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Abstract. Ensemble Lagrangian simulations aim to capture the full range of possible outcomes for particle
dispersal. However, single-member Lagrangian simulations are most commonly available and only provide a
subset of the possible particle dispersal outcomes. This study explores how to generate the variability inherent
in Lagrangian ensemble simulations by creating variability in a single-member simulation. To obtain a reference
for comparison, we performed ensemble Lagrangian simulations by advecting the particles from the surface
of the Gulf Stream, around 35.61°N, 73.61° W, in each member to obtain trajectories capturing the variability
of the full 50-member ensemble. Subsequently, we performed single-member simulations with spatially and
temporally varying release strategies to generate comparable trajectory variability and dispersal and also with
adding Brownian motion diffusion to the advection. We studied how these strategies affected the number of
surface particles connecting the Gulf Stream with the eastern side of the subtropical gyre. We used an information
theory approach to define and compare the variability in the ensemble with the single-member strategies. We
defined the variability as the marginal entropy or average information content of the probability distributions
of the position of the particles. We calculated the relative entropy to quantify the uncertainty of representing
the full-ensemble variability with single-member simulations. We found that release periods of 12 to 20 weeks
most effectively captured the full ensemble variability, while spatial releases with a 2.0° radius resulted in the
closest match at timescales shorter than 10 d. We found that adding relatively high amounts of Brownian motion
diffusion (K}, = 1000m?s~!) captures the entropy aspects of the full ensemble variability well but leads to
an overestimation of connectivity. Our findings provide insights to improve the representation of variability in
particle trajectories and define a framework for uncertainty quantification in Lagrangian ocean analysis.
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1 Introduction

The ocean’s dynamics, driven by atmospheric fluxes of en-
ergy and momentum at the surface, are characterized by phe-
nomena that mutually interact across different spatiotempo-
ral scales, including eddies, internal waves, zonal jets, and
mixing processes, up to decadal and basin-scale fluctuations
(Vallis, 2017). These multi-scale interactions are non-linear
and difficult to model, presenting a significant source of un-
certainty in ocean general circulation models (OGCMs) and
our understanding of ocean circulation. Even under constant
atmospheric forcing conditions, ocean models can produce
divergent states from minimally perturbed initial conditions
(Penduff et al., 2014). This intrinsic variability becomes par-
ticularly prominent in eddy-permitting models, where small
initial differences can cascade towards multi-decadal and
basin scales (Grégorio et al., 2015; Leroux et al., 2018;
Zhao et al., 2023). To address these inherent uncertainties in
OGCMs, researchers have increasingly adopted probabilistic
ensemble models, running multiple simulations with small
perturbations to initial conditions or parameter values to cap-
ture a broad range of possible ocean states (Penduff et al.,
2018; Zanna et al., 2019). The ultimate goal of ensemble
models is to predict the probability density of the system’s
state at a future time (Leutbecher and Palmer, 2008).

Lagrangian particle tracking provides a powerful tool for
studying ocean transport, mixing, and connectivity, with the
latter a metric that maps the origin of substances (water, nu-
trients, plankton, plastic objects) to their destinations. Ap-
plications of Lagrangian particle tracking range from search
and rescue operations (Breivik et al., 2013) to climate and en-
vironmental research (Bower et al., 2019; Van Sebille et al.,
2018). In these simulations, virtual particles are typically ad-
vected by velocity fields derived from OGCMs, with their
dispersal patterns intimately linked to the underlying ocean
state. However, similar to above, the trajectories obtained
from the particle tracking in one OGCM ensemble member
may not be representative of the full probability density of
the system’s state. Because pure advection is deterministic,
there will be only one trajectory resulting from a virtual par-
ticle that starts at a certain place and time.

This deterministic nature limits what we define as “tra-
jectory variability” — the range of possible pathways and
end locations that particles could follow given uncertainties
in ocean conditions. We define trajectory variability as the
spread in particle positions, pathways, and connectivity pat-
terns that emerges when accounting for uncertainties in ini-
tial conditions or modeled ocean states.

Capturing the trajectory variability is crucial for practical
oceanography applications. For example, search and rescue
professionals may want to compute a full probability density
function of possible object locations — even when the starting
location and time of an object lost at sea are known exactly
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— due to uncertainties in the ocean model. Similarly, marine
pollution studies need to assess the range of possible contam-
ination pathways, while connectivity studies in marine ecol-
ogy require understanding the full spectrum of larval disper-
sal routes between habitats. In each case, a single determin-
istic trajectory provides insufficient information, limiting the
generalizability of the results, as it cannot represent the in-
herent uncertainty in ocean dynamics and model predictions.

Now, advected particle trajectories are chaotic, in which
small perturbations in initial conditions or noise along their
trajectories can lead to significant divergences in particle tra-
jectories (Koshel and Prants, 2006). The sensitivity to initial
conditions is often used to generate variability in particle tra-
jectories to predict the drift of the particles when there is un-
certainty in their initial conditions (Breivik et al., 2013). In
fluid mechanics, this is related to the concept of streaklines,
transport barriers, and coherent structures (e.g., Haller, 2004;
Zhang, 2013; Karrasch, 2016; Balasuriya, 2017).

An alternative approach to generating variability in the tra-
jectories is to advect particles using a full ensemble of vec-
tor fields or ensemble models, an approach followed from
Melsom et al. (2012), in which they advected particles us-
ing an ensemble of 100 members from the TOPAZ forecast-
ing system. They found that ensemble average trajectories,
calculated as the center of gravity (mean position) of all en-
semble members at each time step, are generally closer (on a
straight line distance) to the observed drifter trajectories than
that from a deterministic single-member simulation. How-
ever, the study did not compare how small perturbations in
initial conditions in the single-member simulation performed
relative to the trajectories advected by the ensemble.

While ensemble Lagrangian simulations can capture a
more complete spectrum of possible outcomes, single-
member simulations, which sample only a subset of the pos-
sible outcomes, remain more prevalent due to computational
constraints. In operational oceanography, data assimilative
models are commonly used to improve trajectory predictions
by combining observations with model dynamics to find an
optimal solution (Castellari et al., 2001). However, while
assimilation can reduce systematic biases and improve the
mean state representation, it may not fully capture the under-
lying uncertainty and variability in particle trajectories, par-
ticularly in regions with sparse observations (Jacobs et al.,
2018). Our study addresses these limitations by exploring
ways of generating ensemble-like variability within single-
member simulations. Missing variability in particle trajec-
tories is typically created by releasing particles at different
locations (spatial variation; e.g., Rossi et al., 2013), at dif-
ferent times (temporal variation; e.g., Qin et al., 2014; van
Sebille et al., 2015), and/or with some random walk diffu-
sion added to the advection (e.g., Hart-Davis and Backeberg,
2021). Here we test how well-suited these approaches are
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to represent intrinsic variability resulting from an ensemble
simulation within a single simulation.

We assess performance based on a connectivity analysis
and dispersion patterns using a novel information theory ap-
proach. Our approach consists of quantifying the variabil-
ity in trajectories through the marginal entropy of particle
position distributions and evaluating the uncertainty in rep-
resenting full-ensemble variability with single-member sim-
ulations. Our approach is complementary to other new ap-
proaches for computing stochastic sensitivity of Lagrangian
trajectories in the ocean, such as those by Balasuriya (2020),
Badza et al. (2023), and Branicki and Uda (2023). However,
our approach is particularly also useful for particles with
added “behavior”, such as in the case of plastic particles (e.g.,
Denes and Van Sebille, 2024).

We focused on the region east of Cape Hatteras in the
North Atlantic Ocean, implementing spatially and tempo-
rally varying release strategies to generate variability com-
parable to that observed in full ensemble simulations. This
region was chosen to study the connectivity of water parcels
at the surface of the Gulf Stream with the eastern North At-
lantic and the subtropical gyre. It was previously thought that
the salty and warm surface water of the Gulf Stream feeds
directly to the subpolar gyre. However, recent Lagrangian
studies have shown that the water parcels originating at the
surface of the Gulf Stream recirculate within the subtropi-
cal gyre, becoming part of the subtropical mode water, and
enter the subpolar gyre via sub-surface connections (Rypina
etal., 2011; Burkholder and Lozier, 2014; Foukal and Lozier,
2016; Berglund et al., 2022). Our case study here thus builds
upon these findings by quantifying how intrinsic ocean vari-
ability affects this connectivity pattern within the subtropical
gyre, providing insights into the robustness and variability of
these recirculation pathways.

