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Abstract. The Atlantic Meridional Overturning Circulation (AMOC) is a major climate element subject to
possible ongoing loss of stability. Recent studies have found evidence of a gradual weakening in circulation,
including early warning signals (EWSs), such as increased fluctuations and correlation time of the system, which
are both known to be indicators of a possible forthcoming tipping point. To assess these changes in statistical
behavior, we propose a robust and general statistical model based on a second-order autoregressive process
with time-dependent parameters. This allows for the statistical changes from increased external variability and
destabilization to be accounted for separately. We estimate the time evolution of the correlation parameters using
a hierarchical Bayesian modeling framework, which also yields uncertainty quantification through the posterior
distribution. To assess possible changes in AMOC stability, we apply the model to an AMOC fingerprint proxy
based on the subpolar gyre and the global mean temperature anomaly. We find statistically significant EWSs,
which suggests that AMOC is indeed undergoing a loss of stability and is getting closer to a tipping point. The
methodology developed in this study is made publicly available as an extension of the R-package INLA.ews.

1 Introduction

The Atlantic Meridional Overturning Circulation (AMOC)
is a key driver of Earth’s climate, responsible for the trans-
port of heat and salt across the Atlantic Ocean (Rahmstorf,
1995). As part of the global thermohaline circulation, the
AMOC plays a central role in maintaining the current cli-
mate equilibrium. It is widely believed that the AMOC is
a multi-stable system, capable of existing in multiple stable
modes, most notably a strong mode, which is currently domi-
nant, and a weak or collapsed mode (Stommel, 1961; Lenton
et al., 2008). This nonlinear behavior implies that the AMOC
may undergo abrupt transitions between states when critical
thresholds are crossed. Paleoclimate evidence supports the
idea that abrupt shifts in AMOC strength have contributed
to major climate events during the last glacial period, such as
the Dansgaard–Oeschger events (Vettoretti and Peltier, 2016;
Boers et al., 2018).

These dynamics have led to the identification of the
AMOC as a potential “tipping element” in the Earth system,
i.e., a subsystem that could undergo a critical transition due to
anthropogenic forcing (Lenton et al., 2008). Climate models
suggest that continued greenhouse gas emissions and the re-
sulting increase in freshwater input from Greenland Ice Sheet
melt, precipitation and river discharge could push the AMOC
toward such a tipping point (Wood et al., 2019; Hawkins
et al., 2011; Weijer et al., 2019). This behavior exhibits hys-
teresis, meaning that once a tipping threshold is passed, the
AMOC may not return to its original state even if the pertur-
bation is reversed.

Recent observational and modeling studies have intensi-
fied concerns. Although early models suggested a low prob-
ability of collapse within the 21st century (Masson-Delmotte
et al., 2021), more recent simulations reveal a wider range of
possible responses, raising concerns that risks might be un-
derestimated (Gong et al., 2022). This discrepancy is partly
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due to model biases, notably in representing freshwater forc-
ing and feedback (Liu et al., 2017). Evidence is also emerg-
ing from real-world observations. Studies have documented a
significant weakening trend in the AMOC over the 20th cen-
tury (Caesar et al., 2018), and recent statistical analyses have
detected early warning signals of reduced stability (Boers,
2021; Ditlevsen and Ditlevsen, 2023). These findings sug-
gest that the AMOC may be approaching a critical threshold.

A weakening of the AMOC would have profound and
potentially irreversible consequences, including disrupting
weather patterns, altering precipitation systems and poten-
tially triggering cascading effects on other climate compo-
nents (Stouffer et al., 2006; Jackson et al., 2015; Lenton et al.,
2008). In light of this, there is an urgent need to monitor
the resilience of the system and improve our understand-
ing of the processes that drive its potential loss of stabil-
ity. To anticipate such changes, studies have focused on us-
ing critical slowing down theory, stating that when a system
is approaching a tipping point, its recovery from small per-
turbations becomes progressively weaker. This phenomenon,
called an early warning signal (EWS), can be characterized
by increased variance and autocorrelation, which can be used
as statistical indicators of approaching critical transitions.

