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Abstract. This paper addresses a major challenge in assimilating 3D radar reflectivity data with a localized
ensemble transform Kalman filter (LETKF). In the case of observations with significant reflectivity and small
or zero corresponding simulated reflectivities for all ensemble members, i.e., when the ensemble spread is van-
ishing, the filter ignores the observations based on its low-variance estimate for the background uncertainty. For
such low-variance cases, the LETKF is insensitive to observations and their contribution to the analysis incre-
ment is effectively zero. Targeted covariance inflation (TCI) has been suggested to deal with the ensemble spread
deficiency (Yokota et al., 2018; Dowell and Wicker, 2009; Vobig et al., 2021). To actually make TCI work in a
fully cycled convective-scale data assimilation framework, here we will introduce a process-oriented approach
to the TCI in combination with a conditional approach formulating criteria under which targeted covariance
inflation is efficient.

The process-oriented conditional TCI addresses the challenge of underrepresented reflectivity in the prior by
constructing artificially simulated reflectivities for each ensemble member based on current observations and
typical convective processes. Furthermore, certain conditions are used to restrict this spread inflation process to
a carefully selected minimal set of eligible observations, reducing the noise introduced into the system.

We will describe the theoretical basis of the new TCI approach. Furthermore, we will present numerical results
of a case study in an operational framework, for which the TCI is applied to radar observations at each hourly
assimilation step throughout a data assimilation cycle. We are able to demonstrate that the TCI is able to clearly
improve the assimilation of radar reflectivities, making the system dynamically generate reflectivity that would
otherwise be missing. Related to this, we are able to show that the fractional skill score of radar reflectivity
forecasts over lead times of up to 6 h is significantly improved by up to 10 %. All of the results are based on the
German radar network and the ICON-D2 model covering central Europe.

Data assimilation techniques (Lorenc et al., 2000; Rabier
et al., 2000; Lorenc, 2003; Liu et al., 2008; Evensen, 2009;
Van Leeuwen, 2009; Kleist et al., 2009; Nakamura and Pot-
thast, 2015; Houtekamer and Zhang, 2016; Bannister, 2017;
Gustafsson et al., 2018) are employed for the estimation of
initial conditions that are used for the initialization of dy-
namical forecast models. For this purpose, data assimila-
tion techniques combine information from newly measured
meteorological observations and previous model forecasts.

Considering the special class of ensemble data assimilation
techniques (Evensen, 1994; Houtekamer and Mitchell, 1998;
Evensen and van Leeuwen, 2000; Houtekamer and Mitchell,
2001; Anderson, 2001; Houtekamer and Mitchell, 2005;
Houtekamer et al., 2005; Houtekamer and Zhang, 2016; Pot-
thast et al., 2019; Schenk et al., 2022), an ensemble of at-
mospheric model states is used to represent uncertainties and
correlations between model variables. The usage of such an
ensemble of states also allows the calculation of correlations
between model variables and atmospheric observations as
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well as weighting of the information contained in the ob-
servations and model variables. Belonging to this group of
ensemble data assimilation techniques are the many versions
of the particularly popular ensemble Kalman filter (Evensen,
2009), of which the localized ensemble transform Kalman
filter (LETKF) (Hunt et al., 2007) is the one most relevant
for this present work.

Predicting convective events with numerical weather pre-
diction (NWP) models is challenging due to errors in the
initial conditions and the atmosphere’s chaotic behavior.
Weather radar observations, such as reflectivity and radial
winds, can significantly reduce these errors by capturing the
3D evolution of convective systems with high spatiotempo-
ral resolution. The use of radar data to improve convective
initiation and forecasting dates back to Lin et al. (1993), who
developed a method to initialize convective models by adding
humidity in areas with radar echoes. More recently, radar
observations were successfully applied in convective-scale
data assimilation, significantly enhancing convective storm
predictions in NWP models (Gustafsson et al., 2018), with
the ensemble Kalman filter — known for its flow-dependent
covariances — being widely used in this context. The poten-
tial to assimilate radar observations at convective scales was
demonstrated in idealized setups (Snyder and Zhang, 2003;
Caya et al., 2005; Tong and Xue, 2005; Xue et al., 2006; Gao
and Xue, 2008; Sobash and Stensrud, 2013; Lange and Craig,
2014; Thompson et al., 2015; Gao et al., 2016; Lange et al.,
2017; Potvin et al., 2017; Bachmann et al., 2019, 2020; Zeng
et al., 2021) and in real-data assimilation (Bick et al., 2016;
Gastaldo et al., 2018; Zeng et al., 2018; Duda et al., 2019;
Zeng et al., 2019; Ruckstuhl and Janji¢, 2020; Zeng et al.,
2020; Shen et al., 2020).

In this study, we employ the data assimilation framework
KENDA (Kilometere-scale ENsemble Data Assimilation)
(Schraff et al., 2016), which combines an implementation of
the LETKEF that closely follows Hunt et al. (2007) and the
regional ICON-D2 model, a limited-area mode configuration
of the ICON (ICOsahedral Nonhydrostatic) model (Zingl
et al., 2015; Prill et al., 2024) that covers central Europe.
Considering the assimilation of radar data, KENDA opera-
tionally assimilates radar data by employing 3D radar obser-
vations obtained from the C-band radar network of the Ger-
man Weather Service and model equivalents computed by
means of the radar forward operator EMVORADO (Efficient
Modular VOlume scan RADar Operator) (Zeng et al., 2016).
In addition to the assimilation of 3D radar data, KENDA in-
cludes the latent heat nudging (LHN) mechanism (Stephan
et al., 2008; Schraff et al., 2016), which is based on radar
composites of radar precipitation scans.

One of the main challenges of assimilating radar reflec-
tivities with an ensemble data assimilation system like the
LETKF is dealing with observations whose corresponding
background reflectivity spread vanishes. This vanishing en-
semble spread leads to overconfidence in the background
system state, and, as a result, the LETKF is unable to ade-
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quately employ the information given through such observa-
tions and effectively rejects them — even in the presence of
large discrepancies between observed and simulated reflec-
tivities. In practical applications it may then happen that the
LETKEF effectively ignores the information given through the
observation of even very large-reflectivity cells and fails to
synchronize the true system state, i.e., nature, with the model
state.