2 Methodology

2.1 Ocean model ensemble simulation

We employed daily surface velocity fields produced by
the North Atlantic NATL025-CJMCYC3 50-member ensem-
ble simulation. This regional ensemble simulation was per-
formed in the context of the OceaniC Chaos — ImPacts,
strUcture, predicTability project (OCCIPUT), described in
Penduff et al. (2014) and Bessieres et al. (2017). This en-
semble was performed using the NEMO v3.5 ocean/sea-ice
model over the North Atlantic between 20° S and 81° N, with
an eddy-permitting resolution of 1/4° and 46 vertical levels.
The 50 ensemble members were initialized by the final state
of a 15-year one-member spin-up that ended in December
1992. The inter-member dispersion was generated by acti-
vating small stochastic perturbations in the density gradients
resolved by the model during 1993 and deactivating these
perturbations for the remaining simulation time, as presented
in Bessieres et al. (2017) and based on the algorithm of
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Brankart (2013). All ensemble members were driven by the
same atmospheric forcing between 1993 and 2015, derived
from the DRAKKAR Forcing Set 5.2 (DFS5.2; see Dussin
et al., 2016). The NATL025-CIMCYC3 1993-2025 simu-
lation used here is similar to the NATL025-GSL301 1993-
2012 simulation presented in Narinc et al. (2024), with one
difference: tropical cyclones were enhanced in the forcing of
NATL025-CIMCYC3 since they were too weak in DFS5.2.
More details about the model setup are provided in Narinc
et al. (2024).

2.2 Lagrangian simulations

Lagrangian particles were advected offline using 6 years
(2010-2015) of the velocity fields described above, where
particle trajectories in each ensemble member were inte-
grated using the Parcels framework v.3.0.2 (Delandmeter and
van Sebille, 2019). Trajectories were integrated in three di-
mensions using a fourth-order Runge—Kutta scheme with a
time step of 1h, storing the output with a daily time step.
We modeled passive particles (that is, particles that instantly
adjust their velocity to that of the ambient flow) by only con-
sidering three-dimensional advection and ignoring all buoy-
ant forces. Additionally, particles that escaped the domain
through the surface were placed back to a depth of 1 m. We
chose the region off the coast of Cape Hatteras as a study
location because it is an important region where the Gulf
Stream separates from the continental shelf and becomes a
free jet (Mao et al., 2023; Buckley and Marshall, 2016).

2.3 Recreating particle trajectory variability

This study explores methods to recreate the trajectory vari-
ability typically obtained from ensemble ocean simulations
using only a single ensemble member. Figure 1 illustrates
both the challenge and our proposed approaches. When par-
ticles are released from a fixed point (35.61°N, 73.61°W;
yellow square) at a distinct time (2 January 2010) and tracked
using different ensemble members, their trajectories (shown
in black, Fig. 1A) diverge due to intrinsic variability in the
velocity fields. Our goal is to reproduce this dispersion of
what we refer to as the “full ensemble” using just one en-
semble member.

We tested three approaches to achieve the variability of
this full ensemble with single-member simulations, by lever-
aging the sensitivity to initial conditions or adding diffu-
sion. The first strategy varies the release locations of the
virtual particles spatially (shown in purple in Fig. 1B), cre-
ating a cloud of initial positions centered around 35.61°N
and 73.61°W. The purple circles indicate the varying re-
lease locations, while the purple arrows show their subse-
quent trajectories. The second strategy (shown in orange,
Fig. 1C) maintains the fixed release location (yellow square)
but varies the release timing, with particles released continu-
ously over a time period. The third strategy (shown in green,
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Fig. 1D) maintains the fixed release location and release time
but adds a small Brownian motion diffusion to the trajectory
simulations. All methods generate trajectory spreading with
different patterns, some of which qualitatively resemble the
full ensemble trajectories, which we seek to quantitatively
compare.

The single-member simulations were performed using ve-
locity fields from individual members of the NATLO025-
CIMCYC3 ensemble. To ensure robust statistics, we re-
peated each strategy (spatial and temporal variation and
added diffusion) with all 50 ensemble members rather than
arbitrarily selecting one. For the ensemble simulations, rather
than running new simulations where all ensemble members
simultaneously advect particles, we selected and joined tra-
jectories from our existing single-member simulations to
create a “synthetic” mixture-of-all-member simulation. This
mixture simulation contains the full ensemble variability and
is our benchmark for comparing the three single-member
strategies. The following subsections further detail the three
single-member release strategies and the ensemble simula-
tions, which we refer to as mixture simulations.

2.3.1 Spatially varying release

We performed Lagrangian simulations by releasing a cloud
of particles around (35.71°N, 73.61° W), at 1 m depth, on 2
January 2010 and tracking them until the end of 2015, so for
6 years in total. We evenly spaced the particles in concentric
rings around the coordinates, where each ring was placed at
a constant radial separation (§;) from the prior ring, form-
ing a circle of particles. We varied the radius of this cloud of
particles; the larger the radius, the less correlated the veloc-
ity vectors of the particles are expected to be, creating more
variability in the trajectories. The choice of spatial release
radii (9-180km) spans the range from subgrid scales to 10
grid cells apart, allowing us to test how initial condition un-
certainties at different (grid) scales affect long-term particle
dispersion. We created three sets of simulations, with 50 sim-
ulations per set (one per ensemble member). The three sets
of simulations were performed with 7500 particles, with an
initial cloud varying é; € {0.1°,1.0°,2.0°}.

At the release point, the initial cloud radii are approxi-
mately 9, 90, and 180 km. As a reference, we computed the
ensemble average spatial autocorrelation function of the ini-
tial particle velocities at the release location on the release
day (2 January 2010). The spatial autocorrelation function
describes the average agreement between a pair of particle
velocities separated by a distance L. The larger the sepa-
ration distance L, the more likely their velocities will be
decorrelated (LaCasce, 2008). Assuming that the spatial cor-
relation decays exponentially, we defined the decorrelation
length scale Ly, as the e-folding length scale of the exponen-
tial that describes the autocorrelations functions (Xia et al.,
2013).
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The particle-pair spatial autocorrelation function was cal-
culated over a set of points placed over a west-to-east line,
shown by the blue dots in Fig. 2A, with a horizontal spacing
of 0.01°. We calculated the velocity autocorrelation function
from these points as a function of the distance L. The spatial
autocorrelation function is defined as

u(ro+ L) - u(ro) >
lu(ro+ L)Iu@ro)ll [

p(L) = < ey
in which we compute the dot product of a pair of vectors
u(ro) and u(rg+ L), divided by the multiplication of their
norms, averaged over all the pairs of velocities (Xia et al.,
2013). In Eq. (1), || - || is the usual Ly norm, and (-) indi-
cates an average over velocity pairs. We computed p(L) for
the range L € [0.01°,2.00°], with a 0.01° spacing. The au-
tocorrelation function is defined between [—1, 1], in which
p(L) =1 indicates a full positive correlation, p(L)=—1 a
full negative correlation, and p(L) = 0 no correlation.

Following Eq. (1), we computed p(L) for each of the 50
ensemble members of the NATL025-CIMCYC3, on 2 Jan-
uary 2010. In Fig. 2B, we show the p(L) for each ensemble
member as black lines. We see great variability in the curves
but an exponentially decaying trend in which, as L increases,
the particle velocities are less correlated. We performed an
exponential fit, "L of the 50 correlation curves, shown
in blue in Fig. 2B. From the exponential fit, we obtained a
decorrelation length Ly, = 0.41°, which corresponds to ap-
proximately 37 km at a latitude of 35.5° N. Both spatial scales
indicate that the velocities of all the particles released from
an initial cloud of 5, = 0.1° should be correlated, while for
the larger clouds §; € {1.0°,2.0°}, only a fraction of the par-
ticle velocities may be correlated, leading to more variability
in the trajectories. While decorrelation scales likely evolve
over the 6-year simulation period due to particle spreading
and varying flow conditions, computing their evolution at ev-
ery particle age is computationally intensive and impractical,
compared to other metrics.