To detect these statistical changes, a common approach is
to start from the linear approximation of a dynamical system
with white noise around some stable fixed point xs, giving

dx(t)=−λ (x(t)− xs)dt + σdB(t), (1)

where λ is the restoring rate and dB(t) is a white noise
process. This linearization is recognized as the Langevin
stochastic differential equation, which has the following so-
lution:

x(t)= x0+

t∫
−∞

g(t − s)dB(s), (2)

where g(t − s) is a Green’s function defined by

g(t)=
{

exp(−λt), x ≥ 0
0, x < 0 . (3)

This form of x(t) is also referred to as an Ornstein–
Uhlenbeck (OU) process. When discretized, this process
yields a first-order autoregressive (AR) process:

xt = φxt−1+ εt , εt ∼N
(

0,
1−φ2

2λ
σ 2
)
, (4)

with variance Var(xt )= σ 2/(2λ) and lag-one autocorrelation
parameter φ = exp(−λ1t).

With this model, EWSs are detected through an increase
in the autocorrelation or variance. However, Boers (2021)
showed that these indicators can be biased if the system is
driven by external noise that itself has increasing autocor-
relation or variance, leading to false positive alarms. To ac-
count for such bias, Boettner and Boers (2022) and Morr and

Boers (2024) suggest that the OU process of Eq. (2) should
be driven by correlated noise rather than white noise. Af-
ter discretization, the resulting process yields an AR(1) pro-
cess that is driven by another AR(1) process. Hence, the dis-
cretization is similar to Eq. (4), except that the white noise
process εt is replaced by an AR(1) process:

vt+1 = ρvt + σvξt , (5)

where ρ represents the correlation parameter of the noise,
σv is a scaling parameter and

ξt ∼N
(

0,
1−φ2

2λ

)
(6)

is a white noise process. This model encompasses the orig-
inal AR(1) model in Eq. (4) when ρ = 0 and, as showcased
in Boers (2021), comprehends cases in which external noise
is also correlated, preventing bias in the estimation of the pa-
rameter φ. Consequently, an increasing φ will act as a more
reliable indicator for detecting EWSs, as it will no longer be
affected by rising external variation.

Climate systems that are prone to tipping, such as the
AMOC, are often driven by some external forcing. For the
AMOC, the freshwater forcing from Greenland melts acts
like a bifurcation parameter, as freshwater inputs can disturb
the salinity and the temperature of the AMOC, potentially
pushing the system closer to its tipping point (Wood et al.,
2019). To incorporate forcing into our model, we use a simi-
lar approach as in Myrvoll-Nilsen et al. (2024) and Myrvoll-
Nilsen et al. (2020), where the dynamical system is repre-
sented by

dx(t)=−λx(t)+F (t)dt +U (t)dt, (7)

where F (t) represents the forcing and U (t), as before, rep-
resents an OU process. The solution of this equation can be
expressed as the sum of one forced component and one noise
component:

x(t)= ν(t)+ ξ (t). (8)

Here, the noise component, ξ (t), is represented by a nested
AR(1) process described previously, and the forced compo-
nent, ν(t), is expressed by

ν(t)=
1√

2λ(t)κf

t∫
0

F (s)e−λ(t)(t−s)ds, (9)

with κf being a scaling parameter. This model allows EWSs
to be detected while accounting for the influence of external
forcing on the system’s dynamics.

Most studies detect EWSs using sliding windows to ob-
tain estimates of the variance and correlation for each win-
dow. This approach requires selecting an appropriate win-
dow length, which introduces a fundamental compromise.
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A shorter window provides a more accurate representation
of the system’s momentary state, but the limited number of
data points can reduce the reliability of the statistical esti-
mates. In contrast, a longer window improves the robust-
ness of these estimates by incorporating more data, but it
does so at the cost of responsiveness, as it averages informa-
tion over a broader timescale and may fail to capture short-
term fluctuations effectively. Determining the optimal win-
dow length is thus a critical but challenging task, as it should
ideally balance estimation accuracy with the ability to re-
flect rapid changes in the system’s evolution. Myrvoll-Nilsen
et al. (2024) propose an alternative model-based approach
that eliminates the need for this choice. Instead of relying on
a fixed window length, the correlation parameter is assumed
to evolve over time according to a predefined linear structure.
This assumption enables a hierarchical Bayesian model for-
mulation, enabling the use of well-established computational
techniques to infer the parameters of the linear structure. Fur-
thermore, Myrvoll-Nilsen et al. (2024) adopts a Bayesian
framework that offers the additional advantage of providing
uncertainty quantification in the form of posterior distribu-
tions, making the analysis more robust and interpretable.