The purpose of the TCI approach (Yokota et al., 2018;
Dowell and Wicker, 2009; Vobig et al., 2021) employed in
this work is to overcome the issue just mentioned, i.e., to
address the issue of missing ensemble variability and, thus,
to make the LETKF more sensitive to observations in cases
where observations show that the ensemble does not capture
the processes adequately. To this end, artificially simulated
reflectivities are constructed and assimilated. The studies of
Yokota et al. (2018), Dowell and Wicker (2009), and Vobig
et al. (2021) suggest that adding spreads in a targeted way
can help make the LETKF take up the observations and draw
the fields in the right direction. However, it turns out that ap-
plying the scheme in a naive way to the whole domain in a
cycled convective-scale framework generates a lot of noise
in the system and, even though it helps in selected situations,
it worsens the overall scores of both reflectivity forecasts and
conventional variables.

To overcome the above problems with the TCI scheme, we
will introduce two key techniques into the system. Firstly, the
construction is accomplished by means of a specifically de-
signed model that employs selected model variables as inde-
pendent variables and that has been trained on data found ex-
clusively in the nearest spatiotemporal vicinity of early-stage
convective events — defined as regions where the model has
just begun to generate significant reflectivity. This algorithm
is therefore designed to capture those empirically observed
correlations that are most relevant to convective events and
the involved physical processes related to their initiation. Us-
ing this algorithm for the construction of artificially simu-
lated reflectivities and assimilating them, we expect the sys-
tem to be pulled towards an overall state that is related to a
(pre)convective environment and that is more likely to dy-
namically produce reflectivity.

Secondly, we employ a particular set of observation selec-
tion rules to ensure that the TCI is only applied to the most
relevant observations, which usually represent only a very
small percentage of the total number of observations. We
found that these observation selection rules are essential for
minimizing negative effects on the system state. This is par-
ticularly relevant in the context of the TCI being potentially
applied to all radar data at multiple time steps throughout
long-term cycled data assimilation experiments, as this could
lead to “accumulation effects”, such as the gradual buildup
of errors or biases over time due to periodic changes to the
assimilation process introduced by the TCI algorithm.

Regarding an earlier implementation and study of the TCI
approach (Vobig et al., 2021), we are already able to demon-
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strate that, in the context of non-cycled single-observation
experiments assimilating only single isolated observations
at single time steps, positive effects are introduced into the
system in the form of newly emerging simulated reflectivity
cells. While this earlier TCI implementation is based on the
same general idea, there are several substantial differences
between the current version presented here and its prede-
cessor, not only regarding methodological aspects, but also
regarding the types of assimilation experiments. Firstly, we
completely redesigned the algorithm the TCI approach is re-
lying on for the calculation of artificially simulated reflectiv-
ities, using preconvective situations only. Secondly, we es-
tablished observation selection rules for applying the TCI to
carefully selected observations only where a set of criteria
is satisfied. Thirdly, we are processing all 3D radar observa-
tions available to our system. Lastly, we are studying longer-
term NWP data assimilation cycles in an operational setup
for which the TCI is applied at each hourly assimilation step
— allowing accumulation effects to build up.

Our implementation of the LETKF in the KENDA sys-
tem is described in Sect. 2.1, the ICON-D2 model setup is
summarized in Sect. 2.2, the radar forward operator EMVO-
RADO is explained in Sect. 2.3, and a brief explanation of
the latent heat nudging approach is given in Sect. 2.4. We will
introduce and describe the process-oriented TCI in Sect. 3.1,
describe the conditional approach in Sect. 3.2, and provide
more details on the implementation in Sect. 3.3.

The case study upon which the numerical results presented
in this work are based is described in Sect. 4.1, together with
its particular setup. In Sect. 4.2, we will demonstrate the pos-
itive effects of the TCI on the basis of studies of individual
cases at single times. In Sect. 4.3, we will discuss the sta-
tistical evaluation of longer-term NWP experiments, show-
ing that the fractional skill score (FSS) (Roberts and Lean,
2008) with respect to the reflectivity prediction of free fore-
cast model runs is clearly improved through the TCI by up to
10 % while keeping the negative impact on observation error
statistics at a minimum.

2 ICON-KENDA ensemble data assimilation system

2.1 Data assimilation: LETKF

The KENDA system (Schraff et al., 2016) employs the
LETKEF as suggested by Hunt et al. (2007). This formulation
allows us to easily add new observations to the assimilation,
while the core implementation can be kept once it is imple-
mented. In the KENDA data assimilation system, the deter-
ministic member represents the best estimate of the atmo-
spheric state, while the ensemble members capture the range
of possible states and uncertainties used to generate correc-
tions to improve the deterministic member.

The formulation of Hunt et al. (2007) — see also Nakamura
and Potthast (2015, Chap. 5) — solves the Kalman filter equa-
tions in ensemble space defined by the ensemble members
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x@0 for ¢ =1, ..., L minus the ensemble mean
.= Ly oo, M
L=
We use the notation
X’ .= (x(b’l)—)E(h),...,x(b’L)—)E(b)) 2)

for the matrix of ensemble differences from the mean and
(for the case of linear H)

Y? .= HX? (3)

for the ensemble differences in observation space, with y°
the observation vector and y” the mean of observations sim-
ulated from the ensemble. The observation error covariance
matrix is denoted by R. Now, we employ Egs. (20) and (21)
of Hunt et al. (2007), i.e.,

w’ =PY(Y) Ry~ 3", @)

to calculate the mean of the analysis ensemble and P* given
by

P =[(L— DI+ (Y)TR™'Y?] !, (5)

where we use the letter L for the number of ensemble mem-
bers, the notation w? for the linear coefficients of the analysis
mean, and / for the identity matrix. P? denotes the L x L
analysis covariance in the space of ensemble coefficients.
Equation (2) in the model space leads to Egs. (22) and (23)
of Hunt et al. (2007):

¢ =% + Xbwe, (6)
P¢ = XPpe(x)T, (7

where X is the analysis mean and P is the analysis covari-
ance matrix. W is calculated by

W = [(L — 1)P*]'/2, (8)

As in Eq. (24) of Hunt et al. (2007), the analysis ensemble is
calculated by

X = X’W, )

where the power 1/2 denotes the symmetric square root of
the symmetric matrix ' given by Eq. (5).

It is obvious that, in the case where the ensemble of sim-
ulated reflectivities has a small or zero spread, the matrix Y?
(see Eq. 3) has small or zero entries, and in that case both
P? (see Eq. 7) and the transform matrix W (see Eq. 8) are
small, such that the ensemble analysis increments given by
X? (see Eq. 9) are small as well. The goal of targeted co-
variance inflation is to change Y in such a way that the re-
flectivity observations lead to appropriate increments in the
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humidity and further variables. The basic challenge of dif-
ferent approaches to the TCI is how to construct the inflated
matrix Y? such that the increments avoid spurious noise and
generate meaningful convective processes in the model prop-
agations following the analysis steps in a cycled data assim-
ilation framework. We will develop the process-oriented and
conditional approaches in Sect. 3.

