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Abstract. Climate change intensifies weather-related disasters, necessitating novel mitigation strategies beyond
conventional weather prediction methods. The control simulation experiment (CSE) framework proposes altering
weather systems through small perturbations, but its effectiveness relative to other control methods remains un-
certain. This study evaluates CSE’s efficacy against model predictive control (MPC), a well-established method
in control engineering. We specifically develop an MPC algorithm tailored for the Lorenz-63 model, incorporat-
ing temporal deep unfolding to address challenges in controlling chaotic systems. Simulations show that MPC
achieves higher success rates with less control effort under certain conditions, particularly with shorter prediction
horizons. This work bridges control theory and atmospheric science, advancing the understanding of atmospheric
controllability and informing future research efforts to mitigate extreme weather events.

1 Introduction

The Lorenz-63 system is a foundational model in the study
of chaotic dynamics, originally developed to illustrate the un-
predictable nature of atmospheric convection (Lorenz, 1963).
Despite its simplicity, it captures essential features of deter-
ministic chaos, such as sensitivity to initial conditions and the
emergence of structured yet non-repeating trajectories. As a
result, it has become a standard testbed for evaluating control
methodologies in chaotic systems (Ott, 2002; Palmer, 1993).

Recent interest in weather control has further ele-
vated the relevance of Lorenz-63, as atmospheric pro-
cesses exhibit similar chaotic characteristics (Palmer, 2000).
Weather systems are highly complex, characterized by high-
dimensionality, partial observability, and chaotic behavior,
making their control particularly challenging (Hoffman,
2002; Jarvis et al., 2008; Ban-Weiss and Caldeira, 2010).
However, despite its simplified nature, the Lorenz-63 system
remains a valuable tool for studying fundamental properties

of chaotic systems (Palmer, 2000). Atmospheric processes
exhibit similar chaotic characteristics, making Lorenz-63 an
idealized yet insightful model for exploring weather con-
trol challenges, particularly in understanding how small per-
turbations influence trajectory evolution — a key aspect of
weather modification. Moreover, the “wings” of the Lorenz
attractor have often been used as a conceptual analogy for
weather regime transitions (Weller and Schulz, 2014; Sol-
datenko, 2018). Studying control strategies within this sim-
plified framework aids in technique development and lays
the foundation to adapt to more complex models for weather
control (Sierra et al., 2021; Weller and Schulz, 2014).
Weather control still remains underdeveloped due to both
physical and mathematical challenges. From a physical per-
spective, atmospheric processes possess vast energy reserves,
while human technological capabilities for intervention are
orders of magnitude smaller. This discrepancy necessitates
identifying physically justified methods for applying small
perturbations to atmospheric variables, such as using sensi-

Published by Copernicus Publications on behalf of the European Geosciences Union & the American Geophysical Union.

a|oIlJe yoJeasay



282 R. Nagai et al.: Effectiveness of an intervention strategy in CSE vs. MPC

tivity approaches in dynamical systems (Hall et al., 1982;
Lea and Haine, 2000; Soldatenko and Chichkine, 2016).
From a mathematical perspective, the atmospheric system
and its components (including the atmosphere) are high-
dimensional, chaotic, and only partially observed, making
observability and controllability difficult to achieve. Addi-
tionally, defining realistic objective functions (cost func-
tions) for control remains a challenge (Jarvis et al., 2009;
Sun et al., 2023). These issues become even more critical
when transitioning from conceptual models to more realistic
ones (Weller and Schulz, 2014; Soldatenko, 2018), as seen in
studies on closed-loop control of the global carbon—climate
system (Sierra et al., 2021; Weller and Schulz, 2014). Given
these challenges, it is essential to first study weather con-
trol in simpler systems that still exhibit chaotic characteris-
tics. Although the Lorenz-63 system is a simplified model, it
provides a controlled environment in which researchers can
explore how small perturbations influence system evolution
and test various control strategies.

However, effectively implementing control in chaotic sys-
tems requires experimental approaches that go beyond tradi-
tional predictability-focused studies. A promising approach
in this context is the control simulation experiment (CSE),
introduced by Miyoshi and Sun (2022), which extends tradi-
tional numerical experiments by actively applying small per-
turbations to guide system trajectories, offering valuable in-
sights into chaotic system control. The CSE approach lever-
ages the system’s inherent sensitivity to initial conditions,
aiming to influence its long-term evolution with minimal in-
terventions. The CSE extends the traditional observing sys-
tem simulation experiment (OSSE) (Atlas, 1997) by shift-
ing the focus from improving predictability to exploring the
potential for controlling chaotic systems (Miyoshi and Sun,
2022; Sun et al., 2023). Via infinitesimal perturbations, CSE
aims to influence the future evolution of chaotic systems to-
ward more desirable trajectories. This approach leverages
the inherent sensitivity to initial conditions in chaotic sys-
tems, a phenomenon popularly known as the “butterfly ef-
fect” (Palmer, 1993; Ott, 2002), to steer the system’s trajec-
tory with minimal interventions.

