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Abstract. Empirical modal decomposition (EMD) is an efficient tool for extracting a signal from stationary or
non-stationary time series and is enhanced in stability and robustness by ensemble empirical mode decomposi-
tion (EEMD). Adaptive EEMD further improves computational efficiency through adaptability in the white noise
amplitude and set average number. However, its effectiveness in the periodic signal extraction in Global Naviga-
tion Satellite System (GNSS) coordinate time series regarding the inevitable missing data and offset issues has
not been comprehensively validated. In order to thoroughly investigate their impacts, we simulated 5 years of
daily time series data with different missing data percentages or a different number of offsets and conducted them
300 times for each simulation. The results show that high accuracy could reach the overall random missing rate
below 15 % and avoid consecutive misses exceeding 30 d. Meanwhile, offsets should be corrected in advance re-
gardless of their magnitudes. The analysis of the vertical components of 13 stations within the Australian Global
Sea Level Observing System (GLOSS) monitoring network demonstrates the advantage of adaptive EEMD in
revealing the time-varying characteristics of periodic signals. From the perspectives of correlation coefficients
(CCs), root mean square error (RMSE), power spectral density indices (κ) and signal-to-noise ratio (SNR), the
means for adaptive EEMD are 0.36, 0.81, −0.18 and 0.48, respectively, while for least squares (LS), they are
0.27, 0.86, −0.50 and 0.23. Meanwhile, a significance test of the residuals further substantiates the effectiveness
in periodic signal extraction, which shows that there is no annual signal remaining. Also, the longer the series,
the higher the accuracy of the reasonable extracted periodic signal concluded via the significance test. Moreover,
driving factors are more effectively facilitated by the time-varying periodic characteristics compared with the
constant periodic signal derived by LS. Overall, the application of adaptive EEMD could achieve high accuracy
in analyzing GNSS time series, but it should be based on properly dealing with missing data and offsets.

1 Introduction

With the development of the GNSS (Global Navigation
Satellite System) and the International GNSS Service (IGS),
many countries have established GNSS networks, such as
the worldwide IGS, SAPOS (the satellite positioning ser-
vice of the German National Survey) in Germany, GEONET
(the GNSS Earth Observation Network system) in Japan and
CMONOC (the Crustal Movement Observation Network of

China) in China. Also, there is a GNSS data center named
SONEL (Système d’Observation du Niveau des Eaux Lit-
torales), which serves the Global Sea Level Observing Sys-
tem (GLOSS). These GNSS networks are widely applied in
geodesic and geodynamic studies (Gülal et al., 2013; Scara-
muzza et al., 2017). GNSS coordinate time series are a cru-
cial type of geophysical data. They can be used not only
to obtain accurate positions and velocities of stations (John-
son et al., 2021; Zhou et al., 2022), but also to better study
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Earth’s dynamic processes such as crustal movement (Calais
et al., 2023), post-ice rebound and sea level change (Din
et al., 2019), inversion mass change (Willen et al., 2022)
and other applications (Dong et al., 2002; Munekane, 2021;
Costantino et al., 2023). These coordinate time series are
generally comprised of a periodic signal, trends and noise.
The periodic signals are caused by a complex interplay of
the Earth’s own physical properties and environmental fac-
tors, which is particularly obvious in the elevation direction
(Dong et al., 2002; Ray et al., 2008; Wang et al., 2018). The
trend terms are composed of long-term trends and transient
trends. For the transient trend, this mainly includes the effects
of earthquakes and tides. The 26 December 2004 Sumatra
earthquake (Mw 9.2–9.3) caused an after-slip of larger than
10 mm within minutes as far away as India (Blewitt et al.,
2006). It is usually modeled with logarithmic or exponential
functions (Hetland and Hager, 2006; Nishimura, 2014; To-
bita, 2016). Moreover, modulations in plate motion are com-
patible with the solar year, the period of the lunar perigee and
the lunar nodes, which clearly the influence of lunar and so-
lar tidal forces on the plate motion (Zaccagnino et al., 2020).
Also, this motion by oscillating tides can be shown by the
deep tremors (Ide and Tanaka, 2014). Since our focus is the
long-term trend, we mainly investigate the impact of periodic
signals on it. Therefore, accurately extracting periodic sig-
nals from GNSS coordinate time series is crucial (Van Dam
et al., 2001; Sorin et al., 2021). However, the periodic signals
estimated by the traditional least squares (LS) method did
not agree well with the actual periodic variations (Bennett,
2008; Li, 2020). Therefore, some scholars aimed at more
suitable periodic signal extraction methods. The Kalman fil-
tering, assuming signals randomly, is contrary to the real
GNSS time series containing power-law noise (Davis et al.,
2012). Also, the high sensitivity of F -test detection to noise
may lead to the incorrect determination of the presence of
periodic signals (Li and Shen, 2014). The principal compo-
nent analysis (PCA) method found that most GNSS stations
around the world have a nonlinear periodic pattern, with an-
nual and semi-annual terms dominating (Shen et al., 2014).
These studies verified the existence of time-varying periodic
signals in GNSS time series and separated the signals accord-
ing to different methods.

