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Abstract. We apply 4D variational data assimilation to the Lorenz 63 model to introduce a new method for
parameter estimation in chaotic climate models. The approach aims to optimise an Earth system model (ESM)
for which no adjoint exists by utilising the adjoint of a different, potentially simpler ESM. This relies on the
synchronisation of the model to observed data. Dynamical state and parameter estimation (DSPE) is used to
stabilise the tangent linear system by reducing all positive Lyapunov exponents to negative values, thereby im-
proving parameter estimation by enabling long assimilation windows. The method introduces a second layer
of synchronisation between the two models, with and without an adjoint, to facilitate linearisation around the
trajectory of the model for which no adjoint exists. This is achieved by synchronising two Lorenz 63 systems,
one with and the other without an adjoint model. Results are presented for an idealised case of identical, perfect
models and for a more realistic case in which they differ from one another. If employed in a high-resolution ESM
for which a coarse-resolution adjoint exists, the method will save computational resources as only one forward
run with the full high-resolution ESM per iteration is needed. It is demonstrated that there is negligible error and
uncertainty change compared to the traditional optimisation of a full ESM with an adjoint. Stemming from this
approach, it is shown that the synchronisation between two identical models can be used to filter noisy data in
a dynamical way which reduces the parametric uncertainty of the optimised model by approximately one-third.
Such a precision gain could prove to be valuable for seasonal, annual, and decadal predictions.

1 Introduction

The time evolution of the Earth system can be simulated us-
ing numerical Earth system models (ESMs). Provided these
models skilfully describe the system’s time evolution and ob-
served processes, they can be used to forecast future states of
the system as long as accurate initial conditions exist. Data
assimilation is a powerful tool to bring ESMs into agreement
with the observed climatic state by combining data with the
numerical model while preserving dynamic principles gov-
erning the system (Wunsch and Heimbach, 2006; Nichols,
2010) while also attempting to further improve the ESM’s
predictive skills.

There are two common assimilation approaches typi-
cally used to incorporate observations into a model: se-
quential and variational data assimilation schemes (Wunsch,
1996). Sequential data assimilation (Bertino et al., 2003) in-
volves the application of a filter, most commonly Kalman
filters (Kalman, 1960; Evensen, 1994, 2003; Tippett and
Chang, 2003; Houtekamer and Mitchell, 2001). This tech-
nique merges a predicted state with observations at each
analysis time step by estimating a joint probability distri-
bution between the two by taking into account their respec-
tive modelling and observational uncertainties. Variants of
the Kalman filter technique include extended Kalman filters,
ensemble Kalman filters, and square-root filters (Bar-Shalom
et al., 2004; Simon, 2006; Evensen, 2003; Van Der Merwe
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and Wan, 2001; Tippett et al., 2003). They all share a similar
basic procedure while differing in terms of specific variations
in the methodology. The strength of all filtering techniques
is that the sequential procedure allows for real-time assimi-
lation of observations, for example, in initialised numerical
weather forecasting.

In contrast, variational data assimilation (Le Dimet and
Talagrand, 1986) estimates a joint probability distribution
over an extended period of time by minimising a scalar
cost function, defined as the quadratic misfit between the
model trajectory and all available observations within a de-
fined time window. The most common approaches include
four-dimensional variational assimilation (4D-var) (Rabier
and Liu, 2003); three-dimensional variational data assimi-
lation (3D-var) (Gustafsson et al., 2001); weak and strong
constraint 4D-var (Tremolet, 2006; Fisher et al., 2011); and
ensemble variational filters, including 4DEnVar (Desroziers
et al., 2014). Variational data assimilation is a useful tech-
nique for solving both initial-value and parameter estimation
problems (Evensen et al., 2022; Goodliff et al., 2015; Ruiz
et al., 2013; Zou et al., 1992). It will be exclusively used in
this study.

The 4D-var approach utilises an adjoint of the model to
iteratively minimise the model–data misfit by adjusting con-
trol variables (Tett et al., 2017; Lyu et al., 2018; Köhl and
Willebrand, 2002; Allaire, 2015; Navon, 2009). The adjoint
equations of a fully non-linear model are derived from the
forward equations using integration by parts. In the data as-
similation context, this can be used to numerically calculate
the gradient of the cost function which is subsequently used
to find the cost function minimum in an iterative procedure.
Adjoint models have also been widely used for sensitivity
analysis in meteorology and oceanography (Hall et al., 1982;
Hall and Cacuci, 1983; Hall, 1986; Marotzke et al., 1999;
Stammer et al., 2016); this includes calculating sensitivity
with respect to lateral boundary conditions (Gustafsson et al.,
1998) and estimating the sensitivity of the 2 m surface tem-
perature with respect to the sea surface temperature, sea ice,
and sea surface salinity (Stammer et al., 2018). In practice,
the primary limitation in finding the minimum of the cost
function is the large amount of computational resources re-
quired due to non-linear or chaotic elements of the system.

