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Abstract. Local dimension computed using extreme value theory (EVT) is usually used as a tool to infer dy-
namical properties of a given state ζ of the chaotic attractor of the system. The dimension computed in this way
is also known as the pointwise dimension in dynamical systems literature and is defined using a limit for an
infinitely small neighborhood in the phase space around ζ . Since it is numerically impossible to achieve such
a limit, and because dynamical systems theory predicts that this local dimension is almost constant over the
attractor, understanding the properties of this tool for a finite scale R is crucial. We show that the dimension can
considerably depend on R, and this view differs from the usual one in geophysics literature, where it is often
considered that there is one dimension for a given dynamical state or process. We also systematically assess the
reliability of the computed dimension given the number of points to compute it.

This interpretation of the R dependence of the local dimension is illustrated on the Lorenz 63 system not
only for ρ = 28, but also in the intermittent case where ρ = 166.5. The latter case shows how the dimension
can be used to infer some geometrical properties of the attractor in phase space. The Lorenz 96 system with
n= 50 dimensions is also used as a higher-dimension example. A dataset of radar images of precipitation (the
RADCLIM dataset) is finally considered, with the goal of relating the computed dimension to the (in)stability of
a given rain field.

1 Introduction

When nowcasting the rain field, the future state is essentially
predicted using Lagrangian persistence (Zawadzki et al.,
1994; see Pierce et al., 2012, for a review of nowcasting).
It is known that the errors in the estimation of the motion
field (the wind) do not dominate the total error of the fore-
cast (Bowler et al., 2007), but that taking into account the
growth and dissipation of rain cells is essential for an accu-
rate nowcast (Germann et al., 2006). In the case of convec-
tive events, the instability may be captured by the convec-
tive available potential energy (CAPE) available in numeri-
cal weather prediction (NWP) outputs, but convective situa-
tions can very quickly evolve. It would therefore be useful to
have a real-time method to assess the stability of the current
situation. Several techniques have been developed to pro-

duce probabilistic forecasts (Germann and Zawadzki, 2004;
Bowler et al., 2007; Berenguer et al., 2011; Pulkkinen et al.,
2019a). Despite these, it is still difficult to emit early warn-
ings for very severe floods, for example, as witnessed by the
2021 flood in Belgium (Journée et al., 2023).

The idea behind the current work is to use the local di-
mension of a given state in phase space as a proxy for the
complexity (and possibly the predictability) of the future of
that state, following Faranda et al. (2017, 2022, 2023) and
De Luca et al. (2020). The intuition supporting this idea is
that points with a high dimension have a lot of different phase
space directions in which to evolve on the attractor, so their
direction of evolution would be more difficult to guess if one
had to do it stochastically. Other phase space ideas for now-
casting were been explored in Foresti et al. (2024).
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140 M. Bonte and S. Vannitsem: Finite-size local dimension

The computation of the dimension of manifolds and at-
tractors of dynamical systems is a broad and old topic (Rus-
sell et al., 1980; see Abarbanel, 1996 and Ott, 2002 for
textbook reviews in the context of dynamical systems and
Camastra and Staiano, 2016, for a review on the dimen-
sion in the broader context of manifold dimension estima-
tion). New algorithms were proposed for low-dimensional
systems, producing mainly a global estimation of the dimen-
sion (Golay and Kanevski, 2014; Erba et al., 2019; Bac and
Zinovyev, 2020). The focus is here on the dimension com-
puted locally in phase space using the framework of the
extreme value theory (EVT) as proposed in Faranda et al.
(2012, 2017, 2019, 2023) and Pons et al. (2020, 2023).

The local dimension is also called the pointwise dimen-
sion, and its definition is (Ott, 2002)

Dp(ζ )= lim
R→0

lnµ(B(R))
lnR

, (1)

where µ is a given measure on the attractor and B(R) is the
n-dimensional ball centered on ζ . This definition implies that

µ(B(R))
R→0
∼ RDp(ζ ) asymptotically (limits of both an infi-

nite number of points and an infinitely small bulk size). A
classical result in dynamical systems theory is that, if µ is
ergodic, the dimension is asymptotically the same for all
points, Dp(ζ )=D1 (D1 is the information dimension), ex-
cept for a zero-measure set of points (Pons et al., 2020; Ott,
2002; Pesin, 1997).

It is obviously impossible to numerically reach the limit
R→ 0 in Eq. (1), and the question is then how to choose
some finite value of R, as raised, for example, in Pons et al.
(2020). Datseris et al. (2023) suggests that N (the number
of points at a distance smaller than R from the computation
point ζ ) just needs to be higher than 100–1000. A similar
conclusion is reached in Caby (2019). The idea of evaluat-
ing the impact of finite radius R was followed in Little et al.
(2017) using the principal component analysis (PCA) tech-
nique in order to identify a scale where the manifold could
be approximated by a plane. A similar idea was used to eval-
uate the robustness to multiscaling of a good estimator in
Camastra and Staiano (2016).

In this work, we use a maximum likelihood estimator to
estimate the local EVT dimension for different values of R.
This estimator turns out to be exactly a local version of the
Takens estimator for the global dimension (Takens, 1985).
The estimations of the dimension for the different values ofR
are then used to infer local information on the attractor.

As the focus of the current work is on the non-asymptotic
estimation of the dimension, we obviously want to consider
only values of the dimension which will not significantly
change if more points are added to the dataset: in this sense,
we want to be within the limit of infinite number of points.
We therefore need some techniques to assess whether the di-
mension computed for some value of R has sufficiently con-
verged or not.

The main findings of this work are as follows:

1. The non-asymptotic local dimension depends on the
scale R: this can be used to get information on the phase
space structures. This new interpretation of the dimen-
sion as dependent on R contrasts with the usual no-
tion of dimension. We illustrate this approach on the
Lorenz 63 system for ρ = 28 and for ρ = 166.5. The
latter displays chaotic intermittency (see Sparrow, 1982;
Ott, 2002), inducing a phase space geometry well suited
for illustrating our interpretation of the dependence of
the dimension on R. Another reason to study the be-
havior of the dimension for intermittent systems comes
from the fact that our main goal is to compute the di-
mension for rain fields, which are known to be intermit-
tent.

2. The question of the number of points N needed to have
a robust estimation of the dimension is also explored.
The question is raised in Pons et al. (2020) and Datseris
et al. (2023) for the EVT dimension. For the correlation
dimension (Grassberger and Procaccia, 1983), the def-
inition of the dimension (size∼ Rdimension) implies, at
a fixed R, that the needed value of N grows exponen-
tially with the dimension (Eckmann and Ruelle, 1992;
Camastra and Staiano, 2016).

The normalized root mean squared error (NRMSE)
(metric proposed in Datseris et al., 2023) is used in
this work to assess the quality of the fit at a given
scale R. The confidence bounds provided by the like-
lihood function are also computed, and it is shown that
the true value of the dimension is around the estimated
value with a 10 % error and with 95.5 % confidence if
N > 427, which is seemingly in contradiction with the
mentioned argument of Eckmann and Ruelle (1992).
We introduce a quantity (denoted as s hereafter) which
sheds some light on this. This gives a possible answer
to the question of the maximal dimension that one can
measure with the EVT method and under which condi-
tions this is possible.

3. The applicability to high-dimensional systems is also
explored in the context of the Lorenz 96 with n= 50
dimensions, for which the dependence of the dimension
on R gives some characterization of the phase space.

A radar-estimated rain field over Belgium is investi-
gated with the same tools. In this case, the dimensions
for some computation points ζ can be reliably estimated
but only for very narrow ranges of R, and this makes it
difficult to draw conclusions on the dynamical proper-
ties of the state based on the values of the dimension.
The dimension ranges essentially between 10 and 30,
with a lot of values between 15 and 20. Not surprisingly,
we also find a correlation between the convective rain
rate from the ERA5 reanalysis and the relevant range of
values of R.
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This paper is organized as follows. In Sect. 2, we first in-
troduce the pointwise dimension and show how it is com-
puted in the EVT framework. We also derive the expression
of the maximum likelihood estimator of the dimension and
of the bounds of the confidence interval using the likelihood
function. After that, we introduce the NRMSE score and in-
terpret the estimated dimension. We also introduce the quan-
tity s in order to understand the maximum dimension that
one can compute using a given number of points.

Section 3 introduces the results of the computed dimen-
sion on the Lorenz 63 system (for ρ = 28 and ρ = 166.5)
and discuss the interpretation in detail. The intermittent case
illustrates well that the dimension depends on the radius R
and can be used to evaluate the geometric properties of the
attractor, such as the distance of chaotic points to the laminar
regime.

Large systems (Lorenz 96 with n= 50 dimensions and the
radar dataset) are considered in Sect. 4, and the final section
briefly summarizes the work.

2 Framework for the estimation of the dimension

Given a measure on the attractor, the pointwise dimension
for a computation point ζ is defined in terms of the natural
measure µ on the attractor by Eq. (1):

Dp(ζ )= lim
R→0

lnµ(B(R))
lnR

. (2)

This is equivalent to

µ(B(R))
R→0
∼ RDp(ζ ). (3)

That is, the measure of the ball B(R) of radius R around
ζ scales as RDp(ζ ).

