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Abstract. Model predictive control (MPC) is an optimization-based control framework for linear and nonlinear
systems. MPC estimates control inputs by iterative optimization of a cost function that minimizes deviations
from a desired state while accounting for control costs over a finite prediction horizon. This process typically
involves direct computations in state space through full model evaluations, making it computationally expensive
for high-dimensional nonlinear systems. This study introduces ensemble-based model predictive control (En-
MPC), a novel framework for nonlinear control that combines MPC and ensemble data assimilation. EnMPC di-
rectly solves the MPC cost function using ensemble smoother methods, including the four-dimensional ensemble
variational assimilation method, ensemble Kalman smoother, and particle smoother. By assimilating objective
outputs that incorporate information about reference trajectories and constraints, EnMPC mitigates nonlinear-
ity and uncertainty, outperforming conventional MPC in terms of computational efficiency through ensemble
approximations. In addition, EnMPC is able to determine optimal weights for control inputs by using the analy-
sis error covariance derived from ensemble data assimilation. We present two different approaches for defining
control objectives. The penalty term approach applies penalties when model predictions violate pre-defined con-
straints by assimilating constraint information. In contrast, the trajectory-tracking approach assimilates outputs
derived from a reference trajectory to lead the system in the direction of the desired state.

1 Introduction

The intensification of extreme weather events induced by
global warming is causing significant damage to human life
and property worldwide. As the IPCC sixth assessment re-
port points out, rising temperatures increase the threat by
increasing the frequency of heatwaves and heavy rains and
floods and the intensity of hurricanes and typhoons (IPCC,
2021). The demand for new technological advances is grow-
ing as it becomes more difficult to manage the increasing
number of extreme weather events with only infrastructure
improvements. Since the middle of the 20th century, re-
searchers have considered interventions such as cloud seed-
ing, where they use silver iodide to induce rainfall. However,

while scientific studies have provided evidence to support
the effectiveness of the approach to some extent (Langmuir,
1948; Ryan and King, 1997; Silverman, 2001), its efficiency
and optimization remain areas of active research.

Model predictive control (MPC) is a powerful control
technique that uses dynamic models to predict future behav-
ior and optimize control actions over a finite time horizon
(Morari and Lee, 1999; Rockett and Hathway, 2017; Babu
et al., 2019; Schwenzer et al., 2021). As computational power
has advanced, the range of its applications has expanded,
and new challenges, such as weather control, have become
increasingly realistic. However, meteorological systems are
highly complex, consisting of numerous interconnected ele-
ments such as the atmosphere, oceans, land, and biosphere

Published by Copernicus Publications on behalf of the European Geosciences Union & the American Geophysical Union.



294 K. Kurosawa et al.: Ensemble-based model predictive control using data assimilation techniques

(Lea et al., 2015; Sluka et al., 2016; Kurosawa et al., 2023).
As its behavior exhibits significant nonlinearities, small vari-
ations can have unpredictable effects on the entire system
(Slingo and Palmer, 2011), and the system responds slowly
to interventions (Leith, 1974), making accurate predictions
and control difficult. Moreover, weather models often require
significant computational resources due to their high dimen-
sionality and the need for fine temporal and spatial resolu-
tions. Given these characteristics of weather systems, proper
handling of uncertainty and the heavy computational cost
of calculating optimal control inputs are key challenges for
achieving effective weather control.

To properly handle uncertainty, data assimilation inte-
grates observations and numerical models to more accu-
rately estimate the state of the system, and this is widely
used in weather forecasting (Houtekamer and Mitchell,
1998; Kalnay, 2003; Leutbecher and Palmer, 2008; Evensen,
2009). Miyoshi and Sun (2022) proposed a new experimen-
tal framework to systematically evaluate control approaches
through ensemble prediction. In the framework, known as
the control simulation experiment (CSE), they used en-
semble data assimilation for state estimation. Subsequently,
Kawasaki and Kotsuki (2024) integrated a conventional MPC
method and achieved efficient control with minimal input
within the CSE framework. However, the computational cost
of calculating optimal control inputs remains high, and there
is a need to develop more efficient control methods.

Sawada (2024a, b) proposed a weather control method
that combines ensemble data assimilation and MPC, utilizing
the ensemble Kalman filter (EnKF) and ensemble Kalman
smoother (EnKS) to solve the MPC problem efficiently. Tra-
ditional MPC requires direct computations in state spaces
and explicit calculations of system evolution within the pre-
diction horizon, whereas ensemble approximations use sta-
tistical representations, enabling more efficient control of
complex systems. The EnKF-based control method, which
directly utilizes the existing EnKF architecture, offers flexi-
bility for geoscience applications but still faces several chal-
lenges. First, when calculating the optimal control inputs,
the system’s behavior within the evaluation horizon or win-
dow of the cost function is assumed to be approximately lin-
ear. In systems with strong nonlinearity, this approximation
does not hold, and errors are likely to occur when calculating
the optimal control input (Zhang et al., 2009; Kurosawa and
Poterjoy, 2021). Second, as used in Sawada (2024a), many
control problems commonly add penalty terms to the cost
function to handle constraint violations in control objectives.
In the penalty-based approaches, when control objectives
are complex or involve trade-offs between multiple compet-
ing goals, designing the cost function and setting penalties
become challenging, potentially reducing performance and
causing unintended behavior.

To address these challenges, the current study extends the
methodology of using ensemble data assimilation for solv-
ing MPC problems, building upon the insights of Sawada

(2024a). Specifically, we propose an ensemble model pre-
dictive control (EnMPC) framework that employs various
ensemble data assimilation techniques, including the 4D en-
semble variational method (4DEnVar), a particle filter (PF),
and a particle smoother (PS). This approach expands the
range of tools available for solving MPC problems in
high-dimensional nonlinear systems. As part of this frame-
work, the EnMPC includes the method proposed by Sawada
(2024a), which uses the EnKF and EnKS to solve MPC
problems. Furthermore, the EnMPC framework introduces
not only the penalty-based approach but also a trajectory-
tracking approach to achieve control, providing greater flex-
ibility in addressing diverse control objectives. To demon-
strate the effectiveness of the proposed EnMPC frame-
work, we conduct a comparison with conventional MPC ap-
proaches.

