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Abstract. Geophysical fields are extremely variable over a wide range of space–time scales. More specifically,
they are intermittent in the sense that the strongest fluctuations are increasingly concentrated in sparser and
sparser fractions of the space–time domain. Multifractals have been developed to analyze and simulate inter-
mittency across scales, while climate networks can detect and characterize extreme-event synchronization. In
contrast to multifractal analysis, climate networks are usually generated at a given observation scale despite
displaying complex structures over larger scales and being likely to exhibit similar complexity at smaller scales.

In this letter, we present how to overcome this dichotomy of approaches by analyzing in detail the effects of
increasing the observation scale for climate networks as allowed by empirical data; i.e., how do they upscale?
This must be understood as a preliminary step to be able to downscale them, including for practical applications
such as urban geosciences that require the analysis and simulation of intermittent fields at a very high resolution.
This is one of the reasons why we are using precipitation to illustrate our multifractal climate network approach.

1 Introduction

Climate networks (Tsonis and Roebber, 2004; Donges et al.,
2009) have been extensively used to study long-range depen-
dence and/or synchronization (teleconnections) between the
different spatial locations of various geophysical fields using
different statistical methods such as cross-correlation (Tso-
nis and Roebber, 2004; Donges et al., 2009), event synchro-
nization (Malik et al., 2012; Boers et al., 2019), and mutual
information (Hlinka et al., 2013; Donges et al., 2009). How-
ever, geophysical processes are highly intermittent and vary
in terms of intensity, emerging from complex nonlinear in-
teractions across different space–time scales. Networks are
typically constructed at the available data resolution and do
not account for possible inter- and/or intra-scale interactions.
Recent advances in this direction have combined a wavelet-
based approach to tentatively account for synchronizations at
different temporal scales (Agarwal et al., 2017; Kurths et al.,
2019).

In contrast, multifractals (Schertzer and Lovejoy, 1987;
Schertzer et al., 1997; Schertzer and Lovejoy, 1991; Love-
joy et al., 2010) provide a natural framework to analyze and
simulate extremely varying and intermittent geophysical and
environmental fields over various scales. The core idea is
to regard these complex systems as a cascade of structures
(Richardson, 1922; Yaglom, 1966; Mandelbrot, 1974) across
a wide range of scales, thus generating long-range nonlin-
ear interactions between them. Here, we propose a substan-
tial extension of the climate network approach to multiple
scales in a systematic way, accounting for the intermittency
and anisotropy in space and time as highlighted by multi-
fractals, which are able to capture the dynamical behaviors
of long-range interactions.

2 Data and methods

Although our multifractal climate network approach is quite
general, we will introduce it and illustrate it with the
Tropical Rainfall Measuring Mission (TRMM) satellite and
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the gauge-combined gridded precipitation dataset 3B42-v7
(Huffman et al., 2007, 2016). Specifically, a subset of the
dataset over the South Asian subcontinent (3.875–38.875° N,
63.125–97.125° E) is used to analyze the extensively re-
searched Indian summer monsoon (ISM), which is large
enough to include some range of teleconnections while re-
maining computationally feasible. Data were sampled from
June to September (122 d), which are typically associated
with monsoon activity, for the total available time period of
22 years (1998–2019). The selected dataset has a high spa-
tial resolution of 0.25°× 0.25° (roughly 20 000 grid points),
and daily aggregates of 3 h high-resolution data are used to
avoid the effects of synchronization and/or dependence on
networks as induced by the diurnal cycle.

2.1 Multifractal analysis of precipitation

Cascades and multifractals originate from turbulence and
physically correspond to the concentration of the turbulent
energy flux along the cascade within smaller and smaller
fractions of the space–time embedding space. The large mul-
tiplicity of interactions can generate universal properties,
which are defined by only a few relevant parameters that are,
furthermore, physically meaningful (Schertzer and Lovejoy,
1987; Schertzer et al., 1997). The resulting universal multi-
fractal (UM) framework has often been used to analyze the
precipitation component of the weather and climate (Love-
joy and Schertzer, 2013). In order to analyze the rain rate
R, the data are systematically coarse-grained in space and/or
time to decrease the resolution. LetL denote the largest scale,
and let ` denote the degraded resolution; then, the scale ratio
λ= L/` is the (dimensionless) resolution. The scale ratios
in space and time can be denoted separately by, respectively,
λs and λt when both are degraded to different resolutions.
They are related by λt ≈ λs

2/3 to account for the anisotropy
between horizontal space and time (Schertzer and Lovejoy,
1987, 1989, 1991), and this is typically applied to 2D+1
space–time fields.