In the context of a full non-linear ESM, the use of ad-
joint models faces several challenges. Applying an adjoint
model to a state-of-the-art Earth system problem is primarily
limited by the very large number of state variables O(107–
108), requiring significant computational resources and ob-
servational constraints. However, more fundamental is the
fact that non-linear dynamics of the system limit the appli-
cability of adjoint methods to the Earth system predictabil-
ity timescale. This can lead to exponentially growing adjoint
sensitivities as a result of multiple local minima in the cost
function. Under such circumstances, spikes occur in the es-
timated gradients, and the cost function becomes very rough
by showing an increasing number of local minima (Köhl and

Willebrand, 2002; Lea et al., 2000). Fortunately, the problem
can be mitigated through synchronisation, which removes
the non-linear or chaotic dynamics, leading to a smooth cost
function (Abarbanel et al., 2010). This method allows for the
extension of the assimilation window beyond the predictabil-
ity timescale, provided that sufficient observations are avail-
able. However, this solution comes at the expense of a viola-
tion of the original model equations.

The creation of an adjoint model code from the forward
code usually requires considerable effort. Automatic differ-
entiation tools, such as those of Giering and Kaminski (1998)
and Hascoet and Pascual (2013), were developed to aid in
this step. But substantial changes to the forward model code
are required unless it was already developed with the adjoint
modelling in mind. Stammer et al. (2018) created the first ad-
joint of an intermediate-complexity fully coupled Earth sys-
tem model that is automatically created from the forward
model by automatic differentiation using the Transforma-
tion of Algorithms in FORTRAN (TAF) compiler, called the
Centrum für Erdsystemforschung und Nachhaltigkeit (CEN)
Earth System Assimilation Model (CESAM). The adjoint of
this intermediate-complexity model is intended to be utilised
for tuning more complex CMIP-type models through param-
eter estimation since the basic underlying physics are very
similar. Otherwise, this is a manual process with consider-
able ambiguity in the choice of parameters (Mauritsen et al.,
2012).

Therefore, we propose a novel framework in which we use
two climate models that are both coupled through synchroni-
sation, one with a high complexity and the other of interme-
diate complexity, for which an adjoint exists to address the
second problem. The technique also has a much wider range
of additional applications since resolutions using the adjoint
method lag behind those applications featuring simpler as-
similation methods as variational methods are typically a fac-
tor of 100 more costly than running the associated forward
model. For example, the global GECCO3 ocean reanalysis
based on the adjoint method (Köhl, 2020) features only a
nominal resolution of 0.4°, while the GOFS 3.1 (Laboratory,
2016) based on 3D-var (Cummings and Smedstad, 2013) fea-
tures a 1/12° resolution. Employing coarser versions of the
adjoint while still running the forward model with full reso-
lution could significantly reduce the cost of the assimilation
effort. Therefore, the objective of this paper is to investigate
the accuracy and precision of such a synchronised data as-
similation approach. We perform this test using a Lorenz 63
model.

The Lorenz 63 system (Lorenz, 1963) is a well-established
proxy model of chaotic fluid systems, such as the atmo-
sphere (Gauthier, 1992; Miller et al., 1994; Pires et al., 1996;
Stensrud and Bao, 1992; Kravtsov and Tsonis, 2021; Huai
et al., 2017; Yang et al., 2006; Daron and Stainforth, 2015;
Errico, 1997). The advantage is that it can be used to rapidly
evaluate parameter estimation techniques in data assimila-
tion schemes prior to their application in a full ESM with
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low computational resource requirements. New modelling
techniques can thus be trialled in fast experiments (Pasini
and Pelino, 2005; Tandeo et al., 2015; Goodliff et al., 2020;
Marzban, 2013; Yin et al., 2014). It can also be used in a
wide range of other applications including, but not limited
to, data assimilation, stochastic modelling terms, and pre-
dictions (Du and Shiue, 2021; Cameron and Yang, 2019;
Pelino and Maimone, 2007). The system generates a three-
dimensional, time-varying trajectory which, with variation
of both model parameters and initial conditions, will pro-
duce very different trajectories. Thus, it is an ideal test bed
for non-linear modelling in a number of fields (Hirsch et al.,
2013). The Lyapunov exponent of the Lorenz 63 model is di-
rectly dependent upon its parameters, making it ideal for cli-
matological parameter estimation experiments. For our spe-
cific case, these properties make it ideal to evaluate our tech-
nique’s merits. In a previous study, Lyu et al. (2018) used
the Lorenz 63 model and its adjoint to fit a single parame-
ter ρ and the initial conditions (x,y,z) to observations. This
present study builds on Lyu et al. (2018) to simultaneously fit
all three model parameters and uses a model with an adjoint
to optimise the parameters of another model without one.

The structure of the paper is as follows: in Sect. 2, we
outline the methodology of synchronisation, the cost func-
tion, and the adjoint method. Section 3 introduces the Lorenz
63 model and describes our reference setup before introduc-
ing our two novel multi-model methods, describing our min-
imisation algorithm, and detailing our statistical metrics for
evaluating results. Section 4 shows and discusses the results
of our multi-model setups using a single-model setup as a
baseline for comparison. The results of introducing a mis-
modelling term into the adjoint model are also included. A
summary and concluding remarks are given in Sect. 5.