While CSE has shown promise in specific con-
texts (Miyoshi and Sun, 2022; Sun et al., 2023), its perfor-
mance relative to other established control methodologies
has not been thoroughly examined (Kawasaki and Kotsuki,
2024). Hence, there is a need to compare the CSE with
control strategies extensively studied and applied in other
fields of engineering (Slotine and Li, 1991; Dorf and Bishop,
2011). Among them, model predictive control (MPC) is one
such method (see, e.g., Richalet et al., 1978; Mesbah, 2016),
known for its robustness and ability to handle multi-variable
control problems with explicit consideration of constraints
and optimization objectives. The MPC predicts future system
behavior using dynamic models and computes optimal con-
trol actions over a moving time horizon, making it a powerful
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tool for dynamical systems where future states are influenced
by current interventions.

The objective of this study is to rigorously assess the effi-
cacy of the CSE framework in comparison to MPC. By de-
veloping an MPC-based algorithm tailored for the Lorenz-63
model and integrating a refined version of MPC that incorpo-
rates deep unfolding techniques (Kishida and Ogura, 2022;
Hershey et al., 2014), we seek to explore whether estab-
lished control methodologies can enhance the controllabil-
ity of chaotic atmospheric models. This approach allows us
to leverage MPC’s strengths while accommodating the com-
plexities of chaotic dynamics. To facilitate this investigation,
we conduct comprehensive simulation experiments compar-
ing the performance of the MPC-based control method with
the strategies employed in the CSE. The results suggest that,
when the control effort (instantaneous magnitude of control
input applied at each time step) is limited and the predic-
tion horizon is short, the MPC framework outperforms the
CSE strategy in terms of control success rate. These improve-
ments underscore the potential benefits of integrating well-
established control methodologies into CSE-like frameworks
for chaotic systems. This finding is particularly relevant in
practical scenarios such as weather control, where strong in-
terventions are physically infeasible, and effective regulation
must therefore rely on minimal and gradual inputs. More-
over, since long-term forecasts are inherently unreliable, the
prediction horizon should be kept short to ensure robust and
timely control.

The contribution of this study is twofold. On the one
hand, we enhance the traditional MPC approach with tem-
poral deep unfolding to handle the unique challenges posed
by chaotic systems, thereby extending MPC’s applicability
to nonlinear contexts. On the other hand, we provide a de-
tailed comparative analysis between the MPC-based method
and existing CSE strategies, advancing the understanding of
controllability in chaotic dynamics and laying the ground-
work for future research in this area. By comparing CSE and
MPC within the same framework, our study seeks to evaluate
the potential advantages and limitations of conventional con-
trol techniques in the domain of weather control applications.
The insights gained from this comparison can inform the de-
velopment of more effective control strategies and guide fu-
ture research efforts aimed at mitigating the impact of ex-
treme weather events through controllability.

We finally remark that, recently, Kawasaki and Kotsuki
(2024) introduced MPC into the CSE framework and demon-
strated its effectiveness in leading the Lorenz-63 system to-
ward a prescribed regime. Their approach involves solving
an optimal control problem by deriving and iteratively solv-
ing the necessary conditions for optimality using numerical
methods. While this method shows promising results for low-
dimensional systems like the Lorenz-63 model, it relies on
analytical derivations and iterative computations that may not
scale well to higher-dimensional or more complex systems
due to increased computational demands. For this reason, we
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have chosen to use an MPC based on deep unfolding tech-
niques, in which no symbolic execution is required.

The structure of the paper is as follows. Section 2 pro-
vides an overview of the CSE framework, including its theo-
retical foundations and methodologies. Section 3 details the
development of the MPC method based on temporal deep
unfolding and its implementation for the Lorenz-63 model.
Section 4 presents the results of our comparative analysis
between the MPC-based control method and the traditional
CSE strategies. Finally, conclusions are drawn in Sect. 5.

2 Control simulation experiment

The CSE (Miyoshi and Sun, 2022) is a framework de-
signed to explore the controllability of chaotic systems in
the context of weather control applications. In this section,
we provide a comprehensive description of the Lorenz-63
model (Lorenz, 1963), the control target in CSE. We then
present an overview of the control strategies employed within
the CSE framework, detailing the methods used to influence
the system’s behavior. Finally, we discuss the limitations and
challenges associated with these control strategies.