Moreover, empirical mode decomposition (EMD) intro-
duced by Huang et al. (1998) initially focused on the anal-
ysis of signals that are a mixture of harmonic oscillations
with different periods. EMD requires the construction of the
upper and lower envelopes based on the local extrema, by
which approximating curves are drawn using cubic splines
(Kopsinis and McLaughlin, 2008). Because of this, it works
unstably once local extrema are poorly defined, e.g., when
the data contain relatively long plateaus of constant values
or short-lived waves of small amplitudes and short periods
(Huang et al., 2009). Adding white noise to the original data
could create auxiliary local extrema, which regularizes the
determination of the intrinsic mode function (IMF) sequence,

together with the subsequent averaging, sharply reduces the
influence of white noise due to its independence (Wu and
Huang, 2009). This is a feature of ensemble empirical mode
decomposition (EEMD). However, the selection of empiri-
cal white noise magnitude and set average number may vary
from person to person. Due to the adaptivity in the two vari-
ables, this paper employs an adaptive ensemble empirical
mode decomposition (EEMD) method in the GNSS coordi-
nate time series analysis. The adaptive EEMD has significant
advantages in terms of noise immunity, avoidance of local
extremes, stability of IMFs adaptivity and consistency (Liu
et al., 2023). It is suitable for signal components of different
scales and frequencies, which improves the stability and re-
liability of decomposition. Nevertheless, it has high require-
ments for data completeness (Agnieszka and Dawid, 2022).
In addition, offsets which usually occur in GNSS coordinate
time series have not yet been comprehensively included in
the application of adaptive EEMD.

To obtain the absolute sea level from the tide gauges, their
vertical trend should be removed, which can be measured by
GNSS stations nearby the tide gauges. The GNSS stations
belong to the SONEL aim of providing high-precision con-
tinuous monitoring. However, the trend is affected by the pe-
riodic signals contained in the GNSS time series (Bos et al.,
2010; Klos et al., 2018). Therefore, it is of paramount signif-
icance to get a periodic signal of high accuracy. This paper
applies adaptive EEMD to the periodicity assessment of 13
Australian stations in SONEL. Section 2 describes the prin-
ciples in detail, Sect. 3 verifies their effectiveness in synthetic
time series, and 300 simulations were conducted for each of
the experiments in the focused missing data and offset issues.
The practical analysis for the selected 13 stations located in
Australia is carried out in Sect. 4, and the conclusions are
summarized in the last one.

2 Principle and method

Due to the uncertain quantity of IMFs, there may be issues of
frequency overlap and mode mixing among different IMFs,
which can affect the decomposition and analysis of EMD sig-
nals (Huang et al., 1999). The employed EEMD method ef-
fectively mitigates the impact of mode mixing phenomena,
enhancing the precision and robustness of signal decomposi-
tion (Agnieszka and Dawid, 2022). This method consists in
adding white noise to the original signal and uses the uni-
form distribution of Gaussian noise to alter the distribution
of extreme points, ensuring signal continuity within each fre-
quency band. Subsequently, the components of the multiple
decomposed IMFs are averaged to mitigate the impact of ran-
dom noise (Huang et al., 1998). The specific steps are as fol-
lows (Peng et al., 2018; Liu et al., 2023).