2.2 NWP model: ICON-D2

The ICON modeling framework (Zingl et al., 2015; Prill
et al., 2024) is the numerical weather prediction and climate
modeling system collaboratively developed by various insti-
tutions and weather services where the Deutscher Wetterdi-
enst (DWD) and the Max Planck Institute for Meteorology
(MPI-M) are major contributors. At DWD, the ICON sys-
tem runs operationally on a global scale, within the Euro-
pean subdomain known as ICON-EU and in the convection-
permitting local-area-mode ICON-D2. The model domain of
ICON-D2 covers all of Germany, Switzerland, Austria, and
parts of the other neighboring countries; see Fig. 1. There-
fore, the ICON-D2 model is very similar to that of the for-
mer operational COSMO-D2 model! (Baldauf et al., 2011),
which it replaced in 2021. In this work we mainly employ the
ICON-D2 configuration for our model simulations, which
have a model resolution of 2.1 km, 65 vertical levels, and lat-
eral boundary conditions provided by ICON-EU simulations.

Horizontally, the ICON model uses an unstructured tri-
angular grid, while in the vertical dimension a distinct set
of levels {/;|1 =i > N} is defined. See Fig. 1 for a rough
estimate of the height of each ICON level. Furthermore,
the ICON model solves an equation system based on a dis-
tinct set of prognostic variables. Generally speaking, a two-
component system is assumed involving dry air and water as
variables where the latter may appear in all three phases. For
a more in-depth discussion of the ICON model, see Prill et al.
(2024).

2.3 Radar forward operator: EMVORADO

In the convective-scale ICON-D2 configuration of the ICON
model, 3D radar observations obtained from the German
radar network are employed (Bick et al., 2016). The Ger-
man radar network consists of 17 dual-polarization C-band
Doppler radar stations that comprehensively cover Germany
(see Fig. 2). The scanning procedure for 3D-volume scans at
each radar station involves a complete 360° azimuthal sweep
with a 1° resolution at 10 elevation angles ranging from 0.5
to 25°. Radially, the distance reaches up to 180 km for each
station, with a resolution of 1 km.

To assimilate 3D radar observations, synthetic 3D radar
data are derived from model variables utilizing the EMVO-
RADO forward operator (Zeng et al., 2016), where, consider-
ing only its single-polarization implementation in this study,

1COSMO refers to the Consortium for Small-Scale Modeling.
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Doppler velocities and reflectivities are computed. Note that
simulated radar observations are produced in the observation
space; i.e., for each observation, an associated model equiva-
lent is computed. Furthermore, EMVORADO accounts for
various intricate physical factors related to the simulation
of radar measurements, e.g., beam bending, beam broaden-
ing, beam shielding, Doppler velocity with fall speed and re-
flectivity weighting, attenuated reflectivity, and a detectable
signal. The EMVORADO operator also allows superobbing,
i.e., the local spatial averaging of observations and corre-
sponding observation equivalents as a standard technique for
assimilating spatially high-resolution observations. For more
comprehensive information and specifics that are beyond the
required scope of this work, please refer to Zeng et al. (2016).

2.4 Latent heat nudging

The LHN mechanism is a feature of KENDA that enables the
assimilation of radar-derived precipitation rates, independent
of the assimilation of volume radar data. Note that these pre-
cipitation rates are derived from radar data supplied by the
OPERA network (including a precipitation scan of the Ger-
man radar network). For further details on the LHN approach
and its integration into KENDA, please refer to Stephan et al.
(2008) and Schraff et al. (2016).

3 Targeted covariance inflation

In the following, we discuss the basic elements of the TCI
approach, aiming for an improvement in the LETKF assim-
ilation of 3D radar reflectivity data. This approach is moti-
vated by the fact that the LETKF has a fundamental deficit
when assimilating observations whose associated simulated
ensemble spread vanishes. In numerical applications, such
observations are effectively discarded by the LETKF algo-
rithm and have no practical impact on the generated incre-
ments, which can also be seen directly through Eqs. (5)—(9).
The TCI approach specifically aims to resolve this issue by
inflating the ensemble spread for such observations.

We would like to note that the opposite of the previously
described scenario — spurious convection in the model back-
ground when observations show no convection — is not di-
rectly addressed in this study. This issue is generally handled
by the standard mechanisms of the LETKF data assimilation
and is not related to the ensemble spread problem that the
TCI specifically targets.

The spread inflation is achieved by employing a specif-
ically designed model to compute artificially simulated re-
flectivities for all ensemble members. This model is based on
empirically observed correlations found in the nearest spa-
tiotemporal vicinity of convective events. Note that the par-
ticular design of the model for the construction of artificial
reflectivities is driven by the intention to make the LETKF
produce additional increments that make convective initia-
tion and the dynamic generation of reflectivity in the nearest
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ICON-D2 model domain and orography
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Figure 1. (a) Depiction of the ICON-D2 model domain covering central Europe. The colors indicate the height above mean sea level
(a.m.s.l.) of the lowest ICON level that coincides with the ground level. (b) Taking the horizontal mean over the complete model domain, the
mean of the a.m.s.1. heights of each ICON level is shown. The shaded areas indicate the related standard deviation.
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Figure 2. (a) Depiction of the German radar network covering the area of Germany. Each radar station is depicted as an individual circle
and has a range of 150 km. (b) Scanning strategy of each radar station of the German radar network. Each of the 10 fixed elevations and the

terrain-following precipitation scans are shown.

vicinity of spread-inflated observations throughout a subse-
quent NWP run more likely to occur. See Sect. 3.1 for an
in-depth discussion of the construction of this model.

The overall TCI algorithm only computes and assigns ar-
tificially simulated reflectivities for observations fulfilling a
certain set of conditions. As a consequence, the TCI usually
only makes modifications to a very small subset of the most
relevant radar observations, and the negative effects (like a
potential negative impact on observation error statistics; see
Sect. 4.3.1) on the system state are kept at a minimum. See
Sect. 3.2 for a discussion of these conditions and a concise
formulation of the overall TCI algorithm.