2 Methodology

2.1 Synchronisation

In chaotic systems, integrating over periods longer than the
predictability timescale creates problems for accurate param-
eter estimation. This is due to exponentially growing gradi-
ents and a maximum likelihood estimate with an increas-
ing number of local maxima (Köhl and Willebrand, 2002;
Lea et al., 2000). The non-linear or chaotic dynamics, which
detrimentally effect the maximum likelihood estimate, can
be removed by synchronisation (Abarbanel et al., 2010; Sug-
iura et al., 2014), which transforms the chaotic model into
one with linear dynamics and without positive Lyapunov ex-
ponents, leading to maximum likelihood functions with one
unique maxima. This can be implemented into a generic
model of ordinary differential equations:

ẋ(t)= f (x(t),θ , t), (1)

where x(t) is the state vector, θ is the parameter vector, and
t is the time. Synchronisation can be incorporated by adding

a term which penalises the difference between the model and
observations. This term is simply added to the equations:

ẋ(t)= f (x(t),θ , t)+α(xo(t)− x(t)), (2)

where α is the synchronisation coefficient, and xo(t) is the
observation state vector.

According to the law of large numbers, both with per-
fect models and in the presence of noise, the precision of
the recovered parameters will improve with increasing win-
dow length since more data are integrated into the estima-
tion. Similar benefits could be achieved by averaging esti-
mates obtained over short windows, for which no synchro-
nisation is necessary. However, underlying restrictions dif-
fer. For synchronisation, noise affects the state over the en-
tire window, whereas, for short windows, noise effects are
transported. Short window assimilation can be of benefit in
perfect model settings from the error growth, as suggested
by the quasi-static variational assimilation (QSVA) frame-
work (Pires et al., 1996), due to fact that sensitivities in-
crease exponentially with time in chaotic models. The ana-
logue of this QSVA effect in the dynamical state and param-
eter estimation (DSPE) method (Abarbanel et al., 2009) is
the attempt to reduce the synchronisation parameter as the
optimisation progresses and parameters move closer to their
true values. Since errors and sensitivities grow exponentially,
feasible window lengths in QSVA have a maximum value
due to limited numerical precision. Similarly, synchronisa-
tion parameters cannot approach zero for assimilation win-
dows much larger than the predictability limit because syn-
chronisation will eventually fail if positive Lyapunov expo-
nents exist (Quinn et al., 2009). We note that the reasoning
regarding the need for long assimilation windows is some-
what different in the context of a full ESM, for which it is
essential to resolve long-timescale physical mechanisms im-
pacted by the specific choice of parameters, such as air–sea
interactions of advection timescales in the ocean.

2.2 The cost function

As previously mentioned, in the context of variational data
assimilation, a cost function J must be introduced, measur-
ing the quadratic misfit between the model trajectory and ob-
servations. For the case of perfectly known initial conditions
but uncertain parameters θ , J takes the generic form

J =
1

2N
(θ − θb)T

1
σ 2
θb

(θ − θb)

+
1

2N

N∫
0

dt(xo(t)−h(x(t)))T 1
σ 2
xo

(xo(t)−h(x(t))) , (3)

whereN is the total integration time, σxo is the known uncer-
tainty associated with the observational noise, h(x(t)) is the
measurement function of the model’s predicted state vector
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x, and xo is the observation state vector. The prior parameter
information with the associated uncertainty is denoted by θo
and σθb , respectively. The global minimum of this function
is the maximum likelihood estimate of the model parameter
values relative to the observations and prior information.

2.3 The adjoint method and the cost function gradient

To aid in the minimisation of the cost function, it is standard
practice to calculate its gradient and to use this to iteratively
adjust control parameters. The adjoint model is introduced to
provide these cost function gradients and requires the gen-
eration of the adjoint of the forward model equations. The
resulting adjoint model can then be integrated in the reverse
direction to give the gradient of the cost function. The back-
ground term in Eq. (3) can be omitted assuming a well-posed
problem without prior information on the parameter. There-
fore, the gradient of the cost function with respect to the pa-
rameters is

∇θJ =−
1
N

N∫
0

dtλ(t)∂θf (x(t),θ , t), (4)

where N is again the total integration time period, λ(t) is
the adjoint vector at time t , and ∂θf (x(t),θ , t) is the partial
differential of the model with respect to the model parameters
at time t .

