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Abstract. In this paper, we use statistical complexity and information theory metrics to study structure within
solar wind time series. We explore this using entropy–complexity and information planes, where the mea-
sure for entropy is formed using either permutation entropy or the degree distribution of a horizontal visibility
graph (HVG). The entropy is then compared to the Jensen complexity (Jensen–Shannon complexity plane) and
Fisher information measure (Fisher–Shannon information plane), formed from both permutations and the HVG
approach. Additionally, we characterise the solar wind time series by studying the properties of the HVG degree
distribution. Four types of solar wind intervals have been analysed, namely fast streams, slow streams, magnetic
clouds, and sheath regions, all of which have distinct origins and interplanetary characteristics. Our results show
that, overall, different metrics give similar results, but Fisher–Shannon, which gives a more local measure of
complexity, leads to a larger spread of values in the entropy–complexity plane. Magnetic cloud intervals stood
out in all approaches, particularly when analysing the magnetic field magnitude. Differences between solar wind
types (except for magnetic clouds) were typically more distinct for larger time lags, suggesting universality
in fluctuations for small scales. The fluctuations within the solar wind time series were generally found to be
stochastic, in agreement with previous studies. The use of information theory tools in the analysis of solar wind
time series can help to identify structures and provide insight into their origin and formation.

1 Introduction

The solar wind is permeated by multi-scale fluctuations in
its magnetic field and plasma parameters (Verscharen et al.,
2019; Bruno and Carbone, 2013). These fluctuations play a
pivotal role in shaping the evolution and dynamics of the so-
lar wind, driving heliospheric turbulence and facilitating en-
ergy transfer across scales. Furthermore, solar wind fluctua-
tions contribute to the transport and acceleration of charged
particles and can strengthen the coupling between the so-
lar wind and planetary magnetospheres, therefore leading to
stronger space weather effects (Oughton and Engelbrecht,
2021; Borovsky and Funsten, 2003; Osmane et al., 2015; Tel-
loni et al., 2021; Kilpua et al., 2017b).

The solar wind exhibits a large-scale structure, charac-
terised by alternating fast ( & 600 km s−1) streams com-
ing primarily from coronal holes and slower (∼ 300–
400 km s−1) streams with variable sources, such as the re-

lease of initially confined plasma from the streamer belt re-
gion or outflows from the edges of coronal holes (Zirker,
1977; McComas et al., 2003; Cranmer, 2009; Brooks et al.,
2015; Bale et al., 2019). Interactions between streams of dif-
ferent speeds form compressive structures known as stream
interaction regions (SIRs; Richardson, 2018), which often re-
peat in 27 d intervals as the coronal holes from which they
originate are relatively long-lived structures. Another key
category of large-scale heliospheric structures is the inter-
planetary counterparts of coronal mass ejections (ICMEs;
Kilpua et al., 2017a). During solar maximum, ICMEs can
comprise up to 40 %–60 % of the ecliptic solar wind near the
Earth’s orbit (Richardson and Cane, 2012). A typical ICME
in the solar wind consists of a leading shockwave, a turbulent
sheath region, and an ejecta, provided that the ejecta prop-
agates sufficiently fast with respect to the preceding solar
wind. Approximately one-third of the ICME ejecta show sig-
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natures consistent with an underlying flux rope configuration
(Richardson and Cane, 2004), i.e. enhanced magnetic field
magnitude, smooth rotation of the magnetic field direction
over a large angle, and depressed proton beta. Such events
are commonly referred to as magnetic clouds (MCs) (Burlaga
et al., 1981). In contrast to MCs, ICME sheaths, being com-
pressive structures, are more similar to SIRs in their solar
wind properties, exhibiting large-amplitude magnetic field
variations and relatively high densities and temperatures.

Due to their distinct origins and formation, the various
types of solar wind discussed previously (slow, fast, SIRs,
sheath, and ejecta) are expected to feature significant dif-
ferences in their fluctuation and turbulence characteristics
(Kilpua et al., 2017b). Several studies have already indicated
that normalised magnetic field fluctuations are higher during
the compressive sheaths and SIRs than in the unperturbed
solar wind, while magnetic clouds represent the lowest fluc-
tuation levels (Kilpua et al., 2017a; Borovsky et al., 2019;
Moissard et al., 2019).

Fluctuations in large-scale solar wind structures can arise
from multiple sources. In the fast wind, the most common
fluctuations are anti-sunward propagating Alfvén waves, be-
lieved to originate from the convective motions of the so-
lar photosphere (Belcher and Davis, 1971). In the corona,
sunward-propagating Alfvén waves are generated from re-
flected outward waves and via parametric decay instabil-
ity (Shoda and Yokoyama, 2016; Tenerani and Velli, 2013;
Sishtla et al., 2022), leading to an active turbulent cascade of
energy from large to smaller scales. There is evidence that
turbulence is also actively generated further out in the he-
liosphere, suggesting that inward Alfvén waves must also be
generated in the heliosphere (Chen et al., 2020). Moreover,
some of the fluctuations in the solar wind arise from inter-
mittent coherent structures that may be unrelated to the tur-
bulent cascade. Examples include current sheets, flux tubes,
and small-scale flux ropes, which may either originate from
the Sun or be created in interplanetary space via magnetic
reconnection (Borovsky, 2008; Li et al., 2011; Sanchez-Diaz
et al., 2017; Zhao et al., 2021; Ruohotie et al., 2022).