2.3.2 Temporally varying release

We also created variability by releasing particles from the
same location (35.71°N, 73.61° W) at different times. We
tested three release time windows, 4, 12, and 20 weeks, all
starting from 2 January 2010. For each window length, we
performed 50 simulations (one per ensemble member), with
each simulation releasing 7500 particles. Within each time
window, we distributed the 7500 particles evenly across the
days, resulting in multiple particles being released each day.
To ensure particles released on the same day followed dif-
ferent trajectories, we added small random perturbations to
their release locations using uniform noise with an ampli-
tude of 0.01°. We kept this noise amplitude small to (as much
as possible) isolate the effects of the temporal release strat-
egy alone. Note that all particles were advected until the end
of 2015, so that in this simulation some particles reached a
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Figure 1. Schematic representation of the experiment design, east of Cape Hatteras, showing four approaches to generate variability in the
particle trajectories. (A) The black lines show 50 trajectories of particles released from a single point (35.61° N, 73.61° W; yellow square) at
a distinct time (2 January 2010) and advected using velocity fields from all 50 members of the NATL025-CJIMCYC3 ensemble. (B) Purple
trajectories show 50 randomly selected particles, out of 7500, released from spatially varying locations (purple circles) within a 1° radius
of the central point, all advected using ensemble member 3. (C) Orange trajectories represent 50 randomly selected particles, out of 7500,
released uniformly over a 20-week period from the central point (35.61°N, 73.61° W; yellow square), also using ensemble member 3.
(D) Green trajectories represent 50, out of 7500, randomly selected particles from the ensemble member 3 simulation with low diffusion
(K, =10 m?s~!; light green) and high diffusion K; = 1000 m?s~!; dark green), released from the central point (35.61°N, 73.61°W;

yellow square). All trajectories are shown 35 d after their respective release times.

maximum “age” (time of flow) of 6 years and others only
5.6 years. This is a minor effect though, as most of our anal-
ysis will focus on the first few months of advection.

We computed the particle-pair temporal autocorrelation
functions by sampling the velocity at the same location but
on different days, shown as a red point in Fig. 2A. We sam-
pled the velocity daily for a duration of 60d, starting on 2
January 2010. From the sampled velocities, we computed the
temporal autocorrelation function given by

@

(t)—< u(to+1)-u(to) >
PO = \Nutto + 0l |

where ¢ represents the time lag between pairs of velocities
u(ty) and u(tp+t) averaged over all pairs with a lag ¢, similar
to Eq. (1).

Similarly to p(L), we computed the temporal autocor-
relation function p(z) for the 50 members of NATLO025-
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CIMCYC3, for the range ¢ € [1,60]d with a spacing of 1d.
In Fig. 2C, we show each member’s p(¢) as black curves.
We performed an exponential fit e/ over the 50 correla-
tion curves. In Fig. 2C, we show the exponential fit in red.
We found a decorrelation timescale of 7;, = 41 d for the ve-
locities of the particles released on different days. Therefore,
it is expected that almost all the particles are correlated for a
release period of 4 weeks, and for the larger release periods
of 12 and 20 weeks, only a fraction of the particles will be
correlated, creating more variability in the trajectories.

2.3.3 Release with added diffusion

We performed simulations with horizontal diffusion as a
method to generate variability in the trajectories. The vari-
ability was generated by adding a horizontal Brownian mo-
tion (also known as a random walk) term to the integration
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Figure 2. (A) Map of Cape Hatteras showing the points used to compute the spatial correlations (blue) and the location used to compute the
temporal correlations (red). The hexagons mark the limits of the hexagonal grid used in subsequent analyses, and the green area represents the
North American coast. (B) Spatial correlations function around the release location, and each black line shows the correlation function for an
ensemble member. The blue line shows the exponential fit computed over the 50 correlation functions. The green line shows the decorrelation
length scale L1, = 0.41° =~ 37km. (C) Temporal correlations with velocities sampled daily for 60d from 2 January 2010. The black lines
show the correlation functions of single ensemble members, and the red line shows the exponential fit with a decorrelation timescale of 41 d.

of the particle trajectories. Therefore, the horizontal compo-
nents of the particle trajectories were integrated with

t+At

/ u(x,v)dt + R/2K) At, 3)

t

x(t+ At)=x()+

where x is the horizontal location of the particle at a time ¢,
At is the integration time step, and u is the horizontal compo-
nents of the Eulerian velocity field interpolated to the particle
location. The last term is the Brownian motion term, where
R is a random number taken from the normal distribution
with zero mean and unit variance, and K, is the horizontal
diffusion coefficient (Van Sebille et al., 2018).

In the simulations with added diffusion, we released par-
ticles from the fixed position (35.71°N, 73.61° W) on 2 Jan-
uvary 2010, without perturbing the initial conditions, spa-
tially or temporally. We released 7500 particles per ensemble
member, and we advected those particles for 6 years, until the
end of 2015. We explored the sensitivity to the magnitudes of
the horizontal diffusion coefficients by running simulations
with two values representative of different scales. The first
is a low diffusion of K = 10 m2s~1, which is a value com-
monly used to parameterize subgrid processes in ocean mod-
els with O(1/10°) spatial resolution (Lacerda et al., 2019;
Onink et al., 2021; Pierard et al., 2022). The second is a
high diffusion of K; = 1000 mZs~!, which is a value used
to parameterize eddies in ocean models with O(1°) spatial
resolution (Reijnders et al., 2022). This latter value likely
overestimates the eddy-induced particle dispersion driven by
the partially resolved mesoscale variability in the ensemble
members, so it can be considered an extreme case.

Since random walk diffusion can kick particles on land,
where they would not be advected by ocean currents any-
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more, we removed the particles as soon as they reach land
and do not take them into account in the analysis. We there-
fore ran the simulations with K, = 1000 m?s~! with double
the number of initial particles (15000 instead of the normal
7500) and subsampled to 7500 full trajectories for the analy-
sis.

2.4 Trajectory analysis methods

2.4.1 Domain partition and two-dimensional probability

distributions

For the analysis, we created probability distributions from
two-dimensional histograms of the positions of particles
(Van Sebille et al., 2018). We partitioned the domain into
hexagonal bins using the H3 Uber hexagonal hierarchical
spatial indexing system (Brodsky, 2018). The H3 grid has the
advantage that the area of the hexagons is better preserved
across the low and high latitudes compared to a square grid
in a Mercator projection (O’Malley et al., 2021; Manral et al.,
2023), and each hexagonal bin is uniquely indexed, facilitat-
ing the reproduction of the analysis. We used an H3 resolu-
tion of & = 3, where neighboring hexagon centroids are sep-
arated by 100 km. We acknowledge that using a square grid
would not significantly change our results since particles do
not drift to high latitudes.

The spatial domain is discretized as X = xy,x2,..., x5,
where each x; represents a hexagonal bin and B is the to-
tal number of bins. We constructed time series of histograms
by counting particles in each bin x; at daily time steps, bin-
ning trajectories according to their particle age ¢ (time since
release).

For each day, we computed a probability distribution over
the spatial domain by normalizing particle counts in each bin.

https://doi.org/10.5194/npg-32-411-2025
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The probability of finding particles in hexagonal bin x; is
given by

Ni(m,t)
Y8 Njm.1)

where P, (x;|m,¢t) is the probability of finding particles in
bin x; given ensemble member m at particle age ¢, N;(m,t)
is the number of particles in bin x; for member m at
age t, and B is the total number of bins. This ensures
Zle P, (x;jlm,t) =1 for each member and time step.

The complete probability distribution P, (X|m,t)=
[Pn(x1|m,t), Pp(xa2|m,t),..., Ph(xp|lm,t)] represents the
spatial likelihood of finding particles across the domain for
ensemble member m at particle age .

P (xilm, 1) =

“

2.4.2 Mixture simulations and probability distributions

To evaluate how well single-member strategies can repro-
duce the full ensemble variability, we constructed mixture
simulations that capture the dispersal patterns across all en-
semble members. Using a bootstrapping approach, we ran-
domly selected n, = 150 particles from each of the M = 50
ensemble members and combined their trajectories to create
a mixture simulation containing M x np = 7500 particles to-
tal. We repeated this procedure R = 50 times to generate a
robust set of mixture simulations.

Each mixture simulation represents a synthetic dataset that
combines particle trajectories from all ensemble members,
creating a representation of the full ensemble’s dispersal be-
havior. These mixture simulations serve as our reference for
evaluating single-member strategies and are used in subse-
quent connectivity analyses

For each mixture simulation r, we computed probability
distributions over the hexagonal grid following

N;(r,1)
M xnp’

Prix (x|, 1) = (5)

where Ppix(x;|r, t) is the probability of finding particles in
bin x; for mixture simulation r at particle age ¢, and N;(r, t)
is the corresponding particle count in bin x;.

We then used these probability distributions to compute
the mixture distributions over all grid cells Pyx(X|r,t) for
each single-member strategy to assess their effectiveness:
three spatial variations (§; € {0.1°,1.0°,2.0°}) and three tem-
poral variations (4, 12, and 20 weeks). This strategy-specific
approach was necessary because the spatial or temporal re-
lease variations could unpredictably affect how well each
strategy captures the ensemble variability represented in the
mixture distributions.