3 Experimental setup

3.1 Lorenz 63 model

In this study, we use the Lorenz 63 system for all of our ex-
periments (Lorenz, 1963). The model is defined by the fol-
lowing equations:

dx
dt
= σ (y− x), (5a)

dy
dt
= ρx− y− xz, (5b)

dz
dt
= xy−βz, (5c)

where x = (x,y,z) denotes the state variables at each given
time step, and θ = (σ,ρ,β) denotes the model parameters.
Throughout this article, we integrate all of our models us-
ing the fourth-order Runge–Kutta method with a step size of
1t = 0.01 and a total time period of 100 time units (TUs).
This system of equations will be subsequently referred to
as the true model with the parameters θ t = (10,28,8/3).
This true model is used to generate pseudo-observations
which will be used for synchronisation, data assimilation,
and parameter estimation. Noise is included in these pseudo-
observations by adding random values from a Gaussian dis-
tribution centred at zero relative to the true trajectory. The

random noise magnitudes are bounded to 25 % of the Lorenz
63 system’s standard deviation. These pseudo-observations
will be labelled as xo = (xo,yo,zo).

3.2 Reference setup (single model)

To quantify the efficacy of our novel method, we outline
a reference setup for a synchronised Lorenz 63 framework
similar to those described in Yang et al. (2006) and Lyu et al.
(2018). We expand the Lorenz 63 model (Eq. 5) by adding
synchronisation terms which then read as follows:

dx
dt
= σ (y− x)+α(xo− x), (6a)

dy
dt
= ρx− y− xz+α(yo− y), (6b)

dz
dt
= xy−βz+α(zo− z). (6c)

Here, α is the synchronisation coefficient, and xo =

(xo,yo,zo) denotes the pseudo-observations generated from
the true model. We set the initial parameter values of this
model at the start of the optimisation as the true system val-
ues plus a 10 % error. This gives σa = 11, ρa = 30.8, and
βa = 44/15, which will act as our initial values for the para-
metric fit. The initial conditions will remain unchanged com-
pared to the true model as our interests are exclusively in
climatic parameter estimation. Synchronisation will occur at
every time step in all of our setups, and its coefficient will
also be present in the adjoint equations. The significance of
this will be discussed in Sect. 4 as α has a critical role in the
precision and accuracy to which parameters can be estimated
due to its influence on both the cost function and its gradient.

For each state variable in Eq. (6), a synchronisation term
is included. There are seven possible combinations of these
state variables which can be synchronised. The effect of
each of the possible choices on the root mean squared er-
ror (RMSE) between the true and adjoint systems by vary-
ing the synchronisation constant α from 0 to 30 is shown in
Fig. 1. Noise was added (with zero mean and

√
2 standard

deviation) to the true system when constructing the pseudo-
observations. The figure demonstrates that synchronising the
z component is ineffective at reducing the RMSE (Yang
et al., 2006). In contrast, synchronising both x and y proves
to be effective, with y leading with the lowest RMSE val-
ues of the single variable for all values of α. Synchronising
xyz and xy achieves the most effective reduction in RMSE
for the lowest value of α. It can be seen in the figure that syn-
chronising z can lead to model instability. Thus, we choose to
only synchronise x and y in the following research to achieve
more stable and accurate results with negligible precision
loss.

The Lorenz 63 attractors for the trajectories of the true
model and that with an adjoint are shown in Fig. 2a without
synchronisation. A large divergence is visible between the
trajectories. However, if synchronisation is introduced, the
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Figure 1. The RMSE between the true and reference model trajec-
tories in seven different synchronisation scenarios. The synchroni-
sation constant α is varied from 0 to 30 in steps of 0.5. The solid line
is the median, and the shaded area is the 68 % percentile interval for
the ensemble of 100 experiments carried out.

trajectories become very similar, as shown in Fig. 2b. There
is now significant overlap between their kernel density es-
timations (KDEs). KDEs represent a smoothed estimate of
the PDF for the model trajectory over a given time period.
This allows for convenient visual comparison of trajectories.
A more numerically rigorous method to check for effective
synchronisation will be discussed in Sect. 4.

For all subsequent experiments with our setups, a parallel
experiment will be performed with this reference setup. The
differences in the results can then be compared to evaluate
the advantages and disadvantages of the novel techniques.

3.3 Multi-model data assimilation

A multi-model tandem technique is now considered, which
consecutively synchronises two forward models before run-
ning the adjoint of the second model backward in time. For
this purpose, Eq. (6) must be modified to incorporate a con-
secutive synchronisation. A schematic of this setup is pro-
vided in Fig. 3, and the implications of the two possible ways
to calculate the cost function are discussed in the subsequent
subsections.

