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Abstract. Hydrostatic models were and still are the workhorses for realistic simulations of ocean dynamics,
especially for climate applications. Introducing a Fourier space projection method and using the Heisenberg–
Gabor limit, a formalism is developed to systematically evaluate the role of flatness, stratification, rotation and
friction for the fidelity of the hydrostatic approximation. The hydrostatic approximation is formally first order
in γ =H/L, where H is the vertical and L the horizontal scale of the phenomenon considered. For linear
(low-amplitude) and unforced stratified rotating flow, the dynamics can be separated into balanced flow and
wave motion. It is shown that for the linear balanced motion the hydrostatic approximation is exact and for wave
motion it is second order, obtaining the leading prefactors. The fidelity of the hydrostatic approximation therefore
also relies on the ratio of the amplitude of wave motion to balanced motion. This ratio adds considerably to the
quality of the hydrostatic approximation for larger-scale flows in the atmosphere and the ocean.

Imposing the divergenceless condition is a linear projection of the dynamical variables into the subspace of
divergenceless vector fields, for both the Navier–Stokes and the hydrostatic formalism. Both projections are
local in Fourier space. The former is well known, while the latter, developed here, asks for an extension of the
dynamical space to four dimensions. The projection is followed by a time-evolution operator, which differs in
the wave frequencies only. Combining the projection and the linear evolution operators in both formalisms leads
to the linear projection-evolution operator.

Calculating the difference of the two projection-evolution operators, the expression of the error, scaling
and prefactors done by the hydrostatic approximation is obtained. Analyzing the eigenspace of the projector-
evolution operators, it is shown that for rotating buoyant vortical flow, the hydrostatic approximation is of third
order for buoyant forcing, second order for horizontal and first order for vertical dynamical forcing. Balanced
dynamics is in the kernel of the linear projection-evolution operator, and conservation of potential vorticity is
expressed by the kernel of its adjoint.

Using the Heisenberg–Gabor limit, it is shown that for large-scale ocean dynamics, the difference of the
dynamics of the projection-evolution operator between the two formalisms is insignificant. It is shown that
the hydrostatic approximation is appropriate for realistic ocean simulations with vertical viscosities larger than
≈ 10−2 m2 s−1. A special emphasis is on unveiling the physical interpretation of the calculations.
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1 Introduction

At large scales, ocean velocities point predominantly in the
horizontal direction, due to the flatness of the ocean basin,
the action of gravity, the rotation of the earth and the feeble
variations of the density of ocean waters. These properties
allow for the derivation of idealized mathematical models
of ocean dynamics from the fully three-dimensional Navier–
Stokes equations (see, e.g., Vallis, 2017). Idealized models
are not only implemented numerically to efficiently integrate
atmosphere and ocean dynamics, but are at the basis of hu-
man understanding (Wirth, 2010) and therefore of the devel-
opment of storylines explaining physical processes and their
interactions. Most of these models are based on the hydro-
static approximation. In the quasi-geostrophic model, for ex-
ample, the entire dynamics is projected on the direction of the
balanced eigenvector (to be defined below), and the influence
of dynamics along the other vectors due to their linear and
nonlinear interaction is estimated from the balanced flow. At
small scales, the turbulent motion is fully three-dimensional,
and the three-dimensional Navier–Stokes equations have to
be solved. As numerical simulations, especially when coastal
processes are considered, move towards finer horizontal res-
olution, it is no longer clear to what extent the hydrostatic
approximation is valid. This has sparked an increased inter-
est in quasi-hydrostatic or fully three-dimensional Navier–
Stokes models for ocean modeling (see, e.g., Marshall et al.,
1997a; Guillaume et al., 2017; Auclair et al., 2018; Popinet,
2020; Calandrini et al., 2024).

To accelerate the iteratively solved elliptic problem of
finding the non-hydrostatic pressure, it is often precondi-
tioned by the more easily obtained hydrostatic pressure. At
the same time, hydrostatic models are still widely used and
developed for larger-scale simulations of the atmosphere
(see, e.g., Janjic et al., 2001; Wan et al., 2013; Milewski and
Tabak, 2015; Snodin and Wood, 2022; Spensberger et al.,
2022; Bouvier et al., 2024), the ocean (see, e.g., Kärnä et al.,
2018; Kevlahan and Dubos, 2019) and the climate (see, e.g.,
Boucher et al., 2020). Hydrostatic models are also employed
to increase physical insight (Atoufi et al., 2023; Winn et al.,
2023). Comparisons of the two approaches using numerical
simulations are reported (Tseng et al., 2005; Zeman et al.,
2021) as well as the coupling of the two model types (Blayo
and Rousseau, 2016; Qu et al., 2019). For slow and large-
scale dynamics, the hydrostatic approximation is valid; for
fast small-scale dynamics, it is not. The present paper dis-
cusses the gray zone between the two limits and establishes
where it is situated using a purely analytical approach.

The justification of the hydrostatic approximation relies on
the flatness of the dynamics – that is, the smallness of the ra-
tio of the vertical scale to the horizontal scale, γ =H/L. For
the basin-wide circulation γ ≈ 10−4 for a mesoscale eddy
γ ≈ 10−2 and their dynamics is well described by the hy-
drostatic models. They acceptably model gravity currents,
coastal currents and internal inertial waves of large wave-

length, with γ ≈ 0.01− 0.1, but are inappropriate to inte-
grate shorter internal waves γ ≈ 0.1− 1 or the mixed-layer
dynamics and three-dimensional mixing, where γ ≈ 1. Scal-
ing arguments on the validity of the hydrostatic approxima-
tion are often based on inertial gravity wave dynamics. In
Marshall et al. (1997b) it was estimated, comparing the hori-
zontal advection time to the wave frequency, that the motion
is hydrostatic if γ 2/Ri� 1, where Ri = (NH/U )2 is the
Richardson number, N the buoyancy frequency and U a typ-
ical horizontal velocity scale. These scaling arguments do not
include the Coriolis parameter f , which is known to further
suppress vertical accelerations; this can be seen in the promi-
nent Taylor–Proudman–Poincaré theorem (see, e.g., Wirth
and Barnier, 2008). Furthermore, the effect of resonances are
not included. Note also that Gill (1982) states that the hy-
drostatic approximation is appropriate if the frequency of the
wave motion is smaller than the buoyancy frequency ω�N .
For inertial-gravity waves,N > ω > f , and for balanced mo-
tion, ω�N,f . In the ocean and atmosphere we typically
have N > 10f , but there are also areas where the ocean and
atmosphere are weakly stratified or unstratified, or where the
stratification is unstable. The action of gravity waves on the
vortical flow is, however, supposed to be small, rendering
such arguments insignificant for most oceanic phenomena
(see, e.g., Vanneste, 2013; Wirth, 2013). A counter exam-
ple is, however, trapped lee waves generated by topography,
of which the dynamics differs qualitatively, when the hydro-
static approximation is employed, as discussed by Yu and
Teixeira (2015). In the present work I develop a framework
that allows for discussing the fidelity of the hydrostatic ap-
proximation as a function of the flatness γ , stratification N ,
rotation f and friction ν. The influence of these parame-
ters revealed by the calculations given in the text unveil the
physics of the hydrostatic approximation. The calculations
are performed in Fourier space, as projections into the space
of incompressible vector fields are local, but results are by no
means restricted to spectral models.

The action of pressure, which ensures the vanishing diver-
gence of the velocity field, is discussed in Sect. 2. The present
work combines three techniques. First (T1), I use the fact that
imposing the divergenceless condition is a linear and local
projection in Fourier space, for both the Navier–Stokes and
the hydrostatic formalism; it is discussed in Sect. 3. Second
(T2), I extend the dynamical space to four dimensions con-
sidering the dynamical-vertical and buoyant acceleration as
separate variables; it is discussed in Sect. 4. Third (T3) I use
the linearized equations of the dynamics in both formalisms
and compare their eigenvectors and eigenvalues, to bring out
the similarities and differences, it is discussed in Sect. 5. This
leads to a formal framework to investigate the validity of the
hydrostatic approximation using linear algebra in low (≤ 5)
dimensional spaces.

To evaluate the hydrostatic approximation, I consider the
response of the linearized Navier–Stokes and the hydrostatic
scheme to a forcing. Formally, the linear terms of the equa-
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tions can be written on the left-hand side of the equality sign
and the other terms on the right-hand side; the latter then ap-
pear, formally, as forcings to the linear system. The origin
of this generalized forcing can be external or internal, by the
boundary or by nonlinear terms and other processes, which
are explicitly resolved or parameterized. Two main steps are
necessary to solve the two linearity schemes (see Fig. 3). The
first step (S1) considers the effect of a forcing on the eigen-
vectors of the corresponding linearity projection-evolution
operator. This step is explained in Sect. 6. Section 7 details
the different components of the forcing vector. The second
step (S2) considers the response of the system to the forcing
in the eigenspaces of the linear projection-evolution operator,
which is given in Sect. 7.1 (S2a) for stationary forcing and
in Sect. 7.2 (S2b) for time-dependent forcing. To evaluate
the hydrostatic approximation, for each of the two steps, two
sub-steps are necessary: one has to determine what is the er-
ror due to the hydrostatic approximation in each eigenspace,
the absolute error, and what is the amplitude of the motion
in each eigenspace, to obtain the relative error. The sub-
steps are given in Sect. 7.1 for a stationary forcing and in
Sect. 7.3 for a periodic forcing. In Sect. 7.4, I briefly dis-
cuss the inclusion of the nonlinear terms in the formalism.
The discussion in Sect. 8 compares the error due to the hy-
drostatic approximation to other causes of error in numerical
models such as the increased friction drag coefficient and the
Doppler shift due to unresolved advection. This section also
discusses whether the finite time observations of waves al-
low us to discriminate between the two formalisms, based
on the Heisenberg–Gabor uncertainty principle. The conclu-
sions, Sect. 9, give a summary of the scaling due to differ-
ent forcings and compare the deficiencies of the hydrostatic
equations to unresolved processes, internal variability, finite
resolution in space and uncertainties in the observations.