The measure µ is often chosen to be the natural measure
of the system: given any trajectory long enough originating
from a typical initial condition of the system, µ(A) is defined
for any subset A of the phase space as the fraction of points
of the trajectory inside A or equivalently as the fraction of
time spend by the system in A (see Ott, 2002; Kantz and
Schreiber, 2003). This means that the whole set of points of
the trajectory is as if it was sampled from the measure µ.
Some points may have to be discarded at the beginning of
the trajectory in order to ensure that it is on the attractor.

This natural measure is invariant by definition: µ(A)=
µ(8−1

t (A)), where 8t is the flow of the system. This is be-
cause each point in the trajectory has one antecedent point so
that the number of points in A is the same than in 8−1

t (A). It
is also ergodic if the attractor cannot be decomposed in two
distinct invariant sets. In practice, one can also assume er-
godicity by assuming that the system is always on the same
invariant subset (for example, because we observe one and
only one trajectory as in the case of the climate). As stated
in the introduction, the dimension Dp(ζ ) is constant for al-
most all points when the measure is ergodic (Pesin, 1997;
Ott, 2002; Pons et al., 2020).

The above discussion implies that, given a trajectory long
enough, µ(B(R)) can be approximated as the number C(R)
of points inside B(R) divided by the total number of points in
the trajectory. It follows that the pointwise dimension Dp(ζ )
can be interpreted as a characterization (see Eq. 5 below
for a precise statement) of the growth rate of the number of
points C(R) that one should find inside a ball B(R) centered
around ζ (for infinitely small R).

If there are enough points around ζ , and if they span
a smooth Dp(ζ )-dimensional surface, one can introduce
the hyperspherical coordinates (r,θ ) and the density of
points σ (r,θ ). In this case, the number of points C(R) in-
side B(R) is

C(R)=

R∫
0

drrDp(ζ )−16(r), (4)

with6(r)=
∫
dθσ (r,θ ) being the density integrated over an-

gles. The number of points C(R) is proportional to RDp(ζ ) if
and only if 6(r) is constant. If not, one has to consider the
small R limit, where C can be expanded in a Taylor series.
One can check whether the first nonzero term of this series is
the one on the order of Dp(ζ ):

C(R)= C(δ)(0)
Rδ

δ!
+O

(
Rδ+1

)
, (5)

where the notation δ =Dp(ζ ) is used from now on. For ex-
ample, for δ = 2, we have

C(0)= 0, (6)
C′(0)= R6(R)|R=0 = 0, (7)
C′′(0)= (R6(R))′

∣∣
R=0 =6(0), (8)

so that C(R)= R2

2 6(0)+O(R3). This approximation
amounts to considering 6 constant on the interval of inte-
gration [0, R] because the O(R3) term containing 6′(0) is
neglected.

After the estimation of C(R) for several values of R, and if
it has the expected scaling C(R)∼ Rδ , the dimension can be
extracted using a fit on this scaling. In the context of the cor-
relation dimension, C(R) is a local version of the correlation
integral, and δ can be computed as lnC(R2)−lnC(R1)

lnR2−lnR1
(R1 and

R2 have to be chosen).
Whatever technique we use to estimate δ, the following

points have to be kept in mind:

– The distances measured in phase space do not precisely
match with r or R: in order for Eq. (5) to hold, R has
to be measured along the surface of the attractor (more
precisely, along the geodesics of the attractor, provided
it can be approximated by a smooth manifold), but this
is not possible when our representation of the attrac-
tor is a set of points. Instead, we measure distances in
phase space, and, if the attractor is curved, there can be
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Figure 1. Illustration of the fact that the distance computed in phase
space might be different than the distance on the surface: the dis-
tance R computed in phase space is in red, while R should be mea-
sured along the surface of which we are trying to estimate the di-
mension (which is in black) in order to find the C(R)∼ Rδ behav-
ior.

a mismatch with the distances measured along the sur-
face of the attractor (see Fig. 1). Therefore, the number
of points in B(R) might not scale exactly as Rδ . This
could lead to a bias in the estimated dimension (Per-
inelli et al., 2023). Since the distance computed in phase
space becomes closer to the one computed on the sur-
face when R is small enough (i.e., smaller than some
typical scale of the curvature given, for example, by the
inverse of the curvature itself), one recovers C(R)∼ Rδ

in the limit R→ 0.

– If we use too big of a value of R, the Rδ+1 term in
Eq. (5) might not be small anymore. Said differently,
6(r) in Eq. (4) is not sufficiently constant on [0, R] for
C(R)∼ Rδ to hold. Actually, if in this range,6(r) looks
more like ∼ ra for a 6= 0, C(R) will scale as Rδ+a . The
value of the dimension we measure in this case does
not have a clear geometric meaning but is an effective
value δeff = δ+ a, taking into account the change in 6
over [0, R].

In this case, the information contained in δeff is much
more difficult to use. If one had a way to estimate a in
6(r)∼ ra , one could compute δ = δeff− a.

2.1 Dimension and extreme value theory

Extreme value theory is a framework to study the occur-
rences of extreme events (see, for example, the textbooks
Beirlant et al., 2004; Falk et al., 2010; Lucarini et al., 2016).

Two approaches can be followed to define extremes among
the samples {Xi}i=1, ... n. The peak over threshold (POT) ap-
proach consists of fixing a threshold u, and the valuesXi > u
above this threshold are considered extremes. The thresh-
old u has to be taken to be as high as possible to reach the
correct definition of extremes. The block maxima (BM) ap-
proach consists of splitting the set of samples in chunks of
sizem, and the extremes are the highest values of each chunk
(one extreme for each chunk). The sizem has to go to infinity
in order to correctly define the extremes.

The main theorem in the BM approach states that, under
some conditions, there are essentially three asymptotic distri-
bution for extremes that are regrouped under the generalized
extreme value (GEV) law. In the POT approach, an equiva-
lent theorem states that there are also three limiting distribu-
tions that are regrouped under the generalized Pareto distri-
bution (GPD):

GPDξ (z)=
{

(1+ ξz)−1−1/ξ for ξ 6= 0,
e−z for ξ = 0,

(9)

where the support of z is z ≥ 0 for ξ ≥ 0 and 0≤ z ≤−1/ξ
for ξ < 0.

2.1.1 Theoretical extreme value law around ζ

The scaling C(R)∼ Rδ induced by the definition of the
pointwise dimension (Eq. 1) is the starting point in estimat-
ing the dimension in the EVT framework using the POT ap-
proach (Faranda et al., 2012). We reformulate here some of
their results.

Consider the ball B(R) of radius R in the n-dimensional
phase space. C(R)∼ Rδ implies that the number of points
between r and r + dr is

c(r)dr ∼ C′(r)dr =
Cδ(0)

(δ− 1)!
rδ−1dr. (10)

In order to have a probability density function (PDF) be-
tween 0 and R (i.e., in the B(R) ball), c is normalized to 1

(
R∫
0
c(r)dr = 1), so that

c(r)=
δrδ−1

Rδ
. (11)

With such a normalization for c(r), it can be interpreted as
follows: if we select a point randomly inside B(R), c(r)dr is
the probability that its distance to ζ is between r and r + dr
(for r < R).

The usual EVT framework for the dimension is formulated
within the POT approach. The observable whose extreme
values distribution is studied is often one of the following
functions of r:

g1(r)=− lnr, g2(r)= r−1/α, g3(r)=K − r1/γ . (12)

The parameter K can be freely chosen, and α and γ have to
be positive. Given a point ζ in phase space, the points cor-
responding to extremes are those whose distances to ζ are
smaller than R. The threshold of the POT approach is given
by Ta=ga(R) (a = 1,2,3), where ga is the function that was
chosen from the above three. Note that EVT usually defines
extremes as high values of an observable, while, in terms
of the distance r to ζ , extremes are defined as small values
of r . Using these transformations and their inverses as well as
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Eq. (11), the PDFs describing the distributions of ga = ga(r)
are computed to be

f1,T1 (g1)= δe−δ(g1−T1), f2,T2 (g2)=
δα

T2

(
g2

T2

)−δα−1

,

f3,T3 (g3)=
δγ

K − T3

(
K − g3

K − T3

)δγ−1

. (13)

Note that one always assumes ga ≥ Ta because r ≥ R and the
functions in Eq. (12) are decreasing for r > 0. One can check
whether each of the distributions in Eq. (13) correspond ex-
actly to one of the signs of ξ (ξ = 0, ξ > 0 and ξ < 0) of the
GPD Eq. (9), with

f1,T1 (g1)dg1 = GPD0(z)dz with z= δ (g1− T1) ,

f2,T2 (g2)dg2 = GPDξ (z)dz with ξ =
1
δα

and
g2

T2
= 1+ ξz,

f3,T3 (g3)dg3 = GPDξ (z)dz with ξ =−
1
δγ

and
K − g3

K − T3
= 1+ ξz. (14)

Note that, starting from one of the three possible distri-
butions in Eq. (13) and using the corresponding transforma-
tions from Eq. (12), one recovers Eq. (11). That is, the ap-
plication of each one of the transformations in Eq. (12) and
the deduction of δ using a parameter fit of the corresponding
distribution in Eq. (13) are an alternative way to access the
exponent δ of the scaling C(R)∼ Rδ .

2.1.2 Maximum likelihood estimation of δ

The expression of the maximum likelihood (ML) estimator
of the dimension is now derived using the above density
functions. It leads, in fact, to the expression of a local ver-
sion of the estimator of Takens (Takens, 1985).