An important question regarding solar wind fluctuations
is whether they are stochastic, periodic, or chaotic in na-
ture. This distinction can provide insights into the origin of
the fluctuations and mechanisms that generated them. Un-
derstanding the nature of solar wind fluctuations is also an
important aspect for space weather applications, for example,
with regard to building better numerical models and forecast-
ing schemes, given that stochastic (random) fluctuations are
difficult to predict.

In this study, we apply complexity analysis to study fluc-
tuations in the solar wind, which offers a complementary ap-
proach to more traditional analysis techniques. Using com-
plexity analysis we can explore phenomena such as cross-
scale effects, emergence, and self-organising behaviour (Mc-
Granaghan, 2024). This is particularly relevant to the study of
the solar wind, where a plethora of fundamental plasma pro-

cesses are in action. These processes cause structures from
small-scale turbulent fluctuations to large-scale phenomena
such as ICMEs.

While complexity science or information theory may not
directly explain the underlying physical processes of the
analysed systems, they can provide valuable insights into pat-
terns and structures in solar wind time series, help to iden-
tify the combined effects of interacting subsystems, and dif-
ferentiate between solar wind structures of different origin
(Kilpua et al., 2024). Our aim is to explore techniques that are
new to solar wind studies (horizontal visibility graph (HVG)
analysis and the Fisher–Shannon information plane) in com-
bination with a technique that has been used previously in
the field, the Jensen–Shannon complexity. These methods,
which will be introduced in the next paragraphs, are comple-
mentary to each other.

The Jensen–Shannon complexity analysis (Rosso et al.,
2007) has recently become more widely used in the field of
space plasma physics. It is based on the concept of permu-
tation entropy, i.e. on finding how different permutation pat-
terns occur in a time series (Bandt and Pompe, 2002). Permu-
tations at different time lags can be determined for the fluc-
tuations, straightforwardly allowing for a multi-scale analy-
sis. Previous studies using the Jensen–Shannon entropy have
found solar wind magnetic field fluctuations to be stochas-
tic in nature (Weck et al., 2015; Weygand and Kivelson,
2019; Good et al., 2020; Kilpua et al., 2022; Raath et al.,
2022; Kilpua et al., 2024). In particular, Kilpua et al. (2024)
performed an extensive permutation entropy and complexity
analysis study of different types of solar wind using 1 AU
measurements for the period of 1997–2022. They found that,
at large scales (i.e. fluctuations at time lags of a few min-
utes), magnetic clouds clearly exhibited the lowest entropies
and highest Jensen–Shannon complexities, while fast wind
streams were the most stochastic. At smaller scales, turbu-
lent features were more similar. In their analysis of frac-
tal dimensions, Muñoz et al. (2018) found that magnetic
clouds similarly stood out from other solar wind types, with
the clouds displaying a distinctive monofractal behaviour.
Macek (2010) investigated the fractal nature of the solar wind
and argued that solar wind fluctuations showed signatures
of a low-dimensional attractor. However, the studies using
Jensen–Shannon complexity have thus far found no signa-
tures of a low-dimensional attractor structure within solar
wind.

The Jensen–Shannon complexity analysis is one of a num-
ber of methods to investigate the nature of fluctuations. Oth-
ers include the visibility graph (VG) (Lacasa et al., 2008), a
method that transforms the analysed time series into a graph
that permits investigation of underlying patterns and esti-
mation of complexity. The method is based on determining
whether two values in the time series are “visible”, i.e. con-
nected. A special case of the VG method is the horizontal
visibility graph (HVG) (Luque et al., 2009), where connec-
tions are made based on a more simple rule for “visibility”
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than in the traditional VG. The HVG technique can be used
in combination with the Fisher information measure (FIM;
Fisher, 1925; Ravetti et al., 2014) to study the complexity of
a time series. The FIM is a more local measure than Shan-
non entropy as it compares consecutive values to each other.
Thus, the ordering of the distribution is important in Fisher’s
approach. FIM has previously been used in the field of he-
liophysics by Balasis et al. (2016, 2023b), who used entropy
and Fisher information to study geomagnetic jerks and geo-
magnetic activity indices, respectively.

Other methods that have been used in heliophysics are,
for example, the recurrence quantification analysis (Donner
et al., 2019); network analysis (Orr et al., 2021); and maximal
Lyapunov exponents, approximate entropy analysis, and de-
lay vector variance (Oludehinwa et al., 2021). A comprehen-
sive review of complexity science approaches and techniques
in heliophysics is provided by McGranaghan (2024), while
Balasis et al. (2023a) focus specifically on complex meth-
ods and their usage in the near-Earth environment. Finally,
Chian et al. (2022) review nonlinear dynamics and plasma
turbulence, expanding on the concepts also discussed in this
study, such as chaotic and stochastic dynamics and complex-
ity.

The key purpose of this analysis is to examine how the
Jensen–Shannon complexity, the Fisher–Shannon informa-
tion plane, and HVG analysis capture the fluctuation sig-
natures of distinct solar wind structures. It can be expected
that different types of solar wind could show different types
of fluctuations, perhaps relating to the processes that cause
their formation. We thus analyse in detail a few selected
events that are representative of four large-scale solar wind
categories, namely slow wind, fast wind, magnetic clouds,
and sheaths. The paper is organised as follows: in Sect.2 we
present the data and analysis methods, including detailed de-
scriptions of each of the complexity measures used; in Sect. 3
the results are presented; and in Sects. 4 and 5 we discuss the
results and conclude.