We determined the optimal particle count by analyzing
entropy convergence of the probability distributions. At our
hexagonal grid resolution (2 = 3), entropy converges at np =
150 particles per ensemble member, with additional parti-
cles yielding no significant entropy change (Appendix A,
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Fig. Al). This yields mixture simulations of 7500 trajecto-
ries, a particle count we maintained across all single-member
simulations (spatial releases, temporal releases, and added
diffusion strategies) to ensure direct comparability with the
mixture distributions.

2.4.3 Connectivity analysis

The connectivity between regions is a useful and power-
ful analysis performed with Lagrangian simulations (Rypina
et al., 2011; Riihs et al., 2013), assessing how many par-
ticles originating from one region enter other pre-defined
regions. Within this analysis, we explored if the number
of particles reaching each region differs significantly when
using mixture simulations instead of single-member simu-
lations. We also compared how connectivity patterns vary
across different mixture strategies (spatial variations with
8 €{0.1°,1.0°,2.0°} and temporal variations of 4, 12, and
20 weeks). Additionally, we investigated whether single-
member simulations with spatially and temporally varying
release strategies can reproduce the connectivity statistics of
the mixture distributions.

We focused on the connectivity between the surface of
the Gulf Stream and the region east of 40°W. The 40° W
longitude defines the easternmost boundary where the near-
surface waters from the Labrador Current join the Gulf
Stream to form the North Atlantic Current (Buckley and Mar-
shall, 2016). This limit also assesses how many particles
cross to the easternmost side of the subtropical gyre when
released from the surface of the Gulf Stream. In Appendix B,
we see this limit in maps showing all places particles drifted
to during the 6 years of simulations. In Fig. B1, we present
particle dispersion maps for each of the six release strate-
gies (three spatial and three temporal variations) across all
50 ensemble members. Figure B2 shows corresponding dis-
persion patterns for the 50 subsets of mixture simulations, al-
lowing direct comparison between single-member and mix-
ture approaches. We compared how many particles crossed
the 40° W longitude from the surface of the Gulf Stream in a
simulation period of 6 years. We also measured the median
time that it took particles to cross 40°W and the depth at
which the particles cross 40° W.

2.4.4 Marginal entropy and relative entropy calculation

To compare the dispersion patterns between ensemble mem-
bers, we took an information theory approach, similar to Cer-
bus and Goldburg (2013), where we treat each probability
distribution as a message. Here, the bins represent the “al-
phabet”, and the occurrence of the particles in each (hexag-
onal) bin makes the message, with a probability given by
P. Each bin x; contains log,(1/P(x;)) information, where
P(x;) is the probability of a character or outcome occurring
in a message. The less probable the outcome, the more in-
formation it contains and, therefore, the less redundant it is.
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The information can be thought of as the optimal “length”
that the bin x; has to be encoded to transmit the message,
costing the least amount of bits. Shannon (1948) developed
this into a theory of communications in which the fundamen-
tal problem is either exactly or approximately reproducing a
message selected at another point transmitted over a noisy
channel at one point. In this theory, each probability distri-
bution contains an average amount of information measured
by the entropy. The marginal entropy, H, measures the intri-
cacy or randomness contained in a distribution and measures
the average information content of the distribution (Cover,
1999). The marginal entropy for the probability distribution
is defined as

B
H(m|X.t)=")_ P(m|x;,0)log, (6)

1
o P(mx;, 1)’

where X is the set of bins x; of the grid, P is the probability
distribution of ensemble member m (or r for the mixture sim-
ulations) at particle age ¢, B is the number of hexagonal bins
in X, and ¢ is the particle age of the distribution. Marginal
entropy measures the minimum number of bits to which the
distribution can be compressed or encoded. A distribution
with “more” randomness has less redundancy; therefore, its
entropy is higher. This definition of entropy is equivalent to
the definition of entropy in statistical thermodynamics, where
entropy is a measure of the number of possible microstates
or possible configurations of the system (Shannon, 1948;
Cover, 1999). Thus, we define the variability in the disper-
sal of particles of a simulation as the marginal entropy of its
corresponding probability distribution.

The marginal entropy measures the variability of a distri-
bution, but it does not measure how well two distributions
match bin by bin. As illustrated by Olah (2015), consider
two probability distributions P4(X)=(1/2,1/4,1/8,1/8)
and Pp(X)=1(1/8,1/2,1/4,1/8), both defined over X =
(x1,x7, x3, x4). Both distributions are different when com-
paring them element by element, that is, P4(x;) # Pp(x;).
However, if we compute their marginal entropy, we see that
they have the same marginal entropy Hp,(X) = Hpy(X) =
1.75 bits. Hence, while two distributions may have equiva-
lent marginal entropies, this does not imply that the distribu-
tions are equivalent or similar.

Cross-entropy and relative entropy provide better mea-
sures for quantifying the difference between two distribu-
tions. The cross-entropy measures the average amount of in-
formation of a distribution Q(X,t) compared to a reference
distribution P(X, t). It is defined as

& 1
m@ﬁ=;@mM&ﬁzﬁ 7

where each bin probability Q(x;,t) is weighted with the in-

formation of the reference distribution P(x;, t), summed over
all bins x; at time ¢. The cross-entropy tells us the average

Nonlin. Processes Geophys., 32, 411-438, 2025

information content of Q using the encoding of P. From the
previous example, the cross-entropy of P4 with respect to
Ppg or Hpy(Ps) = 2.25 bits is larger than its marginal entropy
H(Q). Therefore, if we would send messages described by Q
with P’s encoding, it would be 0.5 bits more expensive than
using its own encoding. The difference between the cross-
entropy and the marginal entropy is called the relative en-
tropy or Kullback—Leibler divergence (Kullback and Leibler,
1951) and is defined as

D(QIIP,1)=Hp(Q.1) — H(Q.,1), ®)

where Hp(Q,1t) is the cross-entropy of Q with respect to
P, minus the marginal entropy of Q. Equation (8) is equiv-
alent to the most common definition (Cover, 1999; MacKay,
2003):

g Q(xi, 1)
D@Wﬁ=§@%ﬂ%ﬁzﬁ )

The relative entropy measures the cost of assuming that
the distribution is Q when the true distribution is P (Cover,
1999) and is used to quantify the uncertainty between two
distributions.

One of the objectives of this study is to quantify the dif-
ference between the mixture distributions Ppix and single-
member distributions P,,, where the variability is created fol-
lowing spatial and temporal release patterns. Given the spar-
sity of the trajectories sampling the domain, computing the
relative entropy between the distributions Ppix and Py, im-
plies comparing two-dimensional distributions with zeros in
most of the domain. Figure 3A and B illustrate this by show-
ing Pnix and Py, at a particle age of = 15 d. We see that the
probability of finding particles is non-zero in a localized area
for both distributions. Therefore, when computing the rela-
tive entropy for some bins, it is unavoidable to have terms
in which glog,(q/p) — oo as p — 0, where ¢ = Q(x;) and
p = P(x;) are the probabilities of finding particles in a bin
x;. To numerically represent the infinity and compute the rel-
ative entropy, we replaced the zeros with a double-precision
machine epsilon in P, and Ppix. The machine epsilon (€)
is the smallest number that a computer can represent. For
double precision, it is equivalent to € = 2752. therefore the
information content of p = € is equal to log,(1/€) = 52 bits.

The relative entropy is non-symmetric, D(Q||P) #
D(P||Q), and the order in which we compare distributions
is crucial. In this study, we calculated the relative entropy as

Prix (r|x;, 1)

B
D(Puix|| P, 1) = P i, Dlogy ———,
(Pmix|| P> 1) Z mix (Y x;, 1)log, P(m|xi, 1)

i=1

(10)

where Ppix is the full probabilistic model we aim to repro-
duce with P,,, the reduced-order approximate model com-
puted from a single member. The relative entropy is com-
puted for the particle age ¢ of the probability distribution.
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The relative entropy can be interpreted as total information
loss (or lack of information) when representing Ppix with
P, (Chen et al., 2024; Kleeman, 2002). Figure 3C illustrates
computing D(Pnix||Pm,t) with the distributions shown in
Fig. 3A and B, where each (hexagonal) bin shows the “infor-
mation 10ss”, Pnixlog,(Pmix/ Pm). We note that the bins with
information loss coincide with the bins where P, fails to
have particles, but Ppix does have particles. Conversely, there
is no information loss in bins where there are no particles
for Ppix, but there are for P,. Therefore, P, having more
bins with particles than Pp;x is not quantified as information
loss. This is more evident when computing D(P,|| Pnix, 1),
in Fig. 3D. In contrast, there is information loss in the bins
where both distributions have particles but not the same
number. There is no information loss if the bins have the
same number of particles. By summing over all the bins in
D(Pnix|| Pn, 1), we obtain a single value that quantifies the
total information loss between the two distributions.