In this paper, we build upon the hierarchical Bayesian
framework developed by Myrvoll-Nilsen et al. (2024) to in-
tegrate the nested AR(1) model proposed by Morr and Boers
(2024) and Boettner and Boers (2022). This extension helps
mitigate false alarms caused by correlated noise and elim-
inates the need for sliding time windows, while benefiting
from the advantages of a Bayesian modeling framework.
This approach is then applied to an AMOC fingerprint in or-
der to assess its potential loss of stability.

The paper is organized as follows. Section 2 outlines our
methodology for the Bayesian modeling framework, includ-
ing details on how inference can be obtained efficiently. In
Sect. 3, we evaluate our model’s accuracy and reliability on
simulated data, assess the robustness to false alarms under in-
creasing external variability, and benchmark its performance
on real data against existing approaches. In Sect. 4, we use
our Bayesian framework to identify EWSs in an AMOC fin-
gerprint, using different detrending strategies. Further dis-
cussion and conclusions are provided in Sect. 5.

2 Bayesian modeling

We assume that the observations, y = (y1, . . ., yn)>, are ex-
pressed by

y = µ+ x, (10)

where the forcing response, µ= (µ1, . . ., µn)>, is expressed
by

µt = σf (t)
t∑
s=0

F (s)e−λ(t)(t−s+0.5)ds (11)

and the correlated time-dependent noise, x = (x1, . . ., xn)>,
is given by a nested AR(1) process

xt+1 = φxt + vt+1

vt+1 = ρvt + σvξt . (12)

To model the evolution of the autocorrelation parameters, we
assume that they both change linearly in time, i.e.,

φ(t)= aφ + bφ t, 0≤ t ≤ 1,

ρ(t)= aρ + bρ t, 0≤ t ≤ 1. (13)

These are expressed by unknown parameters aφ , bφ , aρ
and bρ , which are estimated by fitting the model to observed
data. Early warning signals due to critical slowing down are
characterized through the evolution of φ(t), while potential
changes in external variability are captured by the latent com-
ponent v = (v1, . . ., vn)>. Separating these signals prevents
false alarms, as discussed by Boers (2021).

To obtain robust uncertainty estimates, we adopt a
Bayesian framework for parameter estimation, similar to
Myrvoll-Nilsen et al. (2024). Given the hierarchical nature
of the model, where y is modeled in terms of µ and x,
which are themselves governed by hyperparameters θ =
(aφ,bφ,aρ,bρ,σv,σf ), a latent Gaussian model formulation
provides a natural and efficient framework for Bayesian in-
ference. Both components of the model, µ and x, depend on
the parameters aφ and bφ through λ(t)=− logφ(t). This de-
pendency introduces a challenge for obtaining reliable infer-
ence, as the parameters may be difficult to estimate indepen-
dently. We therefore choose to model the sum η = µ+ x as
a single component. The latent Gaussian model formulation
is defined in three stages as follows.

1. The first stage defines the likelihood of the model,
which is assumed to be conditionally independent given
the latent components. Because the observations y are
captured by the latent component η = (η1, . . ., ηn)>, we
model y as a Gaussian distribution with mean η and
negligible observation noise, σy ≈ 0, effectively setting
y ≈ η, i.e.,

π (y | η,θ )=
n∏
k=1

π (yk | ηk,θ )

=

n∏
k=1

1
√

2π
exp

(
−

(yk − ηk)2

2σ 2
y

)
. (14)

2. The second stage defines the prior distribution for the
latent field η, given the parameter θ . This component
is assigned a multivariate Gaussian prior distribution
with mean vector µ and a covariance matrix corre-
sponding to the nested AR(1) process above with time-
dependent φ(t) and ρ(t), i.e.,

π (η | θ )=Nn(µ,6). (15)
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Because η follows a nested AR(1) process, which is
equivalent to an AR(2) process (Morr and Boers, 2024),
its precision matrix, Q=6−1, is a sparse matrix of
bandwidth 2. This property enables the use of compu-
tationally efficient algorithms that substantially reduce
the overall computational cost.

3. The final stage defines the prior distributions for the
model parameters:

π (θ )= π (bφ)π (aφ | bφ)π
(
bρ
)
π
(
aρ | bρ

)
π (σv)π

(
σf
)
. (16)

We assign uniform prior distributions on bφ , (aφ | bφ),
bρ and (aρ | bρ) and gamma distributions on κv = 1/σ 2

v

and κf = 1/σ 2
f . Note that because we assume that

both 0< φ(t)< 1 and 0< ρ(t)< 1, then the parameter
space of aφ and aρ depends on the current state of bφ
and bρ , respectively.