2 Data and methods

2.1 Spacecraft data

The solar wind data used in this study come from the WIND
spacecraft. We used the 3 s resolution data from the Mag-
netic Field Investigation (MFI) instrument, which is a boom-
mounted dual-triaxial fluxgate magnetometer (Lepping et al.,
1995). Measurements are given in geocentric solar eclip-
tic (GSE) coordinates. Three intervals of data were consid-
ered for each solar wind type, each consisting of 12 h of
measurements. For fast wind intervals, these were (1) 28 De-
cember 2005 at 00:39–12:38 UT, (2) 9 April at 22:33 UT to
10 April 2006 at 10:32 UT, and (3) 14 March 2007 at 04:23–
16:22 UT. For slow wind, these were (1) 26 December at
14:11 UT to 27 December 2005 at 02:10 UT, (2) 8 April 2006
at 07:21–19:20 UT, and (3) 10 March at 17:05 UT to

11 March 2007 at 05:04 UT. For sheath regions, these were
(1) 17 September 2011 at 03:02–15:01 UT, (2) 26 February at
21:04 UT to 27 February 2012 at 09:03 UT, and (3) 27 June at
13:56 UT to 28 June 2013 at 01:55 UT. For MCs, these were
(1) 15 May 2005 at 10:00–21:59 UT, (2) 20 May 18:00 UT
to 21 May 2005 at 05:59 UT, and (3) 12 June at 22:00 UT to
13 June 2005 at 09:59 UT. These intervals were chosen from
the data set of Kilpua et al. (2024), with the requirement that
there should be as few data gaps as possible in the data to
robustly calculate the complexity measures. All of the time
series we analysed had less than 2.4 % of missing data points.
Time series plots of the magnetic field magnitudes and com-
ponents during these intervals are included in the Appendix
(Figs. A1–A4).

Due to the differences between the various techniques
used to estimate the complexity, we have applied two dif-
ferent approaches to account for data gaps in the time series.
For the HVG approach, data were concatenated into a final
time series such that all data gaps were closed. When cal-
culating the permutation entropy, we followed the sugges-
tion presented in Olivier et al. (2019); i.e. we excluded all
those permutation patterns (of the chosen length) that con-
tained missing data from the calculation of the permutation
entropy. This resulted in excluding less than 3 % of the in-
tervals in all cases, except for the third sheath region and the
first magnetic cloud, where 6.3 % and 12.2 % were excluded,
respectively.

2.2 Horizontal visibility graphs

The visibility graph (VG) was first introduced by Lacasa
et al. (2008) as a way of converting time series into net-
works. The method is based on studying the “visibility” of
data points in relation to each other, i.e. the amplitude of
values in a time series. Two data points of small magni-
tude separated by a high-magnitude data point do not “see”
each other and are hence not connected, while two large-
magnitude data points separated by many lower-magnitude
data points are visible to each other. Each point in the origi-
nal time series corresponds to a node in the resulting graph.
Studying time series in network forms enables the use of net-
work analysis methods that are powerful tools to assess the
nature of time series, i.e. whether the processes that create
them are chaotic, periodic, or stochastic in nature. The hori-
zontal visibility graph (HVG) is a simplification of the VG,
introduced by Luque et al. (2009). In the HVG, connections
between data points (i.e. nodes) are made based on how dif-
ferent points in the data set are “visible” to each other in the
horizontal direction. Two points xa and xb in a time series
will be connected (i.e. visible) if

xa,xb > xn, (1)

for all n, such that

a < n < b. (2)
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Each point in the series will be connected at least to its
two neighbours, which makes the resulting graph fully con-
nected. The connections in the map can be studied statisti-
cally by forming a degree distribution of the graph. The de-
gree (k) of a node measures how many connections a given
node has with the other nodes in the series. For example, if
a data point or node is only connected to its neighbours, its
degree will be 2. The degree distribution therefore gives the
number of nodes that have k connections for the range of
possible k values.

As the relation for connecting the points in the investigated
time series is rather simple, some analytical solutions can be
derived to describe the properties of the final graph if con-
sidering purely uncorrelated (i.e. random walk) time series
data (Luque et al., 2009), an example of which is regular
Brownian motion. Lacasa and Toral (2010) tested the method
for uncorrelated and chaotic and stochastic data with corre-
lation, with fractional Brownian motion being one example.
They found that all of the tested time series (i.e. not only un-
correlated data) follow an exponential equation for P (k) in
the tail of the degree distribution: P (k)∼ exp(−λk). Lacasa
and Toral (2010) then classified some known chaotic and
stochastic processes by forming HVGs and determining the
λ values of the distributions. The λ value can be estimated by
the exponential fitting to the degree distribution. The authors
show that λ= ln(3/2) is the threshold between chaotic and
stochastic processes. The values λ < ln(3/2) correspond to
chaotic processes, and the values λ > ln(3/2) correspond to
correlated stochastic processes. When λ∼ ln(3/2), the pro-
cess is uncorrelated.

The above-described classification method by Lacasa and
Toral (2010) was tested with a more comprehensive set of
chaotic and stochastic processes by Ravetti et al. (2014). The
authors identified several issues with the method. For ex-
ample, the fractional Gaussian noise, which is a stochastic
process, was incorrectly classified by the method in some
cases. Another issue identified by Ravetti et al. (2014) was
that the obtained degree distributions did not always exhibit
exponential regions where the fitting could be performed. It
should also be noted that, even in cases where the exponential
region does exist, it is not always clear what k range should
be fitted. The fitting is expected to be applied to the tail of
the distribution, but, as discussed by Ravetti et al. (2014), it
is ambiguous as to what degree the fitting should be started
from. In any case, the part of the distribution at low degree
numbers is excluded from the fitting, and, as such, some
information about the connections within the graph is not
utilised.