To compute the dimension around a computation point ζ ,
consider all points inside the ball B(R) centered on ζ (the
analogues), whose distances to ζ are ri (with i = 1, . . . ,N
and ri <R). The corresponding g values are defined as
ga,i = ga(ri). We know from the previous section that ga,i
values should follow the distribution fa,Ta .

The (log-)likelihood functions are for each case:

L1 =

N∏
i=1
δe−δ(g1,i−T1), lnL1 =N lnδ− δ

N∑
i=1

(
g1,i − T1

)
, (15)

L2 =

N∏
i=1
δα

(
g2,i

T2

)−δα−1

, lnL2 =N ln(δα)

− (δα+ 1)
N∑
i=1

ln
(
g2,i

T2

)
, (16)

L3 =

N∏
i=1
δγ

(
K − g3,i

K − T3

)δγ−1

, lnL3 =N ln(δγ )

+ (δγ − 1)
N∑
i=1

ln
(
K − g3,i

K − T3

)
. (17)

Setting the derivative of lnL with respect to δ to 0 in each
case gives the ML estimator:

1

δ̂1
=

N∑
i=1

(
g1,i − T1

)
N

,
1

δ̂2
=
α

N

N∑
i=1

ln
(
g2,i

T2

)
,

1

δ̂3
=−

γ

N

N∑
i=1

ln
(
D− g3,i

D− T3

)
. (18)

These three estimators are numerically equal. Indeed, us-
ing g1,i =− lnri , g2,i = r

−1/α
i and g3,i =K−r

1/γ
i , one gets

1

δ̂1
=

1
N

∑
i

(− lnri + lnR)=−
1
N

∑
i

ln
ri

R
, (19)

1

δ̂2
=
α

N

∑
i

ln
( ri
R

)−1/α
=−

1
N

∑
i

ln
ri

R
, (20)

1

δ̂3
=−

γ

N

∑
i

ln
( ri
R

)1/γ
=−

1
N

∑
i

ln
ri

R
. (21)

The estimated inverse dimensions 1/δ̂a are all equal to

1

δ̂a
=−

1
N

N∑
i

ln
ri

R
=− lngeom

( r1
R
, . . .,

rN

R

)
, (22)

which is minus the mean of ri
R

in logarithmic scale or minus
the logarithm of the geometric mean of the ratios ri

R
. Since δ̂a

values are all the same, we use from now on the notation δ̂
instead. This is precisely a local version of the expression
of the estimator of the local dimension as given by Takens
(1985).

This ML estimator is particularly interesting in this case
since it is, even for a finite N , unbiased and efficient as an
estimator (James, 2006).

These three different ML principles are really equivalent
since the log-likelihood functions are all equal up to a term
independent of δ (so that the derivatives of the log-likelihood
functions are equal). Indeed, using the different but equal ex-
pressions of δ̂ in terms of ga,i values, one derives the follow-
ing:

lnL1(δ)=N lnδ− δ
∑
i

(
g1,i − T

)
=N lnδ−Nδδ̂−1, (23)
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lnL2(δ)=N ln(δα)− (δα+ 1)
∑
i

ln
g2,i

T2
=N ln(δα)

− (δα+ 1)
N

δ̂α
= lnL1(δ)+N lnα−

N

δ̂α
, (24)

lnL3(δ)=N ln(δγ )+ (δγ − 1)
∑
i

ln
(
K − g3,i

K − T3

)
=N ln(δγ )− (δγ − 1)

N

δ̂γ
= lnL1(δ)+N lnγ

+
N

δ̂γ
. (25)

As functions of δ, the three different log-likelihood func-
tions are thus equal up to an additive term independent of δ.
This is why δ̂a values are all the same and why the confidence
bounds based on the likelihood function do not depend on the
chosen function ga(r) (see Sect. 2.1.3). In the following, we
use only the function g1(r) unless explicitly stated.

In Pons et al. (2023), the authors also estimate the shape
parameter (ξ ) of the observed extreme value law of ga,i val-
ues. We do not do it since it is the choice of the function ga(r)
which fixes the extreme value law to the expected extreme
value law. If there is a deviation from this law, it is because
the scaling C(R)∼ Rδ is not satisfied in the first place (see
Sect. 2.5 for possible reasons whyC(R)∼ Rδ does not hold).

2.1.3 Confidence intervals

Confidence bounds on the estimations of the dimension were
already studied to some extent in Theiler (1990) but through
the statistical error in the estimation of C(R). Since we do
not rely on estimations of C(R) and use only a ML principle
for δ̂, we present here the computation of the bounds of the
confidence intervals of δ using the likelihood function.

The log-likelihood function in the first case (g1(r)=
− lnr) is

lnL1(δ)=N lnδ−Nδδ̂−1, (26)

and lnL2 and lnL3, they are the same functions of δ up to an
irrelevant term, as shown in Sect. 2.1.2. We thus derive the
following:

1 lnL1(δ)=1 lnL2(δ)=1 lnL3(δ), (27)

where 1 lnLa(δ)= lnLa(δ)− lnLa(δ̂). Since the computa-
tion of confidence bounds using the likelihood involves only
1 lnL, the confidence bounds will be the same for all three
cases.

Given N , one can have a nσ confidence interval by finding
the values of δ for which (see left panel of Fig. 2; James,
2006)

1 lnL(δ)=N
(

ln
δ

δ̂
−
δ

δ̂
+ 1

)
=−

n2
σ

2
. (28)

On the other hand, if we fix some target confidence inter-
val [δmin, δmax] around δ̂, we can look for the minimum value
of N to use. The above equation turns into an inequality, of
which there are two versions (for δmin and δmax). Taking into
account the most restrictive one, one has

N ≥max
[
Nnσ

(
δmin

δ̂

)
,Nnσ

(
δmax

δ̂

)]
,

Nnσ

(
δ

δ̂

)
=−

n2
σ

2

(
ln
δ

δ̂
−
δ

δ̂
+ 1

)−1

. (29)

For example, if we want a 10 % interval (i.e., δmin = 0.9δ̂ and
δmax = 1.1δ̂) with 95.5 % confidence (nσ = 2), the required
N is computed as

N ≥max(N2(0.9),N2(1.1))=max(373.1,426.5)= 426.5. (30)

So N has to be bigger than 427 for us to be 95.5 % sure
that the true dimension is at most 10 % below or 10 % higher
than δ̂.

The right panel of Fig. 2 shows a plot of the functions
N2

(
δmin
δ̂

)
and N2

(
δmax
δ̂

)
.

One can also invert the relationship to compute δmin
δ̂

and
δmax
δ̂

in terms of N :

δmin

δ̂
=−W0

(
−e−a

)
,
δmax

δ̂
=−W−1

(
−e−a

)
, (31)

where W0 and W−1 are the Lambert function on the order

of 0 and −1, respectively, and a = n2
σ

2N + 1. Note that these
relative bounds (i.e., the bounds for δ relatively to δ̂) depend
only on the number of observations, i.e., on the number of
analogues, and not on the dimension itself.

These bounds should be taken with caution. They are com-
puted under the assumption that the underlying distribution
of points is indeed exponential and that all the samples are
i.i.d., as was already pointed out in Theiler (1990). In the case
of a dynamical system producing the dataset, this is only true
in the asymptotic limit. Consider, for example, a system ob-
served with a very high time resolution but in quite a short
time. In this case, the system could have visited the ball B(R)
only a few times (so that the system has not explored all di-
rections around ζ yet), but one could still have N ≥ 427. In
such a case, the distribution of values of r around ζ has not
converged yet, and we cannot really trust the confidence in-
terval 0.9δ̂ ≤ δ ≤ 1.1δ̂. It is, however, unlikely that the ob-
served distribution of values of r looks like an exponential
in that case. The NRMSE score introduced below helps to
quantify how far the experimental distribution is from an ex-
ponential distribution.

2.2 NRMSE score

The ML method produces an estimate of the dimension even
if the distribution of points is not at all an exponential, in

Nonlin. Processes Geophys., 32, 139–165, 2025 https://doi.org/10.5194/npg-32-139-2025



M. Bonte and S. Vannitsem: Finite-size local dimension 145

Figure 2. (a) Plot of 1 lnL as a function of δ
δ̂

for N = 100 and N = 300. The horizontal green line corresponds to 1 lnL=−n
2
σ
2 (nσ = 2).

The dotted lines show how to read δmin
δ̂

and δmax
δ̂

for the two different values of N . (b) Plot of N2 versus of δmin
δ̂

and δmax
δ̂

(nσ = 2, 95.5 %
confidence).

which case the estimated dimension and its bounds are not
correct. A systematic way to assess whether the fitted distri-
bution is indeed exponential or not is therefore needed.

As in Datseris et al. (2023), we tried to use a Kolmogorov–
Smirnov test, but it did not prove to be very efficient in as-
sessing the quality of the exponential fit to the data. Follow-
ing their suggestion, the normalized root mean squared er-
ror (NRMSE) is used instead between the fitted version of
the exponential distribution f1,T1 and a uniform distribution.
It is computed as follows:

1. The data are first binned in bins of equal size, and the
empirical probability Pi associated with the bin i is
computed as the fraction of observations lying in this
bin (the number of bins is taken as the minimum be-
tween the Sturges’s rule and the Freedman–Diaconis
rule; see Scott, 2015, for information about those rules).

2. Ei values are defined as the fraction of events that would
fall into each of the bins if the events followed an expo-
nential law characterized by δ̂.

3. U is defined as the probability of falling into each bin
using a uniform law over the range of observations (it
does not depend on the bin because they are taken to all
have the same width).