Let ϕλ be the underlying cascading field conserved at all
scales; i.e 〈ϕλ〉 = constant. Then the scaling parameter H
characterizes the deviation of the rain rate Rλ (at resolution
λ) from conservation:

1Rλ ≈ ϕλλ
−H
⇒ 〈|1Rλ|〉 ≈ λ

−H , (1)

where the sign≈ denotes an asymptotic equivalence for large
resolutions (λ� 1), i.e., with prefactors 6= 1 and possibly be-
ing coupled with an equality in the probability distribution
when random variables are involved. The normalized mo-
ments of ϕλ scale with the moment scaling exponent K(q):

〈ϕ
q
λ 〉

〈ϕ1〉q
= λK(q). (2)

Similarly, the exceedance probability distribution of ϕλ
scales with the codimension function c(γ ):

Pr
(
ϕλ

〈ϕλ〉
≥ λγ

)
≈ λ−c(γ ), (3)

where γ = log(ϕλ/〈ϕλ〉)/ logλ is the scale-invariant singu-
larity. Both the moment and probability exponent functions
are related by means of the following Legendre transforms
(Parisi and Frisch, 1985):

K(q)=max
γ

(qγ − c(γ )), c(γ )=max
q

(qγ −K(q)) . (4)

Under the UM framework, both K(q) and c(γ ) of conserva-
tive multifractal fields depend only on the parameters α and
C1:

K(q)=
{
C1
α−1 (qα − q), α 6= 1
C1 q log(q), α = 1

, (5)

c(γ )=

C1

(
γ
C1α′
+

1
α

)α′
, α 6= 1 (with 1/α+ 1/α′ = 1)

C1 exp
(
γ
C1
− 1

)
, α = 1

, (6)

where 0≤ α ≤ 2 measures the degree of multifractality, with
α = 0 for monofractal fields and α > 1 for the class of
multifractal processes having unbound extreme singularities,
and 0≤ C1 ≤ d is the codimension of the mean field (d
is the dimension of the embedding space). Figure 1 plots
the estimated K(q) curve using single trace moments (TM)
(Schertzer and Lovejoy, 1987; Lavallée et al., 1992) of the
conserved field at different scales in space and time (see
Eq. 2). Equation (5) then yields the values of α and C1
from K(q). H can be estimated similarly using the first-
order structure function (see Eq. 1) and also using the relation
β = 2H +1−K(2) between the spectral exponent β and the
second-order moment exponent K(2), as shown in Fig. 1.

2.2 Precipitation climate networks using time-delayed
mutual information

Climate networks are constructed between time seriesRi and
Rj at different geographical locations called nodes or ver-
tices (i,j ∈ V ) by connecting pairs of them with links (de-
noted i ∼ j ) if a given measure of similarity S(Ri,Rj )≥ 0
of the pair is significant. Unweighted CNs can be constructed
from the strongest similarities by thresholding the similarity
matrix S:

Ai,j =2(Si,j − θ )− δi,j =

{
1, Si,j ≥ θ, i 6= j

0, otherwise
, (7)

where A is used to denote the adjacency matrix of a network,
θ is some threshold of S, δ(x) is the Kronecker delta to re-
move self-links i ∼ i, and 2(x) is the Heaviside function.
The links of a network can be directed, possibly implying
a direction of causality between two connected time series.
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Figure 1. A set of graphs computing the UM parameters for time and space in the left and right columns, respectively. Trace moment (TM)
plots are shown in the first row, with scale break at 440 km in space and 16 d in time. The second row plots the moment-scaling exponentK(q)
obtained from the TM in the first row. Parameters α and C1 calculated from K(q) are also shown, along with the corresponding theoretical
K(q) curves (dotted line). Power spectra shown in the third row, used to estimate H from the spectral slope β, also indicate the deviation
in scaling around 460 km in space and 10 d in time. The break around 16 d can be attributed to the synoptic maximum in time. On the other
hand, the break around 440–460 km is difficult to explain but could be attributed to the spatial scale of the synoptic Indian summer monsoon
(ISM) activity (estimated in Malik et al., 2012) since it disappears when samples from the whole year are analyzed.