2.3 Shannon entropy

Shannon entropy, first proposed by Shannon (1948), is a
measure of the information that can be gathered from a set
of data. For any discrete probability distribution, the Shan-
non entropy is given by

S[P ] = −

N∑
j=1

pj · ln
(
pj
)
, (3)

where P = {pj ; j = 1, . . ., N} is a discrete probability dis-
tribution with N possible states. In the case where Shannon
entropy is zero, it is possible to predict with certainty which
of the possible outcomes j will take place. Conversely, the
maximal entropy is achieved by a set of data where it is very
difficult to predict the outcome; i.e. the probability distribu-
tion is uniform or close to uniform. The maximal entropy
for a system can be used to normalise the Shannon entropy
(Martin et al., 2006):

H [P ] = S[P ]/Smax.

The probability distribution function (PDF) used in calculat-
ing the Shannon entropy can be formed in several ways.

2.4 Permutation entropy

Bandt and Pompe (2002) define a measure of complexity,
permutation entropy, based on studying neighbouring val-
ues in a time series. The approach is similar to Shannon en-
tropy but with a specific PDF that is based on the magnitudes
of points in a time series. Permutation entropy for a series
{xt }t=1, ... N is defined as

S(P )=−
d!∑
i=1

pi log2pi, (4)

where P is the probability distribution of the patterns found
in the time series; pi is the probability of a pattern where i =
1, 2, 3, . . ., d!; and d is the embedding dimension, i.e. the
length of the subset where the permutations are found. The
normalised entropy is defined as

H (P )=−S(P )/log2d!, (5)

and the PDF, i.e. the probability of each permutation (ampli-
tude ordering) for a time series of length N , is

p(π )=
# {t | t ≤N − d, (xt+1, . . .xt+n)has type π}

N − d + 1
, (6)

where # indicates a number.
The form of the permutation entropy equation is the same

as the Shannon entropy, but here the PDF is specifically the
permutation distribution. In the context of this study, permu-
tation refers to the relative ordering of the data points in the
selected sample from the investigated time series.

The analysis is restricted by the choice of embedded di-
mension d , which is the length of the subsection of the time
series that is studied, i.e. the number of data points in a sam-
ple. Additionally, a time lag τ can be applied. This results
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in choosing every nth value of the series instead of consec-
utive values when forming the patterns. Olivier et al. (2019)
found that H values become stable when choosing a τ value
of ∼ 20 or higher for the data where averaging has been ap-
plied.

2.5 Jensen–Shannon plane

Martin et al. (2006) introduce the Jensen–Shannon statistical
complexity, which can be used in combination with Shannon
entropy:

Cjs =−2
S
(
P+Pe

2

)
−

1
2S(P )− 1

2S (Pe)
d!+1
d!

ln(d! + 1)− 2ln(2d!)+ ln(d!)
H (P ), (7)

where Pe is the maximum permutation entropy.
Jensen–Shannon complexity is a measure of order in a sys-

tem. It indicates how different the probability distribution is
from a uniform distribution for a given value of normalised
entropy H . The value of Cjs is the largest for the case where
the distribution is most varied and the smallest for both high
order and high disorder.

The “complexity plane” refers to a plane where the
Jensen–Shannon complexity Cjs is plotted against nor-
malised permutation entropy H . It was first introduced by
Rosso et al. (2007), who showed that chaotic, stochastic, and
periodic series fall in different areas of the plane. There are
also clearly defined maximum and minimum values of com-
plexity for each entropy value that correspond to disorder and
perfect order (Martin et al., 2006). The robustness of the anal-
ysis can be evaluated with the following tests:N/d!> 10 and
√
d!/N − (d − 1)r < 0.2 (Weygand and Kivelson, 2019; Os-

mane et al., 2019), where r is the subsampling rate, which
relates to the time lag, i.e. τ = r1t , where 1t is the data
resolution.

2.6 Fisher–Shannon plane

Fisher’s information measure (FIM), first introduced by
Fisher (1925), is another parameter to estimate the nature of
time series and embedded structures.

Compared to Shannon entropy, FIM is more of a local
measure. In FIM, consecutive values of the distribution are
compared to each other, while the Shannon entropy is a mea-
sure of the full probability distribution (Ravetti et al., 2014)).

In this study, the discrete form for FIM, following
Gonçalves et al. (2016), will be used:

FIM= F0

N−1∑
i=1

(
(pi+1)1/2

− (pi)1/2
)2
, (8)

where the constant F0 is

F0 =

 1 pi∗ = 1 for i∗ = 1 or if i∗ =N and
pi = 0∀i 6= i∗,

1/2 otherwise.
(9)

Frieden and Soffer (1995) expand on the FIM and its uses
in physics. They relate the FIM to the gradient of the distribu-
tion it is applied to and write that, for a uniform PDF, the FIM
will be small. Such a distribution will describe a highly un-
predictable system. Conversely, for a highly predictable sys-
tem, the PDF will have a higher gradient and larger FIM. For
example, in the case of a delta distribution, FIM is equal to 1
as the probability is zero everywhere except at x = 0. Con-
versely, for a uniform distribution, FIM is zero as there is no
gradient in the distribution. Unlike in Shannon entropy, the
ordering of the distribution is important for FIM as it takes
into account adjacent values in the PDF.