1.1 The scales of ocean dynamics

Before evaluating the hydrostatic formalism by comparing its
dynamics to the Navier–Stokes model, it is important to in-
troduce the scales in space and time of the different regimes
of ocean dynamics, as shown in Fig. 1. For small scales and
short times, the dynamics is three-dimensional and the hy-
drostatic approximation deficient. We therefore consider the
dynamics at scales larger than 10 m and slower than 1 h. Four
main regions can be identified. The first is the viscous re-
gion, below the blue line associated with the eddy viscos-
ity employed in the model. The actual kinematic viscos-
ity of sea water (O(10−6 m2 s−1)) is many orders of mag-
nitudes smaller, and the dynamics in the viscous region is
misrepresented in both formalisms. It is important to note
that the vertical dynamics with typical vertical velocities of
w = 10−4 m s−1 are in the viscous regime. The vertical ve-
locities are crucial for the fidelity of the hydrostatic approxi-
mation. The second regime is where balanced vortical flow
dominates and the hydrostatic and the Navier–Stokes for-

malism are close, as confirmed by our findings below. This
regime is operating at larger scales than the viscous regime
and at scales faster than the Coriolis parameter. At timescales
faster than the Coriolis parameter, the third regime represent-
ing inertia-gravity waves is dominant at larger scales and can
be separated into barotropic and baroclinic modes. The for-
mer are much faster than the latter; both interact through
topographic variations of the ocean floor. The former have
negligible direct influence on the ocean circulation averaged
over a few days. The latter can break in the ocean interior,
leading to vertical mixing. The differences in the wave dy-
namics between the two formalisms are of second order in
the aspect ratio O(γ 2). The fourth regime is fully three-
dimensional; it is called the mixing regime in Fig. 1. Due to
its three-dimensional dynamics, the horizontal scale is con-
strained by the thickness of the ocean layer considered. In
numerical simulations it is squeezed between the viscous and
the wave regime, and it disappears for larger viscosities and
hyper-viscosities. The validity of the hydrostatic approxima-
tion is questioned in this regime. It is, however, in this range
of scales that a large number of specific processes of ocean
dynamics occur. Examples are convective plumes (Marshall
and Schott, 1999; Wirth and Barnier, 2006; Griffies and
Treguier, 2013), down-slope gravity currents (Wirth, 2009;
Manucharyan et al., 2014; Gačić et al., 2021), interactions
with topography (Jayne et al., 2004), breaking of internal
waves (Lamb, 2014), nonlinears (top, bottom and interfacial)
(Laanaia et al., 2010; Elipot and Gille, 2009), Langmuir cells
(McWilliams et al., 1997), ocean fronts (McWilliams, 2021),
small-scale instabilities (Dewar et al., 2015) and others. Ded-
icated numerical simulations are necessary to validate the hy-
drostatic approximation for these processes. In the present
work I do not want to rival these efforts, but rather present a
theoretical framework to consider its validity.

In the ocean, the dynamics also takes place at scales faster
than 1 h and smaller than 10 m. For this dynamics, however,
neither rotation nor stratification plays a dominant role; it is
close to three-dimensional isotropic turbulence, and standard
large eddy simulation schemes developed in other fields of
turbulent fluid dynamics can be employed to parameterize
their effect on the larger-scale dynamics. For even smaller-
scale processes, for example wave breaking and other surface
processes, dedicated characterizations have to be employed
even in a far future.

2 Pressure

The starting points of our investigation are the three-
dimensional, incompressible Navier–Stokes equations in a
rotating frame, subject to the Boussinesq approximation and
the traditional approximation (see, e.g., Wirth and Barnier,
2008), which supposes the rotation vector to be aligned with
gravity:
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Figure 1. Schematic view of the ocean dynamics in (logarithmic)
timescales and space scales. The timescale is normalized by the
Coriolis period 1/f , with f = 10−4 s−1. The buoyancy frequency
is given by the red dashed line, a typical value is N = 10f . Inertia-
gravity waves have periods shorter than 1/f and their group veloc-
ity cg decreases with the wave length. At horizontal scales smaller
than the depth of a homogeneous layer and not subject to substan-
tial influence of the Coriolis force (red area), the dynamics can lead
to overturning and mixing for which the hydrostatic approxima-
tion fails. Slow large-scale motion is close to balance (green area).
Thin red lines (slope= 1) present constant velocity. Balanced mo-
tion in the ocean is rarely faster than 1 m s−1, Barotropic gravity
(bt.) waves (yellow area) have velocities of the order of 100 m s−1.
Internal gravity (bc.) waves (orange) are slower than 10 m s−1 and
typical vertical velocities are less than 10−4 m s−1. The blue lines
(slope= 1/2) represent the effect of viscous damping for different
values of viscosity and also for bi-Laplace damping (blue dashed
line, slope= 1/4). The area below is dominated by viscous friction,
not correctly represented in the hydrostatic or the Navier–Stokes
formalism.

∂tu=−(u · ∇)u− f z×u− gz
ρ

ρ0
+∇(ν∇u)−∇P, (1)

∇ ·u= 0, (2)

where u is the three-dimensional velocity vector, z is the unit
vector in the vertical upward direction, g is gravity, ν vis-
cosity and P is the pressure divided by the average density
(see below). When the velocity vanishes, the above equations
simplify to the hydrostatic equation:

∂zP =−g
ρ

ρ0
= b̃, (3)

showing that the vertical pressure gradient equals the buoy-
ancy.

The density can be separated into three parts:

ρ(x,z, t)= ρ0(t)+ ρz(z, t)+ ρ′(x,y,z, t), (4)

where the terms from left to right on the right-hand side of
Eq. 4 represent (1) the average density in the domain that can
vary in time, (2) a part of the density variation that is hor-
izontally averaged and only varies in the vertical direction
and in time, and (3) the deviations from the sum of the two.
In the incompressible Navier–Stokes equations, only the last
term has to be considered for the acceleration, as the other
terms lead to a vertical force which is independent of the
horizontal direction and is therefore countered by a horizon-
tally independent hydrostatic pressure force. We can replace
ρ by ρ′ and write the buoyancy b =−gρ′/ρ0 in Eq. (1) and
the pressure will change from P to P ′, where the latter does
not include the hydrostatic pressure force due to ρ0(t) and
ρz(z, t). The evolution equation of the buoyancy anomaly is

∂tb =−((u · ∇)b− uzN2
+ κ∇2b. (5)

If, considering the terms on the right-hand side of Eq. (1)
from left to right, we see that the total acceleration is the sum
of the advection of inertia au (first term on the right-hand
side of Eq. 1), the Coriolis acceleration af (second term),
buoyancy acceleration ab = (0,0,b)t (third term, the symbol
t stands for the transpose of a vector) and the viscous accel-
eration aν (fourth term). The pressure term on the right-hand
side ensures the vanishing divergence of the total accelera-
tion, ∇ · ∂tu= 0. Taking the divergence of Eq. (1), we can
calculate the pressure by solving the elliptic equation

∇
2P =−∇ · (au+ ab+ af + aν) (6)

subject to boundary conditions. Note that aν does not appear
in Eq. (6) if the viscosity is isotropic and constant in space,
as the correct implementation of the viscous term is aν =
(∇ t · ν∇)u and ∇ ·u= 0 implies ∇ · aν = 0.

If the flow is in geostrophic equilibrium (or more precisely,
satisfies the thermal wind relation) ab =−af , au = aν = 0
and there is no time evolution of the velocity field. The quasi-
geostrophic dynamics is based on the hydrostatic balance. If
a three-dimensional perturbation is added to the dynamics, it
will approach quasi-geostrophy if rotation is a dominant fea-
ture of the dynamics. How fast and how close this tendency
towards quasi-geostrophy happens, at different scales, is to-
day an open question, and it depends on the problem con-
sidered (see, e.g., Vanneste, 2013 and Wirth, 2013). Quasi-
geostrophic flow is always close to balanced flow, which re-
lies on the hydrostatic balance in the vertical and geostrophic
balance in the horizontal. Viscosity perturbs the latter bal-
ance but not the former.

We can write the pressure as a sum of four parts, each en-
suring the zero divergence of the corresponding term on the
right-hand side of Eq. (12):

P (x,z, t)=−Pu(x,z, t)+Pf(x,z, t)+Pb(x,z, t)

+Pν(x,z, t). (7)

The first is related to the advection:

∇
2Pu =−∇ · ((u · ∇)u), (8)
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and it is nonlinear. The second is due to the Coriolis force:

∇
2Pf =−∇ · (f z∇ ×u). (9)

The third term is due to buoyancy:

∇
2Pb =∇ · b. (10)

Calculating the pressures above requires solving an elliptic
(non-local) problem. It is instructive to distinguish the differ-
ent terms, as the vertical acceleration of the of the right-hand
side of Eqs. (8) and (9), only, are neglected in the hydrostatic
approximation.

If the viscosity is homogeneous and isotropic, the fourth
term,

∇
2Pν =∇ · (∇ · ν∇u), (11)

vanishes.
The linear operator P projects the acceleration in the sub-

space of zero divergence (see Fig. 2). Equations (1) and (2)
can therefore be written as

∂tu=−P((u · ∇)u)−P(f z×u)+P(zb)−P(ν∇2u) (12)
∇ ·P(u)= 0. (13)

Note that although the projection is a linear operation, the
pressure term is a nonlinear term as it depends nonlinearly
on the velocity field through the nonlinear advection term.
Separating each step of a fluid dynamics integration in an
evolution and a projection sub-step is a classical procedure
and is widely applied, also in ocean simulations (see dis-
cussion on projection in Marshall et al., 1997a; Guillaume
et al., 2017; Popinet, 2020). In other numerical schemes (Au-
clair et al., 2018), the evolution stays close to the subspace of
divergenceless vector fields by introducing a spurious com-
pressibility.

Linear, elliptic, non-local problems with constant coeffi-
cients become local algebraic problems in Fourier space and
their solution is reduced to solving linear algebraic systems.
The orthogonal projection on the subspace of divergence-
free functions is a local operation in Fourier space, and it is
therefore natural to present our formalism in Fourier space.
The dilemma with the Fourier space is that boundary condi-
tions, which are local in physical space, become non-local in
Fourier space, see Wirth (2005) for a detailed discussion and
application to ocean modeling.

3 Fourier space projections (T1)

In this section I discuss the well-known technique (labeled
T1 in the introduction) of projections of a vector field into
the subspace of divergenceless vector fields for the Navier–
Stokes formalism and develop the equivalent for the hydro-
static approximation (see Fig. 2). The Fourier transform of

any L3-periodic function f is

f̂ (k)=
1
L3

∫
L3

ei(kxx+kyy+kzz)f (x,y,z) dx dy dz, (14)

where the wave numbers are given by kx,ky,kz = 2πn/L
and n ∈ Z.

A geometric illustration of the projections, for both for-
malisms is given in Fig. 2. The actual operators are presented
below. For both formalisms, the integration starts from a
divergence-free initial condition ûi using Eq. (1) (see Fig. 2).
For the integration step, we write the evolution equation,
Eq. (12), without the projector and the buoyancy equation,
Eq. (5), in Fourier space:

âx =−ikx û2
x − iky ûxuy − ikzûxuz+ f ûy − ν̆ûx (15)

ây =−ikx ûxuy − iky û2
y − ikzûyuz− f ûx − ν̆ûy (16)

âz =−ikx ûxuz− iky ûyuz− ikzû2
z − ν̆ûz, (17)

˙̂b =−ikx ûxb− iky ûyb− ikzûzb− ûzN
2
− κk2b̂, (18)

with the wavelength k =
√
k2
x + k

2
y + k

2
z , the inverse friction

time ν̆ = νk2 and the Brunt–Väisälä frequency N =
√
∂zbBG

of the background stratification. The three-dimensional ac-
celeration vector is

âN
=

 âx
ây

âz+ b̂

 . (19)

The hydrostatic pressure (Eq. 10) in Fourier space is ikzP̂ =
b̂ and therefore ikx P̂ = kx

kz
b̂, and the horizontal hydrostatic

acceleration becomes − (kx ,ky )t

kz
b̂. The two-dimensional ac-

celeration in the hydrostatic formalism is

âH
=

âx −
kx
kz
b̂

ây −
ky
kz
b̂

0

 . (20)

That is, the hydrostatic pressure is added to the horizontal
acceleration and the vertical acceleration is omitted.