2.1 Control objective

The Lorenz-63 model is a simplified mathematical model
that captures the essence of atmospheric convection and ex-
hibits chaotic behavior (Kravtsov and Tsonis, 2021). It has
become a canonical example in the study of dynamical sys-
tems due to its sensitive dependence on initial conditions.
The model consists of a set of three coupled, nonlinear ordi-
nary differential equations representing the evolution of three
state variables x, y, and z, which correspond to idealized at-
mospheric quantities.

The controlled Lorenz-63 model in the CSE framework
incorporates control inputs u,, uy, and u; for each state vari-
able, allowing for the application of external influences to the
system:

dx

T =00 -0 +u, )
d
2 x(p—2)—y +uy, ®)
dr
d
= —xy—Bztu.. 3)
dr

In these equations, o, p, and B are positive parameters repre-
senting the Prandtl number, Rayleigh number, and a geomet-
ric factor, respectively. These parameters are set to o = 10,
p =28, and g = 8/3, values known to produce chaotic dy-
namics characterized by a butterfly attractor.

In the CSE framework, the Lorenz-63 model is discretized
in time using the Runge—Kutta method with a step size of
0.01. Under these discretization parameters, the system’s so-
lution is known to exhibit chaotic behavior, with the first state
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variable x oscillating between positive and negative regions.
This transition between regimes is referred to as a regime
shift.

The primary control objective in CSE is to prevent regime
shifts by maintaining the state variable x within the positive
region. By achieving this, the system can be stabilized in a
desired regime. Controlling such a chaotic system is chal-
lenging due to its inherent sensitivity to initial conditions
and nonlinear dynamics, necessitating sophisticated control
strategies.

2.2 Control strategies

The control objective is achieved by applying control inputs
of a predetermined magnitude to each state variable x, y,
and z within the Lorenz-63 model to stabilize the system and
avoid transitions into the negative regime.

To assess the effectiveness of this control strategy, a ref-
erence trajectory that represents the “true” system behavior
is necessary. This reference, known as the nature run (NR),
is generated by running a long-term simulation of the uncon-
trolled Lorenz-63 system. We denote the state of the NR at
time ¢ as xR € RR3, where the three components correspond
to the variables x, y, and z. Within the CSE framework, the
NR serves as the ground truth. However, its true state vari-
ables are not directly observable; instead, noisy observations
are obtained by adding independent Gaussian noise with a
variance of 2.0 to each variable. To estimate the true values
of the variables in the NR from these noisy observations, a
data assimilation technique known as the ensemble Kalman
filter (Houtekamer and Zhang, 2016) is employed. The data
assimilation interval is denoted as T,. In the following anal-
ysis, we use T, = 8 steps, consistent with the setup in CSE.

An overview of the control strategies proposed in CSE is
provided below; for further details, refer to Miyoshi and Sun
(2022).

1. Observation: an observation is obtained by adding
Gaussian noise to the NR, which is generated by inde-
pendently running the Lorenz-63 model with a fixed set
of parameters initialized with a given initial condition.

2. Data assimilation: at time step #, the ensemble Kalman
filter assimilates the latest observations to update the es-
timate of the state of the NR. This provides the initial
condition for subsequent forecasting.

3. Ensemble forecasting: an ensemble of forecasts is gen-
erated from time ¢ to t + T (where T is the ensem-
ble forecast horizon) using analysis ensembles, which
are slightly perturbed initial conditions. These perturba-
tions simulate uncertainties in the initial state and model
errors. Typically, three ensemble members are gener-
ated to estimate the future state of the NR.

4. Regime shift detection: the ensemble forecasts are an-
alyzed to determine if any member predicts a regime
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shift (i.e., the state variable x crossing into the negative
region) within the forecast horizon. If at least one en-
semble member indicates a regime shift, control actions
are deemed necessary.

5. Control input determination: for each time step from
t+1tot+T,—1, controlinputs uy, uy, and u, are calcu-
lated to prevent the predicted regime shift. The control
inputs are determined by

(a) selecting an ensemble member § that predicts a
regime shift and an ensemble member N that does
not;

(b) computing the difference S — N between the two
ensemble members at each time step;

(c) normalizing this difference vector so that its Eu-
clidean norm equals a predetermined magnitude D;

(d) applying the normalized control inputs to the NR at
each time step.

6. Iteration: after applying the control inputs, new observa-
tions are obtained at time ¢ 4 T3, and the process repeats
from step 1.