However, we will be focusing on undirected networks here
and, consequently, on symmetric similarity and adjacency
matrices. Network centrality measures such as the degree
(degi =

∑
jAi,j ), which gives the number of links connect-

ing a given node, are used to study a network’s properties.
Time-delayed mutual information (TDMI) (Hlaváčková-

Schindler et al., 2007; Hlinka et al., 2013; Haas et al., 2023)
has been used here to estimate the general dependence be-

tween two time series. Let Rλ(x, t) denote precipitation time
series at the position vector x, time t , and resolution λ; then,
TDMI is calculated as follows:

I (Rλ(x, t),Rλ(y, t + τ ))=
∫∫

p (Rλ(x, t),Rλ(y, t + τ ))

log
(

p (Rλ(x, t),Rλ(y, t + τ ))
p (Rλ(x, t)) p (Rλ(y, t + τ ))

)
dRλ(x, t) dRλ(y, t + τ ), (8)
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where p (Rλ(x, t)) and p (Rλ(x, t)Rλ(y, t + τ )) are the
marginal and joint distributions, respectively. TDMI can also
be used by thresholding the rain to account for the depen-
dence between extreme rain events. The TDMI-based simi-
larities between two time series Rλ(x, t) and Rλ(y, t+τ ) are
then given by

Sλ(x,y)=
Iλ(x,y)

max(Iλ(x,x), Iλ(y,y))
, where Iλ(x,y)

= max
δ(x,y)<τ≤τλ

I (Rλ(x, t),Rλ(y, t + τ )) . (9)

The delay at which the dependence is maximized between
two time series is called the correlation delay (τ (x,y)),
which is a function of the position vectors. A maximal de-
lay τλ is set while computing the similarity between any two
pairs of time series to limit the creation of false links from un-
reasonably large τ (x,y). The denominator proposed above
acts as a normalizing factor which accounts for the self-
information (auto-correlation) between time series. More de-
tailed information on the TDMI properties and its implemen-
tation can be found in the Supplement.

3 Climate networks at multiple scales

3.1 Coarse-field networks (CFNs)

As pointed out in the Introduction, the change of scale for
CNs can have at least two meanings:

i. It can correspond to coarse graining of the rainfall data
in space and time using the scale ratios from Sect. 2.1
and the obtainment of networks at various larger scales,
calculated in this letter for up to five different scales (see
Table 1).

ii. This can also be done the other way around, i.e., com-
puting the climate network at a given scale and then de-
grading its resolution.

Multifractal climate networks (MCNs) will be used to denote
both these definitions. In this subsection, we proceed with
the first definition of MCNs, called coarse-field networks
(CFNs). They are constructed over a range of scales where
the UM parameters remain unchanged (up to the scale break
in Fig. 1) and are parameterized by pλ,θλ, and τλ, which de-
pend on the data resolution λ.

TDMI-based CFNs are constructed here for two case sce-
narios: (A) using similarity measures from the whole range
of precipitation values and (B) using extreme precipitation
events above a certain threshold rainfall value (in fact, a fixed
singularity γ ). The threshold rain value required for case
B can be calculated from the multifractal relation in Eq. (3):

pλ = Pr
(
Rλ ≥ λ

γ
)
≈ λ−c(γ ). (10)

The corresponding parameter pλ, which only applies to case
B since case A does not require thresholding, was fixed at the

Table 1. MCN parameter values used for the computation of CNs
at five different scales are shown below. The pλ values for case A
are omitted from this table since case A would equate to taking the
complete range of rainfall values for each scale. Length scales in
the second column correspond to grid lengths at the Equator.

Timescale Length scale Case B Max lag Link density
(days) (km) pλ (%) τλ (time step) ρλ (%)

1 27.75 15 20 5
2 83.25 22 10 10
3 138.75 27 7 14
4 222 31 5 18
5 305.25 35 4 22

largest resolution (p3 = 0.15) and calculated for the rest of
the scales using Eq. (10) by keeping constant the singularity
γ (see Table 1 for pλ values).