Yamaguchi and Ravela (2023) proposed an ensemble
MPC framework using fully nonlinear forward simulations
and Gaussian processes for backward-gain computation.
While their approach is innovative and effective for control
in low-dimensional robotic systems, our proposed EnMPC
framework differs in several key aspects. Specifically, we in-
tegrate ensemble-based data assimilation techniques into the
control framework, allowing the assimilation of actual obser-
vations and the estimation of both the initial state and control
variables. Moreover, our focus is on high-dimensional geo-
physical systems, where observation-based state estimation
is indispensable.

The paper is organized in the following manner. Section 2
provides a brief overview of ensemble data assimilation and
MPC. We introduce EnMPC in Sect. 3, and Sect. 4 describes
the experimental setup. Section 5 presents the experimental
results, and the last section concludes the paper with a sum-
mary of the key findings, potential applications, and direc-
tions for future research.

2 MPC and data assimilation

This section provides a brief overview of MPC and ensem-
ble data assimilation, which constitute the proposed EnMPC
framework. We begin by presenting the MPC algorithm for
dealing with control problems. Subsequently, we outline en-
semble data assimilation, focusing on 4DEnVar, EnKF, and
the PF. This section explains MPC and data assimilation in-
dividually, while Sect. 3 highlights their similarities and dif-
ferences and how they are combined to form EnMPC.

2.1 MPC

MPC is a control strategy that optimizes control inputs by
using a dynamic model to predict the future behavior of the
system. MPC solves an optimization problem at each time
step to minimize a cost function over a finite predictive hori-
zon. The specific design of the cost function depends on the
application, but the general formulation can be expressed as
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follows:

J
(
u0,u1, . . ., uTc

)
=

Tc∑
t=0

u>t Cu
−1
ut︸ ︷︷ ︸

Jinput

+

Tp∑
t=0

(
r t −H

c (xt )
)>Cr

−1 (
r t −H

c (xt )
)

︸ ︷︷ ︸
Jstate

.

s.t. xt+1 =Mt (xt ,ut ) . (1)

Here, xt denotes the state variable at time t . The next state
xt+1 is obtained by integrating the nonlinear forecast model
operator Mt forward from the current state xt and the con-
trol input ut . The control input cost Jinput is typically opti-
mized over a shorter control horizon Tc within the predic-
tion horizon Tp. Jinput penalizes the magnitude of the control
input, preventing it from being excessively large. The state
deviation cost Jstate evaluates the difference between model-
predicted states and the control objective r , and the optimiza-
tion problem is performed over a finite prediction horizon Tp.
H c is an operator that maps the state variables x to the con-
trol variables. Cu and Cr are weighting matrices for the con-
trol input u and the deviations between state variables and
the control objective, respectively. In this study, the control
horizon Tc is shorter than the prediction horizon Tp, where
control is applied only at the first time step of each cycle.

In conventional MPC, optimal control inputs are typically
obtained by minimizing a cost function through gradient-
based optimization. For nonlinear systems, this often in-
volves solving the adjoint equations to efficiently compute
gradients of the cost function with respect to control vari-
ables. Although this approach is accurate, it requires deriva-
tion and implementation of the adjoint model, which can be
costly and challenging, especially for high-dimensional sys-
tems such as numerical weather prediction models.

Among the two components of the cost function in Eq. (1),
the state deviation cost Jstate typically has the highest compu-
tational cost. This is because it involves predicting and evalu-
ating the future states of the system over the entire prediction
horizon, which requires extensive computations, especially
for complex or nonlinear systems. The ensemble approxima-
tion can mitigate this computational cost by using represen-
tative trajectories to approximate future states, as discussed
in Sect. 3.

2.2 The four-dimensional variational method (4DVar)
and 4DEnVar

The 4DVar method estimates the optimal initial state x0 over
a time window by considering the misfits between observa-
tions and forecast model states at multiple times. This pro-
cess is achieved by minimizing the following cost function

(Talagrand, 2014; Bannister, 2017):

J (x0)=
(
x0− x

b
0

)>
B−1

(
x0− x

b
0

)
︸ ︷︷ ︸

Jbackground

+

τ∑
t=0

(
yt −H (xt )

)>R−1 (yt −H (xt )
)

︸ ︷︷ ︸
Jobservation

,

s.t. xt+1 =Mt (xt ) . (2)

The first term in Eq. (2) qualifies the difference between
the initial guess (background or prior) xb

0 and the estimated
state x0, weighted by the background error covariance ma-
trix B. The second term in Eq. (2) measures the misfit be-
tween the state variables and the observations y at times
t = 0, 1, 2, . . ., τ . The observation operatorH maps the state
x to the observation space, and R represents the observation
error covariance matrix. The time window τ is referred to as
the data assimilation window and plays the same role as the
prediction horizon Tp in MPC. Therefore, the second term
Jobservation in Eq. (2) serves a similar purpose to the state de-
viation cost Jstate in the MPC cost function (Eq. 1) as both
evaluate the discrepancies between the predicted states and
the target values or observations over a specific time horizon.

Operational systems often implement 4DVar using an in-
cremental approach to utilize the linearized model instead
of the full nonlinear model (Courtier et al., 1994). Defining
δx0 = x0− x

b
0, the cost function J (x0) in Eq. (2) becomes

J (δx0)= δx>0 B−1δx0︸ ︷︷ ︸
Jbackground

+

τ∑
t=0

(Hδxt − d t )>R−1 (Hδxt − d t )︸ ︷︷ ︸
Jobservation

,

s.t. δxt+1 =Mt (δxt ) , (3)

where Mt and H are the tangent linear operators of Mt and
H , respectively. The innovation vector d t is defined as d t =
yt −H [Mt (xb

0)].
The convergence rate of the optimization problem depends

on the condition number of the Hessian matrix (Zupanski,
1996). In operational data assimilation systems using atmo-
spheric models, the dimension of the state vector is typically
on the order of O(1010) or greater. This results in a back-
ground error covariance matrix B that is too large to be ex-
plicitly represented or handled directly. To address this com-
putational challenge, operational systems commonly employ
the following approach (Buehner, 2005; Wang et al., 2010;
Zhu et al., 2022):{
δx0 = Uxv
Hδxt = Uyt v . (4)
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Here, Ux is a square root of the background error covari-
ance matrix (B= UxUx> ; Lorenc, 2003), and v is the new
control variable in the reduced-dimension space. The initial
perturbation δx0 and the observation perturbation Hδxt are
projected onto a subspace covered by ensemble members us-
ing the transformation matrices Ux and Uyt , respectively. The
perturbation matrices Ux and Uy are defined as follows:

Ux = 1
√
Ne−1

[
δx(1), δx(2), · · ·, δx(Ne) ]

Uy = 1
√
Ne−1

[
δy(1), δy(2), · · ·, δy(Ne) ] , (5)

where Ne is the ensemble size, and δx(k) and δy(k) are the
kth ensemble perturbations for the model state and observa-
tion space, respectively. Perturbations in observation space
are calculated using the tangent linear observation operator,
where δy =Hδx. By adopting this transformation, the cost
function is reformulated as follows:

J (v)= v>v︸︷︷︸
Jbackground

+

τ∑
t=0

(
Uyt v− d t

)>R−1 (Uyt v− d t)︸ ︷︷ ︸
Jobservation

. (6)

To minimize Eq. (6), v must satisfy the condition
(∂J/∂v)> = 0. As a result, this approach eliminates the need
for an adjoint model as all calculations occur within the sub-
space covered by the ensemble samples. This incremental
4DEnVar approach, combined with ensemble-based trans-
formations, thus balances computational efficiency and the
practical constraints of high-dimensional data assimilation
systems. For further details on these methods, we encourage
readers to review the mathematical descriptions in Liu et al.
(2009), Fairbairn et al. (2014), Poterjoy and Zhang (2015),
and Kurosawa and Poterjoy (2021).

2.3 EnKF and EnKS

In this study, the control method based on the EnKF adopts
the framework proposed in Sawada (2024a). The EnKF mini-
mizes the following cost function to obtain the analysis state:

J (x0)=
(
x0− x

b
0

)>
Pb−1

(
x0− x

b
0

)
︸ ︷︷ ︸

Jbackground

+
(
y0−H (x0)

)>R−1 (y0−H (x0)
)︸ ︷︷ ︸

Jobservation

. (7)

Here, xb
0 is the ensemble mean of the background state vari-

ables, and Pb represents the background error covariance ma-
trix. As in 4DVar, MPC and EnKF consider similar cost com-
ponents, taking into account the background information and
discrepancies in their respective frameworks. From a varia-
tional perspective, ensemble methods like the EnKF can be
interpreted as approximating the solution to a variational cost

function such as Eq. (2), using ensemble statistics to repre-
sent background error covariances.

The EnKF efficiently reduces the computational cost by
representing the error covariance matrix Pb statistically using
ensemble members as follows (Evensen, 1994; Whitaker and
Hamill, 2002; Houtekamer and Zhang, 2016):

Pb
= EET , (8)

E=
1

√
Ne− 1

[
δx(1), . . ., δx(Ne)

]
, (9)

where E is the matrix of ensemble members, with each col-
umn representing the perturbation from the forecast state.
δx(k) denotes the kth ensemble perturbations for the model
state. Analytically solving the cost function in Eq. (7) yields
the update of the ensemble mean. Unlike the variational
methods discussed in Sect. 2.2, which require iterative nu-
merical optimization to minimize their respective cost func-
tions, EnKF does not require such iterations.

Regarding the update of ensemble members, we obtain the
ensemble perturbation matrix Xa using the ensemble trans-
form Kalman filter (ETKF; Bishop et al., 2001; Hunt et al.,
2007), as follows:

Xa
= XbWa, (10)

Wa
=

[
(Ne− 1) P̃a

]1/2
, (11)

P̃a
=

[
(Ne− 1)I+

(
Yb
)>

R−1Yb
]−1

. (12)

Here, Xb denotes the background perturbations, and P̃a rep-
resents the analysis error covariance matrix in the trans-
formed space. Yb represents the perturbation of the back-
ground ensemble in the observation space, and the weights
Wa are then derived based on the analysis covariance. Sim-
ilarly to 4DEnVar, which uses ensemble approximations to
project initial and observation perturbations onto a subspace
covered by ensemble members, the ETKF efficiently reduces
the dimensionality of the analysis problem with ensemble-
based transformations.

Sequential methods, such as EnKF, update the state esti-
mate as new observations become available, typically using a
forecast–analysis cycle. In contrast, variational methods for-
mulate the state estimation as an optimization problem over a
time window, where the model trajectory is adjusted to min-
imize a cost function based on observations and prior esti-
mates.

While EnKF is effective for real-time state estimation,
EnKS improves estimation accuracy further by considering
observations over a time window and incorporating their in-
fluence retrospectively. In this study, we employ 4D-ETKF
as our implementation of EnKS; 4D-ETKF estimates the ini-
tial state by assimilating observations distributed over a finite
time window, using an ensemble-based transformation that
minimizes the analysis error covariance. Unlike the original

Nonlin. Processes Geophys., 32, 293–307, 2025 https://doi.org/10.5194/npg-32-293-2025



K. Kurosawa et al.: Ensemble-based model predictive control using data assimilation techniques 297

EnKS that relies on sequential updates, 4D-ETKF applies a
single batch update by linearly combining ensemble pertur-
bations, ensuring consistency and computational efficiency
without the need for adjoint models. For a comprehensive
explanation, please refer to Miyoshi and Aranami (2006) and
Hunt et al. (2007).

2.4 PF and PS

Variational methods and EnKF estimate the analysis state by
assuming Gaussian error statistics for the background and
observations and minimizing the cost functions defined in
Eqs. (2) and (7). In contrast, the PF does not assume Gaus-
sianity or linearity but approximates the entire probability
distribution of the state as a set of particles (ensembles or
samples). By assigning a likelihood to each particle, PF esti-
mates the analysis state, making it suitable for systems with
strong nonlinearity and non-Gaussianity. The particle distri-
bution plays a similar role to the error covariance matrices
(B and P) used in the variational methods and EnKF. Unlike
these methods, however, the PF does not explicitly calculate
the error covariance; instead, the particle distribution implic-
itly represents the statistical properties of the background er-
ror covariance. Although the likelihood function used in the
PF resembles the observation term in the cost functions of
other data assimilation methods, it plays a more central and
explicit role in the PF.