Figure 3D illustrates the opposite case, computing
D(Py|| Pmix, t) in which the relative entropy measures how
well Ppix approximates Py,. In this case, there is only infor-
mation loss in the bins where P,, and Ppix have particles, al-
though Ppix covers more bins. This again shows that there is
no information loss for having a wider probability that covers
a larger area, containing the bins of the distribution to repre-
sent. By summing over all bins in D( Py, || Pmix), We get a rel-
ative entropy of 2.8 bits, which is far less than D(Ppix|| P, )
described previously.

To summarize, because of the asymmetry in the rela-
tive entropy, it is important to evaluate the full probabilis-
tic model with the encoding of the reduced-order model,
D(Pnix|| Pn, 1), in Eq. (10). In that case, the relative entropy
quantifies the uncertainty when using the simplified prob-
abilistic model (P,,) to approximate the full model (Pp;x)
(Chen et al., 2024).

3 Results

3.1 Connectivity

This section compares mixture simulations (containing the
full ensemble variability) and single-member distributions
for particles crossing the 40° W line. Throughout this analy-
sis, we use the mixture distribution with §, = 0.1° as our ref-
erence, as it represents the closest approximation to a point
release, while still being controlled by the variability in ocean
velocities from the full ensemble variability. This allows us
to consistently evaluate how increasing spatial or temporal
variability in single-member simulations compares to this
baseline case. We employed empirical cumulative distribu-
tion functions (ECDFs) to assess the likelihood of single-
member distributions matching the average particle counts
in mixture distributions. Figure 4 shows the ECDFs for the
number of particles crossing 40°W and the median parti-
cle age at which they cross that longitude. Figure 4A and
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B compare spatially varying releases and the releases with
added diffusion, whereas Fig. 4C and D compare temporally
varying release simulations. In all panels, the ECDF curves
represent the single-member distributions, and the vertically
shaded lines show the 99 % confidence interval of their cor-
responding mixture distributions. The mixture distributions
are depicted as vertically shaded lines to enhance the read-
ability of the plots since they are well-defined Gaussian dis-
tributions. The plots showing kernel density estimate (KDE)
distributions of the single-member and of the mixture distri-
butions can be found in Figs. B3 and B4, in the Appendix B.

Figure 4A shows greater variance in single-member distri-
butions than mixture distributions, with values ranging from
1000 to 5100 particles. This increased variability occurs be-
cause single-member distributions reflect the specific ocean
conditions of individual ensemble members, while mixture
distributions average out these individual variations across
multiple members, resulting in more stable statistics. On av-
erage, more particles cross the 40°W line for simulations
with larger release clouds §; in the single-member distri-
butions. The same relation between 8, and the number of
particles crossing is observed in the mixture distributions.
The ECDF provides insights into the probability of single-
member simulations not capturing the mixture distribution
averages. For instance, in single-member simulations with
a release radius of §; =0.1°, there is a 0.64 probability of
having fewer particles crossing the 40° W line than the av-
erage of the mixture distribution with §, = 0.1°, and conse-
quently, a 0.36 probability of overestimation. The probabil-
ity of underestimation decreases to 0.34 (with 0.66 proba-
bility of overestimation) for §; = 1.0° and to 0.10 (with 0.90
probability of overestimation) for §; = 2.0°, taking the same
mixture distribution (8, = 0.1°) as reference.

Figure 4C shows the ECDFs for temporally varying re-
leases. The distributions for the single-member simulations
with 4, 12, and 20-week releases are similar but show more
variance than the mixture distributions represented by the
shaded lines. Mixture distributions for 4- and 12-week re-
leases have comparable average particle counts, while 20-
week releases show slightly lower averages. For single-
member simulations, the probability of having fewer parti-
cles than the mixture distribution average (6, = 0.1°) is 0.56
(with 0.44 probability of overestimation) for 4-week releases,
0.50 (with 0.50 probability of overestimation) for 12-week
releases, and 0.66 (with 0.34 probability of overestimation)
for 20-week release periods.

Figure 4E shows that the single-member simulations with
low diffusion (K = 10m?s~!) have a distribution similar
to the single-member simulations with §; = 0.1°, for which
there is a 0.70 probability of having fewer particles cross-
ing the 40°W line than the mixture §; = 0.1° distribution.
The simulations with high diffusion have a distribution where
there is a zero chance that fewer particles cross the 40° W line
than in the mixture §;, = 0.1° distribution, which means that
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Figure 3. Comparison of probability distributions and their relative entropy. (A) Mixture distribution Ppix (X |6y = 0.1°) at 15 d after release,
representing the full probabilistic model. (B) Single-member distribution Py, (X |8y = 0.1°) at 15d after release, representing the reduced-
order approximate model. (C) Information loss map showing the contribution of each grid cell to the total relative entropy D(Ppix||Pm)
when approximating the mixture distribution with the single-member distribution. (D) Information loss map showing the contribution of
each grid cell to the total relative entropy D(Pp || Pmix) When approximating the single-member distribution with the mixture distribution.
Gray hexagons represent land. Color scales show probability values (A, B) and information loss in bits (C, D). The zero-bit value falls within

the second color bin from the left in the information loss color scale.

connectivity is very likely to be overestimated in this simula-
tion with high diffusion.

Figure 4B shows the ECDFs for the median particle age of
particles crossing 40° W in spatially varying release simula-
tions. The single-member distributions (ECDF curves) show
a clear separation based on the release cloud size (§;). Par-
ticles from smaller release clouds (§; = 0.1°) tend to have
longer median drift times, while those from larger release
clouds (8; = 2.0°) have shorter median drift times. This trend
is also reflected in the mixture distributions’ 99 % confidence
interval (shaded lines). While the single-member simulations
show a greater spread in median drift times compared to the
mixture distributions, they maintain the same general pattern
of decreasing drift times with increasing release cloud size.
However, the wider spread in single-member distributions in-
dicates that individual simulations may not consistently re-
produce the more stable statistics captured by the mixture
distributions.

Figure 4D shows the ECDFs for particle age in tempo-
rally varying release simulations. The distributions for dif-
ferent release durations (4, 12, and 20 weeks) are more
closely aligned than the spatial variations in panel (B). How-
ever, longer release periods (20 weeks) tend to show slightly
shorter median drift times. While single-member distribu-
tions still exhibit greater variability than the mixture distribu-
tions, this variability is less pronounced than in the spatially
varying simulations. This suggests that temporal release vari-
ations may provide more consistent reproducibility of mix-
ture statistics compared to spatial variations, although this
varies in individual simulation results.

Figure 4F shows that the ECDF for single-member sim-
ulations with low diffusion (Kj, = 10m?s~!) shows similar
median particle age distribution to the single-member simu-
lations with 8 = 0.1°. The particles in the simulations with
high diffusion (K; = 1000 m2s~!) have both a much lower
average age and a much lower spread in their age when they
cross the 40° W line than in any of the other strategies.
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In summary, our connectivity analysis reveals that single-
member simulations tend to either significantly under- or
overestimate particle transport across 40° W, with the bias
depending on the release strategy. For spatial variations,
larger release clouds (§; = 2.0°) show a strong tendency to
overestimate connectivity (90 % probability), while smaller
release clouds (8; = 0.1°) are more likely to underestimate
it (64 % probability). Temporal variations show more bal-
anced probabilities of under- and overestimation, particularly
for 12-week releases (50 %—50 % probability), and gener-
ally exhibit less pronounced variability in particle ages com-
pared to spatial variations. Adding a low amount of diffusion
(Kp = 10m? s~ 1) is likely to underestimate particle transport
(70 % probability), while high diffusion (K}, = 1000 m?s~!)
is certain to overestimate particle transport.