Plotting FIM and Shannon entropy on a plane gives
the Fisher–Shannon information plane (Vignat and Bercher,
2003). This plane has been studied by, among others, Oli-
vares et al. (2012a). The authors plotted FIM and Shannon
entropy of the investigated data in a Fisher–Shannon plane
and found that chaotic and noisy stochastic data fall into
different regions. They calculated FIM and entropy using
the Bandt and Pompe (2002) permutation distribution as the
PDF.

The effect of the ordering of the patterns on the Fisher–
Shannon plane when calculating FIM from the permutation
distribution has been studied by Olivares et al. (2012a, b) and
Spichak et al. (2021). Olivares et al. (2012a) found that the
Lehmer protocol, i.e. lexicographic order, gives more struc-
ture than the other tested pattern, namely the Keller order.
In this study we use the lexicographic order for sorting the
permutations as it is widely used in various applications.

The Fisher–Shannon information plane can also be formed
from the HVG degree distribution as the PDF, as was done
by Ravetti et al. (2014) and Gonçalves et al. (2016). Ravetti
et al. (2014) introduced this approach as a way of reducing
the previously mentioned problems related to the classifica-
tion using λ values. With the Fisher–Shannon plane, the full
degree distribution is taken into account, and no information
is therefore left out of the analysis. Ravetti et al. (2014) find
that chaotic and stochastic processes fall into different areas
on the plane.

3 Results

For this study, we formed Jensen–Shannon and Fisher–
Shannon complexity and information planes for four types of
solar wind time series (Sect. 2.1). For the Jensen–Shannon
plane, the permutation entropy technique was used to form
the PDF, while, for the Fisher–Shannon plane, we used both
the permutation entropy technique and the HVG degree dis-
tributions to form the plane in order to study the differences
between the two ways of forming the probability distribution.

When using permutation entropy to form the Jensen–
Shannon and Fisher–Shannon planes, the effect of time lag τ
on permutation entropy was calculated for two subsampling
rates, r = 20 s and r = 300 s; with the 3 s cadence data, these
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Figure 1. The Jensen–Shannon complexity plane showing the placement of data points calculated for different solar wind types (fast, slow,
sheath, and magnetic cloud). The data points that are calculated for subsampling rate r = 300 are surrounded by grey circles, and those
without the surrounding circle are calculated for r = 20. The maximum and minimum curves are given for r = 300.

correspond to time lags of τ = 60 s and 15 min, respectively.
The embedding dimension d was kept as 5, similarly to most
previous studies of the solar wind (see Sect. 1). Likewise, the
solar wind results on the complexity and information planes
are compared to the fractional Brownian motion (fBm), as in
previous studies. The fBm curves were formed by generat-
ing 100 samples of fBm noise for nine Hurst exponent values
ranging from 0.1 to 0.9, calculating the placements of those
series on the planes, and then taking the average of those re-
sults to form the final curves that are given in the figures.

Finally, we have tested the λ classification proposed by
Lacasa and Toral (2010) on the selected solar wind data in-
tervals.

3.1 Jensen–Shannon plane

Figure 1 shows the Jensen–Shannon complexity plane for the
magnetic field magnitude and the GSE field components. For
most of the investigated cases the data points fall onto or
close to the fBm curves. Additionally, most of the data points
are clustered at the lower-right corner of the map, i.e. at the
high-entropy and low-complexity region characteristic of a
highly stochastic process. We also note that, for most of the

studied events, there is no significant change in the placement
of the data points from r = 20 to r = 300.

The most notable difference between r = 20 and r = 300
is found for the magnetic field magnitude B of magnetic
cloud (MC) 1 in the top-left corner in Fig. 1. The r = 300
data point for MC1 is placed at the bottom-left corner of the
plane, indicating entropy∼ 0 and complexity∼ 0. For r = 20
the same magnetic cloud is placed close to the middle of
the plane at entropy∼ 0.6 and complexity∼ 0.3. Large dif-
ferences between the r = 20 and r = 300 data points are
also present for MC1 for Bx and for both MC1 and MC2
for By . In these cases the r = 300 data points have consider-
ably larger complexity and smaller entropy than the r = 20
data points. The MC1 data points are also the ones that de-
viate most from the fBm curve. For the magnetic clouds,
increasing r results in lower values for entropy and higher
values for complexity, with the exception of MC1. We note
that complexity is zero for both perfectly ordered and random
processes. Most low-complexity data points shown in Fig. 1
are associated with high entropy and likely represent random
time series, while the r = 300 data point for MC1 has en-
tropy close to zero and thus presents a perfectly ordered time
series.
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Figure 2. A zoom-in to the bottom-right corner of the Jensen–Shannon complexity–entropy plane. The symbols and curves are the same as
in Fig. 1.

Figure 2 shows a zoom-in of the lower-right corner of
the complexity–entropy plane. This allows for a more de-
tailed comparison of the ordering of the data points clus-
tered in that region. It is now evident that, for the magnetic
field magnitude B (top-left corner), the fast solar wind has
the highest entropy and the lowest complexity. For fast solar
wind interval 1 (fast1) the r = 20 and r = 300 markers over-
lap. For fast wind interval 3 (fast3) there is also only a very
small change between the data points. The fact that entropy
and complexity do not change significantly with the subsam-
pling rate (i.e. with the time lag) is a signature of a highly
stochastic process (Osmane et al., 2019). Next to the fast so-
lar wind on the fBm curve are the sheath regions and slow
solar wind. For the fast and slow solar wind and sheath re-
gions, the r = 300 data points have lower entropy and higher
complexity than the r = 20 data points in all cases. This is
opposite to what was found for magnetic clouds. The most
drastic change between the r = 20 and r = 300 markers are
for the slow wind interval 2 (slow2) and sheath 1. In both
of these cases, the r = 300 marker has moved considerably
up along the fBm curve. We also note that two of the sheath
r = 300 data points are above the fBm curve. This signifies
that they have higher complexity than the fBm process and
are associated with more structure.