We adopt the above method as a baseline for comparison with
other methods in the following tests. To ensure a fair evalua-
tion, we follow the original setting described in Miyoshi and
Sun (2022).

2.3 Limitations of CSE

Despite the promising results achieved by the control strate-
gies within the CSE framework, several limitations impact
their overall effectiveness in controlling chaotic systems like
the Lorenz-63 model. One significant limitation is the sen-
sitivity of the control strategy to the ensemble forecast hori-
zon T'. Experimental observations have indicated that when
the prediction horizon is relatively long, the success rate of
preventing regime shifts is high. This is because a longer
prediction horizon allows for earlier detection of potential
regime shifts, providing sufficient lead time to apply control
inputs effectively. However, extending the prediction hori-
zon also increases computational costs and introduces greater
uncertainty due to the chaotic nature of the system. Small
errors in the initial conditions can grow exponentially over
time, leading to significant deviations in the forecasted tra-
jectories. Conversely, when the prediction horizon is rela-
tively short, the control strategy’s success rate decreases sig-
nificantly. Shorter horizons may not provide enough time to
detect and counteract impending regime shifts, resulting in a
higher likelihood of the system transitioning into undesirable
states.

Another challenge lies in determining the appropriate
magnitude of the control inputs, represented by the Euclidean
norm D of the control vector u = [uy,uy, uZ]T. If D is set
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too small, the control inputs may be insufficient to influ-
ence the system’s dynamics and prevent regime shifts. On
the other hand, if D is too large, the control actions may be
impractical for implementations due to physical limitations.
Balancing the magnitude of the control inputs to achieve ef-
fective control without causing adverse side effects is a deli-
cate task. This issue underscores the need for a more system-
atic approach to determine optimal control input magnitudes
that consider both effectiveness and feasibility.

Additionally, the CSE framework lacks an optimization
mechanism capable of addressing the multiple objectives and
constraints inherent in practical control applications. Real-
world control strategies must often balance competing goals,
such as minimizing control effort, satisfying physical con-
straints, and achieving desired system performance. Without
such a mechanism, the CSE approach may produce subopti-
mal control inputs, limiting its efficiency, practicality, and ap-
plicability to complex systems or real-world scenarios where
these considerations are critical.

These limitations highlight the necessity for alternative
or enhanced control methodologies capable of addressing
the inherent challenges of controlling chaotic systems effec-
tively. In particular, there is a need for control strategies that
can optimize control inputs while explicitly considering sys-
tem constraints, uncertainties, and multiple objectives. Con-
trol methods such as MPC offer a promising avenue in this
regard. The MPC provides a systematic framework for op-
timizing control actions over a future horizon while han-
dling multivariable systems with explicit constraints and ob-
jectives. By integrating such methods, it may be possible
to overcome the limitations of the current CSE approach,
enhancing the controllability of chaotic systems like the
Lorenz-63 model and improving the practical feasibility of
weather control applications.

3 MPC using temporal deep unfolding

MPC (Richalet et al., 1978; Mesbah, 2016) is a prominent
control strategy extensively used in engineering disciplines
for its capability to handle multivariable control problems
with constraints and to anticipate future system behavior by
solving an optimization problem at each time step. Unlike
the CSE strategy, which employs an event-triggered scheme
and introduces perturbations only when a regime change is
detected in the ensemble, the MPC framework applies con-
tinuous perturbations to the nature run at every time step.

In this study, we compare the effectiveness of MPC with
that of the CSE in terms of control success rates for chaotic
systems like the Lorenz-63 model. Among the various MPC
methodologies, we adopt an advanced version known as
MPC using temporal deep unfolding, which has demon-
strated effectiveness in controlling nonlinear systems (see,
e.g., Kishida and Ogura, 2022; Liu et al., 2024; Aizawa et al.,
2024). This section provides a comprehensive overview of
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MPC and elaborates on how temporal deep unfolding en-
hances its capabilities, particularly in the context of control-
ling chaotic dynamics.

3.1 MPC

MPC is a control strategy that optimizes control inputs by
predicting future states of a dynamic system over a finite
prediction horizon at each discrete time step (Rawlings and
Mayne, 2009). By solving an optimization problem that min-
imizes a predefined cost function, MPC adjusts the control
inputs to ensure that the system’s output follows a desired
trajectory while satisfying constraints on inputs and states.
The key components of MPC include the following.

— System model: a mathematical representation of the
system dynamics, which can be linear or nonlinear, de-
terministic or stochastic.

— Cost function: an objective function that quantifies the
performance of the system, incorporating terms for
tracking error, control effort, and possibly other consid-
erations like energy consumption or economic costs.