The first model has no adjoint equations and is the target
model for which we wish to optimise the parameters. The
equations of model 1, which is run only in forward mode, are

dxf

dt
= σ (yf− xf)+α(xo− xf), (7a)

dyf

dt
= ρxf− yf− xf zf+α(yo− yf), (7b)

dzf

dt
= xfyf−βzf, (7c)

Figure 2. The bottom-left quadrants show the Lorenz 63 true and
model attractors from the main three variable orientations. The di-
agonal plots show kernel density estimations (KDEs). Panel (a)
shows the trajectories without synchronisation. Panel (b) shows the
trajectories with synchronisation.

where the subscript f denotes the forward run of model 1,
and the subscript o denotes observations generated from the
true model. The system of equations for model 2, which has
an adjoint, will now be modified to synchronise with the
forward-only model and not the observations:

dxa

dt
= σ (ya− xa)+α(xf− xa), (8a)

dya

dt
= ρxa− ya− xaza+α(yf− ya), (8b)

dza

dt
= xaya−βza, (8c)

where the subscript a denotes model 2, which has an ad-
joint. This model synchronises with model 1 but never di-
rectly with the observations.
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Figure 3. Illustration of the multi-model setup where each pseudo-
observation generated from the true model includes random addi-
tive Gaussian noise. The cost function can measure the difference
between the observations and either model 1 or model 2 depending
on the assumptions made. Both options are discussed in the text.

3.3.1 Setup 1 – state-filtered data assimilation (SFDA)

Assuming that both model 1 and model 2 can be thought of
as representing two identical climate models, the cost func-
tion can be placed on model 2. This allows model 1 to filter
out some of the background noise in the observations before
they are given to the cost function attached to model 2. Such
a filtering setup would theoretically reduce parametric un-
certainty below that of traditional single-model data assim-
ilation because model 1 should act to reduce the amount of
noise synchronised into model 2. We will subsequently refer
to this setup as state-filtered data assimilation (SFDA.)

In SFDA the cost function acts to constrain model 2. The
cost function is

JSFDA =
1

2N

N∫
t=0

dt(xo(t)− xa(t))T
1
σ 2
xo

(xo(t)− xa(t)) . (9)

N is again the total number of time steps of the assimilation
window, and σxo is the uncertainty associated with the obser-
vation noise. The adjoint matrix includes terms arising from
the second tandem layer of synchronisation for model 2. This
is given by

M∗SFDA =
−(σ +α) ρ− za ya 0 0 0

σ −(1+α) xa 0 0 0
0 −xa −β 0 0 0
α 0 0 −(σ +α) ρ− zf yf
0 α 0 σ −(1+α) xf
0 0 0 0 −xf −β

,
(10)

which in practice is numerically evaluated using the auto-
matic differentiation (AD) package JAX to calculate the vec-
tor Jacobian product.

The adjoint equation for SFDA is given by

λ̇SFDA(t)=
1
σ 2
xo

((xo(t),0,0,0)− (xa(t),0,0,0))

−M∗SFDA(t)λSFDA(t) for t =N,. . .,0, (11a)
with λSFDA(N )= 0. (11b)

These equations were derived using the method detailed in
Talagrand (2010). The gradient can then be calculated with
respect to the parameters (σ,ρ,β) notated by the subscript θ .
This yields

∇θJSFDA =
1
N

0∫
t=N

dtλSFDA(t)


ya(t)− xa(t)

xa(t)
−za(t)

yf(t)− xf(t)
xf(t)
−zf(t)

 , (12)

which is a component-wise multiplication at each time step.

3.3.2 Setup 2 – tandem data assimilation (TDA)

In this section, we want to explore if using an existing ad-
joint from one model could be utilised to optimise a differ-
ent target model without an adjoint. This will be referred to
as TDA. In TDA, we assume that both models may differ
in terms of resolution or numerical formulation but are gov-
erned by the same continuum dynamics. Instead of interpo-
lating or transforming the original model variables onto the
adjoint model grid, formulation of the adjoint model through
synchronisation would provide a simpler means to do this as
only essential parameters need to be interpolated. Auxiliary
variables and parameters will be generated by the synchro-
nised model, including those that may not exist in the target
model.

The cost function of TDA is

JTDA =
1

2N

N∫
t=0

dt(xo(t)− xf(t))T
1
σ 2
xo

(xo(t)− xf(t)) . (13)

N is the total number of time steps of the assimilation win-
dow, and σxo is the uncertainty associated with the obser-
vation noise. This measures the quadratic misfit between the
forward-only model 1 and the observations. Model 1, xf, will
be constrained by this cost function, and its gradient will be
calculated using the adjoint of model 2, xa. In this formula-
tion, the two systems are no longer considered to be a single
synchronised one but rather two separate models, one for the
calculation of the trajectory and the other for calculating the
gradient from its adjoint. The algorithm is also no longer ex-
act as we only assume that model 2’s adjoint will provide a
good approximation as long as its trajectory follows model 1
closely and is driven by the model–data differences of model
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1. The adjoint matrix is

M∗TDA =

−(σ +α) ρ− za ya
σ −(1+α) xa
0 −xa −β

 , (14)

which is numerically evaluated using AD. The synchronisa-
tion with model 1 ensures that the trajectory of model 2 xa
closely follows that of model 1.

The adjoint equation for TDA is given by

λ̇TDA(t)=
1
σ 2
xo

(xo(t)− xf(t))

−M∗TDA(t)λTDA(t) for t =N,. . .,0 (15a)
with λTDA(N )= 0. (15b)

The gradient with respect to the parameters θ = (σ,ρ,β) is
calculated to be

∇θJTDA =
1
N

0∫
t=N

dtλTDA(t)

ya(t)− xa(t)
xa(t)
−za(t)

 , (16)

which is again a component-wise multiplication at each time
step. For TDA and SFDA, the trajectories of both models and
adjoint vectors are stored for evaluation of the gradient.