4. The NRMSE score is then computed as

NRMSE=

√√√√√√
∑
i

(Pi −Ei)2

∑
i

(Pi −U )2 . (32)

The NRMSE score gives an indication of how much better
the data are described by an exponential law than by a uni-
form law. For a good fit, we expect a small NRMSE score:
in this case, the numerator (which is the error between the
experimental distribution and the fitted exponential distribu-
tion) is much lower than the denominator (which is the error
between the experimental distribution and the uniform distri-
bution).

2.3 Interpretation of the estimated dimension

The interpretation of the dimension is more easily under-
standable in the third case with γ = 1 andK = 0: the observ-
able is in this case g3(x)=−x. Since the values of δ obtained
in each case are equal, the interpretation holds irrespectively
of the function ga used.

Figure 3 shows two possible histograms for two random

variables, both following the distribution f3,T3 =

(
g3
T3

)δ−1
=(

r
R

)δ−1 (i.e., withK = 0 and γ = 1) but for two different val-
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Figure 3. Example of histograms of two random variables

g3(r)=−r , whose PDFs for both are f3,T3 =

(
g3
T3

)δ−1
=
(
r
R

)δ−1

(i.e., with D = 0 and γ = 1) but for different values of δ. The hori-
zontal axis is g3

T3
=

r
R

.

ues of δ. If the empirical distribution of radius ri values (nor-
malized by R) looks like that of the orange histogram, the
estimated value δ̂ will be lower than if the empirical distri-
bution is closer to the dark blue histogram. Mathematically,
this is because the higher the value of δ, the steeper rδ−1 is.
This means that the higher the dimension, the closer the ana-
logues inside B(R) will be to the boundary of B(R). In the
following, the estimated value of the dimension is sometimes
artificially high because of that.

2.4 Measure a high dimension with a small N?

The computation in Sect. 2.1.3 indicates that with N & 400
(and if the NRMSE score is good), a 10 % accuracy is
reached for the estimation of δ for all values of the dimen-
sion. This seems to be in contradiction with the argument
of Eckmann and Ruelle (1992) (i.e., the number of points
in B(R) should be an exponential of δ). In this section, we
examine in detail how the scaling C(R)∼ Rδ is consistent
with the computation in Sect. 2.1.3.

We place ourselves again in the first case, using g1(r)=
− lnr as observable. If we denote by xi the combination ln R

ri
(also equal to g1,i − T1), the computation of Sect. 2.1.1 im-
plies that xi values follow an exponential law, f1(x)= δe−δx .
In terms of this exponential distribution, δ−1 is interpreted as
the scale (see Fig. 4). The ML estimator of the scale of an
exponential is the mean of xi values, so we recover the ex-
pression δ̂−1

=
1
N

∑
i

xi from Sect. 2.1.2. From this point of

view, a larger dimension just means a smaller scale for the
exponential, which is why it is not much more difficult to
measure.

Figure 4. An exponential distribution and its scale parameterized
by δ−1.

Let us write r0 for the smallest of ri values and x0 = ln R
r0

for the biggest of xi values. One has obviously δ−1 < x0. If
there are enough points to estimate δ−1, x0 must be quite far
to the right of the plot in Fig. 4, so that a necessary condition
is δ−1

� x0, or

s� 1, s ≡ x0δ. (33)

This expresses that x0 has to be large with respect to the
scale δ−1 of the exponential. Conversely, if s� 1, this means
that the exponential has been sampled enough to get a high
value for x (namely, x0).

One could think that the condition in Eq. (33) is actually
easier to fulfill if the scale δ−1 is smaller (and the dimension
bigger) because this leaves “more room” for x0. But this is
not the case since a smaller scale means that the exponential
has a higher peak near x = 0, so it will be more difficult to
have a sample x with a high value. This is consistent with the
fact that the number N = C(R) of points inside B(R) (using
the scaling C(R)∼ Rδ and the fact that C(r0)= 1 since r0 is
the smallest of ri values) satisfies the following condition:

R

r0
=N1/δ. (34)

This equality shows that, for a fixed N , the ratio over which
the scaling Eq. (3) holds quickly approaches 1 when δ in-
creases. This is the price to pay to measure high dimensions
with a reduced number of points, and this poses some diffi-
culties when dealing with large systems (see Sect. 4).

We address some remarks:

– Using Eq. (34), one can see that s = x0δ should be just
lnN and that the condition Eq. (33) is simply

lnN � 1. (35)
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Figure 5. For the Lorenz 63 system (see Appendix A) with ρ = 28, 106 points. (a) Scatterplot of lnN against s. The color is the NRMSE of
the fit. (b) Scatterplot of the NRMSE against s. The color is the base-10 logarithm of the number of points used in the exponential fit. There
are 1000 points and 20 fits for each.

In practice, the distributions are exactly exponential
only in the limit R→ 0, so s and lnN are not exactly
equal.

– This equivalence between the estimation of different di-
mensions is because of the scaling transformation of the
exponential distribution f1:{
x → λx

δ →
δ
λ

, f1(x)= δe−δx→
1
λ
f1(x), (36)

which makes the difficulty of measuring a high value
of the dimension similar to the difficulty of measuring
a small value. Again, in terms of an exponential distri-
bution, the dimension is just the inverse of the scale of
the exponential. The probability density functions f2,T2

and f3,T3 and adapted definitions of x in each case have
similar scaling properties. These make it possible to
absorb a redefinition of δ to redefinition of x if one
uses f2,T2 or f3,T3 instead of f1,T1 .

– If the EVT estimator for δ is able to produce a high
value over some range, the estimation of the dimen-
sion through the correlation dimension can also do it.
Indeed, in both cases, δ̂ is obtained by somehow fitting
the scaling C(R)∼ Rδ . The limitation for the correla-
tion dimension is the same as for the EVT dimension:
when δ increases, the range over which this scaling can
hold decreases.

The left panel of Fig. 5 shows a scatterplot of lnN
against s, with the color being the NRMSE score for dimen-
sions in the Lorenz 63 system (see Appendix A about the
Lorenz 63 system). Each point in both panels of Fig. 5 rep-
resents a fit. We computed the dimension for 1000 points for

20 different values of N , so there are 20 000 points in each
scatterplot of this figure. A given computation point ζ in the
phase space is therefore represented several times. One can
see a rough agreement between lnN and s. Here and in the
following, we compute s as s = x0δ̂.

The right panel of Fig. 5 shows a scatterplot between the
NRMSE score and s for the Lorenz 63 system. The form
of this plot is quite characteristic and is encountered several
times in the rest of the paper. The NRMSE score clearly de-
creases as s increases: this part corresponds to fits increas-
ingly better. When s > 10, the NRMSE reaches a plateau.
The NRMSE for some high values of s and N is not so good,
that is, when the B(R) ball is too big and the distribution
in it cannot be a power law (see Sect. 3.2). In practice, one
finds that s bigger than 4–5 seems to give NRMSE scores
below 0.4. Reliable fits can be selected by keeping, for ex-
ample, only those for which s > 5 and NRMSE< 0.4.

In summary, Sect. 2.1.3 shows that, for a given accuracy
on δ relative to δ̂, all dimensions require the same number
of points inside B(R). This might seem surprising because
of the scaling C(R)∼ Rδ but can actually be understood if
we see δ−1 as the scale of the exponential distribution of g1
values. However, the range of values of R over which the di-
mension can be measured decreases with the dimension. This
is why there is no contradiction with the original argument of
Eckmann and Ruelle (1992), which supposed that R is fixed.

In the following analyses, we use scatterplots in the form
of that of the right panel of Fig. 5. The rough agreement be-
tween s and lnN can be seen as a consistency check that the
distributions of values of g1,i are indeed close to exponen-
tials (and equivalently, that the distributions of ri are close to
power laws).
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2.5 Possible phenomena affecting the value of the
dimension

The last few sections develop tools to quantify how good is
a fit to the exponential law. However, even if the fit is good,
different phenomena can affect δ̂ for a given R.

If the NRMSE or s do not have good scores, the points
in B(R) do not follow a Rδ law. The cause of this could be
one of the following:

1. There are not enough points inside B(R) to properly
recognize an exponential (and make out the difference
with a uniform law, for example).

2. The points are not statistically independent, as in the
example mentioned at the end of Sect. 2.1.3. This was
already noted in Theiler (1990).

3. R is too big. To observe the C(R)∼ Rδ law, one indeed
needs to consider a flat neighborhood around ζ and, if
R is too large, this law could be affected by the cur-
vature (Perinelli et al., 2023) or by another geometric
feature entering B(R). See Sect. 3.2 and Fig. 8 for an
example of that.

On the other hand, if the NRMSE and s give good scores,
this means that the number of points inside B(R) indeed fol-
lows a power law Rδ̂ . This could have different causes, and a
non-exhaustive list is as follows:

1. The estimated value of the dimension can indeed reflect
the dimension of the surface supporting the neighboring
points. This happens if the density of points is constant
and the “surface” of the attractor is approximately flat.

2. If there is a clear structure of points in the phase space,
with the density of points of this structure being higher
enough than its surroundings, the estimated dimension δ̂
will be that of this structure. This is because the in-
tersection of such a structure with the ball B(R) will
make the number of points scale as Rδ , where δ is the
dimension of the structure. Such a situation is shown
schematically in Fig. 6: in a plane, there is a straight
line crossing B(R), and the density λ of points on that
line is much higher than anywhere else in B(R). The
number of points in B(R) will then essentially be the
number of points on that line. A simple computation
only taking into account the points of the line gives
C(R)= 2λ

√
R2− a2, and if a� R (i.e., if ζ is close

enough to the line), C(R)≈ 2λR. The scaling of C(R)
around ζ becomes that of the line, even though ζ is not
strictly on it.