Finally, the TCI algorithm has to be implemented and in-
tegrated into the KENDA system to perform the numerical
experiments, which is discussed briefly in Sect. 3.3.

https://doi.org/10.5194/npg-32-471-2025

3.1 A process-oriented regression model for the TCI

The computation of artificially simulated reflectivities Z of
the TCI approach is based on an application of a specifi-
cally constructed model M. Considering the general func-
tional form of this model, we assume a linear relationship
between the simulated reflectivity perturbation § Z (restricted
to heights i above mean sea levels of 3000 to 4000 m) and
the simulated specific humidity perturbation d¢gy at a certain
ICON level L. Formally, this may also be written as follows:

8Z'(A, ¢, h) = M(8qs' (A, ¢, L)) = ar. -8qv' (A, ¢, L), (10)

with the ensemble member index i, longitude A, and latitude
¢. We would like to point out that, firstly, this model lives
within the ensemble perturbation space as only ensemble per-
turbations 6 Z and 8¢y are used as variables. Secondly, this is
a height-based approach; i.e., the algorithm only differenti-
ates between the heights of the radar observations and does

Nonlin. Processes Geophys., 32, 471-488, 2025
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not explicitly take the actual radar elevation angle into ac-
count.

To determine the coefficients «;,, we perform a linear re-
gression for each available value for the parameter L, i.e., the
specific ICON level used for the independent variable g,. The
definite value for the parameter L is then selected by finding
the maximum position of the corresponding correlation co-
efficient p;. As shown in Fig. 3, there is a clear maximum
for this correlation coefficient of p = 0.8 at L =30 (with
o =16000dB(Z)kgkg™").

The dataset used for each linear regression is constructed
as follows:

1. All simulated reflectivity data (from all elevation angles
of the volume scan) and specific humidity data from all
ensemble forecasts are collected. The forecasts provide
data every 10 min and start hourly for the first 24 h of an
ICON-D2 assimilation cycle with 40 ensemble mem-
bers. This cycle is initialized at 2019-06-03T00:00:00,
which coincides with the beginning of the period stud-
ied in Sect. 4.

2. All of the data are interpolated to a regular grid with
2 km resolution.

3. The volume radar data are binned with respect to the
height above mean sea level, using bin edges at {1000,
2000, ..., 10000 m}, and the mean value is calculated
for all data points within each bin.

A filter is then applied to this initial large dataset to only
include data representative of early-stage convective events,
i.e., data from spatial and temporal points near newly emerg-
ing convective cells. For each assimilation date dy and lead
time 7o, this filter includes only those horizontal positions
(x0, yo) in the final dataset that satisfy the following condi-
tions:

1. At time ¢ =1t9— 10min, within a 20km radius of
(x0, yo), the ensemble mean of the lowest available radar
data bin is below 1 dBZ.

2. At time t = fg, the ensemble mean of the lowest avail-
able radar data bin at (xq, yo) is above 10 dBZ.

We found that these specific conditions (based on ensemble
mean data) are fairly robust at identifying spatial positions
where at least one of the ensemble members is associated
with convective initiation and convection in the growing pro-
cess.

By only including data associated with convective pro-
cesses, we intend to capture the most relevant correlations
associated with convection and, therefore, construct a more
process-oriented approach which will eventually be more ca-
pable of pulling the system state towards an environment that
is likely to initiate convection and help the model dynami-
cally produce reflectivity.

Nonlin. Processes Geophys., 32, 471-488, 2025
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Finally, it is important to note that the algorithm we just
discussed for constructing and selecting a TCI model, used
to compute artificial reflectivities, is only loosely related to
the overall algorithm that applies this selected TCI model
based on specific observation selection rules, as discussed in
Sect. 3.2. However, as we will demonstrate, both algorithms
follow the same general principles and ideas.

3.2 Conditional TCIl based on observation and
ensemble characteristics

Another important advancement compared to earlier versions
of the TCI approach (Vobig et al., 2021) is that multiple spe-
cific conditions must be fulfilled before the TCI is applied
for a specific observation. We found that this restriction of an
application of the TCI to only a small subset of all available
observations and, as a consequence, keeping the overall im-
pact on the system state at a minimum is essential for keeping
the negative effects of the TCI under control.

Some of the following operations involve the calculation
of a moving average acting solely on the two horizontal di-
mensions. This is implemented as a centered convolution em-
ploying a normalized rectangular function of width 8 (given
in kilometers) in both horizontal dimensions A and ¢ as a
kernel. Denoting such a kernel as fz(A, ¢), the processing of
an arbitrary field X can be written formally as

)?ﬁ(x,¢,h)=/ /dx’ckp’

—00 =00

e =29 =X, ¢, h). (1)

In the following, we employ the Boolean field B(%, ¢, k) to
specify, for each spatial position, whether the TCI should be
active (where its value is “true” or “1”’) and simulated reflec-
tivity values modified or whether the TCI should be inactive
(“false” or “0”) and simulated values left unmodified. Fur-
thermore, this field is defined as being the result of a logical
conjunction of several auxiliary Boolean fields B; (A, ¢, h):

Bow ¢, by =[[Bir. ¢, h), (12)

where each of these Boolean fields B; (A, ¢, k) is the result of
an individual condition check.
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Figure 3. Performing a fit of Eq. (10) to data that are exclusively related to early-stage convective events (see the text for more information
on the data preparation steps), this plot depicts the resulting correlation coefficient py over the ICON level L of the specific humidity variable
gv for each of these fits. To study the effect of spatiotemporal displacements between reflectivities and specific humidities, a moving average

with strength 8 is applied to the 2D input fields for gy (see Eq. 11).

Spread check:
1 ifo;[ZD(n, ¢, h)] <0.1dB(Z),
BiGd.h) = if o[ .( ¢, h)] < (2)
0 otherwise.
(13)
Deterministic check:
1 if Z% (x,,h) < 1dBZ,
Bathg = Za=i0 @)= (14)
0 otherwise.
Ensemble mean check:
: (@)
fu;[Z Ao h 1dBZ,
Bsg = " Hil 2100 @ T < (15)
otherwise.
Observation check:
1 if Z°%(, ¢, h)] > 15dBZ,
By(h, ¢, h) = . (16)
0 otherwise.
Height check:
1 if 3000m < A <4000m,
Bs(h,¢,h) = . a7
0 otherwise.

Note that we employ o;[X ®7] and ui[X(i)] to denote the
spread and mean, respectively, of a variable X.