3.4 Minimisation algorithm

To assimilate the data, we fit one of the synchronised mod-
els to the observations by optimising the model parameters.
A cost function is constructed to calculate the misfit between
observations and the model of interest. The gradient of the
cost function with respect to the model parameters is always
calculated using the adjoint method. However, the form of
the adjoint will vary between the two methods we presented
in Eqs. (11) and (15). The adjoint model is numerically eval-
uated by AD of model 2. This is done in the Python pack-
age JAX, which numerically evaluates the vector Jacobian
product of the model with respect to its state variable vec-
tor (Bradbury et al., 2018). This is then integrated using an
inverse Runge–Kutta scheme. Our code stores the state vari-
ables and adjoint vectors at each time step. It is also possi-
ble to carry out the entire integration using JAX. The pro-
cess of synchronising all models, calculating the cost func-
tion and its gradient, and then adjusting model parameters is
carried out iteratively by our chosen minimisation algorithm.
Throughout all steps the parameter values of forward-only
and adjoint models are identical and optimised simultane-
ously.

3.5 Statistical metrics

To get a more robust quantification of our setup’s behaviour,
it is necessary to repeat our study over a number of data sets

to calculate medians and percentile intervals (PIs). This al-
lows us to examine general traits of our model without an in-
dividual noise event obscuring trends and features of signif-
icance. Here this is done by generating 100 pseudo-data sets
and assimilating each set independently. The plotting pack-
age is then directly applied to these 100 outputs to plot the
median and 68 % PIs. The PIs are included to illustrate the
statistical spread of the results and reproducibility and not
to explicitly indicate uncertainty. Hence, we choose 68 % for
our PIs to give a concise visualisation of the central 1σ of
results. The mean percentage error and uncertainty are plot-
ted separately to allow for quantification of both the accuracy
and precision of our results. These are calculated by

mean %error=

100% ·

√√√√1
3
·

[(
σ − σt

σt

)2

+

(
ρ− ρt

ρt

)2

+

(
β −βt

βt

)2
]

(17)

and
mean %uncertainty=

100% ·

√√√√1
3
·

[(
1σ

σt

)2

+

(
1ρ

ρt

)2

+

(
1β

βt

)2
]
. (18)

The error is calculated by percentage difference between the
fitted and true parameter values. The parametric uncertainty
is calculated by the minimisation algorithm using a Hessian
estimate.

After parameter estimation, the optimised parameters are
used to initialise a free unsynchronised run of the model. The
attractors are plotted against the attractor of the true model.
In all cases with synchronisation greater than or equal to the
optimum value, the attractors’ KDE shows precise and con-
sistent agreement with that of the true model. Results are not
displayed as there are no differences which merit discussion.
Thus, our focus in the subsequent results is on comparing
how the examined setups differ in terms of the accuracy and
precision of optimised parameters recovered.

4 Results

Throughout the following section, we will use the single
model described in Lyu et al. (2018) as our benchmark to
compare the new setups against. To understand the behaviour
of the setups at different operating extremes, assimilations
are carried out for variations of observational noise and α.
This will help establish the optimal synchronisation strength
dependent on the noise amplitude. We will also be able to
compare the errors and uncertainties of the single model with
our multi-model setups.

4.1 SFDA (setup 1)

The results from a scan of α are shown in Fig. 4. The single-
model scan has two main regions. The first, for α ≤ 7.5, is

https://doi.org/10.5194/npg-32-353-2025 Nonlin. Processes Geophys., 32, 353–365, 2025



360 P. D. Kennedy et al.: Long-window tandem variational data assimilation methods

Figure 4. The percentage error between the true values of (σ,ρ,β)
and the fitted value from SFDA. A single-model assimilation is in-
cluded for comparison. An ensemble of 100 assimilations is carried
out over 100 different data sets. The median (lines) and 68th per-
centile intervals (shaded areas) are plotted. The noise level is 25 %.

where the system is poorly synchronised, leading to an inac-
curate fit of the parameters and an unstable median value.
The second, where α > 7.5, is where the system is fully
synchronised and recovers the true model parameters very
effectively. SFDA has a higher onset of effective synchro-
nisation than the single-model setup, beginning at α = 11.
Above α = 12.5, SFDA has consistently more accurate pa-
rameter recovery than the single-model setup, while the op-
posite holds below α = 12.5. The minimum errors at the re-
spective optimal α values are nearly identical.

Figure 5 shows the results of two fits carried out for data
with an applied noise of 25 % relative to the systems’ stan-
dard deviations. The mean percentage uncertainty over the
three parameters is plotted for both setups. Noticing in par-
ticular the spread of the percentile intervals, the single-model
setup is found to be synchronised and has a high precision
from α = 7.5 and an SFDA from α = 11.5. Once the SFDA
setup is synchronised, it is found to have a reduced uncer-
tainty compared with the single model. SFDA is found to be
approximately one-third more precise than the single-model
setup for all values of α investigated. However, since SFDA
requires larger α, uncertainty values for the same α cannot
be directly compared.