For the individual magnetic field components, the most
distinct finding is that the fast wind, again, has higher en-
tropies and lower complexities for r = 300 than for r = 20.
For Bx and τ = 300, two of the magnetic clouds (MC1 and
MC2) have quite high entropies and low complexities. The
sheath regions and slow wind are placed between these mag-
netic clouds and MC3, with the lowest entropy that is visible
in the figure with the full plane. ForBy the order of the events
is approximately similar to previously discussed trends inBx ,
and for Bz all of the time series have, in general, higher en-
tropy than is found in the other magnetic field components.

3.2 Fisher–Shannon plane

3.2.1 Permutation entropy

Next we will investigate the Fisher-Shannon information
plane, which is given in Figure 3. When permutation entropy
is used to calculate the entropy, the horizontal axis is the
same as in the previous section for the Jensen–Shannon com-
plexity plane. The vertical axis is now the Fisher information
measure (FIM). As a result, there are some changes in the
vertical placements of the markers on the plane. In general,
the data points are spread out more on the plane when using
FIM instead of Jensen complexity. This can also be seen in
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the fBm curves, where increasing the subsampling rate (time
lag) results in a considerably larger change in the placement
of the curve than on the Jensen–Shannon plane. Similarly to
the Jensen–Shannon plane, the MC time series stand out in
the FIM plane.

Looking at the magnetic field magnitude B, the MCs have
the lowest entropies and the highest FIM values. For Bx
and By the same MC (MC1) deviates from the cluster of
markers at the bottom-right corner as in the Jensen–Shannon
plane. For Bz, one of the slow solar wind events (slow1)
clearly has the highest FIM, standing out from the other
events and significantly away from the fBm curve.

Figure 4 shows a zoomed-in section of the bottom-right-
hand corner of the plane, and the spread of the markers can
be seen more clearly. For B, the fast solar wind markers
are again clustered close to the corner of the plane for both
r = 20 and r = 300. Increasing r appears to increase the FIM
values for the events. For the magnetic field components, the
markers are clustered along the fBm line with no apparent
order for r = 20, but increasing the subsampling rate to 300
results in considerable spread in the points. For r = 300, fast
solar wind has the highest entropy and the lowest FIM in
almost all cases. For Bx and By MC1 stands out from the
rest of the markers, with higher FIM and lower entropy than
the other solar wind time series. Similarly to the Jensen–
Shannon plane, the events are placed closer to the corner of
the plane for Bz than for the other components.

3.2.2 HVG degree distribution

Next, we will consider the Fisher–Shannon information
plane when it is formed from the horizontal visibility graph
(HVG) degree distribution. This is given in Fig. 5. We remind
the reader that there is no subsampling performed when us-
ing this method. The entropies have been normalised with a
maximal entropy, following Ravetti et al. (2014). The maxi-
mal entropy is calculated from a series of fractional Gaussian
noise with the same length as the studied solar wind series.
In this version of the information plane, B again stands out
from the individual magnetic field components. In the fig-
ures for Bx , By , and Bz all solar wind markers are placed
in a cluster below the fBm curve. For B, the magnetic cloud
data are placed away from the curve, and the rest of the solar
wind events are located along the curve or under it.

Figure 6 again gives a zoomed-in section of the bottom-
right corner of the information plane. The highest entropies
for B are with the fast solar wind and one of the slow so-
lar wind events (slow3). The MC events have the lowest en-
tropies. For the magnetic field components, the entropy and
FIM values are very similar for all events, and there appears
to be no clear order between different types of solar wind
data.

Table 1. λ values for the different solar wind types and components.

sw type, B λ SD sw type, Bx λ SD

fast1 0.433 0.008 fast1 0.477 0.005
fast2 0.444 0.01 fast2 0.517 0.014
fast3 0.435 0.015 fast3 0.486 0.008
slow1 0.485 0.009 slow1 0.486 0.004
slow2 0.498 0.009 slow2 0.505 0.008
slow3 0.446 0.009 slow3 0.486 0.007
sheath1 0.48 0.012 sheath1 0.467 0.015
sheath2 0.479 0.009 sheath2 0.489 0.01
sheath3 0.477 0.009 sheath3 0.469 0.02
MC1 0.617 0.024 MC1 0.465 0.013
MC2 0.525 0.014 MC2 0.477 0.012
MC3 0.5 0.018 MC3 0.508 0.012

sw type, By λ SD sw type, Bz λ SD

fast1 0.474 0.009 fast1 0.486 0.006
fast2 0.479 0.008 fast2 0.492 0.008
fast3 0.475 0.005 fast3 0.487 0.009
slow1 0.478 0.009 slow1 0.479 0.005
slow2 0.481 0.005 slow2 0.473 0.009
slow3 0.464 0.01 slow3 0.484 0.01
sheath1 0.479 0.013 sheath1 0.47 0.01
sheath2 0.469 0.011 sheath2 0.506 0.009
sheath3 0.47 0.008 sheath3 0.465 0.007
MC1 0.479 0.011 MC1 0.44 0.014
MC2 0.484 0.014 MC2 0.466 0.017
MC3 0.476 0.005 MC3 0.507 0.018

3.3 λ classification

In addition to forming the information planes, we tested
the HVG degree-distribution-based classification proposed
by Lacasa and Toral (2010). The method is based on the as-
sumption that the tail of the degree distribution follows an ex-
ponential rule: P (k)∼ exp(−λk). In our study, the fitting in
the degree distribution was done from the 4th to the 14th de-
gree for all distributions. After the 14th degree, some of the
distributions began to deviate strongly from the exponential
form. The results of the fitting are given in Table 1. The stan-
dard deviation error given is obtained as the error from the
fitting.