The integration step is followed by a projection on the
divergence-free subspace, which is formed by vector fields
perpendicular to the wave vector, i.e., P(̂a) · k = 0. It is
orthogonal to the divergence-free subspace in the Navier–
Stokes formalism:

PN
(̂aN)= âN

−
(k · âN)k

k2 . (21)

This projection is local in Fourier space. It is performed in-
dependently for every wave vector k and makes the power
of the pseudo-spectral method based on the Fourier series
expansion of the velocity field. In Fourier space it is a ma-
trix multiplication, whereas in real space it is a (non-local)
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Figure 2. Schematic view of the Fourier subspace spanned
by the real part of the Fourier coefficients of the velocity
(̂ux (kx ,kz), ûz(kx ,kz)) for the mode k = (kx ,kz 6= 0), given by the
thin red vector. The corresponding perpendicular subspace of zero
divergence is shown by the double red line; it is orthogonal to the k

vector. Points are velocities and vectors are accelerations multiplied
by the time step 1t . One time step in the hydrostatic (blue) and
Navier–Stokes (olive) formalism is shown. It consists in an evolu-
tion followed by a projection step. The evolution step (thin full olive
vector) ∂t û starts from the initial velocity ûi . The buoyancy accel-
eration in the Navier–Stokes formalism is given by the dashed olive
vector. When added to the dynamic vertical acceleration az it gives
the total vertical acceleration. The Navier–Stokes projection (thick
olive vector) is orthogonal onto the subspace of zero divergence,
ending at û. In the hydrostatic formalism, the vertical acceleration
is neglected during the projection step. This corresponds to a pro-
jection in the ûz direction (thick dotted blue vector) leading to the
thin full blue vector. The buoyancy correction in the hydrostatic for-
malism is given by the dashed blue line; it is in the horizontal and
added to the horizontal acceleration. It is obtained by projecting
the buoyancy acceleration along the wave vector (dashed red line,
parallel to the wave vector) on the line defined by the horizontal
acceleration. The third part of the hydrostatic projection (thick blue
vector) is in the ûz direction, down on the subspace of zero diver-
gence. The hydrostatic projection is composed of three vectors (the
thick dotted, dashed and full blue vectors.) The projection step in
both formalisms end on the double red line, representing vanishing
divergence, but at different locations. The difference between the
hydrostatic and the Navier–Stokes formalism, the error, is given by
the thick red vector.

integration over the whole domain. It was applied to ocean
modeling in Wirth (2005).

For kz = 0, the hydrostatic projection equals the Navier–
Stokes projection applied to the first two components. For
kz 6= 0, the projection is in the vertical direction in the hy-
drostatic formalism leaving the horizontal components un-
changed (see Fig. 2):

kz = 0 : PH
(̂aH)=


1− k2

x

k2
h
−
kxky

k2
h

0

−
kxky

k2
h

1− k2
x

k2
h

0

0 0 0


âxây

0

 , (22)

kz 6= 0 : PH
(̂aH)=

 1 0 0
0 1 0
−
kx
kz
−
ky
kz

0

 âH (23)

with k2
h =

√
k2
x + k

2
y . It is clearly seen that the vertical accel-

eration prior to the projection is ignored; the entries of the
third column vanish. The vertical acceleration is obtained,
through the projection, entirely based on the horizontal com-
ponents, such that the velocity field is divergenceless. Note
that the correction for kz 6= 0 are of order

γ =

√
k2

h/k
2
z , (24)

which is small for dynamical processes which have a hori-
zontal extension larger than the vertical. Both projectors lead
to a divergenceless vector field, which is readily verified by
multiplying the projectors by the wave vector, k, on their left.

The major difference between the hydrostatic and the
Navier–Stokes projection is that in the latter the vertical ac-
celeration from the dynamical and gravitational acceleration
are treated equally, while in the former the gravitational ac-
celeration is added to the horizontal acceleration using the
hydrostatic equation and the vertical dynamical acceleration
is calculated from its horizontal counterparts. A geometrical
interpretation of the two projections and their differences is
shown in Fig. 2.

In numerical models based on Fourier representation, the
projection is exact at the machine precision employed. In
other models, the projection in the Navier–Stokes formalism
is done via an elliptic solver of which the precision is spec-
ified and usually far less than the machine precision. In this
case, the double line in Fig. 2, representing the subspace of
zero divergence, has a finite thickness corresponding to the
precision prescribed to the elliptic solver. The question of
how to employ Fourier methods in ocean modeling, where
boundary conditions have to be satisfied, is discussed in de-
tail in Wirth (2005).
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Figure 3. Schematic of the projection-evolution formalism. Step
S1 gives the difference in the projection of a forcing in the two
formalisms and step S2 the difference in the linear evolution. Non-
linear terms (NL) can be represented as (time-dependent) forcings
and the scheme has to be iterated. The different forcings (vertical
Fz, divergent Fd, rotational Fr and buoyancy flux B) are projected
on wave forcing Fw and balanced forcing Fb, which span the sub-
space of divergenceless vector fields. The rotational and the buoy-
ancy flux forcings are identical in both formalisms. The vertical
forcing Fz is in the kernel of the hydrostatic projection (missing ar-
row) and the error of the divergent forcing Fd due to the hydrostatic
projection is second order O(γ 2) (orange arrow). The projection-
evolution operator acts identically on balanced forcing in both for-
malisms, whereas it differs to second order O(γ 2) (orange arrow)
on the wave forcing (the symbol � is a place holder for “N” for the
Navier–Stokes or “H” for the hydrostatic formalism). The nonlin-
ear terms formed by the wave and balanced amplitudes appear as
retro-acting forces (NL) in the formalism.

4 Fourier space extension (T2)

In this section, I introduce the extension of the Fourier space
to four dimensions; this technique is labeled T2 in the in-
troduction and in Fig. 3. It allows to use a common mathe-
matical formalism, based on four-dimensional linear algebra,
for the Navier–Stokes and the hydrostatic projection. In the
four-dimensional space, both projections apply to the same
vector (ã, introduced below) and it is then straightforward
to obtain the difference between the two projections as four-
dimensional matrices (A, given at the end of this section).
Only the entries of the matrices differ between the two for-
malisms. Increasing the dimension from three to four is nec-
essary as the two parts of the vertical acceleration, dynam-
ical and buoyancy, are treated differently between the for-
malisms.

To emphasize the similarities and differences of both pro-
jections, I split the vertical acceleration into two parts: dy-

namical (̂az) and buoyant (̂ab = b̂) part:

ã =


âx
ây
âz
âb

 . (25)

The buoyancy adds to the dynamical vertical acceleration. In
the Navier–Stokes formalism, there is no difference in the
projection of the two, while in the hydrostatic projection, the
dynamical vertical acceleration is ignored, while the buoy-
ancy acceleration appears in the horizontal component. More
precisely, the hydrostatic projection becomes

PH
=


1 0 0 −

kx
kz

0 1 0 −
ky
kz

−
kx
kz
−
ky
kz

0 k2
h
k2
z



= 1−
1
kz

[(
0
0
1

)
(kx,ky,0,−

k2
h
kz

)+

(
kx
ky
0

)
(0,0,0,1)

]
. (26)

The third column is zero as the dynamical vertical acceler-
ation is ignored, while it can be seen in the fourth column
that the gravitational acceleration acts on the horizontal and
vertical. The Navier–Stokes projection is

PN
=


1− k2

x

k2 −
kxky

k2 −
kxkz
k2 −

kxkz
k2

−
kxky

k2 1−
k2
y

k2 −
kykz

k2 −
kykz

k2

−
kxkz
k2 −

kykz

k2 1− k2
z

k2 1− k2
z

k2


= 1−

1
k2

kxky
kz

 (kx,ky,kz,kz). (27)

The third and fourth columns are identical, as the vertical
acceleration due to the dynamical and gravitational parts
are treated equally. If buoyancy vanishes, the divergence-
free subspace is spanned by the orthogonal vectors eP

1 =

(ky,−kx,0,0)t and eP
2 = (kx,ky,−

k2
h
kz
,0)t . There is no differ-

ence between the Navier–Stokes and the hydrostatic projec-
tions if applied to these two vectors. The first vector repre-
sents a divergenceless horizontal rotational motion with no
vertical component. In two dimensions, this is the only way
to have a divergenceless mode. The second vector is a com-
pensation between the horizontal and vertical divergence; it
represents vertical stretching and compression of the water
column. The vertical component of the curl of the second
vector is vanishing.
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To emphasize the projection on eP
1 and eP

2 , the projection
operators can also be written as

PH
=

1
k2

h

 ky
−kx

0

 (ky,−kx,0,0)

+

 kx
ky

−
k2

h
kz

 (kx,ky,0,−
k2

h
kz

)

 , (28)

PN
=

1
k2

h

 ky
−kx

0

 (ky,−kx,0,0)

+
k2
z

k2

 kx
ky

−
k2

h
kz

 (kx,ky,−
k2

h
kz
,−
k2

h
kz

)

 . (29)

There is no difference in the projection of the purely hori-
zontal divergenceless motion, which is the first term in both
projections, whereas, if horizontally divergent, buoyant and
vertical motion are considered, there are two differences: the
horizontally divergent and buoyant accelerations differ by a
factor k2

z/k
2
= (1+ γ 2)−1, and the vertical dynamic accel-

eration is neglected in the hydrostatic approximation. The
former difference is second order O(γ 2), while the latter is
first order O(γ ); a higher order can be assigned if the dy-
namics constrain the order of the vertical dynamical acceler-
ation âz; this will be discussed in Sect. 5 based on the lin-
earized, low-amplitude dynamics. Note that the projections
are closely related to the well-known Craya decomposition
or wave–vortex compositions; see Deriaz et al. (2010) and
references therein for a detailed discussion.

The vector eP
3 = (kx,ky,0,kz)t is in the kernel of both pro-

jections and represents balanced flow: the hydrostatic bal-
ance in the vertical, âz = 0, saying that all the acceleration in
the vertical is due to buoyancy b̂, and the geostrophic balance
(thermal wind balance, see Vallis, 2017) in the horizontal:
âx = f ûy =

kx
kz
b̂ and ây =−f ûx =

ky
kz
b̂. These compensa-

tions are the essence of geophysical fluid dynamics (GFD) –
that is, the dynamics of a buoyant fluid in a rotating frame. It
includes geostrophy, thermal wind balance and cyclostrophic
balance.