The previous case and this one are cases where the es-
timated dimension is the dimension of some geometric
structure in the phase space. This geometric dimension
is only well defined for ranges of R where the geometry
is homogeneous in this range: if the curvature changes

Figure 6. Picture of a situation where almost all points on the at-
tractor (in dark blue) lie in a line. If the density of points is constant
and denoted as λ, the number of points inside B(R) is essentially
2λ
√
R2− a2. For a� R, the estimated dimension will be 1.

or a different geometric feature enters B(R) for some
value of R, one cannot give a geometric meaning to the
dimension. It is only for the values of R for which there
are clear objects that the dimension can be interpreted
geometrically. In particular, one can approach the point-
wise dimension in the limit R→ 0 only when R is be-
low any other geometric scale. This is illustrated in the
next sections.

Note that this kind of geometric dimension is conceptu-
ally equivalent to the one measured by local PCA tech-
niques (such as in Little et al., 2017).

3. The fact is that C(R)∼ Rδ supposes that the density of
points is uniform in the range over which the estimation
is done. If the density is increasing when getting away
from ζ (i.e., for increasing r ,6 ∼ ra for a > 0), the em-
pirical histogram of the values of r will be inflated for
values of r close to R. In that case, the estimated dis-
tribution will be closer to the dark blue curve than to
the orange curve in Fig. 3, so the estimated dimension
will be higher than the dimension of the surface support-
ing the points (the “geometric dimension”). In the same
way, if the density of points decreases, the estimated di-
mension will be lower (see remarks in Sect. 2).

In practice, it is not likely that the density 6 will follow
the same behavior (6 ∼ ra) on a large range of values
of r . The fit in this case is usually not so good, so the
selection using the NRMSE and s (see Sect. 2.4) should
discard some of them. One can also try to visually iden-
tify when this happens because the dimension fluctuates
a lot.
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Unfortunately, the tools we developed (the NRMSE and
the quantity s) can produce good scores in all three above
cases and do not allow us to make out the difference between
each of these cases. One therefore has to keep in mind all
possible phenomena affecting the estimation of the dimen-
sion and inspect the values of the dimension over some range
of values of R in order to interpret properly the geometry of
the system in this range.

In the following, as is usual when computing dimensions
from time series, a Theiler window around each computation
point ζ was applied (Theiler, 1986) in order to avoid having
points too close in time inside the ball B(R).

3 Application to small systems

To illustrate some aspects described in the previous sections,
we compute the local dimension for small systems, allowing
us to get some insight into what is captured by the estimated
dimension.

The classical Lorenz 63 system for ρ = 28 (Lorenz, 1963)
is first considered. The relatively simple geometry allows us
to illustrate some phenomena described in Sect. 2.5. We then
present the results of the computation of the local dimen-
sion for the Lorenz 63 system with ρ = 166.5, which is in-
termittent (Pomeau and Manneville, 1980; Sparrow, 1982).
In the case of intermittent systems, a situation like the one
displayed in Fig. 6 is often encountered, and the tools de-
scribed in Sect. 2 can be used to detect structures in phase
space.

3.1 How we choose the values of R

If we want to compute the dimension for different computa-
tion points ζ , it is difficult to choose relevant values of R for
each of them if we do not know the system very well. Indeed,
depending on the dimension and on the density of points, the
values ofR needed forB(R) to contain a sufficient number of
points to estimate δ might be different for each computation
point ζ .

An alternative approach is to compute the distance be-
tween the computation points and all other points of the tra-
jectory and keep a given percentage q of points (i.e., consider
to be extremes), common to all computation points. For each
computation point ζ , R is then defined such that B(R) con-
tains q% of the total number of points in the dataset (i.e.,R is
the qth percentile). For each computation point and for each
percentage q for which we compute the dimension, there is
thus one value of R. This has the advantage of adapting the
range over which the dimension is computed accordingly to
the computation point.

Of course, the percentile will not be exactly the same if one
increases the length of the series. However, if the attractor
has been reasonably sampled byNtot points, additional points
should spread in the phase space in the same proportions so
that the percentiles computed with Ntot or N ′tot >Ntot should

correspond. In other words, if the density of points is al-
ready close to the invariant measure of the attractor µ, the
computed percentiles will not significantly change when the
length of the trajectory is increased.

In the following sections, we use this method with chosen
percentages evenly spaced on a logarithmic scale, typically
with the maximum percentage being 10 % and the smallest
percentage corresponding to five analogues. The dimension
computed with 5 points will not give a precise value (see
Sect. 2.1.3), but this allows us to ensure we have a dimension
computed over a sufficiently large range of values of R. The
values of the dimension with not enough points are filtered
out through the computation of s and of the NRMSE score.

In Sect. 3.3, we also choose the values of the radius R
rather than computing it as percentiles because it will be
easier to illustrate the interpretation of the dimension in this
case.

3.2 Lorenz 63 with ρ= 28

We start with the usual Lorenz 63 system with ρ = 28 (see
Appendix A), and we consider two different trajectories:
one with Ntot = 104 points and the other one with Ntot =

107 points. Figure 7 shows the repartition of the dimension
on the attractor. The dimension is computed with q = 10 %
(Fig. 7a and b) and with q = 1 % (Fig. 7c and d) for these
two trajectories. For q = 10 %, the two plots look the same,
and the dimensions agree between the two datasets. This is
because 10 % of 104 is already enough points to estimate the
dimension, and adding more points to the dataset will not
change the percentiles nor change the distribution of points
on the attractor. Note that the points “on the border” of the
attractor have higher dimensions since, from their point of
view, the density of points is increasing. The estimated di-
mension for these points is actually an effective dimension
reflecting this feature (see Sect. 2.5).

On the other hand, for q = 1 %, there are not enough
points in the Ntot = 104 dataset (Fig. 7c) to have a proper
estimation of the dimension, while the Ntot = 107 dataset
(Fig. 7d) still allows for a proper estimation of the dimension.
The latter gives more homogeneous values of the dimension
than are in the corresponding plot (Fig. 7b) with 10 % of
the points. This is because the values of the percentiles are
smaller, so the estimation is more local and the density less
varying in the balls B(R).

It is also interesting to analyze the histograms of the di-
mension for the dataset with 107 points for q = 1 % and
q = 10 % (Fig. 8a): a lot of points have a dimension close
to 1.5 for q = 10 %, but most points have a dimension close
to 2 for q = 1 %. This is because, in the q = 10 % case, R is
too large for some points: 2R is larger than the width of
the wings of the attractor, so the C(R)∼ R2 cannot hold.
The two bottom scatterplots of Fig. 8 illustrate this. In the
q = 1 % case, R is smaller, and this never happens.
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Figure 7. The Lorenz 63 attractor, with the dimension represented in color, computed with 10 % (a, b) and 1 % (c, d) of the points in each
case (only the 1000 points for which the dimension is computed are represented).

It is likely that, when decreasing q and increasing Ntot
again in order to keep N = qNtot big enough, the dimension
for all points will tend to a common value. This seems to be
in agreement with the mentioned asymptotic results that the
dimension of almost all points converges towards a unique
value.

Indeed, as observed in Fig. 7, the dimension of the points
on the wings seems to converge to some value close to 2,
which is as expected for a surface. As q decreases andNtot in-
creases, the dimension of the points on the “border” of the
attractor will behave as other points on the wings, and their
dimension would converge to the same value close to 2.

The points close to the intersection of the wings have a di-
mension bigger than 2 as long as their balls B(R) include this
intersection. However, when q is decreased, the balls B(R)
might not enclose the intersection anymore. The neighbor-
hoods of those points then look as that of any other points
on the wings, so their dimensions will be close to 2. Only the
points exactly at the intersection will always have a B(R), in-
cluding this intersection, so their dimension will never ap-
proach 2.

The left plot of Fig. 9 displays the dimension estimate δ̂
as a function of R. There is a range of values for which the
δ̂ is close to 2 for all points. The curves with a bump in the
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Figure 8. (a) Histograms of the dimension for the dataset with
107 points for q = 1 % and q = 10 % (1000 values in each case).
(b, c) Two illustrations showing that R can be too large for q =
10 %. The computation point ζ is in green, and some of the points
used to compute the dimension are in orange. The ball B(R) is big-
ger than the width of the wings, so the C(R)∼ R2 characteristic of
a surface cannot hold.

middle of the range of values of R correspond to points near
the intersection of the wings.

As one can see in the right panel of Fig. 9, some points
with a high value of s and a high number of points used in
the estimation of δ, have a poor NRMSE score (i.e., up to 0.4,
while most of the fits with s > 10 have their NRMSE score
below 0.2). Those correspond to situations shown in the bot-
tom plots of Fig. 8, where the fit is not so good anymore.

3.3 Lorenz 63 with ρ= 166.5

The results of the local dimension applied to the intermittent
Lorenz 63 system with ρ = 166.5 are now analyzed (see Ap-
pendix A for a short presentation of this system). The case of
intermittent systems is interesting since those systems have
a strongly inhomogeneous phase space, allowing us to illus-
trate how the dimension can have different values at differ-
ent scales R. Intermittent systems are also of special interest
since the primary goal is to use the local dimension of the
rain data, which is known to be intermittent.

