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Abstract. Understanding the resilience and stability of vegetation patterns under changing environmental con-
ditions is crucial for predicting ecosystem responses to climate change. This study investigates the dynamics of
vegetation patterns in response to a spatially homogeneous decrease in rainfall across the entire domain. Starting
from high rainfall with a stable, homogeneous vegetated state, we applied various rates of rainfall reduction to
observe system transitions. We find that rainfall decrease may cause transitions to two or three pulse states or
abrupt shifts to bare soil depending on the rate of change, highlighting the significance of rate-induced tipping
(R-tipping) in open dynamical systems.

We identified the pulse destruction timescale (Tgestruction) and the rearrangement timescale (Trear) as the critical
timescales that govern the system response to gradual environmental changes. The rearrangement timescale,
which is significantly longer than tgesiruction, 1S relevant for characterizing the system behaviour under slow
perturbations. Dimensional analysis and sensitivity analysis with numerical experiments further validate the
fundamental connections between these timescales.

Additionally, we examined the impact of spatially and temporally structured noise on vegetation pattern re-
silience. Perturbations modelled as Gaussian stochastic processes with specific autocorrelation structures were
applied to the system. We find that increased spatial autocorrelation in noise reduces pattern formation, while
temporal autocorrelation at critical timescales significantly influences the biomass mean and variance. The co-
existence of multiple equilibria and unstable states, combined with the presence of ghost attractors, enhances
system resilience by providing alternative stable configurations under fluctuating conditions.

These findings underscore the importance of considering slow timescales and structured noise in analysing
vegetation dynamics. Understanding these factors is essential for predicting ecosystem resilience and developing
strategies to manage vegetation systems under climate variability.

ing how vegetation systems respond to different perturba-

Understanding the dynamics of vegetation patterns under
varying environmental conditions is crucial for predicting
ecosystem responses to climate change. Vegetation patterns,
such as the regular arrangement of plant patches, arise from
complex interactions between biological processes and en-
vironmental factors (Klausmeier, 1999). These patterns are
particularly sensitive to changes in environmental conditions
(Gilad et al., 2007), which directly affect, for example, wa-
ter availability, a critical resource for plant growth in semi-
arid regions (Deblauwe et al., 2008). Therefore, investigat-

tions can provide valuable insights into their resilience and
stability.

The seminal work by Holling (1973) established the dif-
ference, in ecology, between stability and resilience. Stability
refers to the ability of a system to return to its equilibrium af-
ter a perturbation and is linked to the eigenvalues associated
with a given stable equilibrium. Resilience defines the abil-
ity of an ecosystem to maintain its function. For example, in
semi-arid areas, an ecosystem constrained by a limited wa-
ter supply may achieve its highest biomass when vegetation
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is distributed in the form of patterns. Furthermore, based on
vegetation models, we know that different pattern configura-
tions may be compatible with the same boundary condition
(von Hardenberg et al., 2001; Dijkstra, 2011; Zelnik et al.,
2013). As these different configurations may all achieve high
biomass, it is generally conjectured that resilience is effec-
tively enhanced by the multiplicity of possible patterns.

However, understanding resilience also requires attention
to the nature of the perturbation (Kéfi et al., 2019): a system
may react very differently depending on the type of pertur-
bation being applied to it.

Our objective is to determine the critical scales, in time
and space, that determine the response of the system to en-
vironmental perturbations. We consider, at first, linear, deter-
ministic perturbations, such as a linear decrease in precipita-
tion, and then stochastic perturbations. We aim to establish
general principles. Even though the work is based on a spe-
cific numerical model of vegetation (Rietkerk et al., 2002),
we aim at identifying which critical timescales emerge from
the model construction as well as how they influence the sys-
tem’s response.

To this end, we follow the framework established by pre-
vious studies. More specifically, Siteur et al. (2014), Chen
et al. (2015), and Sherratt (2013) showed the importance of
the rate of change and noise; moreover, using the Klaus-
meier vegetation pattern model, Bastiaansen et al. (2020)
identified a critical timescale for which the patterns do not
have the time to adapt to the environmental change. All of
those works emphasize the importance of understanding rate-
induced transitions.

After those studies, a number of questions remain:

— Is there more than one critical timescale in a vegetation
pattern model?

— What is the impact of these internal timescales?

— Can these internal timescales be linked to parameters of
the model?

In the following, we will show how these critical timescales
manifest themselves in the Rietkerk model (Rietkerk et al.,
2002) and how they influence both the response to determin-
istic and stochastic perturbations, with emphasis on the pos-
sible occurrence of a resonance process.