With Bj, we ensure that we only make changes for ob-
servations whose associated ensemble spread is too small.
The fields B,, B3, and B4 ensure that the deterministic mem-
ber and the ensemble mean have to vanish, while, simulta-
neously, there has to be a sizable observed reflectivity; i.e.,
there has to be a large discrepancy between observed and
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simulated values. Note that the calculation of B, and B3
relies on simulated fields that have been preprocessed by
means of a moving average (defined in Eq. 11). This is done
to take possible spatiotemporal displacements between ob-
served and simulated reflectivity cells into account. Finally,
Bs ensures that the TCI is only applied for radar observa-
tions whose heights fall within a certain height range. This
is important as the previously constructed TCI model (see
Sect. 3.1) is based on observations falling within this specific
height range.

We conducted sensitivity tests on the parameters in
Egs. (13)—(17), varying them within a defined range to as-
sess their impact on DA performance and short-term NWP
forecasts. The results showed that small changes had mini-
mal impact, and the final parameters were chosen to balance
effective TCI application while minimizing noise.

The TCI modifies the simulated reflectivity of all ensemble
members employing the linear model M (see Eq. 10) defined
in Sect. 3.1, but only for a specific subset of all observations
which is specified by means of the logical field B. Formally,
the inflated reflectivities Z'”) of the ith ensemble member
are then computed via the following rule:

700, ¢, h) =

Wil ZOC, . )]

+M (gL 1oGns #,1=30)) if B, @, b is true,  (18)
ZOWM, ¢, h) otherwise.
A, ¢, and h loop over all discrete spatial points for which a
reflectivity is measured. Note that in Eq. (18) the field for gy
that enters the TCI algorithm is preprocessed by means of a
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moving average for taking spatiotemporal displacements into
account.

Overall, Egs. (18) and (10) demonstrate that reflectivity
perturbations are derived deterministically from specific hu-
midity perturbations using a linear model — without the in-
volvement of any random perturbations — and are then ap-
plied conditionally.

Additionally, we modify the observation error for each ob-
servation for which the ensemble is inflated. Usually, we use
a global observation error of 10 dB(Z) for all radar observa-
tions in our quasi-operational setup. However, if the TCI is
applied for a specific observation ZObS(A, ¢, h), which means
that B(A, ¢, h) is true, the observation error is reduced to
2dB(Z). This results in much more pronounced increments,
and the system is pulled significantly more strongly towards
these observations.

Note that we performed the same sensitivity checks on the
reflectivity observation error as in our previous TCI study
(Vobig et al., 2021), and the results were consistent. These
findings confirm that the observation error significantly influ-
ences the size of the increments, underscoring its importance
in the TCI process. The chosen value for the observation er-
ror of 2dB(Z) strikes a balance, ensuring that no excessively
large increments are introduced while maintaining the effec-
tiveness of the TCI application.

3.3 Implementation

To integrate the TCI approach into the KENDA system (see
Sect. 2.1), the input data that eventually enter the LETKF
system are preprocessed. Usually, these input data are sup-
plied in the form of feedback files (containing all super-
obbed? reflectivity observations and model equivalents to be
assimilated) and model field files (containing, e.g., the model
fields for gy), where there is one file per ensemble member
and radar station. Processing each radar station and radar ele-
vation separately, the TCI is implemented by performing the
following steps sequentially:

1. Read all required ICON g, model fields for all ensemble
members from the model field files.

2. Read all required observed and simulated radar reflec-
tivity data Z for all ensemble members and all radar
stations from the radar feedback files.

3. Interpolate Z and ¢, onto a common regular 2D hori-
zontal grid (using a resolution of 2 km).

4. Construct the logical field B; see Eq. (12).

5. Calculate modified simulated reflectivities for all en-
semble members using the TCI algorithm; see Eq. (18).

2Superobbing refers to the process of “thinning out” radar data
by spatial means.
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6. Write modified simulated reflectivities back to their cor-
responding radar feedback files. This step involves an
inverse map from the regular grid used internally by the
TCI algorithm to the irregular grid used internally by
the radar feedback files.

7. Modify observation errors (within the radar feedback
files) for observations whose related ensemble spread
was inflated.

Based on the observations and model equivalents, the
LETKEF calculates a transform vector for the mean and a
transform matrix for the ensemble perturbations (i.e., the en-
semble where its mean is subtracted), which are applied to
the first-guess ensemble to calculate the analysis ensemble.
In the KENDA (Schraff et al., 2016) implementation, the cal-
culations of the model equivalents are carried out during the
model run and are saved in the so-called feedback files. The
calculation of the transform matrices and the execution of
the transform are performed in a subsequent step by the core
KENDA module.

4 Numerical results

4.1 Case study setup

To study the effects of the TCI, we performed data assim-
ilation cycles for ICON-D2 over the period from 2019-06-
03T00:00 to 2019-06-20T00:00 at an hourly data assimila-
tion frequency. This specific time frame extends for several
days for which individual case studies have been selected by
the RealPEP (Near-Realtime Quantitative Precipitation Esti-
mation and Prediction) research group. It includes many typ-
ical convective events. The general meteorological situation
and its temporal development over the course of the chosen
time period are shown in Fig. 4 by means of the spatial frac-
tion of reflectivities above a certain threshold of time.

To study the intrinsic effects of the TCI approach, we per-
formed two assimilation cycles’: a reference cycle and a TCI
cycle, which differ from each other solely by the fact that
the TCI is either inactive or active. The TCI cycle applies
the TCI algorithm at each assimilation step, i.e., hourly to all
radar data entering the LETKF assimilation algorithm. For
both assimilation cycles, we performed free forecasts every
3 h with a 6 h lead time. During these forecasts, no assimila-
tion and, therefore, no TCI take place.

Overall, the configuration of these two assimilation cycles
is basically the operational configuration. This includes the
assimilation of all conventional data, the assimilation of 3D
radar data from the German radar network, the assimilation
of radar data obtained from radar precipitation scans via the
LHN mechanism, and the usage of an ensemble of 40 mem-
bers. In contrast to the operational assimilation, we did not

3Note that the terms “cycle” and “experiment” are used as syn-
onyms here.
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Figure 4. Using all available radar observations from the radar composite at 1.5°, panel (d) depicts the fraction of all radar reflectivities
whose value is above the threshold of 15dBZ over time. For three exemplary points in time that are also indicated by the black circles in
panel (d), panels (a), (b), and (c) show the associated radar reflectivity composites.

include the all-sky assimilation of satellite data in our exper-
iments, since the operationalization of these was carried out
during the project execution.