The joint posterior distribution for the parameters is given
by

π (x,v,θ | y)=
π (y | x,v,θ )π (x,v | θ )π (θ )

π (y)
, (17)

where π (y) is the marginal likelihood, or evidence, of y. In
particular, we are interested in the marginal posterior distri-
bution of bφ , which can be obtained by integrating out the
other parameters, θ−bφ , and latent variables

π
(
bφ | y

)
=

∫
π (θ ,x,v | y)dθ−bφdxdv. (18)

Because solving this integral analytically is often impossible
to do in practice, the common approach is to instead approx-
imate it using sampling-based approaches like Markov chain
Monte Carlo (MCMC) methods (Robert et al., 1999). How-
ever, because the precision matrix of the latent Gaussian field
is sparse, we can employ a number of computationally effi-
cient algorithms for fast Bayesian inference. Specifically, we
evaluate all marginal posterior distributions using the frame-
work of integrated nested Laplace approximations (INLA)
(Rue et al., 2009, 2017), which is particularly suited for
these types of models. INLA is available as an R package
at https://www.r-inla.org/ (last access: 11 April 2025) and
presents a computationally superior alternative to MCMC.
Because our model requires specific implementation using
the custom modeling framework of R-INLA, we have de-
cided to make the code available as a new feature in the user-
friendly R-package INLA.ews, originally developed for the
model described in Myrvoll-Nilsen et al. (2024). The nested
time-dependent AR(1) model can be fitted by prompting

results<−inla.ews(data=y, forcing=z,

model="ar2").

A more extensive demonstration of the package can be found
in Myrvoll-Nilsen et al. (2024).

3 Assessing model accuracy and robustness

To evaluate the accuracy and robustness of the proposed
time-dependent nested AR(1) model, we perform three tests.
Two tests use simulated data, one from the nested AR(1)
model and one from stochastic differential equations repre-
senting dynamical systems with and without loss of stabil-
ity. These tests are both based on 500 independent simu-
lated time series of length 150, matching the length of the
AMOC fingerprint time series used in Sect. 4. Finally, we fit
our model to a real data example – the Dansgaard–Oeschger
events – in order to compare our model’s results with exist-
ing methodologies. All tests are made using R-INLA with
the prior distributions described in the previous section.

3.1 Model accuracy on simulated data

For the first test, we assess whether the model can recover
known parameter values when fitted to simulated data gen-
erated from the same nested time-dependent AR(1) process.
For each simulation, the slope parameters bφ and bρ are in-
dependently drawn from a uniform distribution U(−0.9,0.9).
Thereafter, the intercepts aφ and aρ are drawn from uniform
distributions with boundaries that depend on the simulated
slope parameters, ensuring that the resulting φ(t) and ρ(t)
remain within the interval (0, 1) for all time steps.

We compute the root mean square error (RMSE) be-
tween the true slope values and their marginal posterior
means, b̂φ and b̂ρ . We find the RMSE to be 0.145 for bφ
and 0.278 for bρ . We then assess whether the model reliably
infers the sign of the slopes by comparing the marginal poste-
rior probabilities P (bφ > 0 | y) and P (bρ > 0 | y) to the true
value of the slopes. We consider the slope for φ(t) and ρ(t)
to be significantly positive if the posterior probabilities ex-
ceed the threshold 1−α = 0.95, i.e., P (bφ > 0 | y)> 0.95
and P (bρ > 0 | y)> 0.95, respectively. If an estimated b̂φ is
classified as positive, given the P (bφ > 0 | y)> 0.95 thresh-
old, we count it as a true positive if the true slope is also pos-
itive, i.e., bφ > 0. On the other hand, if the true slope is neg-
ative, we count the estimate as a false positive. Conversely,
if P (bφ > 0 | y)≤ 0.95, we count it as a true negative if the
true slope is also negative and as a false negative if bφ > 0.
We also count the classifications based on the estimated b̂ρ ,
but these are of secondary interest. The sensitivity and speci-
ficity are computed by

Sensitivity=
#True Positives

#True Positives+ #False Negatives
,

Specificity=
#True Negatives

#True Negatives+ #False Positives
. (19)