The difference between the two projections lies in the sec-
ond vector in the kernel; for the hydrostatic operator it is for-
mally eH

0 = (0,0,1,0), but as in the hydrostatic formalism,
âz = 0, it has zero amplitude. For the Navier–Stokes oper-
ator, the second vector in the kernel is eN

0 = (0,0,1,−1); it
expresses the trivial fact that compensations between the dy-
namical and gravitational accelerations are in the kernel of
the operator. In the hydrostatic approximation (̂az = 0), no
such compensation exists. Furthermore, eN

00 = kze
N
0 + eP

3 =

(kx,ky,kz,0)t is also in the kernel of the Navier–Stokes op-
erator; if multiplied by P̂ ′d it is nothing other than the dy-
namic pressure correction ∇P ′d. Note that eP

1,e
P
2,e

N
00 are an

orthogonal subset.

For kz 6= 0, the difference between the operators is

A(ã)= PH(ã)−PN(ã)=

=




1 0 0 −
kx
kz

0 1 0 −
ky
kz

−
kx
kz
−
ky
kz

0 k2
h
k2
z



−


1− k2

x

k2 −
kxky

k2 −
kxkz
k2 −

kxkz
k2

−
kxky

k2 1−
k2
y

k2 −
kykz

k2 −
kykz

k2

−
kxkz
k2 −

kykz

k2 1− k2
z

k2 1− k2
z

k2


 ã

=
1
kzk2

 k2
xkz kxkykz kxk

2
z −kxk

2
h

kxkykz k2
ykz kyk

2
z −kyk

2
h

−kxk
2
h −kyk

2
h −kzk

2
h (k2

h)2/kz


︸ ︷︷ ︸

A

ã

=
1
k2

 kx
ky

−
k2

h
kz

 (kx,ky,kz,−
k2

h
kz

)ã. (30)

By construction, the difference of the two operators is in the
space of divergenceless functions spanned by eP

1 and eP
2 (with

the last component omitted), but the above shows that it is
aligned with eP

2 . This illustrates that the difference between
the hydrostatic and the Navier–Stokes operator is never in
the vertical vorticity, but in the compensation of horizontal
divergence through vertical divergence, the water column is

stretched differently if (kx,ky,kz,−
k2

h
kz

)ã 6= 0. The Navier–
Stokes projector does not lead to a change in vorticity, while
a non-vanishing hydrostatic correction alters the horizontal
components of the vorticity vector only.

If there is no constraint on the acceleration vector,√[
A(ã)

]2
< γ
√

ã2 if γ < 1. Furthermore, the error in the
vertical is by a factor γ smaller than the horizontal error.
If the vertical dynamic acceleration is γ -times smaller than

the horizontal or buoyant accelerations,
√[

A(ã)
]2
≤ γ 2
√

ã2.
Note that for the hydrostatic approximation to be of second
order, O(γ 2), only the vertical dynamic acceleration has to
be small, not the buoyant. The relative error is A(ã)/PN(ã);
for ã = eN

0 it is∞.
So far, I have only considered the error in the hydrostatic

approximation for an acceleration field, without any refer-
ence to the underlying dynamics. In the next section, I will
discuss the error for low-amplitude motion if the dynamics is
well approximated by the linearized equations.

5 Linearized equations (T3)

In this section, I combine the projections in the extended
Fourier space with the linearized evolution equation. If the
velocity is small, the first term on the right-hand side of
Eq. (6) is negligible and the nonlinear terms in Eqs. (15),
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(16), (17) and (18) can be neglected. When we further in-
troduce a buoyancy velocity ub = b/N and write the four-
dimensional velocity vector û= (ux,uy,uz,ub)t , the lin-
earized dynamics is given by(

ã
˙̂ub

)
= L�û, (31)

where the symbol � is a placeholder for “N” for the Navier–
Stokes or “H” for the hydrostatic formalism. Note that the
vector on the right-hand side has five dimensions as it con-
sists of the accelerations was well as the buoyancy and the
buoyancy flux divided by the Brunt–Väisälä frequency. This
normalization renders the vectors and operators, introduced
below, dimensionally homogeneous. Note that the extension
to five dimensions is necessary as, firstly, the two formalisms
treat the buoyancy and the vertical dynamic acceleration dif-
ferently and I want to present both in the same formalism,
and, secondly, the vertical velocity acts on the time deriva-
tive of the buoyancy through the background stratification.

The extension to five dimensions is necessary to calcu-
late the vertical acceleration from the dynamical and buoyant
part and to keep track of the buoyancy anomaly, which is un-
changed by the projection operator. The explicit form of the
operators are

LN
=


−ν̆ f 0 0
−f −ν̆ 0 0
0 0 −ν̆ 0
0 0 0 N

0 0 −N −κk2

and

LH
=


−ν̆ f 0 0
−f −ν̆ 0 0
0 0 −ν̆ 0
0 0 0 N

N kx
kz

N
ky
kz

0 −κk2

 . (32)

I used ∂tb =−uzN2
− κk2b.

We define the extended projection operator:

P̃�
=

(
P� 0
0 1

)
. (33)

The change in buoyancy is unaffected by the divergenceless
condition, but the acceleration has to be projected into the
subspace of divergence-free vector fields. The operator L̃�

=

P̃�L� governs the time evolution via

∂t û
�(t)= L̃�û�(t)+ P̃�F̂ (t). (34)

The force F̂ = (F̂x, F̂y, F̂z,0, B̂)t is formed of forces in the
first three components. The fourth component is vanishing as
there is no buoyancy imposed by the exterior but a buoyancy
flux, which is in the fifth component, when divided by the
Brunt-Väisälä frequency. The forces and fluxes are divided

by the reference density and represent accelerations and rel-
ative fluxes in the Boussinesq approximation used here. The
explicit forms of the evolution operators are

L̃N
=


−ν(k2

−k2
x )+f

kxky

k2 νkxky+f
k2
−k2
x

k2 νkxkz −N
kx kz

k2

νkxky−f
k2
−k2
y

k2 −ν(k2
−k2

y )−f kx ky

k2 νkykz −N
ky kz

k2

νkxkz+f
ky kz

k2 νkykz−f
kx kz

k2 −νk2
h N

k2
h
k2

0 0 −N −κk2

 ,
(35)

L̃H
=


−ν̆ f 0 −N kx

kz

−f −ν̆ 0 −N
ky
kz

ν̆ kx
kz
+ f

ky
kz

ν̆
ky
kz
− f kx

kz
0 N

k2
h
k2
z

N kx
kz

N
ky
kz

0 −κk2

 . (36)

If diffusivity equals viscosity, κ = ν > 0, both matrices have
two complex conjugated eigenvalues λ�1,2 =±iω

�
−ν̆, where

(ωN)2
= ω2

=
α

k2 , (ω
H)2
=
α

k2
z

with α = f 2k2
z +N

2k2
h (37)

are the dispersion relations of internal waves in the Navier–
Stokes and the hydrostatic formalisms, respectively. They
are equal if and only if the horizontal wave numbers van-
ish, kh = 0. Note that for the Navier–Stokes formalism, the
frequency of the waves, ω, is between the Coriolis f and
the buoyancy frequency N , whereas the frequency for hy-
drostatic waves, ωH, is above the Coriolis frequency. For
k2

h > k
2
z , the hydrostatic approximation allows for waves with

square frequencies faster than the maximum of f 2 and N2.
I use the superscript � when either formalism is concerned.
The other two eigenvalues are λ3 =−ν̆ and λ4 = 0. The cor-
responding eigenvectors are

e�1,2 =


±iγ̃�ω kx

kh
+ f

ky
kh

±iγ̃�ω
ky
kh
− f kx

kh

∓
iγ̃�ωkh
kz

Nkh
kz

 ,e3 =
f

kh

 ky
−kx

0
−
f
N
kz

 ,

eN
4 =

1
f 2kh


(ν̆2
+N2)

[
f ky + ν̆kx

]
(ν̆2
+N2)

[
−f kx + ν̆ky

]
ν̆(f 2
+ ν̆2)kz

−N (f 2
+ ν̆2)kz

 ,eH
4 =

0
0
f
0

 . (38)

The first two vectors present inertial oscillations which are
fast motion. We see that the eigenvectors for the fast mo-
tion and the corresponding eigenvalues differ by ωH

= γ̃Hω,
where we set γ̃H

=
√

1+ γ 2 and γ̃N
= 1. This shows that

the error is of second order, O(γ 2). The first two, complex-
valued, vectors can be substituted by the real orthogonal vec-
tors,

ẽ1 =


f
ky
kh

−f kx
kh

0
Nkh
kz

 , ẽ2 = ω


kx
kh
ky
kh

−
kh
kz

0

 , (39)
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of which the directions are independent of the projection,
Navier–Stokes or hydrostatic, which facilitates the compar-
ison of the two formalisms.

The basis D�
4 = (ẽ1, ẽ2,e3,e

�
4 ) is dimensionally ho-

mogeneous and we have L̃�ẽ1 =−γ̃
�ωẽ2 and L̃�ẽ2 =

(γ̃�)−1ωẽ1, where γ̃ = 1 in the Navier–Stokes formalism.
The third vector represents the thermal wind balance, a
generalization of geostrophy. Its eigenvalue vanishes with
viscosity; it converges to a stationary state. We see that
the first three vectors represent divergenceless motion as
(ẽi)t · (kt ,0)= 0, ∀i = 1,2,3. They are identical in both for-
malisms. The fourth vector has a divergence: (ẽ4)t · (kt ,0)=
ν̆(ν̆2
+α) and (ẽH

4 )t · (kt ,0)= kz, in both formalisms and
therefore does not participate in the dynamics. The error be-
tween the projections along the fourth direction, with a van-
ishing eigenvalue, is first order O(γ 1) if f,N � ν̆ and ze-
roth order O(γ 0) if ν→ 0 as the vectors eH

4 and e4 become
orthogonal. A perturbation in the vertical acceleration trig-
gers inertial-gravity waves in the Navier–Stokes formalism,
whereas it has no effect in the hydrostatic case. If viscosity
is zero, the matrix L̃N is not diagonalizable and has a Jor-
dan normal form. I will therefore in the sequel discuss the
case ν→ 0 rather than ν = 0, which is also appropriate if
numerical models are considered. Note that the first three
components of ẽ1 and e3 are aligned with eP

1 , and those of
ẽ2 with eP

2 . The matrix that transforms from the sub-basis
D = (ẽ1, ẽ2,e3) to the Cartesian coordinates is formed by the
three basis vectors

ED =


f
ky
kh

ω kx
kh

f
ky
kh

−f kx
kh

ω
ky
kh

−f kx
kh

0 −ω kh
kz

0

N kh
kz

0 −
f 2

N
kz
kh

 . (40)

For any vector in the subspace formed by D, the vertical ac-
celeration to the horizontal counterpart is always at least first
order O(γ ), as the first two components of ẽ2 are orthogonal
to the first two components of the two other basis vectors: a
result which can be also seen directly from the divergence-
free condition.