3.2 Two-dimensional probability distributions

The first step to calculate the marginal and relative entropy is
to bin the particle trajectories into the two-dimensional prob-
ability distributions in the hexagonal grid. We computed the
two-dimensional probability distributions for all the single-
member and mixture simulations, for the different strategies
to generate variability in the trajectories. As an illustration,
Fig. 5 shows the two-dimensional probability distributions
for the reference mixture §; = 0.1° distribution (subset 43)
and the single ensemble member distributions, with different
release strategies (ensemble member 22). The three columns
of subplots show the distributions at particle ages of 10, 100,
and 1000d, and the different rows show the different strate-
gies to generate variability. We observe that the reference
mixture §; = 0.1° distribution, showcasing the full ensemble
variability, spreads evenly from the release location (shown
as a blue dot). We also appreciate how 20-week and §; = 2.0°
single-member distributions resemble the mixture distribu-
tion in the area covered by the bins, but the shape of the dis-
tributions still remains different. However, the distributions
from the single-member simulations with §; = 0.1° and low
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Figure 4. Connectivity analysis between the Gulf Stream at Cape Hatteras and the line at 40° W in the North Atlantic. The plots compare
single-member ECDFs (lines) with mixture distribution average plus/minus 99 % confidence values (shaded vertical lines). (A) ECDFs of
the number of particles crossing the line for spatially varying simulations (B) ECDFs of the median particle age distributions for spatially
varying releases and simulations with diffusion. (C) ECDFs of the number of particles from temporally varying simulations. (D) ECDFs
of the median particle age distributions for temporally varying simulations. (E) ECDFs of the number of particles from simulations with
diffusion. (F) ECDFs of the median particle age distributions for simulations with diffusion.

diffusion (K, = 10m?s™1) clearly cover fewer bins at the
three particle ages shown, despite having the same number
of particles as the other distributions. The distribution from
the simulations with high diffusion (Kj, = 1000 m?s~!) cov-
ers a similar range of bins to the §; =2.0° single-member
distribution for 10d; it covers many more bins for 100d and
then looks fairly similar to the other distributions for 1000 d.
Figures BS and B6, in the Appendix B, show similar fig-
ures but with other single members and mixture subsets. In
general, two-dimensional distributions can best be described
and compared with statistical tools. Thus, we computed the
marginal entropy and relative entropy of these distributions,
at different particle ages, to characterize and compare the dis-
persion patterns of the different single-member strategies to
that of the reference mixture.
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3.3 Marginal and relative entropy

We calculated the marginal entropy (Eq. 6) for every single-
member and corresponding mixture distribution to assess
the variability and determine which release strategies can
represent the variability of the full ensemble. In total, we
computed the marginal entropy functions for all eight sets
of single-member distributions (three spatial varying, three
temporal varying, and two diffusive). We also computed the
marginal entropy for six sets of mixture distributions, ex-
cluding the mixture distribution from simulations with dif-
fusion. Each release strategy and mixture set had 50 distri-
butions; therefore, we calculated the average and the stan-
dard deviation of the marginal entropy functions, resulting
in one average entropy curve as a function of particle age
per set. Figure 6A illustrates the average entropy curves for
spatially varying release distributions, while Fig. 6B shows
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Figure 5. Probability distributions of particle locations at different ages (10, 100, and 1000 d; columns) across varying release strategies
(rows). The top row shows the probability of the mixture §; = 0.1° distribution (mixture subset 43 of the bootstrapping). The second,
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those for temporally varying release distributions and Fig. 6C
shows those for distributions with diffusion. Detailed entropy
curves for each single-member and mixture simulation are
provided in Figs. B7 and B8 in the Appendix B.

Figure 6A shows the average marginal entropy as a func-
tion of particle age for various spatial release strategies, com-
paring single-member probability distributions (P,,) with
mixture distributions (Ppix) using different spatial release
intervals (§;). Three single-member curves are shown: §; =
0.1° (blue dotted line), 6; = 1.0° (purple dashed line), and
8y =2.0° (green dash-dot line). Two mixture distribution
curves are presented: §; = 0.1° (solid black line) and 6, =
2.0° (black dash-dot line). Shaded areas around the single-
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member curves represent the standard deviation, illustrating
the spread of entropy values across the ensemble. There is
no shaded area around the mixture entropy curves because
their standard deviation was of the order of magnitude 10~2
bits. The logarithmic scale on the x axis emphasizes the rapid
changes in entropy during the early stages of particle disper-
sion. All curves show a logarithmic increasing trend in en-
tropy with particle age, indicating growing dispersion over
time. The single-member distributions with larger §; values
(1.0 and 2.0°) initially overestimate the entropy compared
to the mixture distribution with §, = 0.1°, particularly in the
first 10d. After this period, only the single-member distri-
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bution with §, = 2.0° adequately represents the variability of
the mixture with §, = 0.1°.

Figure 6B shows the average entropy as a function of
time for the temporal varying release strategies and their cor-
responding mixture distributions, comparing single-member
probability distributions P, for different release periods
against mixture distributions (Pp;x). The single-member dis-
tributions are shown for release periods of 4, 12, and 20
weeks. These curves show a general trend of entropy in-
creasing logarithmically over time, with longer release pe-
riods resulting in higher entropy values. Three mixture dis-
tributions are plotted: mixture subsampled from 4-week re-
lease, mixture subsampled from 20-week release, and the
reference mixture from §; = 0.1°. We compared temporal
and spatial mixture distributions to understand how different
release strategies contribute to the total ensemble variabil-
ity. As one would expect, these mixture distributions consis-
tently show higher entropy values than single-member dis-
tributions, indicating that P,, captures less variability than
the mixture distributions. The 20-week single-member aver-
age entropy closely follow the reference mixture §; = 0.1°
average entropy, often overlapping or slightly exceeding it.
Among the single-member curves, the 20-week release gen-
erally shows the highest average entropy, followed by 12 and
4 weeks in descending order. However, these differences be-
come less pronounced as time increases.

Figure 6C shows the average entropy as a function of
time for the simulations with diffusion. The simulations with
the low diffusion (Kj, = 10m?s~!) show very low entropy
for the first 10d, somewhat similar to the single-member
curve of §; = 0.1° in Fig. 6A. The simulations with the high
diffusion (Kj = 1000 m2 s_l), on the other hand, track the
8; = 0.1° mixture distribution (solid black line), with a slight
underestimation in the first 20d and a slight overestimation
between 20 and 1000 d.

Comparing spatial and temporal strategies in Fig. 6A and
B supports setting the mixture distribution with §; =0.1° as
our reference standard, as it shows the minimum average en-
tropy among all mixture strategies but still captures the full
ensemble variability. The 20-week single-member average
entropy curve most closely approximates the reference mix-
ture §; = 0.1° entropy, while the single-member spatial re-
leases show more variable performance. Both the §; = 2.0°
and the 20-week mixture distributions exhibit the highest av-
erage entropy values, demonstrating how combining either
spatial or temporal release strategies with the ensemble vari-
ability increases the total dispersion variability. This rein-
forces our choice of the more point-like §; = 0.1° mixture
as our reference for evaluating single-member approxima-
tions. For clarity, we omitted the intermediate mixture curves
(6 = 1.0° and 12-week), as their entropy values consistently
fall between those of the §; = 0.1° and §; = 2.0° and 4 and
20 weeks, respectively.

We computed the relative entropy as a function of par-
ticle age by comparing single-member distributions with
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mixture distributions, to understand how similar the single-
member distributions are to the mixture distributions, bin by
bin. For this, we computed the relative entropy of a single-
member distribution P, (X,?) compared to a mixture dis-
tribution Ppix(X, 1), using Eq. (10), across all their particle
ages. Therefore, we calculated 50 = 2500 relative entropy
curve as a function of particle age curves when comparing
two sets of distributions: that is, one set for single-member
simulations and one set of mixture simulations. From the
2500 relative entropy functions, we computed the average
and the standard deviation of the relative entropy as a func-
tion of particle age. We computed the average relative en-
tropy for the combination of the seven sets of single-member
distributions (; € {0.1°,1.0°,2.0°}, 4, 12, and 20 weeks, and
K, =10m?s~! and K}, = 1000 m2 s_l), with the six sets of
mixture distributions (excluding diffusion), ending up with
48 average relative entropy curve as a function of particle
age.

Figure 7 shows the average relative entropy as a function
of particle age, divided into four panels (A-D), each using a
different mixture distribution as a reference (Ppix). In these
plots, low values of the relative entropy indicate good agree-
ment to the reference case, as relative entropy is a measure
of the mismatch between each of the distributions shown and
the reference distribution (technically: the cost of assuming
that each of the distributions shown is the reference distribu-
tion). We omitted the plots where the mixture §; = 1.0° and
mixture 12-week strategy was used a reference, since their
entropy lies between their corresponding extreme strategies,
that is 6, € {0.1°,2.0°} and 4- and 20-week releases. In all
panels, the solid and dotted lines represent the average rela-
tive entropy for each strategy, while the shaded bands around
these lines indicate their corresponding standard deviation.
The standard deviation measures the variability in relative
entropy, revealing the extreme cases where single-member
distributions poorly represent the reference mixture distribu-
tions.