At each data assimilation step, the LETKF generates incre-
ments for several model variables, particularly for the tem-
perature T and the specific humidity gy, which by incremen-
tal analysis update (IAU) (Bloom et al., 1996) are fed into the
system propagation throughout a certain time window cen-
tered around the assimilation time. However, it is important
to note that, for our operational setup, there are no increments
for hydrometeors other than gy, e.g., ¢r, g, and g.

4.2 Study of individual cases

Let us now look more closely at the TCI effects by ex-
emplarily studying the details of an assimilation at 7p =
2019-06-05T15:00:00 and its impact on a subsequent model
run up to 1 h after #g.

Let us begin with an illustration of certain internal details
and immediate effects of the TCI algorithm, in particular the
construction of the total Boolean field B and the computation
of the final inflated reflectivities (see Sect. 3.2 for more in-
formation). For this purpose, Fig. 5 depicts selected B; fields
as well as their corresponding input fields, the total Boolean
field B, and the final inflated reflectivities obtained from the
TCI. Note that here we only visualize the radar data of one
exemplarily chosen radar station at a single radar elevation
angle to improve the clarity of this illustration.

Two things become apparent here: firstly, there are only
very few spatially connected regions for which B is true, and,
secondly, the TCI is successfully able to increase the reflec-
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tivity ensemble spread within these regions. Directly related
to Fig. 5, an aggregation (taking the mean) over all of the
radar stations and all of the elevation angles of the Boolean
field BB and difference in the ensemble spread is depicted in
Fig. 6, allowing an overview of the complete model domain.
Similarly to before, it becomes evident that there are only
very few spatially connected regions within the complete do-
main that are compatible with the imposed conditions for an
application of the TCI. Looking at the depicted difference be-
tween the reflectivity ensemble spread with and without the
TCI, it also becomes directly clear that the TCI is able to in-
crease the reflectivity ensemble spread if B is true. However,
the ensemble spread is always kept unmodified for observa-
tions for which B is false.

As the TCI increases the spread by modifying all ensem-
ble members of only a few carefully selected observations
for which the spread would be vanishing otherwise, we en-
able the LETKEF to include these otherwise discarded obser-
vations. This leads to altered increments that are produced
by the LETKF, and we expect these increments to modify
our system in a way that makes the generation of reflectivity
more likely. It is important to note that, firstly, reflectivity is
not a prognostic variable but merely a diagnostic variable,
and, secondly, we are not updating hydrometeor variables
that are directly connected to the simulation of reflectivity
(e.g., gr). Therefore, increments do not directly affect reflec-
tivities, but the model has to respond dynamically to incre-
ments for other variables, e.g., temperature and specific hu-
midity, and it may eventually, after a short period of time,
dynamically generate reflectivity through the generation of,

€.g., qr and gg.
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Figure 5. Illustration of the Boolean fields B3; and their associated input fields, the total field 3, and the resulting inflated reflectivities (see
Eqgs. 12-18) at g = 2019-06-05T15:00:00. Note that radar reflectivity data of one single radar station (Protzel) at one single radar elevation
angle of 1.5° only are employed here. Each of the first four columns is related to a certain necessary condition of the TCI and depicts the
result of the computation of a certain B; field (bottom row) together with its related input fields (top row). The last column shows the total
field B resulting from a logical conjunction of all B; (bottom row) and the computed reflectivity ensemble spread after the TCI has been
applied to all of the members (top row).
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Figure 6. Depiction of the total Boolean field B (a) and the difference in the reflectivity ensemble spread with and without the TCI (b) at
tg = 2019-06-05T15:00:00. While this figure is closely related to Fig. 5, the 2D fields shown here are the result of an aggregation (taking the
mean) over all available radar stations and radar elevation angles, allowing for an overview of the complete model domain. Red contours are
used here to indicate regions for which the aggregated Boolean field B is true, i.e., areas for which the TCI algorithm is potentially active.

To observe how the TCI is able to let new reflectivity cells
emerge, let us consider Fig. 7. By considering the depicted
reflectivity composite at a lead time of 1h, it becomes clear
that the TCI is very often able to produce new simulated re-
flectivity cells that are consistent with observed reflectivity
cells and that are not produced (or at least are not as pro-
nounced) without application of the TCI. Thus, we can al-
ready observe a positive impact of the TCI here.

It is important to note that Fig. 7 illustrates the general
trend observed for other assimilation dates and lead times
that are not shown. For regions in which the TCI is active,
the simulation of the TCI cycle is very often able to produce
new reflectivities that are not present in the reference cycle.
However, for very large observed values, the corresponding
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simulated values of the TCI cycle are usually smaller than the
observed ones — which is, however, plausible as the model
had only 1h here to dynamically respond to the additional
increments introduced by the TCI and the production of re-
flectivity. Note that two other possible explanations for this
general trend are that the TCI is only applied over a small
height range of 3 to 4 km, limiting the region that can be con-
vectively destabilized, and that the relatively sluggish model
begins its convection later than in reality, preventing it from
evolving as quickly.

Furthermore, we would like to note that the source of pos-
sible differences between the two simulated reflectivity com-
posites may be two-fold: firstly, the TCI has an effect through
the very last assimilation step, and, secondly, the TCI has

https://doi.org/10.5194/npg-32-471-2025
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also been applied hourly at many assimilation steps before
the very last one at 7y, such that there is also an accumulation
of its effects and, therefore, a substantial divergence of the
background states of the TCI and the reference cycle at #.

The direct impact of the TCI on convective initiation
(without any possible accumulation effects) was investigated
in Vobig et al. (2021), where the TCI was applied at single
time steps in the context of non-cycled experiments. These
“cold-start scenarios” demonstrated that the TCI is effective
even when applied only once. In the current study, we con-
firmed that the TCI produces similar results in cold-start sce-
narios, generating reflectivity even when applied at a single
time step instead of through cycling.

Let us now further formalize and quantify the verification
of reflectivities at a single time step as shown in Fig. 7 by em-
ploying a special version of the FSS designed by Roberts and
Lean (2008) to deal with highly structured fields such as re-
flectivity that are particularly susceptible to double penalties
(Rossa et al., 2008).

The FSS is a popular spatial verification metric that is also
used in this work for the spatial verification of reflectivities
for longer-term experiments in Sect. 4.3 and, thus, it is par-
ticularly important for the overall evaluation of the TCI ap-
proach. We denote 2D fields for observations and associated
predictions as Y (7, j) and X(i, j), respectively, where i and
Jj are indices for the two horizontal dimensions. Considering
an arbitrary 2D field A(i, j), we use the notation Aﬁ,r(i, )
to refer to the so-called fraction-of-occurrences field. The
fraction-of-occurrences field is defined for each spatial point
as the fraction of spatial points whose value is above the
threshold t with respect to all spatial points lying within a
certain spatial neighborhood around this point — defined by a
2D box with box length 8. The FSS with respect to these two
input fields X and Y, the box length , and the dBZ threshold
T may now be written as follows:

N ~ 2
(Rpucli )= p.ci. )
i Y e Xpek D2+ Y, Vg o (k1) .