— Constraints: physical or operational limitations on the
control inputs and system states, such as actuator limits,
safety requirements, or environmental regulations.

The discrete-time state equation governing the controlled
system is expressed as

Xp+1 = f(X¢, ), (C))

where x, € R3 is the system state and uw; € R3 is the con-
trol input. The objective is to find a sequence of control in-
puts {u;,us41,...,u47_1} over a prediction horizon T that
minimizes a cost function J while satisfying the system dy-
namics and constraints. This formulation of J enables the
controller to minimize the cumulative cost J while adhering
to dynamic constraints and specified limits on control inputs
and states. By iteratively solving this optimization problem,
MPC adapts to changing dynamics and disturbances, enhanc-
ing system performance.

The optimization problem at each time step can be typi-
cally formalized as follows:

minimize J

T—1
LLTRS P,

subject to X yr4+1 = fXy+k,U4k), k=0,....T—1, (®)]
k=0,....T—1,

k=0,...,T,

Umin = U4k = Umax,

Xmin = Xt+k = Xmax;
where upiy and un,y represent input constraints, while Xp;in
and X% represent state constraints.

This formulation enables the controller to minimize the cu-
mulative cost J while adhering to the system dynamics and
specified constraints. By iteratively solving this optimization
problem at each time step and implementing only the first
control input u;, MPC adapts to changing dynamics and dis-
turbances, enhancing system performance and robustness.
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3.2 Temporal deep unfolding

Deep unfolding is a methodology that bridges the gap be-
tween iterative optimization algorithms and deep learning ar-
chitectures (Hershey et al., 2014; Jagannath et al., 2021). It
involves unfolding an iterative algorithm into a layer-wise
structure resembling a neural network, where each iteration
corresponds to a layer. Parameters within the algorithm can
then be learned using backpropagation and gradient-based
optimization techniques.

Temporal deep unfolding extends this concept to dynamic
systems by treating the state evolution equations as an it-
erative algorithm (Kishida and Ogura, 2022; Aizawa et al.,
2024). In this approach, the system dynamics over a pre-
diction horizon T are unfolded into a feed-forward network
with T layers, each representing the system’s state at a fu-
ture time step. The control inputs {w;, w4 1,...,047_1} are
treated as learnable parameters within this network. By lever-
aging deep learning techniques such as backpropagation, the
control inputs are optimized to minimize the cost function.
This approach offers several advantages. First, in terms of
efficiency, gradient-based optimization can be more efficient
than traditional optimization methods, especially for large-
scale or complex problems. Second, it provides flexibility by
handling nonlinear dynamics and cost functions. Addition-
ally, it facilitates the integration with machine learning, al-
lowing for the incorporation of learning-based components,
such as neural network approximations of dynamics or cost
functions.

In the context of temporal deep unfolding, incremental
learning is a technique where the model learns from new
data incrementally without retraining from scratch, preserv-
ing knowledge from previous learning. Specifically, incre-
mental learning involves progressively increasing the predic-
tion horizon 7. In this study, we employ incremental learning
to refine the control inputs obtained through temporal deep
unfolding (denoted as MPCIL), enhancing the MPC’s ability
to control the Lorenz-63 model effectively.

3.3 Proposed control algorithm

The control system implemented in this study is controlled
by adding the control inputs obtained by MPC using tem-
poral deep unfolding to the three variables of the Lorenz-63
model at each time step. The algorithm proceeds as follows.

1. Observation: an observation, X;, is obtained by adding
Gaussian noise to the NR xR,

2. Temporal deep unfolding: Using the observation, con-
trol inputs {u;, W41, ..., Uy 7,—1} are determined as fol-
lows.

(a) We construct a feed-forward network with 7' lay-
ers. Each layer represents the state transition from
timet+ktotimet+k+1(k=0,1,...,T—1)and
incorporates the control input w, .
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(b) The sequence of control inputs is then initialized,
which can be done using previous control inputs or
random values.

(c) Using backpropagation and gradient descent, the
control inputs {u;, w41, ..., u;47—1} are updated to
minimize the cost function

T

Jt,T = ZC(—Xt)’ (6)
i=0
where
0, if x <0,
c(x) = @)

x, otherwise

penalizes negative values of x, the first component
of the vector state variable x. To ensure consistency
with the CSE control strategy in which the mag-
nitude of the control input is normalized to D, the
MPC formulation trains control inputs whose mag-
nitude is also constrained to D.

3. Tteration: after applying the control inputs
{w;,wryy,...,u47,—1} to the NR, new observa-
tions are performed at time ¢+ 7,, and the process
repeats from step 1.