In general, all of the analysed time series are classified
as stochastic as the λ values are higher than the limit of
ln(3/2)≈ 0.405. For the magnetic field components Bx , By ,
and Bz there are no clear trends between the different solar
wind types in the λ values or the sizes of the errors. ForB, the
highest λ values are found for the MC time series. The high-
est value is for the first magnetic cloud, which also consis-
tently had the lowest entropy out of the analysed time series
in all of the complexity and information planes. Thus, this
technique appears to catch the same structure that is detected
by the other methods. The fast solar wind time series have
the lowest λ values, closest to the limiting value of ln(3/2).
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Figure 3. The Fisher–Shannon information plane. The solar wind events not marked with a grey circle have r = 20, and those marked with
the circle are calculated for r = 300.

Lacasa and Toral (2010) suggest that a smaller value in the
stochastic region (> ln(3/2)) is an indication of decreasing
correlations.

4 Discussion

We have applied several methods from information theory
and complex networks to study four distinct types of solar
wind intervals (fast and slow streams, sheaths, and magnetic
clouds). In all analysed cases, the most significant differences
between the solar wind types occurred when examining the
magnetic field magnitude B. This finding can likely be at-
tributed to B time series generally being less noisy than the
time series for the individual magnetic field components (see
the Appendix).

For the approaches using the Jensen–Shannon
complexity–entropy plane and the Fisher–Shannon plane
with permutation entropy, two values of subsampling rate r
were tested. It was found that the higher r value (r = 300,
corresponding 15 min time lag between the points used to
build the ordinal patterns) causes clearer separation of the
solar wind intervals on the planes, with the events spreading
out to a larger range of entropies, complexities, and FIM
values. In particular, for r = 300 the fast solar wind events

had the highest entropies out of the analysed time series.
For r = 20 they did not separate from the other investigated
solar wind types.

The effect of r is consistent with the studies by Weck et al.
(2015) and Olivier et al. (2019), who studied permutation en-
tropy for fast and slow solar windBx and found that a larger τ
(τ = r1t) resulted in larger values of entropy. Olivier et al.
(2019) found that, when increasing τ past a value of 180 s,
the entropy values become stable. Both Weck et al. (2015)
and Olivier et al. (2019) found fast solar wind to have higher
entropy than slow solar wind when studying the Bx compo-
nent. Looking at Fig. 2 we see that, for Bx with r = 300, the
fast solar wind has the highest entropies, with the slow solar
wind settling on the fBm curve with lower entropy, in agree-
ment with the studies by Weck et al. (2015) and Olivier et al.
(2019). When using r = 20, the separation of the two is not
as clear, but, rather, the fast and slow solar wind are closer
together on the fBm curve.

Kilpua et al. (2024) also studied the effect of increasing τ
on entropy and Jensen complexity values, analysing sheath
regions, SIRs, fast solar wind, slow solar wind, and MCs.
They found that increasing τ resulted in relatively stable val-
ues of entropy and complexity for all solar wind types except
for MCs, where increasing τ resulted in smaller entropy val-
ues and higher complexity. In our study, when increasing τ
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Figure 4. A zoomed-in section of the Fisher–Shannon plane. The top dotted curve is the fBm curve with r = 300, and the lower curve is the
fBm curve with r = 300.

from 1 min (r = 20) to 15 min (r = 300), we see change in all
solar wind types, in some cases to higher entropies or com-
plexities and in some cases to lower entropies or complex-
ities. The most significant change, however, is in the MCs,
which are always moved towards lower entropies and higher
complexities, similarly to Kilpua et al. (2024). As was found
by Kilpua et al. (2024), these results also refer to the univer-
sality of fluctuations at smaller timescales, except in the case
of highly ordered magnetic clouds.

Weygand and Kivelson (2019) also used the Jensen–
Shannon plane, classifying turbulent intervals and ICME and
co-rotating interaction regions (CIRs). They found that tur-
bulent intervals (containing both fast and slow solar wind in-
tervals), when studying magnetic field magnitude, clustered
close to the fBm curve, indicating a stochastic nature. This
is also the case in our results, though with the higher sub-
sampling rate r , some of the slow wind and sheath region
intervals move into slightly higher complexity, possibly in-
dicating some chaotic structure (see Fig. 1 in Weygand and
Kivelson, 2019). Weygand and Kivelson (2019) also anal-
ysed the Bz component of ICMEs and CIRs, finding that the
analysed events cluster below the fBm curve at high entropies
and low complexities. When we analyse theBz component of
MCs, we also see the values settling close to the fBm curve,

with the r = 300 results closely matching those of Weygand
and Kivelson (2019) and r = 20 resulting in higher entropy
and lower complexity.