The adjacency matrix A is obtained by thresholding the
similarity matrix Sλ with some threshold parameter θλ (see
Eq. (7)). This θλ directly influences the network structure and
its properties, such as degree, link distribution, and clustering
coefficient, by controlling the density of links, denoted by ρλ.
If Sλ is assumed to be a multifractal measure then an equation
similar to Eq. (10) is obtained, relating ρλ at different scales
to the threshold singularity γS :

ρλ = Pr(Sλ ≥ θλ)= λ−cS (γS )
; θλ = λ

γS . (11)

Finally, the τλ free parameter sets the maximal delay (lag)
up to which the strength of dependence between two given
time series is calculated. This maximal correlation timescale
is usually significantly larger than the average lifetime of
rain events at a given resolution, which makes it difficult
to estimate at different scales. The CFN computations for
τ3 > 40 d were found to significantly change the spatial pat-
tern of node degrees, whereas the results remained consistent
when varied between 6 and 20 d. Therefore, τ3 was fixed to
20 d at scale 3. For λ < 3, τλ is lowered to keep the effec-
tive maximal delay at all scales nearly constant at 20 d; i.e.,
τλ = τ3λ

−1
t (see Table 1).

3.2 Scaled climate networks (SCNs)

To analyze the effect of a change of scale on CNs and their
properties (e.g., their degrees), we introduce a pair of opera-
tors:

– Uλ for upscaling or coarse graining by a scale ratio λ
(not always explicitly stated, for the sake of simplicity)

– C for constructing a climate network from a given
dataset.

They have a more or less immediate meaning when applied
to a given field F , and we have first considered the composed
operator C ·U applied to the TRMM rain field (see Sect. 3.1
on CFNs). We have also evoked the “other way around”, i.e.,
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Figure 2. Scaled climate network (SCN) schematic: smaller nodes are grouped together, shown here in different colors, with linked nodes
being replaced by linked groups. The grouping of the node set directly corresponds to the upscaling of the field in space.

the composed operator U ·C, which will be detailed below
in relation to scaled climate networks (SCNs), with the diffi-
culty being that U needs to be generalized to be applied to a
network instead of a field. In fact,U should coarse grain both
components of a network, i.e., nodes and links, while fields
have only the former component, and U is then restricted
(and defined) to only act on this unique component.

As an introductory example, we consider the U upscaling
operator for unweighted CNs. It seems straightforward to im-
pose the following rather simple rule (Fig. 2 for illustration):
two upscaled nodes I and J are linked (i.e., the upscaled ad-
jacency matrix satisfiesAI,J = 1) if, and only if, they contain
more than a given number θλ of linked pairs of nodes {i,j}
belonging to either of the scaled nodes (e.g., i ∈ I,j ∈ J ).
A priori, for such SCNs, this threshold number θλ scales
with the scale ratio λ of the performed upscaling, similarly
to Eq. (11). Please note that, here, the physical meaning of
θλ does not correspond to its usage in Eq. (11) but was kept
only to signify the similar functionality of the parameters, as
in Eq. (7).

Figure 3 plots the relative degrees (normalized to 0–1
range) computed for the selected scales by first construct-
ing the network from the field Fλ at these different scales
to obtain CUλ(F3), described as a CFN in Sect. 3.1, and
then proceeding in the reverse order to obtain UλC(F3) (de-
scribed as an SCN). The network operator C acting on Fλ
has resolution-dependent parameters, and the λ notation has
been reserved for the parameters alone for the sake of sim-
plicity. Both these approaches are plotted for cases A and B
in Sect. 3.1, with CFN and SCN plots in the top and bot-
tom rows, respectively. Moving from left to right, the hubs
(high-degree nodes) over northern Pakistan are diminished
(have a reduced degree) at larger scales, and, simultaneously,
new hubs emerge in parts of central India. This further em-
phasizes the need for a multiscale approach to CNs for an
improved understanding of the climate dynamics at different
scales. Differences in the network structures between these
two approaches are very noticeable from both the figures,
even for such a small range of scales. Local structural differ-
ences can be tentatively quantified with the Jaccard distance
(Donnat and Holmes, 2018) defined below (where |A| de-

notes the cardinality of the set A):

dJac = 1−
∑

([CUλF3 ∩UλCF3])∑
([CUλF3 ∪UλCF3])