2 Model description

As announced in Sect. 1, we use the vegetation model by Ri-
etkerk et al. (2002). As common for reaction—diffusion mod-
els, it combines two mechanisms for creating patterns: lo-
cal facilitation and long-range inhibition. Local facilitation
is caused by the water infiltration feedback. It is based on the
idea that the soil crust effectively prevents water infiltration
in a semi-arid region. The presence of biomass, more specif-
ically the roots associated with this vegetation, increases wa-
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ter infiltration by drilling the soil crust. Long-range inhibi-
tion is caused by rapid diffusion of surface water prevent-
ing the accumulation of water in some areas of the spatial
domain and, thus, the creation of biomass. The presence of
these two processes places the Rietkerk model in the cate-
gory of scale-dependent feedback models (Lefever and Leje-
une, 1997; Rietkerk and van de Koppel, 2008; van de Kop-
pel et al., 2005). Although models of this class are known
to produce regular patterns as stable equilibria, Vanderveken
et al. (2023) showed that irregular equilibria (mixed state) ex-
ist and play a role in the dynamics of the system, despite its
instabilities. Another class of pattern-formation models has
been proposed recently by Siteur et al. (2023). This class of
models is based on the density-dependent aggregation of bi-
otic or abiotic species and can create irregular patterns.

Three variables are modelled in the Rietkerk model:
biomass (B) [g m~2], soil water (W) [mm], and surface water
(O) [mm]. They respond to the following system of partial
differential equations:
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where A is the Laplacian operator and R is the rainfall
[mmd~!]. Rainfall is the external forcing of the system that
we consider to be a spatially independent function. The first
term in the biomass equation represents water uptake by the
plant. The first term in the soil water equation is linked to the
infiltration rate of water in the soil that is enhanced by the
presence of biomass. The factors in front of the Laplacians
(AB, AW, and A O) represent the diffusion constants of the
different quantities. We consider a periodic domain of size
[ = 100m. The parameters are provided in Appendix A.

3 Effect of rainfall perturbation on vegetation
dynamics: identifying critical timescales

We consider a spatially homogeneous perturbation applied to
surface water, representing a decrease in rainfall across the
entire domain. This type of perturbation is meaningful, as
it mimics scenarios of prolonged droughts or gradual shifts
in climate patterns. By applying different rates of change to a
system that is initially in a high-rainfall state, we aim at iden-
tifying which critical factors influence the transient response
of vegetation.

Previous research has highlighted the dependence of sys-
tem solutions on the rate of environmental change, as com-
mon in open dynamical systems. In the context of vege-
tation patterns, different rates of rainfall decrease can lead
to diverse outcomes, ranging from transitions to multi-pulse
states to abrupt shifts to bare soil.
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Starting from a high-rainfall situation (R = 1.4mmd~"),
for which only the homogeneous vegetated state is stable, we
decrease rainfall with different rates of change a [mm d—2).
Figure 1 shows the evolution of the spatial structure of the
biomass (in green) as a function of rainfall, for different val-
ues of a. We find a transition from a homogeneous state
to a heterogeneous distribution with two or three vegeta-
tion “pulses”, before it finally disappears. The sequence and
timing of the transitions depend on a. For a rate of change
of 1073 mmd~2, the system jumps directly from a homo-
geneous vegetated state to a bare-soil solution. The criti-
cal rate of change at which all vegetation is eradicated is
TRy, ~ 1000d.

When reversing the rainfall gradient from low to high, the
system follows a different transition path between low and
high biomass. This hysteresis can be attributed to the range
of precipitation where multiple stable equilibria exist in the
Rietkerk model.

It is not surprising that the response depends on the rate
of change. Ashwin et al. (2012) established general princi-
ples of so-called rate-induced tipping (R-tipping) in models
based on ordinary differential equations, and rate-dependent
responses were also described specifically in models of veg-
etation patterns (Siteur et al., 2014; Chen et al., 2015; Basti-
aansen et al., 2020). However, the value of TRyp is intriguing.
Indeed, the timescale associated with the destruction of veg-
etation pulses is, through dimensional analysis, estimated to

o R 3 1
be Tdestruction = Cgmax ( 3 gm‘“> ia= 52d.