For each particle x(k), the likelihood is calculated as fol-
lows:

p
(
y|x(k)

)
∝exp

(
−

1
2

(
y−H

(
x(k)

))>
R−1

(
y−H

(
x(k)

)))
. (13)

This calculation resembles the state deviation term Jstate in
Eq. (1) for MPC, where posterior states are penalized based
on their deviation from the reference. The likelihoods are
normalized to produce the particle weights λ(k):

λ(k)
=

p
(
y|x(k))

Ne∑
m=1

p
(
y|x(m)

) . (14)

Using the weighted particles, the PF approximates the poste-
rior distribution (filter distribution) as follows:

p(x|y)≈
Ne∑
m=1

λ(m)δ
(
x− x(m)

)
, (15)

where δ(x−x(k)) represents a Dirac delta function centered at
particle x(k). This representation indicates that the posterior
distribution is expressed as a discrete set of weighted par-
ticles. To better approximate the posterior distribution and
mitigate degeneracy, where some particles have negligible
weights, a resampling step is performed. During resampling,

particles with higher weights are replicated, while those with
lower weights are discarded, ensuring the ensemble remains
focused on the most likely regions of the state space.

The PF is a method for sequentially estimating states,
while the PS uses future observation data to provide more ac-
curate state estimates. Applying the weights calculated dur-
ing the filter update within a data assimilation window, the PS
uses the future weights to find the smoother solution at any
point throughout the window. This approach is justified by
the Markov property, where the system’s future evolution de-
pends solely on its current state (Chopin and Papaspiliopou-
los, 2020; Nyobe et al., 2023). By taking advantage of this
feature, the smoother can produce more accurate estimates
over the assimilation window by using future data and previ-
ously calculated weights.

We note that several studies propose strategies to ad-
dress degeneracy and maintain particle diversity (e.g., Penny
and Miyoshi, 2016; Potthast et al., 2019; Kotsuki et al.,
2022). These differences include the resampling strategy,
techniques to mitigate particle collapse, and localization to
manage high-dimensional systems. The current study adopts
the PF and PS algorithm based on the recently proposed PF
by Poterjoy (2022) as it employs regularization and itera-
tive updates to effectively address degeneracy and maintain
particle diversity. For more detailed information on this ap-
proach, please refer to Poterjoy (2016, 2022) and Kurosawa
and Poterjoy (2023).

3 Ensemble model predictive control

The structural similarity between estimation and control has
been well established in control theory, where the full infor-
mation control problem and the state estimation problem are
known to be duals (Zhou et al., 1996).

Section 2 provides an overview of conventional MPC and
ensemble data assimilation, highlighting their shared goal of
determining optimal inputs based on the current state and fu-
ture predictions. This section introduces a new control tech-
nique called EnMPC, which integrates these two methods.
Since EnMPC uses the principles of data assimilation, it in-
corporates objective outputs that contain information about
constraints and reference trajectories typically used in MPC.
These objective outputs are assimilated in a manner similar
to actual observations in data assimilation, allowing the cost
function in EnMPC to adopt a structure similar to that in en-
semble data assimilation.

Sawada (2024a) focuses on similarities and differences be-
tween EnKF and MPC and introduces EnKF-based EnMPC.
Extending this concept, this section focuses on the mathe-
matical formulation of EnMPC, using ideas from 4DVar to
develop a 4DEnVar-based EnMPC approach. We define the
formulation of EnMPC in a straightforward manner by mod-
ifying the MPC cost function in Eq. (1) to make it closer in
structure to 4DEnVar in Eq. (6).
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First, data assimilation focuses on state estimation by up-
dating the initial conditions for model integration, while
MPC estimates control inputs applied during the control
horizon Tc. The proposed EnMPC framework treats the con-
trol inputs as acting only at the initial time, similarly to how
data assimilation updates the initial states. While this as-
sumption simplifies the framework, extending EnMPC to op-
timize control inputs over the entire control horizon Tc re-
mains an important direction for future research. Second, we
generate an objective output vector yr . This allows EnMPC
to handle reference information in the same way data assim-
ilation incorporates observations. The cost function for En-
MPC is therefore expressed as follows:

J (x0)=
(
x0− x

a
0

)>
Pa−1

(
x0− x

a
0

)
︸ ︷︷ ︸

Jinput

+

Tp∑
t=0

(
yr
t −H

r (xt )
)>Cr

−1 (
yr
t −H

r (xt )
)

︸ ︷︷ ︸
Jstate

s.t. xt+1 =Mt (xt ) . (16)

Here, Pa is the analysis error covariance matrix as the ensem-
ble updated by data assimilation can be used directly. H r is
the operator that maps the state vector to the objective output
space.

In Eq. (16), the variable x0 is optimized as the control in-
put to guide the system’s trajectory xt toward a set of desir-
able future states yrt . Deviations of x0 from the initial anal-
ysis xa

0, obtained via ensemble data assimilation, are penal-
ized to ensure that the control input remains realistic. Once
the optimal control input x∗0 is found, the resulting trajectory
xc = argmin J (x0) is regarded to be the controlled state.

As described in Sect. 2.2, applying ensemble approxima-
tions to the cost function in Eq. (16) yields

J (v)= v>v︸︷︷︸
Jinput

+

Tp∑
t=0

(
Uyt v− d

r
t

)>Cr
−1 (

Uyt v− d
r
t

)
︸ ︷︷ ︸

Jstate

, (17)

where the innovation vector dr
t is defined as dr

t = y
r
t −

H r
[Mt (xa

0)]. The gradient of the cost function in Eq. (17)
with respect to v is expressed as follows:(
∂J

∂v

)>
= 2v+ 2

Tp∑
t=0

Uy
>
t Cr

−1 [
Uyt v− d

r
t

]
. (18)

This expression shows that solving the EnMPC optimization
problem does not require the full nonlinear model or its tan-
gent linear model as the ensemble approximations are used
to calculate the gradient.

One key advantage of ensemble-based methods over
adjoint-based approaches is their suitability for parallel com-
putation. Adjoint methods require sequential iterations be-
tween forward and backward (adjoint) models, which can
be computationally demanding and less scalable. In contrast,
ensemble methods allow for straightforward parallelization
across ensemble members, making them highly attractive for
real-time control and operational applications.