When incremental learning is applied, step (c) becomes as
follows.

(c’) Using backpropagation and gradient descent, the con-
trol inputs {u;,w;41,...,u,47—_1} are updated to mini-
mize the cost functions J; o, J;.1, ..., J;,7 sequentially.

The algorithm above can be illustrated more straightfor-
wardly by Fig. 1.

4 Evaluation results

In this section, we evaluate the effectiveness of the control
strategy employed in the CSE by comparing it with MPC us-
ing temporal deep unfolding applied to the Lorenz-63 model.
Miyoshi and Sun (2022) conducted experiments performing
CSE for 40 different initial conditions (each initial condition
corresponds to a different NR) and investigated the control
success rate. We adopted the results from Miyoshi and Sun
(2022) as a baseline to avoid discrepancies that might arise
from re-implementing the CSE scheme independently. This
ensures that observed performance differences are due to the
control strategies themselves, not implementation variability.
By comparing their results with the control success rate ob-
tained using MPC with temporal deep unfolding, we aim to
assess the effectiveness of the control policies employed in
CSE.

Nonlin. Processes Geophys., 32, 281-292, 2025

Table 1. Parameters of the control system.

Lorenz-63 model

o 10

P 28

B 8/3
Parameters common in CSE, MPC, and MPCIL

Step size 0.01
Upper limit of the Euclidean norm of the control D
input

Length of NRs 8000
Prediction horizon T
Observation period Ta=8
Parameters common in MPC and MPCIL

Optimizer Adam
Learning rate 10
The number of training iterations using error m
backpropagation

4.1 Parameters

We detail the parameters used in the control system of the
Lorenz-63 model when applying MPC with temporal deep
unfolding in Table 1. As stated in Sect. 2.1, standard param-
eters of the Lorenz-63 model are set as o = 10, p = 28, and
B =28/3.

Each of the components u,, uy, and u, of the initial con-
trol inputs before training are initialized as random numbers
drawn from a normal distribution with a mean of 0 and a
standard deviation of 1. These are then normalized in such
a way that the vector u, has the predetermined Euclidean
norm of D. The learning rate, which determines the step size
during the optimization process, is set to 10. The number of
training iterations using error backpropagation is denoted as
m. We utilize the Adam optimizer (Bae et al., 2019), a widely
used optimization algorithm in deep learning, to minimize
the cost function. The target value for the cost function is set
to 0, allowing the control inputs at each step to be learned so
that the cost function approaches this target. Control is per-
formed for various combinations of the prediction horizon T
(number of steps ahead in the prediction) and the upper limit
D of the Euclidean norm of the control input vector.

4.2 Control results of the Lorenz-63 model using MPC

In this section, we present the results of controlling
the Lorenz-63 model using MPC with temporal deep
unfolding. The initial values of the system were set
according to Miyoshi and Sun (2022) as (x,y,z)=
(8.20747939, 10.0860429, 23.86324441). The values of the
control inputs, x coordinate, and the variables x, y, and z
for each combination of parameters 7 and D are shown in
Fig. 2. Additionally, in Fig. 3, we illustrate how the control
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e | | |
Xt Xt | [ Xe+1 | | Xt+2 | | Xt+3
NR 70 L/ L/ ] L/
<] ] L]
+ 4" + 4t + ,:+
Jto Jea Jt2 Je3

Figure 1. Conceptual illustration of model predictive control via temporal deep unfolding.

inputs uy, uy, and u, evolve with the number of parameter
updates m. This provides insight into how the inputs are ad-
justed as learning progresses. These figures correspond to the
first time step of the MPC implementation, where the control
input at time step 0 is optimized while predicting the sys-
tem’s behavior over a prediction horizon of 7 = 113 steps
with a control limit of D = 0.5.

We conducted control experiments with the prediction
horizon 7 =113 and various values of the upper limit D
of the Euclidean norm of the control input, specifically D =
0.5, 0.4, 0.3, and 0.2. Figure 2 illustrates the time series of
the control inputs, the x-coordinate values, and the trajecto-
ries of the system for each combination of 7 and D. The left
column shows how the control inputs evolve over time, the
middle column depicts the time series of the x coordinate,
and the right column presents the trajectory of the system in
the phase space.