By comparing two different predictions X and X’ by means
of the difference of their corresponding FSS values with each
other, we obtain

FSSy/ v pr —FSSx.ypr =Y Afssx xypr(i.j),  (20)
i

FSSx vy g:=1- (19)

where we inserted Eq. (19), combined both sums in the
resulting expression, and then implicitly defined the 2D
field Afssy’ x y g(i,j) as the argument of this com-
bined sum. Evidently, from the sign and magnitude of
Afssyr x y,p,:(i, j), we may assess how much the prediction
X'(i, j) improves (positive values) or worsens (negative val-
ues) the overall FSS with respect to the reference prediction
X (i, j) and observation Y (i, j).

Following these considerations, Fig. 7d shows the afore-
mentioned 2D field Afssys x y g (i, j) based on simulated
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reflectivities of the TCI cycle for X’, simulated reflectivities
of the reference cycle for X, observed reflectivities for Y,
B =20km, and t = 15 dBZ. Observing that most of the val-
ues are positive, it becomes evident that the TCI is predomi-
nantly improving the FSS. This qualitative first impression is
confirmed by computing the FSS related to the reference cy-
cle reflectivity composite and the FSS related to the TCI cy-
cle reflectivity composite, which amount to 0.796 and 0.826,
respectively. Therefore, we obtain a relative improvement in
the FSS of the TCI cycle of about 3.69 %.*

Interestingly, Fig. 7 demonstrates that the TCI improves
reflectivity not only in the near vicinity of regions for which
the TCI is applied in the very last assimilation step (indicated
by the red contours), but also for many other spatial regions,
hinting at an accumulated impact of the TCI on the back-
ground state dating back to assimilation steps before the very
last one.

4.3 Statistical evaluation of long-term experiments

Let us now proceed to a more statistical view of the TCI
effects by studying different statistics and scores of longer-
term NWP experiments covering a period of about 17 d. Note
that the specific configuration of these experiments, includ-
ing the setup of their assimilation cycles and free forecasts,
was already discussed in Sect. 4.1.

4.3.1 Observation error statistics

Figure 8 shows selected observation error statistics for the
TEMP? relative humidity, TEMP temperature, and radar re-
flectivities. It becomes evident that there is a slight negative
impact of the TCI on the mean error of TEMP relative hu-
midity with respect to both the analysis and the first guess,
especially at heights around 500 to 600 hPa, which can be
interpreted as the TCI introducing additional humidity into
the simulation at those heights. However, this kind of impact
is — at least to some extent — to be expected and does not
necessarily have to be regarded as a negative effect. Consid-
ering that the TCI modifies reflectivities only within a certain
height range (see Sect. 3.2 and Eq. 17) and employs an algo-
rithm that is based on correlations with the specific humidity
at a certain ICON level (see Sect. 3.1), it is plausible that —
by taking cross-correlations into account — the LETKF pulls
the ensemble mean towards those ensemble members with
more specific humidity. Therefore, the LETKF increases the
specific humidity of the ensemble mean and the determin-
istic member but — taking vertical localization into account
— only within a certain height band. Considering the root-
mean-square error (RMSE) of TEMP relative humidity, only
a very small and negligible impact of the TCI becomes evi-
dent.

4Note that we are only evaluating a single point in time here.
5The term “TEMP” refers to observations obtained from ra-
diosondes.
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Figure 7. Visualization of radar reflectivity composites at 1.5 ° for the observed values (c), simulated values of the reference assimilation
cycle (a), and simulated values of the TCI assimilation cycle (b). The lead time here is 60 min with respect to the last assimilation at
to = 2019-06-05T15:00:00. Panel (d) shows the field Afss computed from reflectivity data of the other three panels for g =20km and
T = 15dBZ (see Egs. 19 and 20). Similar to Fig. 6, the red contours in all four plots indicate regions for which the TCI was active during the
last assimilation at 7. Each red contour is also assigned a number for better visibility and identification, and, additionally, the color of each
number indicates whether there is an overall positive (green) or neutral (gray) impact of the TCI on the related region.

To better understand the additional humidity bias intro-
duced by the TCI, we examined the mean error of TEMP
relative humidities on an hourly basis rather than aggregat-
ing over the entire study period. Our findings reveal that the
additional humidity bias does not simply increase over time
and saturate after a certain number of TCI applications. In-
stead, it fluctuates erratically, alternating between negative
and positive values on an hourly scale. One possible expla-
nation for this behavior is that any TCI effect on simulated
relative humidities contributing to these statistics likely al-
ready evolved through space and time and is influenced by
the model’s highly nonlinear dynamics, given that it is statis-
tically uncommon for the locations where the TCI is applied
to overlap with those where TEMP measurements are taken.
Additionally, it is worth noting that the ensemble spread and
spread—skill ratio of relative humidity remain practically un-
changed upon the application of the TCI.

Similar to TEMP relative humidity, the TCI has a slight
effect on the mean error of TEMP temperature, which can be
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interpreted as the TCI increasing the temperature, especially
near the ground at lower altitudes. The RMSE of TEMP tem-
perature, however, does not exhibit any relevant effects of the
TCIL

Finally, it is demonstrated that both the mean error and the
RMSE of radar reflectivities are reduced through the TCI.

Overall, the largest negative impact of the TCI on obser-
vation error statistics is seen for the mean error of TEMP rel-
ative humidity. However, the magnitude of this effect is still
acceptable and for the most part is to be expected. Note that
a major problem of a further advancement of an earlier ver-
sion of our TCI approach as presented in Vobig et al. (2021)
was — when applied to all radar and not employed within
a single-observation context — a significant negative impact
on observation error statistics, especially on the statistics for
TEMP relative humidity. The reduction of this negative im-
pact — while still maintaining the positive effects of the TCI
— was therefore one of the main objectives that decisively
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Figure 8. Observation error statistics for the TCI (label “tci-1”) and the reference (label “tci-0”) assimilation cycle over a period from
2019-06-03T00:00 to 2019-06-20T00:00. From top to bottom, statistics for the different observation types TEMP relative humidity, TEMP
temperature, and radar reflectivity are shown. From left to right, the number of observations, mean error, and root-mean-square error (RMSE)
are depicted. Note that the mean error and RMSE statistics are based on the difference of observations with their corresponding first-guess
values (“o-f” included in the label) or analysis values (“0-a” included in the label).

guided the further advancement of the TCI towards the cur-

rent version presented in this work.