For bφ , the model achieves a sensitivity of 87.7 % and a
specificity of 99.8 %. For bρ , the sensitivity is 72.2 %, and
the specificity is 99.4 %. The results from this test are sum-
marized in Table 1 and illustrated in Fig. 1. Repeating the test
with different prior distributions similar to Myrvoll-Nilsen
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Figure 1. Results of the accuracy test for nr = 500 simulated time series of length n= 150. Panels (a) and (b) show the posterior marginal
mean estimated by INLA for φ and ρ, respectively. The blue line shows the true b used in the simulation. Panels (c) and (d) show the
estimated posterior probability of the slope being positive against true values of φ and ρ, respectively. The vertical red line separates the true
positive and negative values, while the horizontal one indicates the probability threshold 0.95 used here to determine statistical significance.

et al. (2024) did not show significant changes, suggesting that
the model is robust to the choice of prior distributions.

3.2 Robustness to false alarms under autocorrelated
external variability

In the second test, we evaluate the ability of the model to reli-
ably distinguish genuine early warning signals from changes
driven solely by correlated external variability. To do so, we
simulate data from two stochastic differential equations. The
first represents a system approaching a tipping point, and the
second remains stable but is influenced by time-dependent
autocorrelated noise. This setup follows the example in Boers
(2021). The tipping process is expressed by

ẋ(t)=−x3
+ x− T + v(t), (20)

where T increases linearly from −1 to 1 and v(t) is a time-
dependent AR(1) process with parameters drawn in the same
way as in the first test. The non-tipping process is generated
by

ẋ(t)=−5x+ v(t), (21)

with the same structure for v(t) as in Eq. (20). Each simula-
tion is run until the tipping point is reached (for the tipping

Table 1. Summary of statistics from Fig. 1 (top) and Fig. 2
(bottom). Results of accuracy tests are for simulated time-
dependent nested AR(1) processes showing the root mean square
error (RMSE) of the estimates of bφ and bρ given true values of the
simulations (blue lines in Fig. 1a and b). We also show the sensitiv-
ity and specificity (expressed as percentages) for both parameters
(bottom). Results of robustness tests are for simulated tipping and
non-tipping processes. We show here the RMSE of the estimates
of bρ given true simulated values (blue lines in panels b and d).
Sensitivity and specificity are presented as percentages for each pro-
cess.

Accuracy test

Estimates RMSE Sensitivity Specificity
(%) (%)

b̂φ 0.145 87.8 99.8
b̂ρ 0.278 72.2 99.4

Robustness test

Process b̂ρ Sensitivity Specificity 〈b̂φ〉

RMSE (%) (%)

Tipping 0.34 94.2 – 0.47
Non-tipping 0.26 – 95.4 0
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Figure 2. Results of the robustness test for nr = 500 simulated time series of length n≈ 150. Panels (a) and (b) show the posterior marginal
mean estimated by INLA from the non-tipping simulations for bφ and bρ , respectively, plotted against the true value of bρ from the correlated
noise. The blue line in (b) shows the true bρ used in the simulation. Panels (c) and (d) are similar plots for the tipping simulations. In panels
(a) and (c), blue dots are associated with a statistical significance for the EWS indicator bφ to be positive, i.e., P (bφ > 0 | y)> 0.95, while
red dots mean no statistical significance, i.e., P (bφ > 0 | y)< 0.95.

system) or for 150 time units (for the non-tipping system), re-
sulting in time series of approximately 150 points. The same
inference methodology and classification thresholds are used
here, with the distinction that an early warning signal is said
to be detected when P (bφ > 0 | y)> 0.95. For the tipping
processes, the model correctly detected an EWS signal in
471 out of 500 simulations, corresponding to a sensitivity of
94.2 %. For the non-tipping processes, 23 out of 500 simu-
lations were incorrectly classified as an EWS, resulting in a
specificity of 95.4 %. These results, presented in Table 1 and
Fig. 2, indicate that the model effectively identifies true loss
of stability while maintaining a low false positive ratio, even
in the presence of strongly autocorrelated noise.

To illustrate the benefits of accounting for the bias intro-
duced by correlated noise, we also test the time-dependent
AR(1) model proposed by Myrvoll-Nilsen et al. (2024),
which does not separate external noise autocorrelation from
loss of stability. We apply this model to the same set of sim-
ulated non-tipping processes. As illustrated in Fig. 3, this
model yields posterior marginal mean estimates of bφ that
correlate with the values of bρ , rather than remaining cen-
tered around zero, as expected in the absence of a true loss
of stability. In contrast, our nested AR(1) model maintains
stable estimates of bφ across all values of bρ , as shown in
Fig. 2a, demonstrating its robustness to external noise.