Figure 4 suggests that the SFDA technique is more ac-
curate than a standard single-model setup at higher values
of α. Figure 5 additionally shows that SFDA is more pre-
cise than a single model for all values of α after the onset of
effective synchronisation. In cases where accuracy and pre-
cision are desirable and where computational resources and
time are available, this would support the use of SFDA. How-
ever, Fig. 4 suggests that the error estimates do not represent
the actual achieved accuracy of the parameter estimation.
Both metrics suggest that the accuracy is less sensitive to the
choice of α for SFDA. It is also important to note that, in the
context where precision is the priority, the lowest value of
α after effective synchronisation should be chosen. Increas-
ing values of α increase the parametric uncertainty because

Figure 5. The average percentage uncertainty of the three parame-
ters (σ,ρ,β) after SFDA from the minimisation algorithm for dif-
ferent values of α. A single-model assimilation is included for com-
parison. An ensemble of 100 assimilations is carried out over 100
different data sets. The median (line) and 68th percentile intervals
(shaded areas) are plotted.

of the associated declining sensitivity of the trajectory to pa-
rameter changes. This is also the reason why, for the same
α, SFDA shows consistently better performance: the less ef-
ficient indirect constraint to the observations makes it more
sensitive to the parameters.

Figure 6 shows the results of varying the noise levels on
the fitted parameter values. For all applied noise levels, the
quality of the fit can be considered to be good as the me-
dian of the mean percentage uncertainty of the parameters
remains below 0.5 % even with noise levels of up to 50 %.
SFDA is found to have a mean error performance similar
to the single-model system across the range of noise levels
tested. However, the spread of the error is slightly improved
in the double-model setup at low noise due to the forward-
only model smoothing outlying observation better than a
single-model setup. The parametric uncertainty is found to
be consistently reduced in the double-model system for all
noise levels. This demonstrates the precision improvement
achieved by running the forward model twice to smooth the
observations before carrying out data assimilation. The con-
sequences of this are that, for smaller models, where com-
putational resources are available and where improved preci-
sion or accuracy are desirable, SFDA can reduce error and,
in particular, decrease uncertainty.

4.2 TDA (setup 2)

Similarly to SFDA, TDA results are evaluated in terms of
percentage error and uncertainty estimates against the sin-
gle model with a data noise level of 25 %. Error estimates are
shown in Fig. 7 as a function of α. For α ≥ 3, synchronisation
starts to set in, and parameter estimation begins to improve.
The system only synchronises effectively for α ≥ 7.5 to con-
sistently recover the true model parameters, as is visible from
the small spread of the error. The TDA scan follows the be-
haviour of the primary model very closely, with no visible
disadvantage.
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Figure 6. The percentage error between the true values of (σ,ρ,β)
and those from SFDA, as well as average percentage uncertainty
of the SFDA parameters. A single-model assimilation is included
for comparison. An ensemble of 100 assimilations is carried out
over 100 different data sets. The median (line) and 68th percentile
intervals (shaded areas) are plotted. The noise level varies between
5 % and 50 % in steps of 5 %.

Figure 7. The percentage error between the true values of (σ,ρ,β)
and those from TDA. A single-model assimilation is included for
comparison. An ensemble of 100 assimilations is carried out over
100 different pseudo-data sets. The median (lines) and 68th per-
centile intervals (shaded areas) are plotted. The noise level is 25 %.

The mean percentage uncertainty over the three parame-
ters is plotted in Fig. 8 for both setups. TDA is found to have
almost identical uncertainty compared to the single model.
The plot consists of two regions. The first, for α < 7.5, is
the region where the model is not yet consistently synchro-
nised producing high variability depending on the specific
noise. The second, for α ≥ 7.5, is where the system is con-
sistently synchronised. The minimum median of the mean
parametric uncertainty, after consistent synchronisation be-
gins, is ≈ 0.35 % and achieved at α = 7.5. The subsequent
increase in uncertainty is due to the reduced the parametric
sensitivity associated with the increased α, thereby reducing
the curvature of the cost function at the minimum.

Figure 9 shows the results of varying the noise levels on
the fitted parameter values. For all noise levels studied, the
fit can be considered to be accurate as the mean percentage
error of the parameters remains below 1 % even with noise
levels of 50 %. The increased spread of the error at low noise

Figure 8. The percentage uncertainty, from the minimisation al-
gorithm, averaged over all three parameters (σ,ρ,β) after TDA. A
single-model assimilation is included for comparison. An ensem-
ble of 100 assimilations is carried out over 100 different data sets.
The median (lines) and 68th percentile intervals (shaded areas) are
plotted.