Figure 7A uses the reference mixture distribution with
8 =0.1° as the reference (Ppix). On average, the single-
member distribution with §, = 2.0° (green dotted line) most
closely approximates the reference mixture, having the low-
est mean relative entropy across most of the time range.
The 20-week release strategy (yellow dashed line) and K, =
1000m?s~! (purple dashed line) perform similarly well.
However, 8, =0.1° (blue dash-dot line), the 4-week re-
lease (red dotted line), and K; = 10m%s~! (black line)
have higher average relative entropy, showing that their two-
dimensional distributions under-represent Ppix. Regarding
their standard deviation bands, we see that 5§, = 2.0° has al-
most zero standard deviation on the first 10d after release.
This is due to the larger area being covered by particles at
the release compared to the area covered by the Ppix. The
opposite case is observed with 8, = 0.1° and Kj, = 10m?s~!
standard deviations, which indicate a more likely greater lack
of information compared to the reference distribution Pp;x.
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Figure 7B, with the mixture distribution with §, = 2.0°
as reference Ppix, shows that the single-member §; = 2.0°
strategy most closely matches Ppix on average. The 20-
week release strategy and Kj, = 1000m?s~! also perform
well, especially for higher particle ages. The substantial stan-
dard deviations for all strategies, particularly pronounced for
8y =0.1°, the 4-week strategy, and Kj; =10 mZs1, high-
light the potential for large lack of information in represent-
ing Ppix at all particle ages. Figure 7C and D use the 4- and
20-week mixture distributions as references, respectively. In
both cases, 20-week and &, = 2.0° single-member temporal
release strategies, and the Kj, = 10 mZs~! show the lowest
mean relative entropy. The wide standard deviation bands,
particularly noticeable for §; = 0.1° and K, = 10m?s~!, un-
derscore the high variability in how well these strategies cap-
ture the reference mixture’s characteristics.

Across all panels of Fig. 7, relative entropy peaks between
10 and 100d of particle age, with the largest standard devi-
ations also occurring in this range. Notably, standard devi-
ations for temporal (20-week) and spatial (§; = 2.0°) strate-
gies peak at different times: the 20-week release shows max-
imum variability at earlier particle ages (before 10d), while
the §; = 2.0° release peaks later (before 100 d). This suggests
that these single-member strategies are most likely to signif-
icantly diverge from the mixture distributions around these
particle ages.

From the average entropy curves shown in Fig. 7, we took
the average over the 6 years the particles were drifting af-
ter release. We compiled these values for the 20 compar-
isons between mixture and single-member sets, with dif-
ferent release strategies in Fig. 8. This figure presents a
heatmap of the time-averaged relative entropy values for var-
ious combinations of single-member and mixture distribu-
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tions. The rows represent single-member distributions, while
the columns represent mixture distributions. The color scale
ranges from dark green (lowest relative entropy) to light
green (highest relative entropy), with numerical values pro-
vided in each cell. Notably, the K;, = 1000 m2s~! (last row)
and 20-week single-member distribution (fourth row) con-
sistently shows the lowest relative entropy across all mixture
distributions, indicating both strategies best represent the en-
semble variability. Conversely, the §; = 0.1° single-member
distribution exhibits the highest relative entropy values, fol-
lowed by K; = 10m?s~!, suggesting that they are the least
effective at capturing the characteristics of the mixture distri-
butions.

4 Discussion and conclusions

In this study, we investigated how to generate ensemble-like
variability within single-member Lagrangian simulations by
implementing varying spatial and temporal release strategies,
as well as by adding diffusion, in the Gulf Stream region near
Cape Hatteras. The surface connectivity between the Gulf
Stream and the region past 40°W revealed significant dif-
ferences in the number of particles crossing between differ-
ent release strategies in the single-member distributions. The
ECDFs in Fig. 4 showed that, for spatially varying releases,
the larger the initial particle cloud, the more particles cross
the 40° W. Regarding the temporal distributions, we did not
see significant variations in the number of particles crossing
40° W; the distributions for the number of particles and the
median times were similar between the three temporal re-
lease strategies. The low-diffusion K} distribution was very
similar to the spatial § = 0.1° distribution, with fewer par-
ticles crossing 40° W than other strategies, while the high-
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diffusion K}, distribution resulted in complete connectivity
on much shorter timescales than any other strategy. More-
over, the normal distribution observed in the mixture distri-
butions can be attributed to the central limit theorem. This
fundamental principle in probability theory states that when
independent random samples are drawn from a population
with a finite variance, the distribution of their means will ap-
proximate a normal distribution as the sample size increases.
In our case, the bootstrapping method used to construct the
mixture distributions effectively simulates this sampling pro-
cess, resulting in the observed normal distributions.
Regarding representing the full ensemble variability with
single-member simulations in the connectivity analysis, we
see that particles are more consistent in crossing the 40° W
meridian in the mixture distributions. Therefore, when com-
paring mixture distributions with single-member distribu-
tions, we counted the percentage of single-member simula-
tions with fewer particle crossings than the reference mixture
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distribution with &, = 0.1°. In this analysis, we see that per-
forming a one-time spatial release with a radius of §; = 2.0°
better represents the particle crossings in the mixture distri-
butions than the other strategies. From all the release strate-
gies, single-member simulations with §; = 2.0° release cloud
had the lowest likelihood of having fewer particles crossing
than the reference mixture simulation with §; = 0.1°. This
might be because a large initial cloud of particles releases
more particles outside the Gulf Stream, creating a wider va-
riety of trajectories that cross 40° W. In the case of the tem-
poral releases, the single member with 20-week release sim-
ulation had fewer particles crossing 40° W than the mixture
with 6, = 0.1°, with a 66 % likelihood of having fewer par-
ticles. This likelihood is 10 % higher than 4- and 12-week
single-member distributions, suggesting that the seasonabil-
ity may be playing a role in the transport of particles to the
eastern side of the domain. The connectivity with the east-
ern region of the domain might be stronger during winter,
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corresponding to the release of particles in the 4-week pe-
riod (from 2 to 30 of January) and 12-week period (from 2
January to 27 March). Meanwhile, the 20-week release, from
2 January to 22 May, had a portion of its particles released
during spring.

The marginal entropy analysis, shown in Fig. 6, provided
insights into how well different release strategies represent
the full ensemble variability. In general, we see how the
marginal entropy increased with time for all strategies con-
sidered, some at slower rates than others. We attributed this
to the percentage of particles released under the local decor-
relation length scales and timescales for the different strate-
gies. For instance, spatial releases with radius §; = 0.1° and
temporal releases of 4 weeks, which exhibited the lowest
marginal entropy, had all their particles released within their
respective decorrelation scales. As the radius or release pe-
riod was increased, there were more particles with decorre-
lated initial velocities, resulting in higher entropy in the two-
dimensional distributions.

It is important to highlight that the marginal entropy of
the mixture distributions consistently exceeds that of cor-
responding single-member distributions, demonstrating that
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ensemble simulations under identical release conditions in-
herently generate greater trajectory variability than single-
member simulations. By maintaining equal particle counts
between mixture and single-member simulations, we ensured
that the higher entropy in mixture distributions reflects gen-
uine ensemble dynamics rather than statistical artifacts. The
higher marginal entropy in mixture distributions may also be
attributed to the temporal context of our study: we advected
particles ~ 18 years after the initialization of the NATL025-
CIMCYC3 ensemble (which was perturbed during 1993). At
the release date of the particles (2010), the perturbations had
sufficient time to adapt and decorrelate the velocity fields of
the members, which suggests that ensemble Lagrangian dis-
persion arises not only from mesoscale chaos but also from
low-frequency, large-scale intrinsic fluctuations.

Based on the marginal entropy curves from Fig. 6, we se-
lected the mixture simulations with §; = 0.1° as reference for
comparing the different release strategies because they con-
tain the full ensemble variability with least noise added by
the initial perturbation to their initial conditions. Comparing
the spatial releases against this reference (Fig. 6A) revealed
significant limitations. The larger release areas (§; = 1.0°
and &, =2.0°) initially overestimate variability during the
first 10d, as particles start from a wider area than the refer-
ence’s mixture with §, = 0.1° radius. While §; = 2.0° simu-
lations eventually match the reference entropy after 30—40d,
8y = 1.0° simulations underestimate it until about 1000 d af-
ter release.

The simulations with low diffusion (Kj, = 10m2s~!)
show marginal entropy similar to spatial releases with §, =
0.1° but fail to reproduce the full ensemble variability un-
til approximately 1000 d after release, as seen in Fig. 6. The
simulations with high diffusion (K; = 1000m?s~"), on the
other hand, lead to very similar entropy statistics as the mix-
ture models (Fig. 8), although they fail to capture the con-
nectivity and transport time patterns. These added diffusion
simulations used a stochastic differential equation approach
with Brownian motion terms, following established meth-
ods in Lagrangian oceanography (Griffa, 1996). Our results
demonstrate that such an approach could reproduce some of
the full ensemble entropy but at the expense of overestimat-
ing the connectivity. Furthermore, Brownian diffusion can
also move particles across permanent fronts or (if not treated
carefully), even across landmasses such as the Panama Isth-
mus (McAdam and Van Sebille, 2018).