The simpler AR(1) model also exhibits a significantly
higher rate of false positives, misclassifying 116 out of
500 simulations as tipping events, an approximately 400 %
increase compared to the nested AR(1) model. Moreover, the
false positive rate increases systematically with higher values
of bρ , further highlighting the susceptibility of this model to
bias from autocorrelated noise. In contrast, false detections in
the nested AR(1) model are evenly distributed across all sim-
ulations. These results emphasize the importance of explic-
itly modeling the correlated noise structure when assessing
stability in time series data.

Overall, these tests demonstrate that the proposed method-
ology reliably recovers the evolution of autocorrelation pa-
rameters, performs well in detecting EWSs, and is robust to
prior assumptions and to structured stochastic external vari-
ability not linked to loss of stability.

3.3 Benchmarking on real data: Dansgaard–Oeschger
events

Finally, we evaluate the performance of our model on real-
world data associated with well-studied critical transitions.
By comparing results, we can assess how much our model
agrees or disagrees with existing approaches. Specifically,
we use our model to analyze abrupt Greenland warmings
known as Dansgaard–Oeschger (DO) events (Dansgaard
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Figure 3. Results of the robustness test from the Myrvoll-Nilsen et al. (2024) model applied on the same data as in Fig. 3a. The posterior
marginal mean is plotted against the true value of bρ from the correlated noise. The blue line is a linear regression on the data, showing the
drift of the estimates of bφ . Turquoise dots are associated with a statistical significance for the EWS indicator bφ to be positive, while red
dots mean no statistical significance.

et al., 1993; Johnsen et al., 1992), which represent rapid cli-
mate fluctuations that occurred during the last glacial period,
where the temperature over Greenland and the North At-
lantic region increased by up to 16.5 °C within a few decades
(Kindler et al., 2014). DO events are often considered the
archetypal example of tipping point crossings in the climate.
As such, they present a natural benchmark for evaluating dif-
ferent EWS approaches.

For our analysis, we pair the δ18O proxy data from
the Northern Greenland Ice Core Project (NGRIP) (North
Greenland Ice Core Project members, 2004; Gkinis et al.,
2014; Ruth et al., 2003) with the corresponding age pro-
vided by the Greenland Ice Core Project 2005 (GICC05)
(Vinther et al., 2006; Rasmussen et al., 2006; Andersen et al.,
2006; Svensson et al., 2008). The data are available at https:
//www.iceandclimate.nbi.ku.dk/data (last accessed: 5 August
2025). The model is fitted to segments preceding the 17 most
recent DO events. The selected segments are highlighted in
Fig. 4.

Whether or not DO events are induced solely by noise or if
they are indeed approaching a bifurcation point is currently
debated (Ditlevsen et al., 2007; Hummel et al., 2024). There
is therefore no ground truth as to which, if any, DO event
should exhibit an EWS. However, several studies report de-
tection of an EWS before some of the first 17 DO events
(Rypdal, 2016; Boers, 2018). We compare the results of our
model with these studies using a setup similar to Myrvoll-
Nilsen et al. (2024) by using a second-order polynomial de-
trending of the data and considering P (bφ > 0 | y)> 0.95 as
a detection of EWSs. This comparison is illustrated in Table 2
and shows that our model suggests, similarly to Myrvoll-

Table 2. Table comparing the posterior probability of a positive
slope P (bφ > 0 | y) from fitting the nested AR(1) model to the
different Dansgaard–Oeschger events using a second-order poly-
nomial detrending approach. These results are compared with the
probability of a positive slope P (b > 0 | y) found by Myrvoll-
Nilsen et al. (2024) and p-values obtained from Boers (2018) and
Rypdal (2016). Events with a statistically significant positive slope
are highlighted in bold.