=

∑
|[C ,Uλ]F3|∑

([CUλF3 ∪UλCF3])
. (12)

This provides the relative number of common links between
both ways of upscaling with respect to the total number of
links and is therefore a measure of their similarity. The sec-
ond equality of Eq. (12) shows that dJac is also a metric of
the relative non-commutativity of the operators C and Uλ.

The Jaccard distance dJac between the CFN and SCN is
plotted versus the logarithm of the non-dimensionalized res-
olution `s in Fig. 4 for cases A and B. It increases signif-
icantly with upscaling (i.e., decreasing resolution λs). The
overall increase to dJac ≈ 60 %–70 % indicates that the lo-
cal network properties have changed drastically for both
cases, although the increase for case A is significantly lower
(≈ 10 %) than for case B, i.e., taking into account all the fluc-
tuations and not only the extremes, as for case B. The SCNs
exhibit scale invariance in the spatial distribution of the de-
gree in contrast to CFN degree patterns, which change with
scale. This supports the limited commutativity of the network
constructor C with the upscaling operators UλC 6= CUλ for
large upscaling, as has already been pointed out above.

4 Conclusions

This letter was devoted to analyzing the multifractality of cli-
mate networks, while their scale dependence is too often ig-
nored. This was achieved by first analyzing the space–time
multifractal properties of a test field, which was also ana-
lyzed in the framework of climate networks. This enabled
us to study the upscaling of climate networks. We first high-
lighted that there is not a single definition of an upscaling of
climate networks due to a relative non-commutativity of two
elementary operators, namely constructing a network from
a given dataset and coarse graining it. This was first shown
in relation to the degree of the networks, and then we high-
lighted the importance of the Jaccard distance as a theoretical
and practical metric of the relative non-commutation.
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Figure 3. Relative degrees for both approaches, namely coarse-field networks (CFNs, top row) and scaled climate networks (SCNs) (bottom
row), at different scales λ are plotted for two cases. (a) Case A: full range of the rain rate. (b) Case B: p3 = 0.15 thresholded time series
(see Table 1 for all parameter values). The resolution in space decreases from left to right. The distribution of CFN hubs (high-degree nodes)
in space differs significantly with decreasing resolution compared to the SCN hubs, which are more stable and appear to be independent of
it and are more prominent in (b). The dashed regions were not included in the analysis due to a lack of samples as a result of scanty rainfall
(< 15 % rainy days during the period of study).

The above results are fairly general, but the choice of mon-
soon rainfall data as a test field was motivated by many inter-
ests, ranging from the social to the scientific. A common ma-
jor interest is that of huge extremes, which are of overwhelm-
ing importance for understanding and modeling the water cy-
cle. Scale-dependent parameters were formulated, allowing
for the systematic inference of network structures at larger
scales. Our results confirm not only their scale dependence

but also a significant sensitivity to the type of scale change,
with the identification of new regions of interest emerging
at larger scales in the case of coarse-field networks previ-
ously undetected in single-scale network studies. We were
able to capture the dynamics of processes with the potential
inference of precipitation pathways dominating these scales.
On the other hand, the scaled climate networks appear to be
static and, thus, unable to identify any new regions.
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Figure 4. Scale-by-scale network dissimilarity between coarse-
field networks (CFNs) and scaled climate networks (SCNs) dis-
played by the plots of the Jaccard distance: dJac ∈ [0,1] vs. log10`s
(cases A (blue) and B (red)).

To summarize, we showed the effectiveness and desirabil-
ity of analyzing climate data using a multiscaling approach.
This approach could easily be extended to weighted sparse
and dense networks. Also, the formalism developed so far is
limited to links between nodes at a given scale. Inter-scale
links could be beneficial in further understanding cross-scale
dynamics for better simulations of climatic processes whilst
preserving their spatial correlations and improved downscal-
ing of networks and fields.
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