The illustrative example above demonstrates the effective-
ness of our control method. To further assess its feasibility,
we conducted systematic evaluations using a broader set of
initial conditions. Specifically, we conducted simulations for
40 different initial conditions to examine the control success
rate, defined as the proportion of successful control instances.
Following the methodology in Miyoshi and Sun (2022), we
varied the prediction horizon T and the upper limit D of the
Euclidean norm of the control input. Additionally, to ensure
consistent experimental conditions, the 40 initial values used
in this study are the same as those used by the original CSE.
Table 2 presents a comparison of the control success rates be-
tween CSE and our MPC approach for different values of T
and D. We also investigated the effect of incremental learn-
ing when performing control using MPC. Table 3 compares
the control success rates obtained using MPC without incre-
mental learning and with incremental learning (denoted as
MPCIL).

A detailed analysis of these results is provided in the next
section. In particular, we discuss the differences in control
strategies between MPC and CSE, the impact of prediction
horizon length and control input limits on performance, and
the trade-offs between control accuracy and computational
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efficiency. These insights contribute to a better understanding
of how advanced control methodologies can be effectively
applied to complex atmospheric models.

4.3 Discussion

Figure 4 shows the comparison of the control success rate for
each control method (MPC, CSE, and MPCIL) based on the
results of Table 2. The comparison between MPC and CSE
is illustrated by Fig. 4a, and that between MPC and MPCIL
is illustrated by Fig. 4b.

Based on the results from Fig. 4a, it is observed that the
larger D is and the smaller T is, the better the MPC per-
forms. Specifically, the control using MPC performs bet-
ter than control using CSE for D values of 0.2 or higher.
For D =0.1, MPC shows better control performance for
T <226, whereas CSE exhibits higher control performance
for T > 226. For D < 0.05, both MPC and CSE achieve a
0 % control success rate for 7' < 188, and CSE demonstrates
better control performance for 7 > 188. This indicates that
while CSE control is effective for longer prediction horizons,
it is less effective for shorter prediction horizons.

In relatively short prediction horizons, the difference in
control strategies between CSE and MPC could be consid-
ered as a cause of the lower success rate of control by CSE
compared to MPC. In the control strategy of CSE, at each
time step, the difference between ensemble members indi-
cating regime shifts, denoted as S, and ensemble members
not indicating regime shifts, denoted as N, is taken, and the
control input is calculated based on that difference S — N.
However, it is not necessarily the case that the value calcu-
lated from the difference of ensemble members always con-
tributes to keeping the state of the Lorenz-63 model in the
positive region with respect to the value of x. On the other
hand, in control by MPC, a cost function is set up so that the
cost increases when the value of x is negative, causing the
control input to be updated to make the value of x positive.

Next, we will discuss the differences between using incre-
mental learning and not using it in a control system under
MPC. As seen in Fig. 4b, significant differences can be seen
for D=0.2and D =0.1. For D =0.2 and T = 19, the con-
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iterations during optimization.

trol success rate was 0 % without incremental learning but
increased to 82.5 % with incremental learning. For D = 0.1
and T = 38, the control success rate with incremental learn-
ing was 67.5 % higher than without incremental learning.
The control success rate with incremental learning tended to

Nonlin. Processes Geophys., 32, 281-292, 2025

be better than without it across the tested combinations of
parameters 7 and D in Table 3.

On the other hand, we need to consider the impact of in-
cremental learning on computation time. The average com-
putation time of MPC-based control is 378, 1272, and 1965 s
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Table 2. Comparison of control success rates between CSE and MPC, where Pcsg and Pyjpc represent their respective success rates.

T=113 | T=151 | T=18 | T=26 | T=301

Pcse Pvpc | Pcse Pwpc | Pcse Pvmpc | Pcse Pupc | Pcse Pwmpc
D=0.02 0.000 0.000 | 0.000 0.000 | 0.000 0.000 | 0.000 0.000 | 0.050 0.000
D=0.03 0.000 0.000 | 0.000 0.000 | 0.000 0.000 | 0.050 0.000 | 0.975  0.000
D=0.04 0000 0.000 | 0.000 0.000 | 0.000 0.000 | 0.425 0.000 | 0.975  0.025
D=0.05 0.000 0.00 | 0.000 0.000 | 0.025 0.025 | 0.550 0.075 | 0.975 0.150
D=0.1 0000 0400 | 0.000 0375 | 0250 0.375 | 0.800 0.575 | 0.825  0.525
D=02 0000 0725|0025 0.600 | 0275 0.800 [ 0.675 0.800 | 0.825 0.725
D=03 0000 0750 | 0.000 0.725 | 0250 0.850 | 0.400 0.750 | 0.725  0.650
D=04 0000 0.650 | 0.000 0.750 | 0.200 0.725 | 0.100  0.675 | 0.500  0.400
D=05 0025 0.600 | 0.000 0.625 | 0.175 0400 | 0.200 0.125 | 0.525  0.025
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Table 3. Comparison of control success rates between MPCIL and MPC, where Pyipcyr, and Pyipc represent their respective success rates.