This relationship is linked to the transfer of water to
biomass, to vegetation mortality, and to rainfall. To test the
dependence of the proposed scaling on rainfall, we con-
ducted the following numerical experiments. Starting from
a stable equilibrium consisting of two vegetation pulses at
R =1.2mmd~!, we abruptly reduced the rainfall to values
of between 0.3 and 0.8 mmd~!. This reduction leads to veg-
etation collapse, driving the system toward the bare-soil equi-
librium. We then determined the destruction timescale by
fitting an exponential function to the mean biomass evolu-
tion for different rainfall values. The resulting timescales are
shown in Fig. 2b. Our results reveal a cubic relationship be-
tween the destruction timescale and rainfall, supporting the
validity of our scaling.

Having a tg,, value that is about 30 times that of
Tdestruction suggests that a slower process dominates the sys-
tem’s behaviour under changing environmental conditions.
Bastiaansen et al. (2020) already identified another critical
timescale within the Klausmeier model (Klausmeier, 1999).
It is linked to the movement of pulses towards a stable, regu-
lar state. This concept is crucial for understanding vegetation
dynamics in response to gradual environmental changes.

We now proceed to determine a similar timescale in the Ri-
etkerk et al. (2002) model and will call it the rearrangement
timescale, Treyr. First, we perform a numerical experiment in
which a pulse is removed for a given rainfall value, and the
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time taken for the system to stabilize is computed. Figure 3
shows the results for different rainfall values. We find that
Trear ~ 1000d. This rearrangement timescale is of the same
order as Tg,,, suggesting a fundamental connection between
the two. This correspondence would also support that R-
tipping is conditioned by the slowest timescale in the system.
The rearrangement timescale effectively represents this slow
process, dictating the system’s overall response to changing
conditions. Second, we attempt to link this rearrangement
timescale to quantities in the system. Inspired by the scal-
ing proposed in Bastiaansen and Doelman (2019), we assume
that the movement of pulses is determined by diffusion co-
efficients. Specifically, we take the advantage of the fact that
the ratio between the slow and the fast diffusion coefficients
in the reaction—diffusion model drives the creation of the pat-
terns (Murray, 2003; Meron, 2015). For the Rietkerk model,
the fast component is the surface water (O), whereas the
slow components are the biomass (B) and the soil water (W).
Hence, we propose the following scaling for the rearrange-

ment time Tregr = Cg‘)‘m ( 5 gmax>3$\/g:‘; ~1000d. The key
factor determining the rearrangement time appears to be the
square root of the ratio between the diffusion coefficients of
the fast and slow variables. To verify this, we perform a se-
ries of experiments in which the diffusion coefficient of the
slow variables (biomass and soil water) varied by a factor f.
To obtain a stabilization time for the different values of f, we
run a series of numerical experiments similar to the one pre-
sented earlier. We start from a stable state for a given value
of rainfall and f, and we then remove one pulse of vegeta-
tion. We compute this stabilization time for different values
of rainfall and take the larger stabilization time because it is
the one that is of interest regarding R-tipping. The results are
presented in Fig. 4. The rearrangement timescale that is di-
agnosed numerically fits the theoretical curve proposed for
Trear fairly well.

This finding highlights the critical role of the rearrange-
ment timescale in determining the system’s response to en-
vironmental changes. Specifically, it emphasizes the need to
account for this slower timescale when analysing vegetation
dynamics. Understanding and quantifying this timescale pro-
vides valuable insights into the resilience and stability of veg-
etation systems under gradual environmental shifts.

4 Effect of spatially and temporally structured noise
on vegetation pattern resilience

The kind of perturbation applied to the system is an impor-
tant aspect of resilience diagnosis (Kéfi et al., 2019); specif-
ically, the spatial scale of the perturbation must be consid-
ered. In the following section, we consider a dynamic per-
turbation consisting of a spatially distributed noise modelled
mathematically as a Gaussian stochastic process with a mean
E[£(2, x)] = 0 and standard deviation o = 0.1. The temporal
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Figure 1. Sensitivity of the Rietkerk model to various rates of change in rainfall. Each panel represents a solution with a given rate of change
a. The x axis is the spatial dimension, whereas the y axis is the rainfall. Every run has the same start and end point rainfall values, but they
differ by the rate of change. Every simulation starts with a homogeneous vegetated state, which is the only stable equilibrium at this value of
rainfall. For the last value of rainfall (R = 0.4mmd~1), the only stable equilibrium is the homogeneous bare-soil solution.
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Figure 2. Panel (a) shows the mean biomass over time for rainfall values ranging from 0.3 to 0.8 mm d~'. Panel (b) displays the destruction
timescales obtained from an exponential fit as a function of rainfall, along with polynomial fits of the destruction timescale of orders 1, 2,

and 3.
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Figure 3. Rearrangement timescale with respect to rainfall. Each panel represents the solution of the following numerical experiments; we
start at stable equilibrium with four pulses and then remove one pulse. For each experiment, we then identify the time until the system reaches
a new equilibrium by moving around the pulses. This time is shown by the horizontal blue line in each panel.