Event Nested Myrvoll-Nilsen Rypdal Boers
AR(1)

1 0.893 0.9146 p = 0.02 –
2 0.992 0.9728 p = 0.008 p < 0.05
3 0.29 0.4893 – –
4 0.053 0.084 – p < 0.05
5 0.99 0.9959 p = 0.13 –
6 0.163 0.2123 – p < 0.05
7 0.444 0.7132 – –
8 0.817 0.8878 – –
9 0.994 0.953 p = 0.16 –
10 0.115 0.0732 – –
11 0.977 0.9643 – p < 0.05
12 0.056 0.1662 – –
13 0.978 0.8912 p = 0.39 p < 0.05
14 0.722 0.6629 – p < 0.05
15 0.061 0.0637 – p < 0.05
16 0.99 0.9935 – –
17 0.609 0.6043 – –
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Figure 4. The 17 most recent Dansgaard–Oeschger (DO) events (vertical black lines) in the NGRIP δ18O record plotted against the GICC05
chronology. Early warning signals are estimated by fitting the model to the Greenland stadial periods (black segments) of the data preceding
each DO event.

Figure 5. AMOC fingerprint proxy from 1870 to 2020, similar to Ditlevsen and Ditlevsen (2023), using the yearly averaged subpolar
gyre sea-surface temperature anomaly minus twice the global mean anomaly obtained from the Hadley Centre Sea Ice and Sea Surface
Temperature (HadISST) dataset (Rayner et al., 2003).

Nilsen et al. (2024), that some specific event shows signs
of critical slowing down in line with the results of Boers
(2018) and Rypdal (2016). Specifically, Table 2 shows that
our results corroborate the five EWSs found by Myrvoll-
Nilsen et al. (2024) while identifying one more EWS for
the 13th event. Moreover, these results corroborate the EWS
found for the 11th event by Boers (2018) and the fifth and
ninth events by Rypdal (2016); our results also show EWSs
for the second and 13th events, similarly to these two studies.

4 Detecting early warning signals in an AMOC
fingerprint

We now apply the time-dependent nested AR(1) model to
an AMOC fingerprint similar to the one used by Ditlevsen
and Ditlevsen (2023) shown in Fig. 5. This fingerprint is
constructed as the sea-surface temperature (SST) anomaly in
the subpolar gyre region, averaged annually, minus twice the

global mean SST anomaly to compensate for the polar ampli-
fication effects under global warming. Several studies have
suggested that this proxy is a suitable indicator of AMOC
strength (Caesar et al., 2018; Jackson and Wood, 2020; Latif
et al., 2019), especially because direct observations are avail-
able only from 2004 onward. The use of such a proxy is
therefore necessary to examine longer-term trends and detect
potential early warning signals.

As the fingerprint exhibits significant drift, it must first be
detrended to satisfy the zero-mean assumption of the model.
In principle, this trend could be extracted using knowledge
of the system’s underlying physical processes, but such in-
formation may be unavailable, incomplete or inaccurate. To
address this, we consider two different detrending strategies.
In the first, we rely solely on statistical assumptions and re-
move the trend using either a linear or second-order polyno-
mial fit. In the second approach, we incorporate physical in-
formation by including an explanatory variable in the model,
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Figure 6. Integrated Central-West Greenland runoff from 1871 to 2013.

Table 3. Summary of statistics from Figs. 7 and 8 showing posterior marginal means of b̂φ , probability of b̂φ being positive, posterior
marginal means of b̂ρ and marginal log-likelihood for the three models used here. Results from the models introduced in Myrvoll-Nilsen
et al. (2024) are also shown for comparison purposes. Events with a statistically significant positive slope are highlighted in bold.

Model b̂φ P (b̂φ > 0) b̂ρ Marg.
log-likelihood

Nested AR(1) linear detrending 0.2 0.98 −0.35 56.49
Nested AR(1) square detrending 0.41 1 −0.33 54.72
Nested AR(1) forcing response 0.34 1 −0.99 61.97

AR(1) linear detrending 0.145 0.98 – 53.46
AR(1) square detrending 0.278 0.99 – 51.68
AR(1) forcing response 0.19 0.93 – 54.13

following the structure described in Eq. (9). Specifically, we
use the integrated Central-West Greenland (iCWG) surface
melt shown in Fig. 6 as a covariate. The iCWG represents
the cumulative surface melt across several years, based on
the CWG melt stack from Trusel et al. (2018), and is used to
capture the influence of freshwater forcing on AMOC stabil-
ity.