A key feature of EnMPC is its ability to assimilate ob-
jective outputs in a manner similar to actual observations in
data assimilation. Therefore, the EnMPC approach, which
directly solves the MPC cost function using ensemble es-
timations, is not limited to the 4DEnVar-based framework
but can also be applied to EnKS- or PS-based frameworks.
This study introduces two approaches for defining control
objectives. The first, referred to as the “penalty term ap-
proach”, creates an objective output vector only when the
model prediction exceeds a predefined threshold, as used in
Sawada (2024a). The second, called the “trajectory-tracking
approach”, generates objective outputs directly from the ref-
erence trajectory, enabling straightforward objective defini-
tion. We provide more details in Sect. 4.3. Lastly, EnMPC
can appropriately handle sampling errors and uncertainties
by incorporating techniques from ensemble data assimila-
tion, such as localization and inflation, as detailed in Sawada
(2024b).

4 Experimental settings

In this section, we describe the experimental setup used to
evaluate the effectiveness of the proposed EnMPC through
numerical experiments using the Lorenz63 (Lorenz, 1963)
model. While Sect. 3 introduces the full information con-
trol assuming a known initial state, this section presents a
more realistic setting where the initial condition is unknown
and must be estimated using data assimilation. Our experi-
ments follow the CSE procedure (Miyoshi and Sun, 2022;
Sun et al., 2023; Ouyang et al., 2023; Kawasaki and Kotsuki,
2024; Sawada, 2024a).

4.1 Experimental procedure: coupling of data
assimilation and control

Figure 1 illustrates the process of the CSE using the proposed
EnMPC. The procedure consists of the following steps:

1. To obtain an accurate estimate of the current state of the
system, we first simulate observations from the nature
run (NR or the true state of the system). We then per-
form a conventional ensemble data assimilation using
these simulated observations, which corresponds to the
filter update (Fig. 1a). This step includes estimating un-
observed state variables that are targets for the control.
The outcome of this process provides the initial condi-
tions necessary for the subsequent control step.
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Figure 1. Algorithmic flow of the proposed EnMPC-based CSE for a system with upper and lower limits. (a) State estimation: estimates
the current state of the system using data assimilation (filter update). (b) Control input optimization: determines the optimal control inputs
using the proposed EnMPC framework based on ensemble forecasts; (b1) penalty term approach and (b2) trajectory-tracking approach.
(c) Application of control inputs: applies the optimized control inputs to the NR, integrates the system state forward to the next time step,
and returns to the filter update step (a), restarting the CSE cycle.

2. Based on the state estimated in the previous step, we
determine the optimal control input using the proposed
EnMPC. The ensemble used in the control problem is
the analysis ensemble obtained through data assimila-
tion. This ensemble reflects the flow-dependent uncer-
tainty at the initial time and is directly employed for es-
timating the optimal control inputs. No additional sam-
pling is performed specifically for the control.

We consider two approaches for control input determi-
nation.

a. Penalty term approach. This approach uses an ob-
jective output operator, which acts as a penalty
function commonly used in the conventional MPC.
Objective outputs are generated when the model
prediction violates the predefined constraints, ef-
fectively penalizing unsuitable behavior (Fig. 1b1).

b. Trajectory-tracking approach. In the current study,
objective outputs are directly derived from the
reference trajectory, making it straightforward to
guide the system toward the desired state (Fig. 1b2).

3. The optimal control input determined in the second step
is applied to the NR to perform the control, and the state
is integrated forward to the next time step. Similarly,

we apply the same control input to the ensemble mem-
bers and predict their states for the next time step. With
the updated system state and ensemble predictions, we
restart the CSE cycle from the first step (Fig. 1c).

Here, we emphasize that, for state estimation, in the first
step (Fig. 1a), we employ conventional ensemble data assim-
ilation methods, corresponding to the filter update. In con-
trast, the second step (Fig. 1b) utilizes the proposed EnMPC,
which is based on an ensemble smoother update, to deter-
mine the optimal control inputs. For data assimilation in the
first step, we consistently use the ETKF, regardless of which
ensemble smoother update method (4DEnVar, EnKS, or PS)
is employed in EnMPC in the second step. This uniformity
ensures that any differences in performance are solely due to
the choice of method in EnMPC in the second step and not in-
fluenced by variations in the state estimation in the first step.
Lastly, the current study adopts a moving-horizon window of
one step. That is, regardless of the length of the prediction
horizon used in EnMPC, data assimilation and control input
estimation are performed at every time step in each cycle.
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4.2 Model description

The current study uses the Lorenz63 (Lorenz, 1963) model
for testing the proposed control method. Although relatively
simple in structure, the model is widely employed as a test
bed for understanding chaotic system behavior. This study
aims to demonstrate the effectiveness of EnMPC for control
and parameter estimation in such chaotic systems.

The Lorenz63 model is a simplified model of atmospheric
convection and is represented by the following set of ordinary
differential equations with three state variables:

dx
dt = σ (y− x),
dy
dt
= x(ρ− z)− y,

dz
dt
= xy−βz.

(19)

Following Lorenz (1963), we set the system parameters
σ = 10, ρ = 28, and β = 8/3. The time step is set to 1t =
0.01 (units defined arbitrarily as 1 h; see Lorenz, 1963).
The Lorenz63 model is characterized by its chaotic tra-
jectory, which oscillates around two unstable fixed points,
(±
√

72,±
√

72,27)> (Kaiser et al., 2018).
Using the Lorenz63 model, the current study investigates

two scenarios for control input estimation: estimating only
ux , as shown in Eq. (20), and estimating all three control
variables ux , uy , and uz, as shown in Eq. (21):

dx
dt = σ (y− x)+ ux,
dy
dt
= x(ρ− z)− y,

dz
dt
= xy−βz,

(20)

and
dx
dt = σ (y− x)+ ux,
dy
dt
= x(ρ− z)− y+ uy,

dz
dt
= xy−βz+ uz.

(21)

The control objective in the current study is to keep the
value of x in the model positive, ensuring that the system
avoids undesired negative states. Note that the control inputs
are applied to the time derivatives of the state variables rather
than the states themselves.

4.3 Objective outputs and operators

In the proposed EnMPC framework, we address control
problems using two approaches: the penalty term approach
and the trajectory-tracking approach. Each approach em-
ploys different methods for generating objective outputs yr

and operators H r. Throughout our experiments, we set the
objective output error covariance matrix Cr, which acts as the
weighting matrix for the deviations between state variables

and control objectives, to Cr
= 0.01I, where I is the identity

matrix. This configuration is based on insights from prelim-
inary experiments and the detailed investigation in Sawada
(2024a, b).