The underperformance of the low diffusion strategy likely
reflects that it represents primarily small-scale turbulent mix-
ing processes, and the diffusion cannot create noticeable vari-
ability in trajectories, specially for particle ages < 100d,
missing the larger-scale flow uncertainties and mesoscale
variability captured through other strategies. In contrast, tem-
poral release strategies (Fig. 6B) show better performance,
particularly the 12- and 20-week releases. The 20-week re-
lease strategy consistently matches the reference mixture’s
marginal entropy (mixture §; =0.1°) across all temporal
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scales, demonstrating that continuous particle releases over
time can effectively reproduce the variability captured by en-
semble simulations. This suggests that temporally varying
the initial conditions is more effective at generating ensemble
variability than adding diffusion and also is more consistent
throughout particle ages than varying spatially the extent of
the release area.

As we explained in Sect. 2.4.4, two distributions that have
the same entropy do not necessarily exhibit the same distri-
butions since two different probability distributions can have
equivalent marginal entropies. As a complementary analy-
sis, we computed the relative entropy to measure the agree-
ment between two distributions, which measures the lack
of information when representing the full ensemble with a
single-member simulation. We applied the relative entropy
analysis to compare all release strategies against the mixture
distribution & = 0.1°. The averaged results and their vari-
ability, shown in Fig. 7, further support the findings from
the marginal entropy assessment. The 20-week and Kj =
1000m?s~! release generally showed consistently low av-
erage relative entropy with respect to the reference mixture
distribution, indicating this release strategy most effectively
captured the particle distributions over time, by generating
two-dimensional distributions that resembled the most to the
ones of the mixture distribution containing the full ensem-
ble variability. Contrary to that, the §; = 0.1°, 4-week, and
Kj, = 10m?s~! strategies showed the largest values in aver-
age relative entropy, with large standard deviations in parti-
cle ages below 100d. This shows that these strategies have
particular difficulty to generate variability in the trajectories
similar to a full ensemble.

Comparing the 6-year time-averaged relative entropy,
shown in Fig. 8, showed how the 20-week release strategy
and the Kj, = 1000 m? s~ ! simulations have least uncertainty
and how they represent the best full ensemble variability
across different reference mixtures. The §; =2.0° and a 4-
week release strategy showed higher uncertainties compared
to a 20-week release. Lastly, K; = 10 m?s~! and §, =0.1°
had the highest time-average relative entropies. This further
supports the idea that performing long continuous releases
is the best release strategy to generate variability in particle
trajectories similar to a full ensemble simulation.

In single-member simulations, we demonstrated that re-
leasing particles at slightly different locations or times can
match the variability in the behavior of particles released at
a specific time and location from an ensemble of simula-
tions. An interpretation of this may be that an ensemble of
Lagrangian simulations has an ergodic flavor in which statis-
tical homogeneity exists between an ensemble of simulations
and single-member simulations (Shannon, 1948). However,
this does not constitute proof of the system’s ergodicity.

While our study provides valuable insights into generat-
ing ensemble-like variability in single-member simulations,
several limitations should be acknowledged. Our analysis fo-
cused solely on the Gulf Stream region near Cape Hatteras,
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and the effectiveness of these release strategies may vary
in other oceanic regions with different dynamics. Addition-
ally, while our particles were advected in three-dimensional
flows, we only considered surface particle releases, which
may not fully represent the three-dimensional transport pro-
cesses occurring throughout the water column. Our results
are based on the NATL025-CIMCYC3 model configuration,
and the effectiveness of these strategies may be resolution-
dependent, as higher-resolution models resolve smaller-scale
processes that could introduce additional variability in trans-
port pathways. We performed simulations for only one re-
lease period, on 2 January 2010, because that allowed us the
longest particle advection time. We acknowledge, however,
that the results presented here may depend on the chosen re-
lease time. Furthermore, our study was limited to forward-in-
time simulations, whereas backward-in-time tracking could
provide complementary information about generating en-
semble variability in single-member simulations in studies
concerning source regions and transport pathways. Future
work should explore the potential of the framework and
methods provided in this study across different oceanic re-
gions, depths, and temporal directions to establish more com-
prehensive guidelines for single-member Lagrangian simu-
lations, including appropriate values for K, in random walk
diffusion parameterizations.

Ensemble simulations remain the standard for capturing
the full range of variability in ocean simulations; our study
provides guidance on releasing particles in single-member
simulations to increase the variability of the trajectories and,
in this case, better represent ensemble statistics. While data
assimilative models excel at improving mean state predic-
tions through observation integration, ensemble approaches
are better suited for exploring the full range of possible out-
comes and quantifying uncertainty in trajectory predictions.
Generating ensemble-like variability for Lagrangian simu-
lations advected using assimilative models could be partic-
ularly powerful: applying temporal release strategies could
help capture both the improved mean state from data assimi-
lation and the trajectory variability typical of ensemble simu-
lations. These findings have important implications for ocean
modeling and particle tracking studies, especially when com-
putational resources limit the use of full ensemble simula-
tions. By carefully selecting release strategies, researchers
can maximize the variability of single-member simulations,
potentially improving predictions of particle transport by
capturing extreme events.
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Appendix A: Marginal entropy as a function of
number of particles and grid resolution

The calculation of the mixture probability distributions
(Pmix) requires determining both the optimal number of par-
ticles to sample and the appropriate spatial resolution for bin-
ning these particles. These parameters directly affect the en-
tropy of the resulting distributions. We investigated this rela-
tionship by varying two key parameters: the number of par-
ticles sampled per ensemble member and the hexagonal grid
resolution (k).

Figure Al shows how the entropy converges as we in-
crease the number of particles sampled per ensemble mem-
ber, plotted for three different grid resolutions (% € {2, 3, 4}).
As expected, finer grid resolutions (larger & values) yield
higher entropy values as they capture more detailed spatial
information. For our chosen grid resolution of 4 = 3, the en-
tropy converges to approximately 8.5 bits when sampling 150
or more particles per ensemble member. Coarser resolutions
(h = 2) require fewer particles to converge, while finer res-
olutions (h =4) need more particles but capture more spa-
tial detail. Based on this analysis, we selected 2 = 3 and 150
particles per member as sufficient parameters for our study,
balancing computational efficiency with spatial resolution.

erard et al.: Particle dispersal in ocean ensemble simulations
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resolution, resulting in higher entropy values.
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Appendix B: Additional supplementary figures
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Figure B1. Ensemble standard deviation of time-averaged particle occurrence per (hexagonal) bin in the North Atlantic Ocean for
single-member simulations. (A, C, E) Temporal release strategies at 4, 12, and 20 weeks. (B, D, F) Spatial release strategies with
8r € {0.1°,1.0°,2.0°}. (G, H) Diffusion strategies with K, = 10 m?s~! and Kj, = 1000 m s~L. The color scale represents the ensemble
standard deviation of a 6-year time-averaged occurrence per bin. The maps illustrate the variability in particle dispersal for single-member
simulations. The dashed line at 40° W indicates the eastern boundary of the study area. The blue dot marks the approximate release location.
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Mixture 4 weeks Mixture 6,=0.1°
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Figure B2. Ensemble standard deviation of time-averaged particle occurrence per (hexagonal) bin in the North Atlantic Ocean for mixture
simulation subsets. Left column (A, C, E): mixture subsets at 4 weeks, 12 weeks, and 20 weeks. Right column (B, D, F): mixture subsets with
spatial variability 6, € {0.1°,1.0°,2.0°}. The color scale represents the ensemble standard deviation of a 6-year time-averaged occurrence
per bin. The maps show the variability in particle dispersal patterns for all 50 subsets of the mixture simulations. The dashed line at 40° W
indicates the eastern boundary of the study area. The blue dot marks the approximate release location.
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Figure B3. Kernel density estimates (KDEs) of connectivity analysis for the single-member simulations. The top row (A-C) shows dis-
tributions for spatial releases d; € {0.1°,1.0°,2.0°}: particle counts (A), median drift time in years (B), and median depth in meters (C).
The middle row (D-F) shows the same metrics but is compared across different temporal releases of 4, 12, and 20 weeks. The bottom row
(G-I) corresponds to Kj, = 10 m?s~! and K = 1000 m?s~ L.
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Figure B4. Kernel density estimates (KDEs) of connectivity analysis for the mixture simulations, using Scott’s method with a bandwidth of
1. The top row (A—C) shows distributions for mixture spatial releases §; € {0.1°, 1.0°,2.0°}: particle counts (A), median drift time in years
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