The validity of the hydrostatic approximation relies also
on how strongly the modes ẽ1, ẽ2 on one side and e3 on the
other get excited. If all the energy resides in the third mode,
the hydrostatic approximation is exact, while the hydrostatic
solution can diverge at a rate γ for the energy in the wave
modes. For a comparison of the amplitudes of the forcing for
each vector, the vectors are normalized by the square root of
twice the energy density, kinetic plus potential. The modules
are

e1 = γ̃
�e2 =

√
α

k2
z

,e3 = γ
−1

√
f 2

N2 e1, (41)

and the energies of the first and the third mode are equal
when the horizontal scale equals the Rossby radius of defor-

mation. Note that in the hydrostatic approximation, the ver-
tical velocity is not a dynamical variable and does not con-
tribute to the kinetic energy and, therefore, the energy density
of ẽ2 in the Navier–Stokes formalism agrees to the energy
density of γ̃Hẽ2 in the hydrostatic formalism. For small as-
pect ratios the energy of the balanced eigenvector grows as
γ−1 with respect to the wave modes.

A vector that represents an equilibrium, geostrophy in our
case, is in the kernel of both operators, as its time evolution
vanishes. A conserved scalar quantity that is a linear com-
bination of the components of the time evolution vector, di-
vergence and potential vorticity in our case, is represented
by a vector that is in the kernel of the adjoint of the oper-
ators, as its dot product with the time evolution vector van-
ishes. The adjoint operators are given by the transposed ma-
trices (L̃N)t and (L̃H)t for Navier–Stokes and the hydrostatic
case, respectively. Note that neither of the operators is self-
adjoint – that is, the matrices are not symmetric. The kernel
of the adjoint operators contains the wave vector r 3 = (k,0)t ,
which is therefore a conserved quantity. This shows that the
acceleration is divergence free in both formalisms, the di-
vergence of the velocity field is conserved and the vanish-
ing divergence is maintained during the evolution of the ve-
locity field. When viscosity and diffusivity vanish, the vec-
tor r 4 = (ky,−kx,0,−f kzN−1)t is also in the kernel of the
adjoint hydrostatic operator; this corresponds to the conser-
vation of linear potential vorticity, whereas in the Navier–
Stokes case we have (L̃N)t r 4 = f r 3, which corresponds to
the conservation of linear potential vorticity when the ve-
locity field is divergence-free. As the velocity field is diver-
gence free, linear potential vorticity is conserved in both for-
malisms. It is interesting to note that for the Navier–Stokes
formalism, the kernel is one-dimensional as the sub-matrix
corresponding to the zero eigenvalue has a Jordan normal
form. The discussion on the adjoint operators also shows that
there are no more than two conserved quantities in the linear
approximations.

6 Projection on the basis of eigenvectors (S1)

The projection of a given acceleration ã on the modes of the
linear dynamics represents step S1 as defined in the introduc-
tion and shown in Fig. 3. The identities

ẽ1− e3 =
α

Nkzkh

0
0
0
1

 ,f 2k2
z ẽ1+N

2k2
he3 =

f α

kh

 ky
−kx

0
0

 (42)

allow us to write the extended projection operators that con-
vert the forcing F̂ to a divergenceless acceleration in the first
three components and an unchanged buoyancy flux in the
fourth. The projection operators given in Eqs. (28), (29) that
project the generalized acceleration ã written in terms of the
basis D� are
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DP̃N
=

1
kh

[
f k2

z

α
ẽ1+

N2k2
h

f α
e3

]
(ky,−kx,0,0,0)

+
k2
z

ωk2kh
ẽ2(kx,ky,−

k2
h
kz
,0,0)

+ kzkh

[
N

α
(ẽ1− e3)−

1
ωk2 ẽ2

]
(0,0,0,1,0)

+
Nkzkh

α
(ẽ1− e3)(0,0,0,0,1), (43)

DP̃H
=

1
kh

[
f k2

z

α
ẽ1+

N2k2
h

f α
e3

]
(ky,−kx,0,0,0)

+
1
ωkh

ẽ2(kx,ky,0,0,0)

+ kzkh

[
N

α
(ẽ1− e3)−

1
ωk2

z

ẽ2

]
(0,0,0,1,0)

+
Nkzkh

α
(ẽ1− e3)(0,0,0,0,1). (44)

In matrix form this is

DP̃N
=

1
αkh

f k2
zky −f k2

zkx 0 Nkzk
2
h Nkzk

2
h

αkxk
2
z

ωk2
αkyk

2
z

ωk2 −
αk2

hkz

ωk2 −
αk2

hkz

ωk2 0
N2k2

hky
f

−
N2k2

hkx
f

0 −Nkzk
2
h −Nkzk

2
h

 , (45)

DP̃H
=

1
αkh

f k2
zky −f k2

zkx 0 Nkzk
2
h Nkzk

2
h

αkx
ω

αky
ω

0 −
αk2

h
ωkz

0
N2k2

hky
f

−
N2k2

hkx
f

0 −Nkzk
2
h −Nkzk

2
h

 . (46)

The operators only differ in the second line as all the dif-
ferences are restricted to the second eigenvector. The pro-
jection operators are the left pseudo-inverse of ED – that is,
DP̃�ED = 1D , which means that the vector space spanned
by the basis D = (ẽ1, ẽ2,e3) is composed of divergenceless
vectors.

6.1 Forcing of the linear system

An exterior force F̂ = (F̂x, F̂y, F̂z,0, B̂)t was introduced in
Sect. 5. The exterior forcing is projected on the basis D by
the projector DP̃�. I then determine the amplitude of the
three basis vectors subject to different forcings. To this end,
I write the forcing vector as

F̂ =



kx F̂d−ky F̂r
kh

ky F̂d+kx F̂r
kh
F̂z
0
B̂

 , (47)

where I split the horizontal forcing in a divergent and a
rotational part, using the Helmholtz decomposition (F̂d =

(kx F̂x + ky F̂y)/kh and F̂r = (kx F̂y − ky F̂x)/kh), to obtain

DP̃NF̂ =−F̂r
1
f α

f 2k2
z

0
N2k2

h


+ B̂

Nkhkz

α

 1
0
−1

+ kz

ωk2 (F̂dkz− F̂zkh)

0
1
0

 , (48)

DP̃HF̂ =−F̂r
1
f α

f 2k2
z

0
N2k2

h

+ B̂ Nkhkz

α

 1
0
−1


+
F̂d

ω

0
1
0

=DP̃NF̂ +
kh

ωk2 (F̂dkh+ F̂zkz)

0
1
0

 . (49)

The difference between the two operators is twofold: F̂z is
ignored in the hydrostatic projection, and for the projection
of F̂d it is of second order,O(γ 2). Both projections are iden-
tical if rotational and buoyant forcings are considered. All the
differences are only in the projections on the second eigen-
vector. Therefore, the effect of all forcings on the balanced
mode, which is the third component in the above equations,
is identical in both formalisms. That is, if forcings act differ-
ently in the hydrostatic approximation, this difference does
not directly affect the balanced mode. If the buoyancy fre-
quency vanishes, N→ 0, all the energy from a rotational
forcing goes to the first wave mode as no geostrophy is pos-
sible in this case. Furthermore, a divergent or vertical forcing
does not act on the balanced mode. For a vertical forcing, all
the work is done on the wave part in the Navier–Stokes for-
malism, whereas it has no effect in the hydrostatic approxi-
mation. If F̂rf kz = B̂Nkh, the forcing is balanced and all the
work is done on the balanced mode.

6.2 Linearized equation in the eigenspace

As the fourth vector, in both formalisms, is in the kernel of
the corresponding operator, the problem simplifies when it is
restricted to the linear operator in the basis D = (ẽ1, ẽ2,e3),
which is common to both operators,

DL̃�
D =

 −ν̆ ω 0
−(γ̃�)2ω −ν̆ 0

0 0 −ν̆

and

D(L̃�)−1
D = β

�

 −ν̆ −ω 0
(γ̃�)2ω −ν̆ 0

0 0 −(ν̆β�)−1

 , (50)

where β� = (ν̆2
+ (γ̃�ω)2)−1. The linearized dynamics con-

sists in a damped thermal wind balance along e3, for which
the hydrostatic approximation is exact, and damped inertia-
gravity waves around this balanced state along the directions
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ẽ1 and ẽ2. The only difference between the Navier–Stokes
and the hydrostatic approximation in the subspace spanned
by {ẽ1, ẽ2} lies in the frequencies, given in Eq. (37). Note that
the correction γ̃� appears only as a square, and the approxi-
mations for the operator and the inverse operator are second
order: O(γ 2).

7 Forced motion (S2)

7.1 Slow forced motion, Ekman dynamics

This section discusses the special case of the response of the
linearized Navier–Stokes and hydrostatic operators subject
to an almost time-independent forcing. In geophysical fluid
dynamics, the large-scale processes are evolving and inter-
acting on a timescale much slower than the wave frequencies
γ̃�ω. In this case, the left-hand side of Eq. (34) can be ne-
glected. In the linear approximation, an external (boundary)
forcing can be balanced by a viscous force, the Coriolis force
or both as in Ekman dynamics. Boundary conditions are local
in physical space and therefore non-local in Fourier space –
that is, they are applied to different modes, which also inter-
act through the boundary condition (see, e.g., Wirth, 2005). If
the horizontal forcing is divergent, so is the horizontal veloc-
ity field, and vertical velocities are induced, which represent
Ekman pumping. If we suppose that the forcing F̂ is weak,
the linearized evolution in Eq. (34) is suitable. Using the
Boussinesq approximation, the forcing is represented as an
acceleration. If the forcing is time-independent, the station-
ary velocity field is restricted to the basis D and can be ob-
tained by performing steps S1 and S2a through in Eqs. (34),
(45), (46) and (50):

x̂�
=−D(L̃�)−1

D DP̃�F̂ . (51)

The image of the operatorDP̃� is spanned by the basisD for
which D(L̃�)−1

D exists if viscosity is non-vanishing.

7.1.1 Absolute error

After having determined the amplitude of each mode due to
the forcing (S1+S2a), the difference between the two for-
malisms in the basis D is determined. The total error is

Ê0 = x̂H
− x̂N

=

[
−D(L̃H)−1

D DP̃H
+D(L̃N)−1

D DP̃N
]

F̂ =
[
−D(L̃H)−1

D +D(L̃N)−1
D

]
DP̃HF̂ −D(L̃N)−1

D[
DP̃H

−DP̃N
]
F̂

=
ω

α

[
(β −βH)

(
−ν̆/ω

1
0

)
− γ 2βH

(
0
1
0

)]
[
f k2

z F̂r+NkhkzB̂
]
+

(
1
ν̆/ω

0

)
[

(βH
− (γ̃H)−2β)F̂d+β

kzkh

k2 F̂z

]
. (52)

We immediately see that the response to a stationary forcing
of the balanced dynamics (e3) is identical in both formalisms.
Furthermore, a balanced forcing with −f kzF̂r+NkhB̂ =

F̂d = F̂z = 0 leads to a vanishing error. The last equality in
the first line shows that the error can be separated into an
evolution error, due to the differences in the wave frequen-
cies (S2), and the error done by the hydrostatic projection
(S1). The forcing Fz is in the kernel of the hydrostatic pro-
jection (S1) only. This and the subsequent evolution (S2) of
the projection error gives the error shown by the second part
of the last term of the second line. The order can be written
as O(γ F̂z+ γ 2F̂d+ γ

2F̂r+ γ
3B̂). If the vertical component

of the forcing F̂z itself is first order, due to a boundary with a
slope ≈ γ , the approximation becomes second order, which
shows that the hydrostatic approximation has two ingredi-
ents: the horizontal scales are larger than the vertical and the
vertical forcing is smaller than the horizontal.