T=19 \ T =38 \ T =57

Pvpci Pmpc | Pupci Pwmpc | PmpciL Pumipc
D =0.02 0.000  0.000 0.000  0.000 0.000  0.000
D =0.03 0.000  0.000 0.000  0.000 0.000  0.000
D =0.04 0.000  0.000 0.000  0.000 0.000  0.000
D =0.05 0.000  0.000 0.000  0.000 0.000  0.000
D =0.1 0.000  0.000 0.675  0.000 0.725 0.675
D=0.2 0.825  0.000 0.900  0.900 0900 0.875
D=023 0.975 0.975 0.925 0.925 0975 0.975
D=04 1.000 1.000 1.000 1.000 1.000 1.000
D=0.5 1.000 1.000 1.000 1.000 1.000 1.000

for T =19, T =38,and T = 57, respectively. It increases al-
most linearly with the prediction horizon 7" when control is
performed without incremental learning. On the other hand,
with incremental learning, the computation time is 16 004,
49556, and 121578 s. It can be observed that computation
time increases significantly as the prediction horizon 7 in-
creases. This result indicates that MPCIL outperforms MPC
in some cases but requires a substantial amount of computa-
tional resources.

These findings highlight a trade-off between control
performance and computational efficiency. In applications
where computational resources are limited or real-time con-
trol is required, the standard MPC approach may be more
practical despite its lower success rate in certain scenarios.
Conversely, in situations where higher control accuracy is
paramount and computational resources are ample, employ-
ing incremental learning with MPC can provide superior per-
formance.

Overall, the MPC approach, especially when enhanced
with incremental learning, demonstrates a strong potential
for controlling chaotic systems like the Lorenz-63 model,
outperforming the traditional CSE strategy under certain
conditions. This suggests that advanced control methodolo-
gies from control engineering can be effectively applied to
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complex atmospheric models, potentially contributing to the
development of more effective weather control strategies.

5 Summary and future work

In this study, we conducted a comprehensive evaluation of
the control strategy employed in the CSE by comparing it
with MPC using temporal deep unfolding on the Lorenz-63
model. The findings reported by Miyoshi and Sun (2022) in-
dicate that the CSE strategy performs relatively well under
longer prediction horizons, whereas its success rate dimin-
ishes when the horizon is short. In contrast, our results show
that MPC achieves better control performance under short
prediction horizons, maintaining the system’s state within the
desired regime.

This study contributes in two key ways: first, it presents an
adaptation and tailored implementation of temporal deep un-
folding for controlling the Lorenz-63 system within a control
framework inspired by the CSE strategy. Second, it provided
a detailed comparison between MPC-based methods and ex-
isting CSE strategies, advancing the understanding of con-
trollability for chaotic dynamics. While this study primarily
focuses on theoretical and numerical analyses, it broadens
the applicability of MPC by demonstrating its effectiveness

Nonlin. Processes Geophys., 32, 281-292, 2025
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in addressing practical challenges associated with chaotic dy-
namics. One promising avenue is the management of extreme
weather events, where effectively understanding and control-
ling chaotic behavior is critical.

While our work provides a potential pathway toward
weather control, several challenges remain for practical im-
plementation due to the inherent simplicity of the Lorenz
system. The classical Lorenz system, though widely used
to study deterministic chaos and to test new numerical al-
gorithms (Wang, 2013; Soldatenko and Chichkine, 2016),
only captures the essential features of chaotic dynamics.
Moreover, the concept of a “weather regime” is itself an
open problem, and equating weather regimes to the wings
of the Lorenz-63 attractor remains a conceptual simplifica-
tion. Therefore, more realistic models, including the cou-
pled (fast—slow) versions of the Lorenz system motivated by
the atmosphere—ocean interaction (Pefia and Kalnay, 2004;
Siqueira and Kirtman, 2012), are necessary to better address
the challenges in the context of weather control (e.g., Ban-
Weiss and Caldeira, 2010; Soldatenko, 2018). Furthermore,
additional challenges such as physical feasibility and the for-
mulation of appropriate cost functions must be overcome to
generalize the aforementioned conceptual insights into prac-
tical weather control strategies. These aspects will be ex-
plored in our future research.

Code availability. The code that supports the findings of this
study is available at https://doi.org/10.5281/zenodo.16834640
(rikuto, 2025).

Data availability. The data are generated by the codes described
in the “Code availability” section.
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