hodograph. 0° corresponds to exclusively
northward motion. Markers indicate time steps.

ascent as well — just earlier — further underlines the impor-
tance of latent heating in this case.

The pink cluster consists of air that is already inside the
blocking at t = —72h. During the ensuing 3 d, it performs
an anticyclonic rotation characteristic of high-pressure sys-
tems (in the Northern Hemisphere). This is visible in Fig. 13,
where the horizontal velocity components are displayed in
a hodograph for all clusters shown in Fig. 12a. The polar
plot enables display of both horizontal velocity components
in one graph and makes the circular movement of the pink
cluster clear. The blue (6) and brown (4) clusters’ arrival in
the blocking can be similarly identified by their anticyclonic
movement later on, though the curves are a lot less clear. A
decrease in zonal velocities reveals that the blue cluster ar-
rives second before the brown, the purple (2) and finally the
red.
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Tracking of the individual clusters confirms the hypothe-
sis formulated in Sect. 4.2.1. The size of the blocking deter-
mines when and how long the traced parcels are inside its
region of influence and, thus, how densely and to what ex-
tent the parcels assemble three-dimensionally at a particular
point in time. The present example also demonstrates that the
processes discussed do not occur exclusively but can coexist
and contribute to the complexity of both individual cases and
case-to-case variability.

5 Conclusions

The present study aimed to investigate the occurrence of
warm conveyor belts (WCBs) feeding into atmospheric
blocking adhering to the notion of spatial coherence. This
promised to provide a complementing perspective on WCBs
as phenomena of first-order importance for the behavior and
development of atmospheric blocking. We also use this case
study to prove the methodological value of the mathemati-
cal concept of coherent sets, which is an active area of re-
search. To the best of our knowledge, neither the study of
WCBs based on their spatial coherence nor the identification
of coherent air streams in high-resolution three-dimensional
atmospheric trajectories has been carried out thus far.

The adaptation, implementation and advancement of the
methodology of Banisch and Koltai (2017) are the core con-
tribution of this work. The developed framework respects the
scale dissimilarities of atmospheric motion, handles bound-
ary conditions in a physically consistent manner and pro-
vides flexibility for application to geoscientific phenomena
on other scales, all while keeping numerical efficiency and
ease of application in mind. We employ a quantitative metric
of coherence to prove our adaptation is able to identify co-
herent sets that are drastically more coherent than randomly
selected test sets. Broadening the range of phenomena stud-
ied in this manner is a subject of future work. To facilitate
this, we provide a user-friendly Python package, GeoCS
(see “Code and data availability™).
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The case studies presented demonstrate our method’s ca-
pability in finding WCBs based solely on spatial informa-
tion. Apart from respecting the (arguably) common notion of
WCBs as coherent, synoptic-scale air streams, this perspec-
tive has the advantage of being able to conceive WCBs as
spatio-temporally extended objects in time, similar to atmo-
spheric blockings. More specifically, we found that, on the
one hand, air parcels that reach a blocking at a common point
in time may have been part of the same or different WCBs
and that, on the other hand, individual WCBs can contain
air parcels that reach the same blocking at different points in
time (see Fig. 7).

The WCBs found in our case studies were generally re-
markably distinct from other coherent sets identified, both
with respect to their dynamical properties and their path-
ways. Nevertheless, we did not find a rigorous dichotomy
between moist and dry air streams as it might seem when
looking at distributions of maximal potential temperature
change over all trajectories traced over the whole lifetime of a
blocking event (Steinfeld et al., 2022; Steinfeld, 2019; Pfahl
et al., 2015). In agreement with existing research, for both of
the two blockings investigated, the influence of WCBs was
episodic and larger in earlier stages of the life cycle. Our re-
sults suggest that this was due to large-scale subsidence, un-
availability of moisture and self-containment of air parcels
in blockings later in their life cycle. In earlier stages, how-
ever, we found that up to 100 % of the air parcels traced were
influenced by a WCB at some point.

In addition to clustering trajectories, the presented method
provides concise information on the shape of the point cloud
represented by the air parcels traced at each point in time.
In particular, we introduced the heuristics d and £ approxi-
mating the dimension and grid length of the point cloud and
emphasize that both of these behave considerably differently
than linear measures of distances between the points. Given
that Lagrangian analysis is ubiquitous, especially in atmo-
spheric sciences, we think that these tools are a valuable con-
tribution.

Applying these heuristics to our case studies showed that
the stabilizing effect a blocking has on the synoptic flow field
imprints on the coherence of trajectories that flow through
it. This happens due to quasi-stationarity, reduced shear-
ing and generally lower velocities. Consistently, strong and
abrupt changes in the flow field, such as when a zonal regime
reestablishes after a blocking, lead to shearing and filamen-
tation of point clouds.

Given the complexity of the algorithm developed, a clima-
tological evaluation of the effects discussed for the present
case studies is non-trivial and, thus, subject of future studies.
As mentioned above, we are convinced that the methodologi-
cal framework presented will give valuable insights for other
meteorological (or oceanic) phenomena such as cyclones.
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Appendix A: Additional figures
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Figure A1. Number of trajectories m (orange squares; left axes) and scale factor « (blue circles; right axes) calculated over all sets of
trajectories and time steps for 3 d forward and 3 d backward trajectories at each initialization date.
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Figure A2. Mean of the five nearest-neighbor distances for each point for (a) the 2016 Canada case and (b) the 2017 northern Europe case.
White diagonals indicate isochrones (all 00:00 UTC). Vertical white line indicates initialization time.

b
@ Edge Length [km] ®) Edge Length [km] ©) Edge Length [km]
Q Q Q
Q Q Q Q O Q Q Q Q O Q Q Q Q O
O PR D ST S SR SN O PN & F D

t [h]

1 1 1 1 1 I 1 1
0 200 0 100 200 0 100 200
Frequency [-] Frequency [-] Frequency [-]

Figure A3. A 2D histogram of edge lengths of the « hulls generated by « shapes for the trajectories initialized on (a) 2 May 2016 at
00:00 UTC, (b) 4 May 2016 at 00:00 UTC and (c) 26 January 2017 at 18:00 UTC. Black lines indicate median and quartiles of the distributions
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Code and data availability. Code to reproduce the findings in
this paper is published as a Python package on the Python
package index repository (https://pypi.org/project/GeoCS/, last ac-
cess: 20 February 2025, https://doi.org/10.5281/zenodo.14900691,
Schoeller, 2025). It also contains a list of all dependencies used.
ERAS reanalysis data are available from the ECMWF’s Climate
Data Store (CDS; https://cds.climate.copernicus.eu, last access: 20
February 2025, https://doi.org/10.24381/CDS.ADBB2D47, C3S,
2018). Trajectories and averaged diffusion-operator matrices (Qe¢)
can be provided upon request.

Video supplement. Videos of synoptic conditions for both case
studies can be accessed online (https://doi.org/10.5446/69303,
Schoeller, 2024). Additional figures are provided in the Supple-
ment.

Supplement. The supplement related to this article is available
online at https://doi.org/10.5194/npg-32-51-2025-supplement.
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