For a vanishing viscosity ν̆→ 0, the error associated with
a divergent forcing F̂d is of second order O(ν̆2), while it
is of zero order for the other forcings. Furthermore, a ver-
tical forcing leads to a velocity of F̂z

khkz
ω2k2 ẽ1 in the Navier–

Stokes formalism, while it has no effect in the hydrostatic
approximation. As the vertical component of ẽ1 is vanish-
ing, so is the error in the vertical component. For a strong
viscous damping ν̆→∞, present in numerical models just
above the grid scale, where non-hydrostatic effects are also
important, we have β =O(ν̆−2), and the error is of order
O(ν̆−1F̂z+ ν̆

−1F̂d+ ν̆
−2F̂r+ ν̆

−2B̂). For scales f ≈ ν̆, Ek-
man layer dynamics occurs.

7.1.2 Relative error

We have seen above that the dynamics can be split into two
parts: wave dynamics along the first two eigenvectors and
balanced flow along the third eigenvector. As the latter is free
of error, the fidelity of the hydrostatic approximation depends
also on how the energy is distributed among the eigenmodes.
This is achieved by considering the relative error,

ER =
|Ê|

|̂x|
, (53)

rather than the absolute error, with

x̂ =−DL̃N−1
D DP̃NF̂ =

 −f 2k2
z ν̆β

f 2k2
zωβ

−N2k2
h ν̆
−1

 1
f α

F̂r

+

−ν̆βωβ
−ν̆−1

 Nkhkz

α
B̂ +

 1
ν̆/ω

0

 kzβ
k2 (F̂dkz− F̂zkh), (54)

for the different types of forcing. Note that the absolute er-
ror is a vector while the relative error is a scalar. A constant
forcing on the wave mode leads to a finite-amplitude motion,
while in the balanced mode it is only countered by viscosity.
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The balanced mode is excited by rotational and buoyancy
forcing only, and its amplitude compared to the amplitude of
the wave motion is proportional to ν̆−1, as it is damped by
viscosity only. Furthermore, Eq. (41) shows that the square
root of the energy of the third mode, as compared to the
wave modes, grows with decreasing aspect ratio as γ−1.
The hydrostatic approximation for the relative error is there-
fore O(ER)= ν̆γO(Ê), smaller, if the third component in
Eq. (54) does not vanish – that is if N2khF̂r 6= f kzB̂. This
adds considerably to the validity of the hydrostatic approxi-
mation for scales much larger than the viscous cut-off. If the
forcing is purely vertical, F̂z 6= 0 and F̂r = B̂ = F̂d = 0, the
relative error is unity.

7.2 Projection-evolution operator (S2b)

After having discussed the case of a stationary force, I now
consider the general case of a force varying in time. The lin-
earized equation governing the dynamics subject to a low-
amplitude forcing F̂ (t) is given by Eq. (34). A forcing can
only lead to divergenceless acceleration and has therefore to
be projected into the subspace of divergenceless functions by
the corresponding projector given in Eqs. (48) and (49). The
dynamics takes place in the subspace spanned by D. Its so-
lution, starting from the initial condition (̂u(0),b(0))t , is(

û�(t)
b�(t)

)
= ED exp(DL̃�

D(t)) t∫
0

exp(DL̃�
D(−s))DP̃�F̂ (s)ds+DP̃�

(
û(0)
b(0)

)
= ED

t∫
0

exp(DL̃�
D(t − s))DP̃�F̂ (s)ds

+ED exp(DL̃�
D(t))DP̃�

(
û(0)
b(0)

)
, (55)

with

exp(DL̃�
D(t))=

e−ν̆t

 cos(γ̃�ωt) (γ̃�)−1 sin(γ̃�ωt) 0
−γ̃� sin(γ̃�ωt) cos(γ̃�ωt) 0

0 0 1

 , (56)

where I used exp(DL̃�
D(t))exp(DL̃�

D(−s))= exp(DL̃�
D(t −

s)). Once the dynamics is projected on the basis D, the evo-
lution is identical in both formalisms along e3, and the oscil-
lations between ẽ1 and ẽ2 have a difference in the frequen-
cies, and the hydrostatic solution diverges as sin(ωγ

2

2 t), for
a slowly varying forcing, if the forcing frequency ζ � ω. If
the forcing has frequencies equal or close to γ̃�ω, resonances
can occur and the divergence can take place at a faster rate.

The unforced linear equations allow two types of motion:
(decaying, if ν 6= 0) internal waves with a frequency faster

than f and (decaying, if ν 6= 0) thermal wind equilibrium.
This dynamics is described by the second term on the right-
hand side of Eq. (55). The error done by the hydrostatic ap-
proximation in the basis D, starting from rest and subject to
a time-dependent force F̂ (t) is

F̂ =

t∫
0

[
exp(DL̃H

D(t − s))DP̃H

−exp(DL̃N
D(t − s))DP̃N

]
F̂ (s)ds. (57)

7.3 Periodic forcing

When solving linear equations, solutions can be considered
independently for each wave vector k and frequency ζ . For a
periodic forcing with frequency ζ , the evolution in Eq. (34)
in the basis D is

∂t x̂
�
= L̃�

Dx̂�
+ F̂D cos(ζ t). (58)

The general solution is

x̂�
= exp(DL̃�,ζ

D (t)) F̂D

=

t∫
0

exp(DL̃�
D(t − s))cos(ζ s)ds F̂D. (59)

Before discussing the general case, I examine the case of
a very small viscosity (ν̆2

� (γ̃�ω)2,ζ 2). The solution is

x̂�
=

1
ζ 2− (γ̃�ω)2 ζ sin(ζ t)−aγ̃�ω sin(γ̃�ωt) ω(−cos(ζ t)+a cos(γ̃�ωt)) 0

(γ̃�)2ω(cos(ζ t)−a cos(γ̃�ωt)) ζ sin(ζ t)−aγ̃�ω sin(γ̃�ωt) 0

0 0 ζ2
−(γ̃�ω)2
ζ

sin(ζ t)


F̂D .

(60)

The constant a is there to satisfy the initial condition. For
high-frequency forcing ζ 2

� (γ̃�ω)2, there are no reso-
nances and the part independent of the initial condition,
which is “forgotten” after a long time t � ν̆−1, is

x̂�
= exp(DL̃�,ζ

D (t))F̂D = ζ sin(ζ t)F̂D. (61)

In this case, the operator L̃�
D has no time to act on the dy-

namics.
The general solution for t � ν̆−1, when the initial condi-

tion is forgotten, is
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x̂�
=

 ζ s̃� −ωc̃� 0
(γ̃�)2ωc̃� ζ s̃� 0

0 0 b̃

FD, (62)

with

s̃� = q̃�
[
ν̆

ζ
(ν̆2
+ ζ 2
+ (γ̃�ω)2)cos(ζ t)

+(ν̆2
+ ζ 2
− (γ̃�ω)2) sin(ζ t)

]
, (63)

c̃� = q̃�
[
−(ν̆2

− ζ 2
+ (γ̃�ω)2)cos(ζ t)− 2ν̆ζ sin(ζ t)

]
,

(64)

(q̃�)−1
= (ν̆2

+ (ζ + γ̃�ω)2)(ν̆2
+ (ζ − γ̃�ω)2)

= ν̆4
+ 2ν̆2(ζ 2

+ (γ̃�ω)2)+ (ζ 2
− (γ̃�ω)2)2, (65)

b̃ =
ν̆ cos(ζ t)+ ζ sin(ζ t)

ν̆2+ ζ 2 . (66)

For a stationary forcing, ζ = 0, the results from Sect. 7.1
are obtained, and if ν̆2

� (γ̃�ω)2,ζ 2, the solution given in
Eq. (61) is recovered. The wave frequency only appears
as a square, which assures that the error of the projection-
evolution operator is of second order. The eigenvalues of the
evolution matrix are

λ�W1/W2 = ζ s̃
�
± iγ̃�ωc̃� and λb = b̃. (67)

The corresponding eigenvectors are e�1,2 and e3. Resonances
are efficiently damped by viscosity if for a forcing at the reso-
nant frequency, ζ 2

= ω2, the viscous timescale is larger than
the resonance period, ν̆2 > ω2.

7.3.1 Absolute error

The difference between the two evolution operators in the
case of a long viscous damping time ν̆2

� ζ 2, (γ̃�ω)2 is

G0
ζ =

γ 2

(ζ 2− (γ̃�)2ω2)(ζ 2−ω2)ζω2 sin(ζ t) −ω3 cos(ζ t) 0
ζ 2ωcos(ζ t) ζω2 sin(ζ t) 0

0 0 0

 . (68)

The hydrostatic approximation is of second order. In the gen-
eral case, the difference between the two evolution operators
is

Gνζ =

 ζ (s̃H
− s̃) −ω(c̃H

− c̃) 0
γ̃ 2ωc̃H

−ωc̃ ζ (s̃H
− s̃) 0

0 0 0

 . (69)

All the components of the matrix are of at least second order,
O(γ 2).

The error done by the hydrostatic approximation with a
periodic forcing of frequency ζ is

Ê
ν

ζ =

[
GνζDP̃H

+ exp(DL̃Nζ
D(t))(DP̃H

−DP̃N)
]
F̂ . (70)

It has two terms: the first is due to the different evolution in
the two formalisms (see Eq. 69) and the second to the differ-
ence in the projections (see Eq. 49). The explicit form is

Ê
ν
ζ =

kz

α
(−f kzF̂r+ khB̂)

 ζ (s̃H
− s̃)

(γ̃�)2ωc̃H
−ωc̃

0


+ F̂d

−(c̃H
− c̃)

ζ
ω (s̃H

− s̃)
0

+ k2
h
k2

−c̃ζ
ω s̃
0

− F̂z khkz

k2

−c̃ζ
ω s̃
0

 . (71)

For the case of a long viscous damping time I obtain

Ê
0
ζ =

γ 2ωζ

(ζ 2− (ωH)2)(ζ 2−ω2)

[
kz

α
(−f kzF̂r+ khB̂)

]
ω sin(ζ t)
ζ cos(ζ t)

0

+ 1
ζ 2−ω2

[
F̂d(

γ 2ω

ζ 2− (ωH)2 +
k2

h
ωk2 )

−F̂z
khkz

ωk2

]−ωcos(ζ t)
ζ sin(ζ t)

0

 . (72)

This shows, once more, that the third component, the bal-
anced dynamics, is free of error. The scaling of the error with
the aspect ratio is

O(Ê)=O(γ 2F̂r+ γ
3B̂ + γ 2F̂d+ γ F̂z). (73)

If the forcing evolves much slower than the buoyancy fre-
quency, the dynamics is close to the stationary state calcu-
lated in Sect. 7.1. If the forcing occurs at the wave frequency
of either formalism, resonances or near resonances dominate
the linear dynamics. The hydrostatic approximation breaks
down as ωH

6= ω if kh 6= 0 and a resonance occurs in one
formalism but not in the other. During resonances or close
resonances, the scaling is still given by Eq. (73) but the pref-
actor diverges. Note that if ν̆2

� (γ̃�ω)2, resonances are ef-
ficiently damped.