This system was integrated for ρ = 166.5 to obtain
106 points on the attractor, and the dimension was computed
for 1000 points. The plot of the dimension against R (com-
puted as percentiles) is in the left panel of Fig. 10. One
can see that, for the smallest values of R, the dimension is
around 2, while it is closer to 1 for the highest values of R.

Actually, the remainder of the attractor before the bifurca-
tion (see Fig. A1) defines a 1-dimensional structure in phase
space. This structure is a closed loop and is made of the
points in the laminar regime of this intermittent system. We
expect that in the balls B(R) intersecting this closed loop
enough, the scaling will be strongly influenced by this closed
loop (as described in Sect. 2.5). A better insight into the be-
havior of the dimension with R than that given by the left
panel of Fig. 10 can be gained by characterizing each point
by its position with respect to this closed loop.

To do so, we select a part of the trajectory where it seems
regular and almost periodic and integrate this part of the tra-
jectory with a very small time step. We then take this as a rep-
resentation of the laminar regime. Of course, this part of the
trajectory is not strictly periodic, so choosing different parts
of the trajectory will lead to slightly different representations.
This representation allows us to define the “laminar distance”
for any point ζ in the trajectory as the smallest of the dis-
tances between ζ and all points in the representation of the
laminar regime. From a dynamical point of view, points with
small laminar distances will be considered points in the lami-
nar regime, while points with a significantly nonzero laminar
distance can be considered chaotic points.

Figure 11 shows the dimension as a function of the lami-
nar distance for that point. More specifically, six values of the
radiusR (R = 2,5,10,15,20,30) are chosen, and the dimen-
sion for 1000 points is computed. Each panel corresponds to
a specific radius R. In addition, the vertical red line marks
where the laminar distance is equal to the radius R used in
this plot.

One can see from Fig. 11 that the dimension peaks for
points whose laminar distance equalsR. In other words, from
the point of view of a given point, the following applies:

– WhenR is smaller than the laminar distance, the dimen-
sion is around 2.

– When R equals the laminar distance, the dimension has
a peak.

– When R is bigger than the laminar distance, the dimen-
sion decreases between 1 and 2.

The fact that there is a peak in the dimension when
R equals the laminar distance can be understood by noting
that it corresponds to the entrance of the laminar structure
in the B(R) ball around the computation point ζ . There are
suddenly a lot of points in the ball, near the boundary of the
ball, so the distribution of points in B(R) resembles the dark
blue curve more than the orange curve in Fig. 3.

When R is bigger than the laminar distance, the situation
becomes similar to the one in Fig. 6, and the dimension be-
comes closer to 1. The dimension is 1 only if R is sufficiently
bigger than the laminar distance (i.e.,R� a in Fig. 6), which
can happen only for points sufficiently close to the laminar
regime. For other points, other parts of the loop forming the
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Figure 9. (a) Plot of δ̂ vs. R for 50 points of the Lorenz 63 system (ρ = 28) with a trajectory of 107 points. Only fits with NRMSE< 0.4,
s > 5 are plotted. (b) Scatterplot of NRMSE vs. s for the same dataset but for all 1000 computation points. The color represents the logarithm
of the number of points used in the dimension estimation.

Figure 10. (a) Estimated dimension δ̂ against R for 100 points of the intermittent Lorenz 63 system (ρ = 166.5, trajectory of 106 points).
Only fits with NRMSE< 0.4 and s > 5 are shown. (b) Scatterplot of NRMSE vs. s (all fits).

attractor in Fig. A1 would enter the B(R) ball and modify
the scaling, or the curvature effects become too important. In
those cases (when R is bigger, but not much bigger, than the
laminar distance), the distribution of points in B(R) is not
close to a power law, so the exponential fit is not appropriate.

When computing the dimension in the asymptotic limit
R→ 0, the radius R should be below any other geometric

scale around the computation point ζ . For the chaotic points,
this geometric scale is, in this case, their laminar distance,
while for laminar points, the geometric scale is the “width”
of the laminar structure in phase space.

As a consistency check for that interpretation, we tried to
estimate the laminar distance for each of the 1000 compu-
tation points as the value of the radius R for which the di-
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Figure 11. Scatterplots of the local dimension in terms of the laminar distance. In a plot, all the dimensions have been computed with the
same radius R (the value is above the plot). The horizontal red line marks the dimension value equal to 2, while the vertical red lines mark
the value of the laminar distance which is equal to the radius R.

mension is maximum. To achieve this, we used the values
of the radius R computed as percentiles and the correspond-
ing dimensions. In order to use only meaningful values of
the dimension, for each computation point, we restricted the
dimension to the range of values of R where NRMSE< 0.5
and s > 4. We rejected all estimations where the maximum
was found on one of the ends of this range because this points
to the fact that the true peak of the dimension is maybe out-

side of the range of values of R we have for these points.
Because of that, the laminar distance could be estimated for
only one-fourth of the 1000 computation points. The scat-
terplot in Fig. 12 shows the comparison of the laminar dis-
tance with this estimation of the laminar distance using EVT
(which we call the EVT laminar distance).

Note that the EVT laminar distance tends to be bigger than
the laminar distance itself. This is because, if R is precisely
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Figure 12. Comparison of the EVT laminar distance with the lam-
inar distance for the intermittent Lorenz 63 (ρ = 166.5). The EVT
laminar distance is computed as the distance for which the dimen-
sion is maximum (see text).

equal to the laminar distance, there are not enough points
in B(R) for δ̂ to really be influenced. R has to be a little
bigger than the laminar distance for δ̂ to really increase, and
the peak of δ̂ is for values of R that are a little bigger than the
laminar distance.

We carried out the same analysis on two other intermittent
dynamical systems: the Lorenz 96 system with n= 4 vari-
ables for F = 11.87 and the Lorenz 96 system for n= 12
variables for F = 4.4. Figures similar to Fig. 11 for those
two systems are displayed in Appendix B.

4 Application to large systems

In this section, we present the results of the computation of
the dimension for two large systems: the Lorenz 96 system
with n= 50 dimensions and the RADCLIM dataset (radar
images of the precipitation field).

4.1 Lorenz 96, n= 50

The Lorenz 96 system (see Appendix B for a brief descrip-
tion) with n= 50 dimensions was integrated for 106 time
units, with a time step of dt = 0.1, for two values of the pa-
rameter: for F = 4.9 and for F = 6. Each of the two trajec-
tories has 107 points. The radius R values were computed as
percentiles, and the corresponding estimates of the dimen-
sion were computed in each case.

The results for F = 6 are presented in Fig. B3. Our method
suggests that there are no salient geometric structure in phase
space for that parameter value. We focus now on the F = 4.9
case.

The right plot of Fig. 13 shows as expected that the
NRMSE score decreases when s increases. The left panel
of Fig. 13 shows the estimated local dimension against the

radius R of the ball for 100 points in this system. We se-
lected the points for which the NRMSE is smaller than 0.4
and s > 6.

One can see at the bottom of the plot a set of curves with
a small maximum for radii between 8 and 12 and maximum
dimension smaller than ∼ 12 (dotted curves). These points
seem to detect a structure of points at a distance of 10–12
from them. If there was such a structure at that distance, we
would see other curves with maxima for small values of R
for the points which are part of this structure as for the inter-
mittent Lorenz 63 in Sect. 3.3. Since there are no such curves
because the dotted curves look quite regular and also because
they correspond to a great proportion of all the curves, we can
think that the points corresponding to these curves are part of
the detected structure. In other words, the dotted curves cor-
respond to points which are part of the structure that these
curves detect. Geometrically, the points of these curves have
a similar role to the laminar points of Sect. 3.3.

To understand how a structure can be detected by the
curves of the points which are part of that structure, consider
points uniformly distributed on a circle of radius R̃. From the
point of view of a point on the circle, the number of points
at a distance<R grows as R̃ arccos

(
1− R2

2R̃2

)
. This curve is

the steepest when R approaches 2R̃, so the fitted δ would
have a peak for R ∼ 2R̃. This peak is analogous to the peak
of the dotted curves in the left plot of Fig. 13.

The curves which are not in this set are much more diverse.
They all start at a higher value of the radius, which is because
the corresponding points are in less dense parts of the phase
space. Typically, their starting value of δ̂ is also higher, and
this is because the density of points around those points typi-
cally increases. This leads to artificially high values of δ (see
δeff of Sect. 2.5). Some of these curves have a bump: these
could be because the structure described above enters their
ball, and the radius for which this happens would then be the
distance of the corresponding points to the structure (laminar
distance of Sect. 3.3).

To further clarify this viewpoint, a trajectory of this system
with 105 points was generated and the dimension is com-
puted for all points. The 105 points were labeled as either
laminar or chaotic, with the following steps:

1. restricting the curve for radii R > 8;

2. looking for the maximum of this restricted curve;

3. if this maximum is not at the ends of this curve, and if
the value of the dimension at the maximum is smaller
than 12, labeling the point as laminar.

Points not labeled as laminar are labeled as chaotic. Note
that the laminar/chaotic points are not necessarily lami-
nar/chaotic in the context of chaotic intermittency in dynam-
ical systems, but we use this terminology to distinguish be-
tween points with different dimension characteristics.
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Figure 13. (a) Plot of the dimension against the radius R for 100 computation points for Lorenz 96 with n= 50 and F = 4.9. Only fits
for which NRMSE< 0.4 and s > 6 are shown. The dotted lines detect a structure, and the corresponding points are part of that structure.
(b) Scatterplot of the NRMSE vs. s for the Lorenz 96 system with n= 50 and F = 4.9, with log10N in color.