For each model, we compare the posterior marginal mean
estimate of the slope parameter bφ along with the posterior
probability that the slope is positive. Model fit is assessed
using the marginal log-likelihood. The full set of results is
presented in Table 3. The fitted trends and time evolutions
of φ(t) for the linear and polynomial detrending approaches
are shown in Fig. 7, while the estimated response function to
the iCWG forcing and associated φ(t) evolution are shown
in Fig. 8. Among the different model configurations, the ver-
sion incorporating iCWG forcing provides the best fit to the
data as measured by the model likelihood. In all three de-
trending strategies, the model identifies statistically signif-
icant EWSs. These results provide further evidence for the
presence of EWSs for the AMOC, consistent with the find-
ings of Boers (2021), who also found statistically significant

EWSs using a slightly different nested AR(1) process with a
window-based estimation methodology applied to a similar
proxy for AMOC strength; the global mean temperature is
only subtracted once in their study. Our results also corrob-
orate those found by Ditlevsen and Ditlevsen (2023), who
reported similar EWSs using the same proxy but applied an
AR(1) model with a window-based approach.

5 Conclusions

This study investigates the stability of the Atlantic Merid-
ional Overturning Circulation (AMOC) by proposing a time-
dependent extension of the nested autoregressive AR(1)
model introduced by Morr and Boers (2024) and Boers
(2021). The primary objective of this model is to enhance the
reliability of early warning signals (EWSs) by minimizing
false positives. This is achieved through the decomposition of
the observed signal into two distinct components: ρ(t), which
captures time-dependent external variability, and φ(t), which
reflects changes in the internal dynamics associated with sys-
tem stability. By isolating these effects, the model aims to
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Figure 7. Panels (a) and (b) show the AMOC fingerprint (black) with the posterior marginal mean (blue) and 95 % credible intervals (red)
of the fitted trends. Panels (c) and (d) show the evolution in time of the correlation parameter φ(t) (blue) used as an indicator of EWSs and
the 95 % credible intervals (red) with an estimated probability of a positive slope P (bφ > 0 | y).

Figure 8. Panel (a) shows the AMOC fingerprint (black) from 1870 to 2013 to match the time span of the forcing data with the posterior
marginal mean (blue) and 95 % credible intervals (red) of the estimated system’s response function to forcing. Panel (b) is a plot of the
evolution in time of the correlation parameter φ(t) (blue) and 95 % credible intervals (red) with an estimated probability of a positive slope
P (bφ > 0 | y).
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identify more accurately early signs of destabilization. Fol-
lowing the approach of Myrvoll-Nilsen et al. (2024), we as-
sume a linear temporal dependence for both ρ(t) and φ(t),
estimating their respective slope parameters within a hierar-
chical Bayesian framework. This statistical approach allows
us to incorporate prior information and quantify the uncer-
tainty of the EWSs through the posterior distributions of the
parameters. The performance of the model is first evaluated
using both simulated and real data, demonstrating both high
estimation accuracy and robustness against false detections
of ongoing destabilization.

The methodology is applied to a proxy for the AMOC
fingerprint. In order to meet stationarity assumptions, we
consider various detrending techniques, including linear and
second-order polynomial detrending, and incorporate a forc-
ing component based on the integrated meltwater runoff from
Central-West Greenland. Across all model configurations,
we find statistically significant early warning signals. This
is consistent with prior findings in the literature and supports
the hypothesis of a possible ongoing destabilization of the
AMOC.

While assuming a linear structure for φ(t) has proven ef-
fective for detecting EWSs, we emphasize that the model
proposed here should not be interpreted as a comprehensive
or mechanistic representation of the underlying physical pro-
cesses governing the AMOC. Despite its success in identify-
ing early signs of destabilization, the model is limited in its
ability to forecast the future trajectory of the system or pre-
dict the timing of a potential tipping point. Addressing these
limitations would require a more flexible modeling approach,
potentially involving a nonlinear or nonparametric structure
for the correlation parameters, which lies beyond the scope
of the present work.

Although our analysis has focused on a specific proxy
of the AMOC fingerprint, the proposed methodology is
generalizable and can be adapted to study the stability of
other critical climate components, such as the Greenland Ice
Sheet, Arctic sea ice or the Amazon rainforest. To facilitate
wider use and reproducibility, we have extended the exist-
ing R package INLA.ews to incorporate our methodologi-
cal advancements. This software provides a user-friendly in-
terface for implementing our approach, leveraging the com-
putational efficiency of the INLA framework for Bayesian
inference.

Code and data availability. The NGRIP δ18O data (North
Greenland Ice Core Project members, 2004; Gkinis et al., 2014)
and GICC05 chronology (Vinther et al., 2006; Rasmussen et al.,
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