7.3.2 Relative error

To obtain the relative error the procedure is identical to the
case of stationary forcing considered in Sect. 7.1.2. We com-
pare the absolute error calculated above to the solution of the
Navier–Stokes model, using Eq. (62):

x̂N
= F̂r

1
f α

 −f 2k2
z ζ s̃

N

−f 2k2
zω

2c̃N

N2k2
h b̃

+ B̂ khkz

α

 ζ s̃N

ω2c̃N

−b̃


+ (F̂d

k2
z

k2 − F̂z
kzkh

k2 )

−c̃N

ζ s̃N

0

 , (74)
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which is taken as the reference. Calculations confirm the re-
sults from Sect. 7.1.2 also for the case of periodic forcing,
except that prefactors in the scaling can diverge due to reso-
nances.

7.4 Nonlinear terms

Formally, the nonlinear terms can be added to the forcing in
Eq. (55) by F̂ → F̂ + F̂nl. Using Eqs. (15) to (18), I obtain

F̂nl =−i


kx û2

x + ky ûxuy + kzûxuz

kx ûxuy + ky û2
y + kzûyuz

kx ûxuz+ ky ûyuz+ kzû2
z

kx ûxb+ ky ûyb+ kzûzb

 . (75)

Due to the zero divergence of the velocity field, the hor-
izontal velocity components are at least a factor γ larger
than the vertical velocity, ûx ∼ ûy ∼ γ−1ûz. If this property
is conserved by the nonlinear term, the hydrostatic approxi-
mation is of second order O(γ 2), following Eq. (73).

8 Discussion

The hydrostatic approximation is exact on the balanced
mode, and if this mode receives all the energy by a given
forcing then the approximation is exact. If the forcing
strongly excites wave motion, then the deficiencies of the hy-
drostatic approximation in predicting the wave dynamics de-
termines its overall quality. The hydrostatic approximation
fails if the forcing is a vertical acceleration which is not a
dynamical variable in the hydrostatic approximation and is
therefore ignored, while in the Navier–Stokes formalism, it
generates horizontal velocities of first order in the scale ra-
tio, O(γ ).

In my evaluation, done using the techniques T1, T2 and T3
in Fourier space, the calculation is done separately for every
three-dimensional wave vector k. The projection step, S1, is
instantaneous; it does not depend on the temporal variation
of the forcing, whereas the evolution step, S2, asks for inte-
grating the evolution equations in time. In the linear approx-
imation, forcings at different frequencies superpose without
interacting and step S2 can be calculated for each forcing
frequency separately. The quality of the hydrostatic approx-
imation depends on the Coriolis parameter f , the buoyancy
frequency N and the viscosity ν. It has to be determined for
every three-dimensional wave vector k, forcing vector F̂ and
frequency ζ (see Fig. 3).

The mathematical formalism to evaluate the hydrostatic
approximation was developed and applied in the previous
sections. It is now important to compare the deficiencies of
the hydrostatic approximation to other uncertainties, to eval-
uate its fidelity. The previous discussion shows that viscosity
and damping can mask the differences in the wave frequen-
cies between the two formalisms. This will be assessed in
Sect. 8.1. The wave packets move at the group velocity and

are advected by the mean flow, which shows internal variabil-
ity. In Sect. 8.2, I compare this Doppler effect to the error due
to the hydrostatic approximation. Every measurement or ob-
servation is limited in time and space. Section 8.3 applies the
Heisenberg–Gabor uncertainty principle to discuss for which
processes the difference between the two formalisms is actu-
ally detectable, given the finite space-time observations.

8.1 Masking of resonance differences by friction

I first note that the amplitude of the balanced mode
is bounded by max(ν̆, ζ )−1 times the forcing amplitude
(see Eq. 66). Resonances occur when

√
(ζ 2− (γ̃�ω)2)2�

(γ̃�ω)2. For not too small viscous damping, (ζ 2
−

(γ̃�ω)2)2
� 2(γ̃�ω)2ν̆2, Eqs. (63) and (64) approach

s̃� ≈
1

2γ̃�ων̆
cos(γ̃�ωt), (76)

c̃� ≈
−1

2γ̃�ων̆
sin(γ̃�ωt). (77)

The amplitude of the wave motion is bounded by viscos-
ity and diverges as ν̆−1. There is no significant difference
between the two formalisms. For smaller viscosities (ζ 2

−

(γ̃�ω)2)2
� 2(γ̃�ω)2ν̆2:

s̃� ≈
2γ̃�ων̆

(ζ 2− (γ̃�ω)2)2 cos(γ̃�ωt), (78)

c̃� ≈
2γ̃�ων̆

(ζ 2− (γ̃�ω)2)2 sin(γ̃�ωt). (79)

The amplitude of the wave motion shows a quadratic diver-
gence: O

(
ζ ± (γ̃�ω))−2) and resonances can occur in one

formalism and not in the other when

γ 2
�
ν̆2

ω2 , (80)

which occurs at scales k� kr = (γω/ν)1/2. If hyper- or
hypo-dissipation operators να∇2α are used (hyper-viscosity,
α = 1 corresponding to Laplacian dissipation and α = 0 to
scale-independent bottom friction), this occurs at scales k�
kr = (γω/να)1/(2α).

In simulations of the ocean dynamics, we either resolve
the turbulent mixed-layer dynamics at the surface and the
bottom, which asks for a resolution on the meter scale in the
vertical and the horizontal, or we parameterize it, which asks
for vertical viscosity above νz > 10−2 m2 s−1 (supposing an
Ekman layer thickness of a few tens of meters). In numerical
models of the ocean dynamics, resolution and viscous damp-
ing are very different in the horizontal and the vertical. If the
model is fine resolution, an isotropic eddy viscosity is cho-
sen based on the Smagorinsky large eddy simulation model.
Its viscous damping time is ν̆ = C2

s u/1x. A Smagorinsky
constant Cs = 0.16, a current speed of 10−1 m s−1 and a
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grid scale 1x lead to ν̆ ≈ 3 · 10−3 m s−1/(1x). If we sup-
pose that ω > 10−4 s−1, Eq. (80) gives γ � 30 m

1x
, meaning

that the difference between the resonant frequencies in both
formalisms is hidden by viscosity if the vertical scale is be-
low 30 m, which is a typical scale for the oceanic Ekman
layer. This shows that viscosity masks differences between
the two formalisms in the bottom and surface Ekman layer
dynamics. At larger horizontal scales friction is parameter-
ized through turbulent bottom friction, which has an inverse
friction time of cDu/H A bottom friction drag coefficient
of cD ≈ 10−3, a current speed of u= 10−1 m s−1 and a res-
onance frequency ω ≈ 10−4 s−1 show that bottom friction
is sufficient to hide the difference in resonance frequencies
(γω) only if the ocean layer thickness in meters is below
γ−1. The above shows that neither viscous nor bottom fric-
tion can mask the difference in the resonance frequencies for
large-scale dynamical processes.

8.2 Comparison to Doppler shift and effective Coriolis
parameter

Horizontal waves evolve in a medium that is moving with a
velocity, u, which leads to a Doppler shift in the frequency
at an Eulerian point. If the velocity, u, has a turbulent vari-
ability 1u, due to the turbulent dynamics of the flow field,
also the Doppler shift in the frequency is modified and the
modification can be compared to the error done by the hy-
drostatic approximation. The phase velocities are given by
cN
= ωN/k and cH

= ωH/k, where the wave frequencies are
defined by the dispersion relation in Eq. (37). The square
root of difference in the square of the horizontal wave ve-
locity between the two formalisms, 1c =

√
(cH)2− (cN)2,

is 1c = γ c = γωN/kh = ω
N/kz (see Eq. 37), which equals

the vertical phase speed. The difference between the for-
malisms is significant if 1c >1u – that is, if γ > 1u/c. In
the Strait of Gibraltar, the uncertainty in the horizontal ad-
vection due to natural variability is on the order of 1u= 0.1
and c = 1 m s−1, so that for γ < 0.1, the hydrostatic approx-
imation can not be distinguished from the Navier–Stokes so-
lution. With a depth of around 300 m, the horizontal wave
length has to be below 3000 m, which asks for a resolution
of 300 m or finer to distinguish between the two formalisms.
The same can be applied to the group velocity of a moving
wave packet, but as it is lower than the phase speed, it is
even more affected by the Doppler shift. We see that inter-
nal variability of the horizontal velocity efficiently masks the
differences between the two formalisms.

Horizontal gradients of the horizontal velocities lead to
vorticity, ζ , and change the effective Coriolis parameter
feff =

√
1+ ζ/f f (for f > 0) (see Wirth, 2013). If the

Rossby number ζ/f > 2γ 2ω2/f 2, the change in the effec-
tive Coriolis parameter is larger than the difference in the for-
malisms. For oceanic values of N2/f 2

= 100 and γ < 0.01,
changes in the formalisms for Rossby numbers larger than
2×10−2 are masked. A horizontal velocity difference across

the Strait of Gibraltar of 0.3 m s−1, leading to a Rossby num-
ber of 0.1, masks the changes in the frequencies of the for-
malisms for a horizontal wave length above 3 km.