4.3.1 Penalty term approach

In the penalty term approach, we generate objective outputs
to ensure that variables remain within specified thresholds.
We set the objective output value to the threshold and as-
similate it into the state space via an objective output oper-
ator. Sawada (2024a) employs a similar strategy, designing
the control operator to impose penalties when constraints are
violated. This approach effectively makes the objective out-
put operator serve the same role as the penalty function com-
monly used in conventional MPC.

The control objective of the current study is to keep the
x value positive in the Lorenz63 model. When we apply
the penalty term approach for the objective (as detailed in
Sect. 5.1), we use the following objective output operator
H obj:

H r(x)=
log(1+ exp(−ax))

a
, (22)

where a is a positive constant that determines the sharpness
of the penalty function. As shown in Fig. 2, when a = 100,
the function approximates a hinge function that activates the
penalty only when x becomes less than zero. To keep the
value of x non-negative, we set the objective outputs as yr

=

0. We then use an objective output operator H r to project the
model state x into the observation space H r(x), effectively
imposing a penalty when x violates the constraint. A smaller
a results in a smoother transition, applying penalties even
when x is above the threshold but approaching the threshold,
as shown in Fig. 2.

Figure 3 illustrates the impact of changing the parameter
a in the objective output operator using the Lorenz63 model.
Control input ux is applied at each time step using Eq. (20),
and the prediction horizon Tp is set to 48 steps (= 48 h). For
this demonstration, we use the 4DEnVar-based EnMPC with
10 ensemble members. The parameters for this experiment
are summarized in Table 1a.

When a = 100, the control inputs are relatively large due
to delayed activation of the penalty term, resulting in spike-
like control behavior (Fig. 3a and d). Decreasing the value
of a activates the penalty more gradually, allowing the con-
trol to respond earlier, thus preventing x < 0 more smoothly
(Fig. 3b–c and e–f). These results show that the choice of a is
critical and depends on the specific control objectives. When
the control objective is to maintain the system state close to
the threshold, a larger a may be necessary, leading to larger
and abrupt control inputs. On the other hand, when staying
further from the threshold is acceptable, a smaller a can re-
duce the overall control inputs, although the model states
may not closely approach the threshold. This highlights the

Nonlin. Processes Geophys., 32, 293–307, 2025 https://doi.org/10.5194/npg-32-293-2025



K. Kurosawa et al.: Ensemble-based model predictive control using data assimilation techniques 301

Table 1. Experimental setup.

Approach Estimated Prediction horizon Base DA method in Figure
control inputs Tp (h) EnMPC

(a)
penalty term

ux
48

4DEnVar Fig. 3

(yp: x = 0)

4DEnVar, EnKS, PS

Fig. 4

6, 24, 48, 120 Fig. 7a

(b)
trajectory tracking

ux , uy , uz
48 Figs. 5 and 6

(yp: x, y, z from ref. traj.) 6, 24, 48, 120 Fig. 7b

Figure 2. Comparison of the objective output operator H r (x)=
log(1+ exp(−ax))/a used in this study for different values of the
positive constant parameter a. The solid line, dashed line, and dot-
ted line represent the cases where a = 0.5, a = 1, and a = 100, re-
spectively. The horizontal axis represents values in the model space,
while the vertical axis represents the values projected into the ob-
jective output space using the operator.

importance of selecting an appropriate objective output op-
erator to balance the desired control objectives with the ac-
ceptable magnitude of control inputs.

4.3.2 Trajectory-tracking approach

In the trajectory-tracking approach, the current study first
defines a reference trajectory that satisfies the desired con-
straints. We then control or guide the system to follow this
trajectory by assimilating objective outputs. The objective
outputs are generated by taking the states of the reference
trajectory at each observation time.

For the experiment using the Lorenz63 model (as detailed
in Sect. 5.2), we use the trajectory generated by Kawasaki
and Kotsuki (2024) as the reference. This trajectory satisfies
the constraint x > 0 and is obtained using conventional MPC
by applying the control inputs ux , uy , and uz to the Lorenz63
model. We generate the objective outputs from the reference
every time step for variables x, y, and z. The objective output
operator H r is set to the identity operator in this approach,
meaning that the objective outputs directly correspond to the

states of the reference trajectory without additional transfor-
mations.

5 Experimental results

In this section, we present the experimental results evaluating
the performance of the proposed EnMPC using the Lorenz63
model. We compare two approaches, the penalty term ap-
proach and the trajectory-tracking approach, for the control
problem of restricting the state variable x to positive val-
ues. Furthermore, we examine how the choice of methods
forming the basis of EnMPC (4DEnVar, EnKS, and PS) im-
pacts its performance. In addition, we compare EnMPC with
conventional MPC to assess its computational efficiency and
control performance. Note that, for the conventional MPC,
we set the weighting matrix for the control input Cu to 0.01 I,
which matches the objective output error covariance matrix
Cr. We use an ensemble size of 10 for all experiments. All
experiments are conducted using MATLAB on a typical lap-
top.

5.1 Control using the penalty term approach

In the penalty term approach, we restrict x to positive values
by imposing penalties on regions where x ≤ 0. Specifically,
we utilize an objective output yr

= 0 and a control operator
H r(x)= log(1+ exp(−ax))/a with a = 0.5. In this case, we
apply the control only through ux using Eq. (20).

As shown in Fig. 4a, while x fluctuates between positive
and negative values in the NR, all four MPC methods gener-
ally restrict x to the x > 0 region. This demonstrates that the
proposed method successfully solves the MPC problem us-
ing ensemble approximations. In addition, the penalty term
approach achieves control that takes into account constraint
conditions by using the objective output operator.

The comparison of control inputs ux shown in Fig. 4e
shows that, during the initial 400 steps, the control input
for EnMPC based on PS is larger than those for the other
methods (4DEnVar and EnKS). As described in Sect. 2,
this is because EnKS-based and 4DEnVar-based EnMPC use
ensemble-based linear transformations, which help retain the
statistical structure of the original ensemble (Lorenc, 2003;
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Figure 3. Comparison of results based on different values of a in the objective output operator shown in Fig. 2. The Lorenz63 model is
controlled to keep the x value positive, showing the behavior over the first 1200 steps. Panels (a)–(c) show the attractors of the controlled
NR for a = 100, a = 1, and a = 0.5, respectively. Panels (d)–(f) show the evolution of x (left axis) in the controlled NR over time, with the
blue lines indicating the control inputs |ux | (right axis).