Figure 9. The percentage error between the true values of (σ,ρ,β)
and those from TDA. A single-model assimilation is included for
comparison. An ensemble of 100 assimilations is carried out over
100 different data sets. The median (lines) and 68th percentile in-
tervals (shaded areas) are plotted. The noise level varies between
5 % and 50 % in steps of 5 %.

is thought to be due to the fixed value of α used for all noise
levels impacting the synchronisation of the system. The TDA
setup is found to have extremely consistent uncertainty com-
pared to the single-model system.

The consistent results of TDA in Figs. 7, 8, and 9 rela-
tive to the standard single-model setup show that transfer-
ring information via synchronisation does not compromise
precision. Figures 7 and 8 also concur with those of SFDA in
suggesting that the optimal value of α is the smallest value
after the onset of effective synchronisation. An increase in
α beyond this point can lead to a significant reduction in the
precision of the parameters. In cases where only a simpler but
similar model with an adjoint is available, results are likely
to degrade. In the following section, we will study the poten-
tial impact of model inconsistencies on the precision of the
parameter estimation.
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Figure 10. The Lorenz true-model and model-2 attractors in the
case of ε = 1.0. The bottom-left and top-right quadrants show the
attractors from all possible coordinate orientations. The diagonal
plots show kernel density estimations (KDEs). No noise is added.

4.3 Mismodelling in TDA

In this section, the tandem data assimilation (setup 2) is be
used with different forward and adjoint models that share
common physics to examine the impact of introducing model
discrepancies. We construct a test case where the equations
of model 2, which has an adjoint (see Eq. 8), are modified
to give an oscillatory difference to both the true model and
model 1. This can be done in a number of ways. We choose
to introduce a multiplicative sine function into the equations
in such a way that it is also included in the adjoint matrix
and thus modifies the gradient values returned to the fitting
algorithm. Model 2 with an adjoint is now

dxa

dt
= σ (ya− xa)+α(xf− xa), (19a)

dya

dt
= ρxa− ya− xaza+α(yf− ya), (19b)

dza

dt
= xaya−βza · (1− ε sin(2πt)) , (19c)

where ε is the term which determines the strength of the
oscillation term. The effect of this term on the attractor is
shown in Fig. 10 without synchronisation. When compared
to Fig. 2a, it can be seen that this term is successful in dis-
torting the shape and probability density of the attractor.

The consequences of varying this term based on the accu-
racy of parameter optimisation after assimilation are shown
in Fig. 11. With increasing ε, the percentage error and uncer-
tainty between fitted and true systems remain stable. In spite
of the large impact this term has on the attractor shape, the
figure demonstrates a resilience of TDA to modelling differ-
ences between the forward-only model 1 and model 2 with
an adjoint.

Figure 11. The percentage error (a) and uncertainty (b) between the
true values of (σ,ρ,β) and those from TDA. An ensemble of 100
assimilations is carried out over 100 different data sets. The median
(line) and 68th percentile intervals (shaded areas) are plotted. The
noise level is 25 %, and α = 7.5.

5 Conclusions

In this paper, we have demonstrated the ability to constrain a
Lorenz 63 model using a second model with similar physics
and an adjoint by 4D-var data assimilation. Such an approach
removes the need to generate an adjoint for a forward model
if such an adjoint already exists for a separate yet dynami-
cally similar system. An important application of this tech-
nique in Earth system modelling would be a situation where
a low-resolution ESM with an adjoint shares a parameteri-
sation with a high-resolution ESM for which no adjoint ex-
ists. Moreover, using a lower-resolution version of the same
model could computationally make data assimilation much
faster. We have shown that, in both cases, the low-resolution
ESM with an adjoint could, through synchronisation, follow
the trajectory of the more complex and high-resolution model
while, at the same time, providing all necessary variables to
run its tangent linear adjoint model. This can then be utilised
to estimate parameters in the complex high-resolution ESM.
We have also shown that running a forward model twice be-
fore beginning data assimilation can act to smooth the data
and reduce the parametric uncertainty. Our focus is on op-
timising the parameters of a full ESM, which will be tested
as a next step. It would also be possible to optimise the ini-
tial condition of the state variables, which is more applicable
to weather forecasting techniques. Future work will exam-
ine the resilience of such setups to spatially and temporally
sparse data.

Data availability. The pseudo-data samples used in this study
are available on request from the authors. The figures in
this research were plotted by the seaborn plotting pack-
age (Waskom, 2021) (https://doi.org/10.21105/joss.03021, last ac-
cess: 17 April 2025) utilising our output, which was man-
aged using pandas (The pandas development team, 2020)
(https://doi.org/10.5281/zenodo.3509134, last access: 17 April
2025). Automatic differentiation of our model was carried out using
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JAX (Bradbury et al., 2018) (http://github.com/google/jax, last ac-
cess: 17 April 2025). The minimisation of our cost function and
the uncertainty evaluation was done by iminuit (Dembinski and
et al., 2020) (https://doi.org/10.5281/zenodo.3949207, last access:
17 April 2025).
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