A feature of the Jensen–Shannon plane is that Jensen com-
plexity is defined as having small values for either com-
pletely ordered or disordered series. This is illustrated for
MC1 in B for r = 300 (Fig. 1), which is placed at zero com-
plexity and entropy on the Jensen–Shannon plane due to its
very regular structure. On the Fisher–Shannon plane, this
event has an FIM of ∼ 0.5. Furthermore, this MC event also
had the highest λ value when the exponential fitting intro-
duced by Lacasa and Toral (2010) was applied to the tail of
the degree distribution of the HVG that is formed from the
time series. A visual inspection of the time series (given in
Fig. A4) shows that this event clearly has the smoothest sig-
nal out of all the analysed events. The two other MC events
also stand out from the rest of the solar wind data when B is
studied but not so distinctly.

Using the FIM in combination with permutation entropy
instead of Jensen complexity resulted in the solar wind events
spreading more along the vertical axis of the information
plane. Compared to Jensen complexity, FIM is a more local
measure of fluctuations. Even so, the magnetic cloud with
the clearest global structure (MC1), which has close to zero
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Figure 5. The Fisher–Shannon information plane formed from the HVG degree distribution.

Jensen complexity and a very coherent global structure, also
has the highest FIM value out of all of the analysed data. We
cannot directly compare our results with the Fisher–Shannon
information plane to previous studies as, to our knowledge,
we are the first to utilise it to study solar wind fluctuations.
However, the permutation axis is the same as in the Jensen–
Shannon plane, and so the points discussed about previous
permutation entropy results also hold for these results. A
more statistical study of Fisher information and the effect
of τ on it would possibly yield interesting information of the
behaviour of solar wind on this plane. In our study we see
that increasing r and τ also had an effect on the FIM value,
in most cases resulting in a higher FIM value. In general, on
the Fisher–Shannon plane, increasing r led to motion further
away from the fBm curve.

In addition to forming the Fisher–Shannon information
planes using permutation entropy, we formed them from the
HVG degree distribution for each solar wind type. In these
figures, the most notable feature is that, for all of the mag-
netic field components (Bx , By , Bz), the solar wind events
cluster below the fBm curve. There is again more deviation
in the placements for B, with MCs being placed above the
fBm curve. The rest of the analysed events are placed closer
to the curve, with the highest entropies being found for the
fast solar wind and for one of the slow solar wind series.

The fact that most of the solar wind series are placed very
close to each other indicates that the HVG degree distribu-
tions of the series are very similar to each other. Again, we
cannot directly compare our results to previous studies us-
ing solar wind data. However, to study the technique, Ravetti
et al. (2014) analysed several known chaotic and stochastic
processes using the Fisher–Shannon plane formed with HVG
degree distributions. In their results, the stochastic maps were
placed close to the fBm curve, while chaotic processes had
higher FIM values and were placed further away from the
curve. In our study, the MCs, when analysing magnetic field
magnitude, were placed in this region close to chaotic pro-
cesses. When analysing the individual magnetic field com-
ponents of solar wind, the FIM values are lower than those
of the fBm curve. There are no clearly defined regions for
stochastic or chaotic values for this plane, but the results for
the MC are encouraging as they are in line with the other
methods used in this study that indicate less stochasticity for
MCs when analysing magnetic field magnitude.

Lastly, we performed an exponential fit to the tails of the
HVG degree distributions. This fitting, following an expo-
nential model, gives an indication of the internal structure
of the time series (Lacasa and Toral, 2010). Again, for the
magnetic field components, there were no clear trends in the
values between solar wind types. For B, the magnetic clouds
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Figure 6. A zoomed-in section of the Fisher–Shannon information plane for the HVG degree distribution.

had the highest values, indicating a correlated stochastic pro-
cess. The highest λ value was obtained by the magnetic cloud
that stood out from the rest of the time series on the informa-
tion planes. To our understanding, the method has not been
previously applied to solar wind time series. However, the re-
sults indicate a stochastic nature of solar wind which is in line
with previous research. As was mentioned in Sect. 1, there
are some known issues with the method. In our study we per-
form the exponential fitting from the 4th to the 14th degree,
thus leaving out the first degrees of the distribution. By do-
ing this, information about the connections in the network is
invariably left out. The technique is perhaps most useful as
a companion to other methods of complexity analysis as it
does not make full use of the degree distribution.

5 Conclusions

Our study shows that different complexity measures gave
overall similar results for the analysed time series of solar
wind measurements. We analysed four types of solar wind
data (fast, slow, sheath regions, and magnetic clouds) us-
ing the Jensen–Shannon complexity plane and the Fisher–
Shannon information plane. Additionally we made use of
the horizontal visibility graph (HVG) method in combination
with the Fisher–Shannon plane and via studying the degree

distribution of the HVG graphs derived from the time series.
All of these methods pointed to the solar wind fluctuations
being stochastic for the most part. The degree distribution
classification was also in agreement with the other methods.
However, as mentioned previously, the technique does not
make use of the full degree distribution and has some known
issues.

The most significant finding of our study is that the mag-
netic cloud data consistently stood out from the other types of
solar wind. The analysed magnetic clouds had a more global
structure and internal cohesion than the other solar wind data
types, which is physically consistent with how they are cre-
ated. A more robust statistical study with a larger sample
size could be useful for examining the methods used here
in more detail. The Jensen–Shannon complexity plane has
already been used within the solar physics field in several
studies, but the Fisher–Shannon information plane in combi-
nation with the HVG approach has not been widely used and
could provide interesting insight into the internal structure of
solar wind.
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Appendix A: Solar wind data

Figure A1. The fast solar wind data from WIND.
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Figure A2. The slow solar wind data from WIND.
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Figure A3. The sheath regions from WIND data.
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Figure A4. The magnetic clouds from WIND data.
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