Figure 4. Comparison of results using the conventional MPC and EnMPC with the penalty term approach. (a) The trajectory of the uncon-
trolled and controlled NR; (b) time series of the values of x, (c) y, and (d) z in the controlled NR; and (e) the estimated control input ux .
The black dots represent the trajectory of the uncontrolled NR, and the yellow dots show controlled NR by the conventional MPC. Green,
red, and blue represent the trajectories of the NR controlled by EnMPC based on 4DEnVar, EnKS, and PS, respectively. The dashed line in
(b) indicates the control objective, where x > 0.

Poterjoy and Zhang, 2015; Houtekamer and Zhang, 2016;
Kurosawa and Poterjoy, 2023). Specifically, when the cost
function includes a penalty term weighted by the inverse of
the ensemble covariance, the solution is guided toward re-
gions of high ensemble density. This acts as a form of regu-
larization, effectively constraining the solution to subspaces
covered by the dominant ensemble modes and scaling it ac-

cording to ensemble uncertainty (Lorenc, 2003; Houtekamer
and Zhang, 2016). Compared to approaches that do not ex-
plicitly incorporate such statistical information, this often re-
sults in smaller and more dynamically consistent control in-
puts.

In contrast, PS-based EnMPC determines the analy-
sis state through resampling, where particles with higher
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weights are replicated, while those with lower weights are
removed. This can lead to the analysis state being dominated
by a few specific particles, potentially causing more abrupt
changes in the control input. However, this experiment uses a
nonlinear observation operatorH r(x)= log(1+exp(−ax))/a
as the penalty function, which posed challenges for EnKS-
based and EnVar-based EnMPC as they inherently assume
Gaussianity. On the other hand, PS-based EnMPC is more
appropriate for handling non-Gaussian structures and is less
affected by such assumptions (Poterjoy, 2016; Poterjoy et al.,
2019; Kurosawa and Poterjoy, 2021).

Beyond step 400, the success rate of the control ap-
proaches nearly 100 % for all MPC methods, and, during this
period, the magnitudes of control inputs for the three EnMPC
methods show no significant differences. This suggests that
the choice of data assimilation method influences the perfor-
mance, especially during the initial stages.

When comparing conventional MPC and EnMPC, it be-
comes clear that EnMPC achieves significantly reduced con-
trol input magnitudes, which leads to smaller oscillations
compared to conventional MPC. This is likely because con-
ventional MPC uses a fixed control weight matrix Cu in
Eq. (1), whereas EnMPC estimates it from the analysis en-
semble as Pa in Eq. (16).

5.2 Control using the trajectory-tracking approach

The trajectory-tracking approach controls the system state to-
ward a predefined reference trajectory that satisfies x > 0.
We employ the trajectory data from Kawasaki and Kotsuki
(2024) as the reference and consider all three control vari-
ables ux , uy , and uz using Eq. (21).

The results demonstrate that the proposed EnMPC can
accurately follow the reference trajectory (Fig. 5a). In par-
ticular, 4DEnVar-based and EnKS-based EnMPC provide
smooth and stable control inputs, while PS-based EnMPC
requires larger control inputs (Fig. 5e–g). As mentioned in
Sect. 5.1, this is because PS-based EnMPC uses particles to
represent the distribution, whereas the other two methods use
ensemble-based transformations. In terms of tracking per-
formance, PS-based EnMPC achieves a significantly lower
root mean squared error (RMSE) of 0.22 compared to 3.04
and 3.03 for 4DEnVar-based and EnKS-based EnMPC, re-
spectively (Fig. 6). This suggests that the PS-based EnMPC,
known for its flexibility in handling nonlinear regimes, can
more accurately represent complex behaviors like the ref-
erence trajectory. In contrast, EnKS-based and EnVar-based
EnMPC struggle to properly incorporate the nonlinearities of
the reference trajectory, resulting in larger RMSE values.

When compared to conventional MPC, all EnMPC meth-
ods exhibit significant advantages in both tracking perfor-
mance and control efficiency. Conventional MPC shows an
RMSE of 5.91 (Fig. 6), which is considerably higher than
that of any of the EnMPC methods, demonstrating its diffi-
culty in accurately following the reference trajectory. As dis-

cussed in Sect. 5.1, this is likely to be due to the fixed control
weight matrix Cu in conventional MPC, which limits its flex-
ibility in adapting to the reference trajectory in the prediction
horizon.

To enhance the accuracy of the control in both conven-
tional MPC and EnMPC or to reduce the abrupt control in-
puts in PS-based EnMPC, improving the prediction horizon
or increasing ensemble sizes would be effective. These im-
provements remain an important subject for future research.

5.3 Impact of prediction horizon on computational time
and control performance

This section provides a comparison of the computational
time required by conventional MPC and various EnMPC
methods across different prediction horizons (Tp). We per-
form the comparison for both the penalty term approach
(Fig. 7a) and the trajectory-tracking approach (Fig. 7b). The
success rate in Fig. 7a is computed as the proportion of time
steps – excluding the initial 200 spin-up steps – during which
the value of x remains positive.

In the penalty term approach (Fig. 7a), EnMPC methods
consistently achieve high success rates (approximately 1.0)
across all prediction horizons. In contrast, conventional MPC
fails to control effectively when the prediction horizon is
short (6 and 24 h). In terms of computational time, conven-
tional MPC exhibits a sharp increase as Tp extends, reflecting
its computational inefficiency due to the need for full-model
evaluations to calculate optimal control inputs. For exam-
ple, at Tp = 120 h, the computational time for conventional
MPC is 620 s. On the other hand, the EnMPC methods all
show much lower computational times, with the PS-based
approach yielding 121 s, the 4DEnVar-based approach yield-
ing 81 s, and the EnKF-based approach being the most com-
putationally efficient at 16 s. This is because the 4DEnVar
and PS methods used in the current study require iterations
to determine the optimal control inputs, whereas EnKS does
not. Exploring alternative data assimilation methods to fur-
ther reduce computational time remains an important future
research topic.