If the points we have labeled as laminar indeed form a
geometric structure in phase space, the distance of chaotic
points to this structure should correspond to a maximum of
the dimension. Therefore, we proceed as in Sect. 3.3; for each
chaotic point, we do the following:

1. We define the laminar distance as the minimum distance
between the point and all the laminar points. (In other
words, we use the set of points labeled as laminar as a
representation of a laminar regime.)

2. We define the EVT laminar distance as the radius R,
giving the maximum dimension.

If our above labeling of laminar and chaotic points is
meaningful, the two distances should agree. As shown in the
scatterplot of Fig. 14, there is a good agreement, and we take
this as a consistency check of our interpretation of the curves
in the left panel of Fig. 13.

Note that, for 32.8 % of the chaotic points, no distance
could be computed using the second method (for the same
reason as in Sect. 3.3). Also, the fact that we find a struc-
ture in phase space, analogously to the laminar structures of
the previous sections, points to the fact that the Lorenz 96
system, with n= 50 dimensions for F = 4.9 could be in an
intermittent regime.

To summarize, we computed the dimension in this high-
dimensional system and, as shown in the previous section,
Sect. 3.3, the dimension highly depends on the radius R used
to compute it, but this can be used to obtain some character-
ization of the geometry of the phase space: some points of
the attractor are collected in a structure, much as the laminar

Figure 14. Scatterplots of the two ways to compute the distance to
the laminar structure for chaotic points.

points in Sect. 3.3. The distance from the other points to this
structure can be estimated.

4.2 RADCLIM dataset

We now present the results of the computation of the dimen-
sion for the RADCLIM dataset (see Appendix C for a de-
scription). Before computing the dimension, the images were
upscaled to 14 px× 14 px for two reasons. The first is that
the whole dataset is then obviously easier to work with. The
second is based on the hope that the upscaled images would
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Figure 15. Histogram of the distances to the dry event (in dBR) for
the RADCLIM dataset.

define a reduced and less complex attractor within a reduced
phase space.

The upscaling to 14×14 images was done by averaging the
neighboring pixels, after the log transform of the rain rate.
This is a way to take into account the multiplicative structure
of the rain (Veneziano et al., 2006; Seed, 2003; Lovejoy and
Schertzer, 2013) during the upscaling. As in Pulkkinen et al.
(2019b), the zeros were transformed to −15 in logarithmic
scale (dBR).

The geometry of the phase space defined by these im-
ages is quite particular. The value of each pixel is taken as
an axis in phase space, which is therefore a 14 px× 14 px,
i.e., 196-dimensional Euclidean space. Since the minimum
value for all pixels is −15 dBR, the phase space is actually
restricted to the orthant xi ≥−15dBR ∀i = 1, . . . , 196. The
point xi =−15dBR ∀i corresponds to images without any
rain, which we call the dry event. There are 7150 such im-
ages (1.13 % of all 630 008 images). Even among images
with rain, most of them are close to the dry event. The his-
togram in Fig. 15 shows the distribution of all distances to
the dry events (including the dry events themselves).

This histogram shows that the density of points in the
phase space decreases very quickly when getting away from
the dry event. As a comparison, if the density of points ρ
was constant in the phase space, the number of points whose
distance to the dry event is between r and r + dr would be
≈ ρrn−1dr = ρr195dr . This means that the heights of the
sticks in this histogram would grow as r195, which is radi-
cally different from what is observed. The relationship be-
tween distances and volumes in high-dimensional spaces can
be quite different from our 3-dimensional intuition.

For 2000 computation points, the dimension was com-
puted for 40 different values of R. As before, 40 per-
centages were fixed (exponentially spaced between 8×
10−4 %→ 5 points and 10 %→ 63 000 points), and the ra-

dius R values were chosen to correspond to the percentiles
among all distances. Figure 16 shows the computed dimen-
sion as a function of the radius R for 100 points: the left plot
has a logarithmic scale for R, and the right plot has a linear
scale for R, allowing us to see the plot for small R values
or for large R values more clearly. The color represents the
base-10 logarithm of the averaged convective rain rate (see
below).

For some of the 2000 points, there is a bump in the di-
mension, which would point to the existence of some struc-
ture. We tried to apply the same procedure as in Sect. 3.3
to compute the distance to the laminar regime. The proce-
dure allowed us to get a laminar distance for only 487 out
of 2000 points (for the same reason as in Sect. 3.3: we dis-
carded the estimation if the maximum dimension is on one of
the ends of the range). It turns out that the laminar distance
computed in this way is highly correlated to the distance to
the dry event: see Fig. 17. As a consequence, the points la-
beled as laminar would simply be the dry events. The laminar
distance as defined in this way does not really seem to con-
tain any additional valuable information than the distance to
dry events.

In order to check if there is any valuable information in
the set of values of R for any computation point, we looked
for a way to aggregate the 40 values of R we have for each
computation point and considered the mean and the median
of R for all computation points. Note that these quantities
obviously depend on the way the percentages to compute the
dimension for were chosen. Because of that, one could think
that these mean and median values would not be very in-
formative. These values are, however, relatively stable: we
ensured, for example, that they do not change much if we
use the 10 smallest radii for each point instead of the 40 we
have. This is because the extent of the range of values of radii
we have for one computation point is small with respect to
the actual values of the radii. This is also why the mean and
the median do not differ much and why they give a measure
of the relevant values of the radius for each point. Figure 17
shows that there is a correlation of these two quantities (mean
and median radii) with the laminar distance and the dry dis-
tance. This shows that these four quantities (median radius,
mean radius, laminar distance, dry distance) are essentially
the same.

We see here the difficulty in working with high-
dimensional systems, as discussed in Sect. 2.4. The partic-
ular geometry of this phase space worsens the situation even
more because most of the points are collected near the dry
event, as shown in the histogram in Fig. 15. Because of this,
the dimension for all points can only be reliably computed
on quite small ranges of values of R. For example, the points
for which the curves are on the left of Fig. 16 often have
an R value approximately within [30, 40] dBR. This is too
small of a range of values of R to properly interpret the com-
puted values of δ. The same happens for the points for which
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Figure 16. Plot of the dimension against the radius (in dBR) for 100 points for the RADCLIM data (NRMSE< 0.4 and s > 5). The color is
the base-10 logarithm of the convective rain rate (CRR) in log mm s−1.

Figure 17. Scatterplot of the laminar distance (in dBR) on the
x axis, with the median radius, the mean radius and the distance
to the dry event on the y axis (all in dBR).

the curves are on the right of the figure: they often have an
R ∈ [80, 100] dBR.

We used the convective available potential energy (CAPE),
the convective rain rate (CRR) and the convective precipita-
tion (CP) data from the ERA5 reanalysis to compare with the
quantities computed in the phase space. For the region cov-
ered by the RADCLIM dataset, they come as 26 px× 41 px
images with a 1 h resolution. We computed the mean of these
images in order to have one value for each hour. For each of

Figure 18. Scatterplots of the mean radius, the dry distance and
the laminar distance (x axis, all in dBR) with respect to mean con-
vective rain rate (CRR) (y axis). The numbers in the legend are the
correlation coefficients of the base-10 logarithm of each of these
distances with log10(CRR).

the 2000 computation points, we associated the closest (in
time) available value of the CAPE, the CP and the CRR.
As suggested by the color grading in Fig. 16, one can find
a correlation between the mean radius, the dry distance or
the laminar distance on the one hand and the CRR on the
other hand: Fig. 18 shows the corresponding scatterplots for
the 2000 images.
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Results with the CP instead of the CRR are very similar,
while the correlations with the CAPE also exist but are not
as good.

The correlation of the CRR is the highest with the lam-
inar distance, but this is because of the restriction to some
points. The laminar distance could indeed be computed for
only 487 points out of 2000, while the mean radius and the
dry distance can be computed for all the points. If we restrict
the computation of the correlation between the CRR and the
mean radius to the points for which a laminar distance was
computed, one gets a correlation of 0.70. The same happens
for the correlation between the CRR and the dry distance.

We also checked if some information can be extracted
from the mean value of the dimension: for each image, we
computed the mean of the dimensions resulting from fits
whose NRMSE score was below 0.4 and s above 5. Fig-
ure 19 shows the histogram of the repartition of this mean
dimension for our 2000 computation points (in orange) and
the scatterplot of this mean dimension with the CRR (in color
grading from dark blue to orange). A complementary two-
dimensional histogram of the mean dimension to the CRR is
shown in Appendix C (Fig. C1).

A few things can be noted here:

– The histogram has a nice peak around a mean dimension
of 15–20.

– The relationship with the CRR is not very clear except
the fact that there is generally less variability in the CRR
when the dimension is higher.

– As expected, images that are farther away from the dry
event have a higher CRR, but those images do not have
the highest values of the mean dimension: their mean
dimension is rather between 10 and 20.

– When the mean dimension is below 10, the distance to
the dry event is always relatively small. On the other
hand, for big enough distances, the dimension is always
above 10. This can also be seen from Fig. 16, taking into
account that the distance to the dry event is almost the
same as R.