structure is that of an Ornstein—Uhlenbeck process. The cor-
relation function is E[(t, x)E(s, y)] = e 11 =$1/21e=(r=2)/3

Stochastic perturbations are applied to the biomass (B)
and surface water (W). Formally, the model takes the fol-
lowing form:
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where £p(x, 1) and £p(x, ) are independent noise processes.
For biomass, we consider an autocorrelation timescale of
1 d, and different autocorrelation length scales (Apiomass,s) are
tested. For surface water, the perturbation is homogeneous in
space, and different autocorrelation timescales Arainfall,; are
tested.

Figure 5 summarizes the stationary response of the model
to Abiomass,s and Arainfall,;, considering the mean biomass.
Outputs reported on those tables are the average of 15 exper-
iments. First, we consider the spatial structure of the noise,
applied to the biomass. We focus on the horizontal lines of
the tables, one by one, with the structure of the perturbation
changing from highly heterogeneous to almost homogeneous
as each line is browsed from the left to the right (increasing
Abiomass,s)- We find that mean biomass tends to decrease as
spatial autocorrelation increases, and this occurs regardless
of the choice of time autocorrelation. This suggests that more
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homogeneous stochastic perturbations tend to destroy more
biomass and send the system towards the bare-soil equilib-
rium. Thus, the resilience of the vegetation is reduced if the
perturbation is spatially more homogeneous.

Second, we now focus on the time correlation of the
stochastic perturbation of surface water. We find that both the
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Figure 5. Summary table for the runs with stochastic forcing. For
each cell, we ran the model 15 times with the same A; and Ag. The
table indicates the ensemble mean of the temporal mean of the spa-
tial mean.

spatial mean and the variance reach a minimum at A; = 10d.
This timescale is the Tgesiruction timescale previously identi-
fied in the scaling analysis. This suggests a form of reso-
nance associated with Tgegiruction preventing self-organization
of vegetation. On the other hand, biomass reaches a maxi-
mum for a perturbation timescale of 1000 d, coinciding with
the rearrangement timescale T,y that we also identified in
the scaling analysis.

To visualize the behaviour for those different values of
temporal autocorrelation, we show, in Fig. 6, realizations rep-
resentative of the general behaviour, for four values of A;. We
see that patterns tend to disappear for A, = 10d and reappear
for A, = 1000d. The ability of the system to maintain (or not
maintain) patterns, depending on the timescale of the pertur-
bation, explains the variation in mean biomass observed in
Fig. 4. We suggest that the slow stochastic perturbation is
more effective at moving the system gently around the states
associated with the highest biomass, without destroying pat-
terns. The slow timescale (rearrangement timescale) is in-
trinsically linked to the spatial extent of the model. It would
not exist in a zero-dimensional analysis. In this respect, we
have already noted that non-linear, spatially extended sys-
tems tend to have multiple equilibria for a given input — here,
a given rainfall. The multiplicity of equilibria, whether they
are stable or not, increases the resilience of the system in the
sense of Holling (1973). Metaphorically, such equilibria may
be seen as tree branches in a forest to which an orangutan
might cling to avoid falling. This phenomenon is clearly vis-
ible in Fig. 7, displaying the time evolution of the biomass
with a fixed rainfall of 0.8 mmd~!. In this configuration, we
see that the system jumps from one configuration of pulses
to another, passing from two to three pulses or vice versa.
The transition, associated with the vanishing or the creation
of a pulse, happens quickly, with a timescale of a few days.
We again find the Tgesruction (fast) timescale identified earlier.
Those configurations correspond to stable equilibria for the
chosen rainfall as previously identified (Zelnik et al., 2013;
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Vanderveken et al., 2023). The two- and three-pulse config-
urations are not the only states being visited by the system.
Occasionally, a configuration emerges consisting of a large
pulse accompanied by a smaller one. The latter does not cor-
respond to an equilibrium for a rainfall value of 0.8 mmd~!,
but it can be interpreted as the “ghost” of a mixed state iden-
tified in Vanderveken et al. (2023). Mixed states are always
unstable and exhibit pulses with different heights. The mixed
state that interests us here is the one with one big pulse and
one small pulse. Its existence spans from 0.6mmd~" to less
than 0.8 mmd~!. In the stochastic realization, the position of
the second small pulse is not perfect because of noise. We
clearly see that even if this mixed state with two pulses is not
an equilibrium for this value of rainfall, it plays a role in the
dynamics — hence the qualifier of ghost (Hastings et al., 2018;
Morozov et al., 2020). Ghost attractors and unstable equilib-
ria expand the resilience of the system because, in view of
the orangutan in the forest, these configurations are new tree
branches to cling to.