For the trajectory-tracking approach (Fig. 7b), the PS-
based EnMPC achieves the lowest RMSE, maintaining high
control accuracy across all prediction horizons. This is be-
cause PS does not assume Gaussianity and effectively han-
dles the nonlinear regime, making it well-suited for accu-
rately representing complex reference trajectories. In con-
trast, conventional MPC exhibits significantly higher RMSE
values, indicating difficulty in tracking the reference trajec-
tory, regardless of Tp. In terms of computational time, PS-
based EnMPC requires slightly higher computational costs
compared to other EnMPC methods, but it remains much
more efficient than conventional MPC (e.g., at Tp = 120 h:
conventional MPC= 651 s, 4DEnVar-based= 119 s, EnKF-
based= 16 s, PS-based= 158 s). This suggests that PS-based
EnMPC is a strong candidate for applications where high
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Figure 5. As in Fig. 4, but the optimal control input values are determined to follow a reference trajectory that satisfies the constraints. The
black dots represent the reference trajectory.

Figure 6. Comparison of the average control input magnitudes
(|ux |, |uy |, and |uz|; left axis) and RMSE (right axis) with respect
to the reference trajectory, calculated as averages from step 400
to step 2000. Yellow, green, red, and blue bars represent conven-
tional MPC, 4DEnVar-based EnMPC, EnKS-based EnMPC, and
PS-based EnMPC, respectively. These values correspond to the re-
sults in Fig. 5.

control accuracy is prioritized. Note that the relatively higher
computational cost of PS-based EnMPC in this study is
due to the iterative approach used to prevent particle de-
generacy (Poterjoy et al., 2019; Poterjoy, 2022). Alterna-
tive PF or PS formulations may reduce computational costs
while maintaining performance (Penny and Miyoshi, 2016;
van Leeuwen et al., 2019; Kotsuki et al., 2022).

In summary, these results demonstrate that EnMPC out-
performs conventional MPC in terms of both computational
efficiency and control performance. Particularly for longer

prediction horizons, EnMPC effectively limits computational
cost increases while maintaining high control accuracy.

6 Conclusion

The current study proposes EnMPC, a nonlinear control
framework that combines MPC with ensemble data assimi-
lation. EnMPC reduces computational cost while maintain-
ing accurate control of nonlinear systems by using ensem-
ble approximation. EnMPC assimilates objective outputs in
a manner similar to actual observations in data assimilation
to reflect constraints or reference trajectories of control prob-
lems. This unique approach provides an effective and flexible
solution for addressing the challenges posed by complex and
high-dimensional systems, such as those in meteorology and
weather control.

We introduce two methods within the EnMPC framework:
the penalty term approach and the trajectory-tracking ap-
proach. The penalty term approach imposes penalties when
the system violates constraints, ensuring the system re-
mains within acceptable behavior. In contrast, the trajectory-
tracking approach guides the system to follow a pre-defined
trajectory that is designed to satisfy the constraints. Both ap-
proaches demonstrate their effectiveness in controlling the
chaotic dynamics of the Lorenz63 model, showing their po-
tential to manage complex system behavior and their adapt-
ability to diverse control objectives. The choice between
these two approaches depends on the specific control prob-
lem. Selecting the appropriate method based on its charac-
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Figure 7. Comparison of computational time and performance met-
rics (success rate and RMSE) as a function of the prediction hori-
zon (Tp). Panel (a) shows the penalty term approach, depicting
computational time (bars, left axis) and success rate (circles, right
axis), where a higher success rate indicates more effective con-
trol. Panel (b) illustrates the trajectory-tracking approach, highlight-
ing computational time (bars, left axis) and RMSE (triangles, right
axis), where a lower RMSE indicates more accurate tracking of
the reference trajectory. Yellow, green, red, and blue bars repre-
sent conventional MPC, 4DEnVar-based EnMPC, EnKS-based En-
MPC, and PS-based EnMPC, respectively. The values for Tp = 48 h
in panel (a) and (b) correspond to the results presented in Figs. 4
and 5, respectively.

teristics and objectives is essential and remains a key area for
future research.

Our experiments highlight the strengths of EnMPC com-
pared to conventional MPC, particularly in terms of compu-
tational efficiency and flexibility. This advantage is primar-
ily due to the fact that conventional MPC relies on the full
model for optimization, whereas EnMPC uses ensemble ap-
proximations. Additionally, EnMPC determines the weights
for control inputs using the analysis error covariance derived
from ensemble data assimilation, while conventional MPC
uses fixed control weights, limiting its adaptability to vary-
ing system dynamics.

A key aspect of our investigation involves exploring the
performance of different ensemble data assimilation methods
that form the foundation of the EnMPC framework, which
highlights the importance of selecting the appropriate en-
semble smoother method, such as 4DEnVar, EnKS, and/or
the PS. For instance, while 4DEnVar-based and EnKS-based
EnMPC provide smooth and efficient control, the flexibility

of PS-based EnMPC in handling nonlinear and non-Gaussian
dynamics leads to greater accuracy, particularly when track-
ing nonlinear reference trajectories.

In particular, ensemble methods including PFs can be
adapted to higher-dimensional settings by introducing local-
ization techniques, as demonstrated in prior data assimila-
tion studies. While PFs face challenges such as degeneracy
in high-dimensional spaces, recent advances in localized and
hybrid PF approaches offer promising directions for over-
coming these limitations.

Despite its advantages, EnMPC is sensitive to factors such
as the objective outputs, prediction horizon, ensemble size,
and the choice of data assimilation method. For instance,
achieving optimal performance with the penalty term ap-
proach requires careful tuning of objective output operators.
The sensitivities highlight the need for further investigation
and optimization to enhance the effectiveness and applicabil-
ity of EnMPC.

In conclusion, EnMPC represents a promising framework
for controlling chaotic and nonlinear systems. While our
current validation is based on the simplified model, future
work will explore its applicability to more complex, high-
dimensional systems. These include not only operational
weather models but also other nonlinear dynamical systems
such as ocean circulation models, ecosystem dynamics, and
economic or neural systems. Addressing key challenges –
such as improving computational efficiency, optimizing pa-
rameter selection, and mitigating sampling errors – will be
essential for these extensions. EnMPC thus holds potential
as a powerful tool for diverse applications in the middle to
long term, including but not limited to weather control.
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