8.3 Uncertainty estimation

This section discusses the estimation of uncertainty in time
and space based on the theory of the Heisenberg–Gabor limit
(see Folland and Sitaram, 1997 for a general discussion and
Mordant, 2010 for an application similar to the present).
Considering the time-frequency formalism, it shows that the
resolution of the frequency (described by the standard devi-
ation, σf, in the frequency domain of the normalized signal)
and the length of the signal (described by the standard devi-
ation of the temporal extent of the signal σt) are restrained
by

σfσt ≥
1

4π
, (81)

equality being obtained only by a normal distribution. When
the space-wavenumber formalism is considered, the standard
deviations are replaced by σx and σk . Note that the inequal-
ity (81) applies to perfect data not disturbed by superposed
signals or noise, so it is independent of the quality of the
observation or the model; it is purely theoretical. The differ-
ence in the square frequencies between the two formalisms,
obtained from Eq. (37), is (ωNγ )2. To allow the observa-
tions to discriminate between the two frequencies, we need
σf ≤ ω

Nγ ; the Heisenberg–Gabor limit leads to an observa-
tion time σt ≥ (2πωγ )−1. For short waves, for example wave
trains generated by tidal forcing in the Strait of Gibraltar,
we have ω ≈ 10f . A resolved traveling wave asks for a grid
scale which is at least 1/10 of the wave length, and if the
horizontal resolution is about 10 times the water depth, we
obtain γ > 0.01. This leads to an observation time of the
phenomenon longer than the Coriolis period, which exceeds
the lifetime of waves generated by tidal motion in, for ex-
ample, the Strait of Gibraltar. This means that even in the
absence of noise, currents and other phenomena, it is mathe-
matically impossible to distinguish between the hydrostatic
and the Navier–Stokes wave frequency. Furthermore, dur-
ing this time, the advective and the group velocity will have
transported the wave packet several tens of kilometers to re-
gions where the depth and stratification largely differ, further
altering the wave frequency and the phase and group veloc-
ity.

If waves with larger horizontal extensions are consid-
ered, γ � 0.01 with ω ≈ f , the observation time to distin-
guish between the hydrostatic and the Navier–Stokes wave-
frequencies increases to several weeks. This means the dif-
ferences between the two formalisms cannot be detected in
the temporal domain.

If the spatial resolution is fine enough so that vertical
convection can be explicitly resolved, 1x =1z < 10 m, we
have γ ≈ 1, the domain is essentially unstratified, so that
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ω ≈ f , and we obtain ts ≥ σt =
1

2πf = 2 d, which is about the
time an oceanic deep convection plume takes to go from the
surface to the bottom. So also in the case of oceanic deep con-
vection, the difference between the two projection-evolution
operators cannot be detected. The difference in the projection
operator in the two formalisms might be significant due to
the advective transport of vertical velocity, which is present
in the Navier–Stokes formalism but neglected in the hydro-
static approximation.

In the present paragraph, I will compare the difference in
the frequencies between the two formalisms to the observa-
tion error in the horizontal and the vertical wave number. The
calculations are based on the dispersion relations given in
Eq. (37). In the spatial domain, the wave lengths can be con-
sidered in the vertical and the horizontal domain. This is done
separately in the horizontal (supposing kH

z = kz) and the ver-
tical (supposing kH

h = kh). In the horizontal, the relation be-
tween the hydrostatic and the Navier–Stokes horizontal wave
number is

(kH
h )2
− (1−

f 2

N2 )
k2
z

k2 k
2
h = 0. (82)

For a strong stratification and small γ this approaches
(kH

h )2
= (1− γ 2)k2

h . Using the Heisenberg–Gabor limit
(Eq. 81) means that the observation length has to exceed
γ−2/(4π ) the wave length, which means that for a rather
large γ ≈ 0.1, we need at least 10 wave lengths to distin-
guish between the two formalisms, and γ ≈ 0.01 asks for an
observation of around 1000 wave periods; no wave packets
of such extension are observed in the ocean.

In the vertical, the solution is

(1−
f 2

N2 )(kH
z )2
− (1+ γ 2)k2

z = 0. (83)

For the leading vertical modes, there are only from one to a
few half periods imposed by the depth of the domain. The
question I answer is by how much the depth has to vary to
perfectly compensate the differences of the two formalisms.
If N = 10f , a typical value for the ocean with a buoyancy
frequency of a few hours, and γ = 0.01, the difference is
1 %. With a vertical extension of 500 m of the phenomena,
for example in the Strait of Gibraltar, this asks for a verti-
cal resolution of the topography below 5 m. Such precision
is not possible with today’s models; for example, the topog-
raphy or the thermocline depth largely exceeds 5 m from one
horizontal grid point to the next. So also in this case, the dif-
ference in the projection-evolution operator between the two
formalisms is insignificant.

Finally, I consider by how much the buoyancy frequency
has to differ to compensate the error done by the hydro-
static approximation. To make the wave frequency of both
formalisms agree at the same wave vector, the difference in
the buoyancy frequency is (NH)2

= (N2
− f 2)/(1+ γ 2); for

N2
= 100f 2 and γ = 0.1 this leads to a difference in buoy-

ancy frequency of less than 2 %, far below the precision of
today’s models or observations.

The above discussions on the uncertainty of the horizontal,
vertical wave number and buoyancy frequency demonstrate
that the difference in the projection-evolution operators of the
formalisms is not significant in realistic simulations of ocean
dynamics, for small-amplitude linearized motion. Only non-
linear or externally forced processes can lead to configura-
tions that project differently into the subspace of divergence-
less fields in the two formalisms.

9 Conclusions

The present paper displays a theoretical framework to in-
vestigate the differences between the Navier–Stokes model
and the hydrostatic approximation. To investigate the fi-
delity of the hydrostatic approximation, I constructed a four-
dimensional local projection of the dynamics in Fourier
space by separating the buoyant and dynamic vertical accel-
eration (T1+T2) and combined it with the linear projection-
evolution operator (T3). The linearized dynamics in the hy-
drostatic and Navier–Stokes formalism is compared. It shows
that the hydrostatic approximation relies on two properties:
the difference in the eigenvectors of the linear operator be-
tween the two formalisms and the difference in the cor-
responding eigenvalues. The former shows in the projec-
tion on the eigenvectors (S1), the latter in the evolution in
the eigenspaces (S2). The projection depends on the Cori-
olis frequency f , the buoyancy frequency N and the three-
dimensional wave vector k. The projection-evolution oper-
ator depends on the same parameters plus the forcing fre-
quency ζ .

The eigenspaces of the wave dynamics (2D) and the bal-
anced dynamics (1D) are identical between both formalisms.
The eigenvalue for the balanced flow agrees between the two
formalisms, whereas the eigenvalues in the wave dynamics
differ due to the different wave frequencies. Therefore, for
the projection-evolution operator (S2), the hydrostatic ap-
proximation is exact if the balance dynamics is considered,
whereas it differs to second order O(γ 2) for the wave dy-
namics. The fourth eigenvector is in the kernel of the cor-
responding projection. It is different in both formalisms to
zeroth order O(γ 0), but as the corresponding eigenvalue is
vanishing, it does not participate in the dynamics.

The difference in the projection (S1) between the two for-
malisms is always along the second vector of the eigenspace
of the wave dynamics (ẽ2). It corresponds to horizontally
divergent flow, with a vanishing vertical component of the
vorticity vector and is caused either by a purely vertical
force, with error O(γ ), or a horizontally divergent force,
with error O(γ 2). The projection of a rotational forcing and
a buoyant forcing on the eigenvectors is identical in both for-
malisms. This makes the hydrostatic approximation first or-
der, except if the vertical dynamical acceleration is first order,
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which would make the hydrostatic approximation second or-
derO(γ 2). An expansion of the nonlinear terms in powers of
γ suggests that its vertical acceleration is indeed first order.

The error in the projection-evolution operator is second or-
der O(γ 2) for the wave dynamics and exact for the balanced
flow, as the dynamics of the latter is perfectly described by
the hydrostatic approximation. The validity of the hydrostatic
approximation relies not only on the order of approxima-
tion in the scale ratio, γ , but also on the amount of energy
that is found in the subspaces spanned by the wave modes
and the balanced mode. For fast motion, if the frequency
of the dynamics is larger than the minimum of either f and
N , resonances can occur and the hydrostatic approximation
breaks down even if the projection-evolution operator is for-
mally second order. But for slower and slower motion, of
frequency ζ , relatively more and more energy goes into the
balanced mode, for which the hydrostatic approximation is
exact. I showed that this depends also on the viscous damp-
ing. Another important result is that I manage to write the
linear projection-evolution operators so that the lowest power
of the wave frequency ω is quadratic, which ensures that the
approximation for the linear projection-evolution operator is
second order.

There are two important points one has to keep in mind.
First, the hydrostatic approximation is a singular perturbation
of the full Navier–Stokes equations, as the highest (temporal)
derivative in the equation for the vertical velocity is omitted
and expansions in small parameters are no guarantee for the
smallness of the error (see, e.g., Bender et al., 1999). Second,
the hydrostatic approximation breaks down where neither ro-
tation nor stratification nor scale ratio constrain the fluid –
that is, in fast-moving unstratified fluid dynamics. Where,
when and how such areas are spontaneously created by the
turbulent dynamics or external forcing depends on the situ-
ation considered. For these reasons, dedicated numerical ex-
periments of oceanic phenomena have to be employed to de-
termine the fidelity of the hydrostatic approximation for the
scales and phenomena studied.

Considering a non-vanishing viscosity is of importance as
in numerical models, the non-hydrostatic effects are present
at the smallest scales of the model at which the numerical
viscosity parameter has a dominant effect. It is straightfor-
ward to extend the calculations to an anisotropic viscosity,
which has vertical values much smaller than the horizontal
counterparts, usually employed due to the disparate resolu-
tion in the vertical and horizontal. Such anisotropy, however,
hinders the commencement of the fully three-dimensional
dynamics. Comparing the impact of anisotropic friction to
the hydrostatic approximation has not been done here, as in
fully non-hydrostatic simulations, which resolve the dynam-
ics down to the meter scale, an anisotropic viscous damping
lacks justification.

It is shown that if the vertical turbulent viscosity param-
eterizes the turbulent Ekman layer dynamics, the viscosity
is high enough to mask the differences between the two for-

malisms in the wave frequencies at scales below the Ekman
layer thickness (≈ 30 m). If it is lower νz < 10−2 m2 s−1, the
vertical turbulent exchange of momentum has to be resolved
explicitly, which asks for a grid scale in the vertical and
horizontal of 1 m or finer. At these scales, the free surface
variations become important, leading to Langmuir cells (see
McWilliams et al., 1997). For an explicit representation of
these processes, the fully three-dimensional Navier–Stokes
equations with a free surface should be used. Such models
will not be available for basin-wide simulations in the near
future, and parameterizations for surface processes have to
be used.

At larger scales, the Doppler shift, the change in the
effective Coriolis parameter due to unresolved processes
and the internal variability of the dynamics, and the varia-
tion of the topography do not allow us to discriminate be-
tween the two formalisms in realistic ocean simulations. Fur-
thermore, the uncertainty obtained through the Heisenberg–
Gabor limit shows that the observation time of propagating
inertia-gravity waves does not allow us to discriminate be-
tween the two formalisms. The calculations in the previous
section also show that the Heisenberg–Gabor limit allows
us to determine the gray zone for an oceanic process, be-
tween the large scales where the hydrostatic approximation is
valid, down to the scale where it clearly fails. In conclusion:
if the vertical viscosity is larger than νz > 10−2 m2 s−1, the
hydrostatic approximation is appropriate to represent motion
slower then the Coriolis frequency in realistic simulations of
the ocean dynamics. Differences between the two formalisms
can be apparent in simulations of specific oceanic processes
in an idealized setting.
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