In this study, we focused on the effect of spatial and
temporal correlations on the system. To assess the impact
of noise amplitude, we performed numerical experiments
for low-noise-intensity (o = 0.09) and high-noise-intensity
(0 =0.3 and 0 =0.9) levels. We observed that the results
are consistent for a low value of noise amplitude.

For 0 = 0.3, we observe pattern destruction at A; = 1d,
followed by pattern reappearance at higher values of tem-
poral autocorrelation. At o = 0.9, all patterns are destroyed,
and the system stabilizes into a spatially homogeneous solu-
tion oscillating with rainfall.

Regarding mean biomass, we observed a consistent in-
crease with increasing temporal autocorrelation for both o =
0.3 and o = 0.9. This behaviour can be understood by two
complementary numerical experiments.

First, we applied noise exclusively to the surface water,
using three values of o =0.1, 0.3, and 0.9. For 0 =0.1,
biomass is eliminated at A, = 10d. For higher noise ampli-
tudes, two phenomena emerge: (1) the range of temporal au-
tocorrelation over which biomass is reduced shifts to lower
values of A;; (2) the mean biomass increases significantly
at higher A;. Together, these effects result in an increase in
biomass with increasing temporal autocorrelation.

Second, we applied noise exclusively to the biomass com-
ponents, using the same three values of ¢ and fixing tempo-
ral autocorrelation at A; = 1d. In this set-up, we observe that
mean biomass increases with o. This can be attributed to the
nature of the Gaussian noise applied. Gaussian noise is sym-
metric, and as biomass is constrained to be non-negative, the
system benefits more from the positive phases of the noise
while being less affected by the negative phases. As the am-
plitude of the noise increases, this asymmetry leads to an
overall increase in biomass.

The combined effects of noise applied to both surface
water and biomass explain the observed increase in mean
biomass for o > 0.1. However, the destruction and reap-
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Figure 6. Four realizations of the stochastic Rietkerk model with A; = 1 m. Biomass is the variable shown. Each panel presents a represen-
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pearance of patterns remain robust even at higher noise am-
plitudes (e.g. o =0.3). At sufficiently high noise intensity
(0 =0.9), a saturation effect occurs, and the system becomes
entirely noise-driven, with patterns fully suppressed.

By demonstrating that resilience is bolstered by spatially
heterogeneous noise and identifying critical timescales that
influence biomass dynamics, we have provided valuable in-
sights into the mechanisms underpinning ecological stability.
Our findings emphasize the necessity of considering both sta-
ble and metastable states in resilience assessments, offering a
more comprehensive understanding of ecosystem dynamics
under varying perturbation regimes.

5 Conclusions

The present study explored the effects of a spatially ho-
mogeneous perturbation, specifically a decrease in rainfall,
on vegetation dynamics in a model system. By varying the
rate of change in rainfall, we observed significant differ-
ences in the system’s response. At slower rates, the system
transitions through multiple stable states, including two- and
three-pulse solutions. However, a critical rate of change at
10> mmd~2 results in a direct shift from a homogeneous
vegetated state to bare soil. This critical rate of change aligns
with a critical timescale TRep ™ 1000d, which is much longer
than the pulse destruction timescale Tgegtruction = 52d, high-
lighting the dominance of slower processes in the system’s
behaviour under environmental changes.

https://doi.org/10.5194/npg-32-189-2025

5.1 Rearrangement timescale and system resilience

We identified a critical rearrangement timescale Tyear ~
1000d, which corresponds to the system’s response time to
structural changes, such as the removal of a vegetation pulse.
This timescale is pivotal for understanding the resilience and
stability of vegetation patterns. By linking ey, to the diffu-
sion coefficients of the system’s components, we derived a
scaling law that accurately predicts the rearrangement time,
emphasizing the importance of spatial interactions in deter-
mining system dynamics.