4.3.2 Fractional skill score

The positive impact of the TCI is demonstrated by means of
Fig. 9, which depicts the FSS of radar reflectivity composites

https://doi.org/10.5194/npg-32-471-2025

of free forecasts with respect to their lead times.® It should

be noted that this verification is conducted with respect to the
complete model domain and not only for regions for which
the TCI has been active. Furthermore, the following analy-

SNote that, compared to the previous usage of the FSS in

Sect. 4.2, an additional temporal aggregation of the input fraction-
of-occurrences fields has to be carried out.
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Figure 9. Fractional skill score (FSS) of reflectivity composites of free forecasts over lead times. The FSS calculation is based on forecasts
branching off the TCI assimilation cycle (label “tci on”) or the reference assimilation cycle (label “tci off”). For further details on the setup
of this case study over the period of more than 2 weeks, see Sect. 4.1. Each panel within the upper row depicts the FSS for both experiments.
Directly related to the upper row, the middle row depicts the relative FSS improvement (in percent) of the “tci on” experiment with respect to
the “tci off” experiment. Similar to the middle row, the bottom row also depicts the relative FSS improvement but exclusively employs data
from free forecasts starting at 12:00 UTC. For all of the rows, the threshold used for the FSS calculation is varied column-wise, and each
panel shows results for several box sizes (given in pixels, where 1 pixel amounts to 2.2 km).
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sis is based on full-scale data assimilation and forecasting
experiments covering a period of more than 2 weeks and em-
ploying a quasi-operational configuration — which especially
includes an active LHN mechanism — as already discussed in
Sect. 4.1.

Let us begin our analysis with the top and middle rows of
Fig. 9, depicting FSS statistics based on the reflectivity data
of all available free forecasts; i.e., there are no further restric-
tions on the initialization times of these forecasts. Regarding
the threshold 15 dBZ, it becomes evident that the TCI con-
sistently improves the FSS for all of the depicted box lengths
and lead times. It is especially remarkable that this positive
effect is still clearly visible even after 6 h. The positive ef-
fect of the TCI on the FSS tends to decrease with box length,
and the relative improvement amounts to up to 2.7 % for the
box length of 1 pixel and up to 1.6 % for the longest box
length of 35 pixels. Considering the plots for the threshold of
25dBZ, a similar conclusion to before can be drawn; i.e., a
positive impact of the TCI is clearly visible and amounts to
up to 4.3 % for the box length of 1 pixel. Regarding the two
largest thresholds of 37 and 46 dBZ, the curves of the FSS
with respect to the lead time become more erratic. However,
the overall effect (averaged over the lead times) of the TCI
still ranges from neutral to clearly positive when taking all of
the lead times into account.

Furthermore, the bottom row of Fig. 9 depicts fractional
skill score improvements based solely on radar reflectivity
data of model runs initialized at 12:00 UTC, i.e., forecasts
for the time frame between 12:00 and 18:00 UTC. During
these afternoon hours’, the positive effect of the TCI on the
FSS is even more pronounced: for the threshold of 15dBZ,
the FSS is improved by up to about 6 %, and for the threshold
of 25 dBZ there is even an improvement by up to about 10 %.
Consistent with our previous findings, the FSS for the 37 and
46 dBZ thresholds is rather erratic with respect to the lead
time. However, when considering all lead times, the overall
averaged effect ranges from neutral to clearly positive, with
occasional improvements of up to 20 %.

A possible explanation for the more consistent improve-
ment in the TCI at the two lower thresholds of 15 and 25 dBZ,
compared to the two higher thresholds, is that higher reflec-
tivities are simply much rarer. Additionally, we generally ob-
serve in our NWP system that the LHN mechanism already
generates most of the high-reflectivity cells and that, statisti-
cally, our current NWP system tends to simulate too many
large reflectivities and too few small ones. Given that the
TCI can only add reflectivity at each assimilation step and
reducing reflectivity requires indirect accumulation effects
(i.e., longer-term changes to the background system state),
it is also plausible that the TCI is better at improving the
representation of the lower-reflectivity band than that of the
higher-reflectivity one.

TWe refer to the local time in Germany here, where this time
period corresponds to the typical afternoon hours.
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Overall, Fig. 9 demonstrates a clear positive impact of the
TCI on the FSS of radar reflectivity composites of up to 10 %.
The fact that this effect is still apparent even after 6 h hints
at a more profound influence of the TCI on the background
system state accumulated throughout several assimilations —
which is also consistent with some of the conclusions already
drawn in Sect. 4.2.

5 Summary and outlook

We have introduced and studied new process-oriented
and conditional approaches to targeted covariance inflation
(TCI). For particular cases as well as for full-scale data as-
similation and forecasting experiments over a period of more
than 2 weeks, we have shown that the approaches can im-
prove the representation of convective processes in the fore-
casts and lead to clearly improved fractional skill scores for
radar reflectivity of up to 10 %.

Details of the evaluation for different dBZ thresholds show
that the TCI successfully initializes convection in the range
of 15dBZ to 25 dBZ and also has a positive effect on stronger
precipitation cells which form part of the 37 and 46 dBZ
threshold scores. The TCI as implemented through Eqgs. (10)
and (18) is currently not dependent on the strength of the
observed reflectivity, though the LETKF will of course use
the difference between observed and simulated reflectivities
when calculating its increments.

Looking into refinement of the scheme to further improve
scores for all reflectivity bands and lead times will be a topic
of future research. The sophisticated interplay of convective
processes with the broader atmospheric state has the poten-
tial to be taken into account in a much deeper way. Here, ma-
chine learning (ML) techniques provide a set of very flexible
nonlinear tools which can help to model more sophisticated
dependencies and use them to develop an Al- or ML-based
TCIL.

The approach to construct appropriate targeted covari-
ances in an ensemble Kalman filter is very generic and could
also be employed in other types of observations. It can also
be applied to other ensemble data assimilation methods such
as ensemble-variational data assimilation (EnVAR) (Buehner
et al,, 2013; Meng et al., 2019), where the observation-
based covariance matrix enters the scheme in the form of
HBHT = HXXTHT =YY or the localized adaptive par-
ticle filter (LAPF) (Potthast et al., 2019; Schenk et al., 2022).
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