To summarize, this analysis of the results of the computed
dimension for the RADCLIM dataset shows that it is possible
to reliably compute the dimension for some points and for
some radius R values, but the results are quite difficult to
interpret. This is essentially because of the limited number
of data with respect to the number of dimensions at play. The
estimated local dimensions range between 10 and 30, with
a peak around 15–20. Not surprisingly, we observed a link
between the convective rain rate and the distance to the dry
event.

5 Summary and discussion

As emphasized in the introduction, results on the local di-
mension of attractors of dynamical systems predict that al-
most all points have the same dimension in the asymptotic
limit of an infinite number of points and an infinitely small
radius R. Because these limits are impossible to reach, we
studied the behavior of the local dimension for finite R and
showed that it allows us to detect geometrical structures in
phase space of chaotic dynamical systems. The main visible
feature of this detection is that the dimension has a peak for
the value of R corresponding to the entrance of a geometric
structure inside B(R).

When working with such tools, one always faces the ques-
tion of whether the estimation of the dimension is reliable
or not. This question is linked to that of the maximal dimen-
sion that one can estimate with a given number of points in-
side B(R). We systematically used the NRMSE score and
the quantity s to tackle this problem. The development lead-
ing to the definition of s shed some light on the problem of
the maximal measurable dimension using EVT techniques.
This gives some falsifiability methods, which were lacking
before, as was noticed in Datseris et al. (2023).

In short, the dimension is estimated as the exponent of the
power law C(r)∼ rδ over some range [0, R]. If the NRMSE
score is good enough, a 10 % accuracy for δ relatively to δ̂ is
achieved with N & 400 points. However, a high exponent in
the scaling C(r)∼ rδ (i.e., a high dimension) will not be vis-
ible over a long interval [0, R] if there are not enough points.
This is why high dimensions may be estimated, but only on
limited ranges. There is no contradiction with the argument
of Eckmann and Ruelle (1992): for a fixed range [0, R],
the number of points needed to measure a dimension indeed
grows exponentially with the dimension. The same applies
for the correlation dimension: for a fixed number of points,
higher dimensions can be measured if the range [0, R] de-
creases.

As shown, the dimension depends on the finite radius R of
the ball B(R) used to compute the dimension. This implies
that one cannot simply choose some small percentage (as 2 %
or 5 %), compute R as the corresponding percentile and get a
unique value for the dimension. In fact, different finite values
of R may lead to very different values for the dimension.

To understand what is captured by the computed dimen-
sion at a given scale R, one has to compare R with the other
local geometrical scales on the attractor. In this work, these
scales were mainly set by some geometrical structures, but
Perinelli et al. (2023) showed that the curvature could also
set some scale, and the idea that the scale of the noise could
play a role was raised by Little et al. (2017). We also identi-
fied that estimations of the dimension can be affected when
the density of points is not constant. This often leads to an
overestimation of the dimension. The value of the dimension
for a given R can be affected by other phenomena as well,
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Figure 19. Histogram of the repartition of the mean dimension for our 2000 computation points (in orange) and scatterplot of this mean
dimension with the CRR (in color scale). The color is the distance to the dry event (in dBR).

and it is important to recognize which ones are at play to
correctly interpret the dimension.

For the RADCLIM dataset, one difficulty is that the num-
ber of points is rather limited so that, for each computation
point, values of the dimension could only be computed in a
very limited range of values of R. This was expected from
the analysis of Sect. 2.4, and this makes the interpretation
of the value of the dimension for this high-dimensional sys-
tem difficult. Some interesting conclusions could, however,
be gathered from the analysis, in particular that the range of
dimension is between 10 and 30 with a peak at 15–20.

There exists other ways to compute the local dimension,
such as the Lyapunov dimension (Kaplan and Yorke, 1979;
see Ott, 2002, for a textbook review) and the dimension in-
duced by the delay coordinate method (delay embedding di-
mension, Packard et al., 1980; see Abarbanel, 1996, for a
textbook review). The dimensions estimated using the corre-
lation dimension, which we argue is conceptually equivalent
to the EVT dimension, and using the EVT dimension itself
are compared to the Lyapunov dimension and to the delay
embedding dimension in Datseris et al. (2023). Note also
that, for these two latter definitions of the dimension, there
is no equivalent to the scale R of the EVT dimension and the
correlation dimension. Because of that, we do not expect a
future comparison study (if any) to be able to recover the in-
terpretation of the R dependence of the dimension proposed
here for the Lyapunov dimension and the delay embedding
dimension.

Appendix A: Lorenz 63 system

The Lorenz 63 system is defined by the following equations
(Lorenz, 1963) ẋ = σ (y− x)
ẏ = ρx− y− xz

ż = xy−βz

, (A1)

where σ , β and ρ are constant. Usual values are σ = 10, β =
8/3 and ρ = 28. In this configuration, the system is known to
be chaotic.

The same system for ρ = 166.5 was also considered
(σ and β being unchanged). This system is known to be
intermittent, meaning that it follows regular and almost pe-
riodic patterns for some periods of time (so-called “lami-
nar” phases), alternating with other periods where it seems
to behave randomly (the “chaotic bursts”), see Ott (2002),
Schuster and Just (2006) and Elaskar and Rio (2017) about
intermittent dynamical systems. A trajectory is displayed in
Fig. A1.

As was first noted in Pomeau and Manneville (1980), this
system undergoes a bifurcation at ρ ≈ 166.07: the attractor
is first periodic but disappears through a saddle-node bifur-
cation (Sparrow, 1982).
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Figure A1. Lorenz 63 attractor for ρ = 166.5. The remainder of the
attractor before the bifurcation is visible.

Appendix B: Lorenz 96 system

The Lorenz 96 system (Lorenz, 1996) is a dynamical system
with n variables xi for i = 1, . . . , n (n≥ 4). The evolution
equations for xi values are

ẋi = (xi+1− xi−2)xi−1− xi +F, (B1)

where index i is understood to be periodic: x−1 = xn−1, x0 =

xn, and xn+1 = x1. The parameter F is a forcing constant.
This system for n= 4 goes through a saddle-node bifurca-

tion at F ≈ 11.83 (Sterk and van Kekem, 2017; van Kekem
and Sterk, 2018) and is intermittent for slightly higher values
of F (see Appendix A for a brief introduction to intermit-
tency). Figure B1 shows that the estimated value of δ is max-
imum when the laminar distance is equal to R, as in Fig. 11.

We also considered the Lorenz 96 system with n= 12 for
F = 4.4. We found a bifurcation at F ≈ 4.25 with an in-
termittent behavior after this value. The laminar regime for
this system forms a higher-dimensional structure in the phase
space and the trajectory in laminar phases is not almost pe-
riodic. One cannot proceed as we did for Lorenz 63 with
ρ = 166.5 to get a representation of the laminar regime. In-
stead, we used a trajectory for F = 4.2 to represent the lam-
inar regime. The problem with this approach is that the lam-
inar regime after the bifurcation has moved and expanded in
the phase space, with respect to the attractor at F = 4.2. The
peak of the dimension when the laminar distance is equal
to R is still clearly visible in Fig. B2.

In complement to the analysis for the Lorenz 96 system
with n= 50 dimensions in Sect. 4, we computed the local
dimension for the same system for F = 6. We used a tra-
jectory of 107 points. The left panel of Fig. B3 displays the
dimension as a function of R for 50 computation points (re-
stricted to NRMSE< 0 .4 and s > 6), while the right panel is
the scatterplot of the NRMSE vs. s for all fits. The behavior
of the dimension against R is the same for all points, and we

conclude that our method suggests that there is no salient ge-
ometric structure in the phase space for that parameter value.
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Figure B1. Same as Fig. 11 but for the Lorenz 96 system with n= 4 and F = 11.87 (106 points in the trajectory). The vertical red lines
mark the value of the laminar distance which is equal to the radius R, and the horizontal line marks the values 2 for δ̂.
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Figure B2. Same as Fig. 11 but for the Lorenz 96 system with n= 12 and F = 4.4 (105 points in the trajectory). The vertical red lines mark
the value of the laminar distance which is equal to the radius R.

Figure B3. For the Lorenz 96 system with n= 50 dimensions, same as Fig. 13 but for F = 6. (a) Dimension δ̂ as a function of R for
50 computation points (NRMSE< 0.4 and s > 6). (b) Scatterplot of the NRMSE vs. s (all fits).
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Appendix C: RADCLIM dataset

The RADCLIM radar dataset (Goudenhoofdt and Delobbe,
2016; Journée et al., 2023) is a high-horizontal- and high-
temporal-resolution quantitative precipitation estimation in
Belgium and its surroundings. It is based on radar measure-
ments, which are merged with rain gauge measures.

The time resolution is 5 min, and we used 6 years of
the product. A few images are missing in the dataset,
which has in total 630 008 radar images. The images are
700 px× 700 px, with each pixel representing a square of
1 km× 1 km.

As a complement to Fig. 19, Fig. C1 is a two-dimensional
histogram of the mean dimension against the CRR. In to-
tal, 5000 computation points were used (instead of 2000 in
Sect. 4.2) in order to have a more reliable histogram.

Figure C1. Two-dimensional histogram of the repartition of the
mean dimension for 5000 computation points with the associ-
ated CRR.

Code availability. The code for computing the dimensions is
available upon request to the authors.

Data availability. The RADCLIM dataset is not available publicly
but is accessible upon request from RMI Communication and Mar-
keting service (marketing@meteo.be). For research purposes, these
are free of charge.
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