5.2 Impact of spatial and temporal noise

We further investigated the resilience of the system under
spatial and temporal noise, modelled as Gaussian stochas-
tic processes. The experiments demonstrated that the spatial
autocorrelation of noise significantly impacts pattern forma-
tion. Higher spatial correlation leads to reduced spatial vari-
ance and biomass, suggesting that more homogeneous noise
disrupts vegetation patterns. Temporal noise analysis re-
vealed critical timescales — particularly around 10 and 1000 d
— corresponding to the pulse and rearrangement timescales
respectively. These findings underscore the intricate balance
between spatial and temporal scales with respect to maintain-
ing vegetation resilience.

5.3 Broader implications and multiple equilibria

Our analysis highlights the existence of multiple equilibria
and the crucial role of slow timescales in spatially extended
systems. The presence of ghost attractors and unstable equi-
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Figure 7. Two realizations of the stochastic Rietkerk model with different types of noise. In panel (a), the parameters are R = 0.8 mm a1,
Xt = 1d, and Ay = 10m for the noise applied on the biomass, and A; = 10000d and is spatially homogeneous for the noise applied on the
surface water. In panel (d), the parameters are R = 0.8 mm d_l, Ar = 1d, and Ay = 15m for the noise applied on the biomass, and A; = 1d and
is spatially homogeneous for the noise applied on the surface water. The three horizontal lines mark the timing of the snapshots represented
in panels (b) and (e) respectively. Panel (c¢) gives the bifurcation diagram, with two pentagons marking the position of two equilibria shown
in panel (e).

libria broadens the system’s resilience, offering additional
configurations for the system to cling to, akin to tree branches
in a forest. This multiplicity of stable and transient states en-
hances the system’s capacity to adapt to gradual environmen-
tal changes, aligning with the concept of resilience as defined
by Holling (1973).

In summary, this study contributes to clarifying the com-
plex interplay between rainfall perturbations, spatial and
temporal noise, and vegetation dynamics. By identifying crit-
ical timescales and exploring the system’s response to vari-
ous perturbations, we provide valuable insights into the re-
silience and stability of vegetation systems. These findings
contribute to a deeper understanding of ecological dynam-
ics and the factors influencing the persistence of vegetation
patterns under changing environmental conditions.
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Appendix A: Model parameters

The parameters are as in Rietkerk et al. (2002); see Table Al.

Table A1. Parameters for the Rietkerk model.

c Conversion of water uptake by plants to plant growth

gmax Maximum water uptake

ki Half-saturation constant of specific plant growth and water uptake
Dp Plant dispersal

o Maximum infiltration rate

ko Saturation constant of water infiltration

wo Water infiltration in the absence of plants

rw Soil water loss due to evaporation and drainage

Dy Diffusion coefficient for soil water
Do Diffusion coefficient for surface water
d Plant mortality rate

1 2

10gmm™ "m™
0.05 mmm? g_l a1
S5mm

0.1m2d~!

0.2d7!

SgIIF2

0.2

0.2d7!

0.1m%d~!
100m2d—!
0.25d~1

Appendix B: Structured noise

The noise used in this paper is correlated in both time and
space. We prescribe its standard deviation (o), length of spa-
tial autocorrelation (Ay), and time correlation (X;) with a pe-
riod of L. To produce this noise, first, we compute the square
root of the following covariance matrix, where N = 100 is
the number of spatial points:

—(i=xp)? —(L—lxi=x; )

2 2
A;j=max|e * e A5

Then, we use an AR1 process (auto regressive process of or-
der 1) in time to create the time dependence of the noise:

n
Xij =Xij+ (—C *x,',jdl‘ + ~/dto, ZAj,ka) s
k=1

where ¢ = 1/A;, dt is the time step, o, = 0+/2c, and € is a
Gaussian random variable of 0 mean and variance 1.

The resulting noise is exemplified in Fig. B1, and the tem-
poral and spatial structure are shown in Fig. B2.
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Figure B2. Mean over 50 realizations of the structured noise with & = 10, A, = 100, and A; = 1. In panel (a), the blue line is the mean over
all the realizations with temporal autocorrelation at = 20000, and the orange line is the theoretical expectation. In panel (b), the blue line
is the mean over all the realizations of the spatial autocorrelation at x = 50, and the orange line is the theoretical expectation. In panel (c),
the blue line is the mean temporal power spectrum, and the vertical dashed red line is at 1/X;. In panel (d), the blue line is the mean spatial
power spectrum, and the vertical dashed red line is at 1/As.
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