– Step 1: add the same length Gaussian white noise se-
quence to the data x(t) multiple times.

Xi (t)= x (t)+ u · ai (t) (1)
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u is the magnitude of the added white noise, and ai(t)
is the white noise added for the ith time, where t =
1,2, . . .,T , i = 1,2, . . .,m andm is the set average num-
ber.

– Step 2: decompose the signal Xi(t) with noise to obtain
the IMF components by EMD.

Xi (t)=
n∑
j=1

ci,j (t)+ ri,n(t) (2)

ci,j is the j th IMF of EMD with white noise added for
the ith time, and ri,n is the remainder after decomposi-
tion.

– Step 3: calculate the mean value of the corresponding
IMF component obtained from each decomposition to
get the final IMF component of EEMD.

IMFj (t)=
1
m

m∑
i=1

ci,j (t) (3)

IMFj (t) is the j th IMF component obtained after
EEMD of the decomposed signal.

We can see that those two variables (added white noise mag-
nitude u and set average number m) in Step 1 are crucial and
directly affect the EEMD. For too large white noise, this can
mask the real signal. For tiny white noise, its modal effect is
not obvious. The larger the set average number, the smaller
the decomposition error. However, this leads to a reduction
in computational efficiency. Therefore, it is key to balancing
both white noise amplitude and set average number, which
represents the adaptivity in EEMD (Liu et al., 2023). The
adaptive EEMD method can avoid setting variables manually
and greatly improves decomposition efficiency and accuracy.
However, the adaptive EEMD still suffers from boundary ef-
fects, which refers to the problem of unstable or distorted
decomposition due to the lack of extreme points at the end.
In this paper, it is mitigated by the extreme value extension
method (Wu and Qu, 2008).

While preprocessing is also essential for adaptive EEMD
application, which involves the selection of good continu-
ity and sufficient data, outlier removal, offset detection and
missing data filling. Here, the robust interquartile range
(IQR) method is used for outlier removal (He et al., 2017),
and iterative empirical mode decomposition (IEMD) is uti-
lized for missing data filling (Qiu et al., 2022). The spe-
cific IEMD algorithm is seen in Fig. 1. All the missing data
are firstly filled with the mean of the observed data to con-
struct an initial complete time series x′ (t). Subsequently, tra-
ditional EMD decomposes x′(t) into a series of IMF com-
ponents with frequency from high to low and one residual
term. Generally, the boundary IMF index k is determined by
the correlation coefficient between the IMF component and
the time series x′(t) (Wang et al., 2023), at which it reaches

Figure 1. Flowchart of IEMD for filling.

the minimum value for the first time. Then the signals x̂′(t)
are reconstructed by summing the IMF components after the
boundary IMF component and the residual term. The miss-
ing data are updated by the corresponding part of the recon-
structed signals x̂′(t). When the difference in the missing data∣∣1x′(t)miss

∣∣ between two iterations is smaller than ε, the it-
erative process is terminated, resulting in the final complete
time series. Otherwise, the iteration continues. ε represents a
threshold (0.005 in this paper) to terminate the iteration pro-
cess.

With the complete data, the periodic signals can be ex-
tracted using the adaptive EEMD method. Firstly, the time
series are decomposed into multiple IMFs and corresponding
residuals. Secondly, the high-frequency and low-frequency
IMFs are determined by the energy value method (Cheng et
al., 2006). Thirdly, Lomb spectral analysis is applied to the
low-frequency IMFs to identify the periodic signals (Ray et
al., 2008). Finally, the IMFs containing periodic signals are
selected and combined. Meanwhile, classic LS is employed
for comparison. Generally, the function model includes an-
nual, semi-annual, the first to sixth draconitic-year periodic
signals (Ray et al., 2008), offsets and after-slips. The after-
slip term is typically expressed in the form of logarithmic or
exponential functions (Hetland and Hager, 2006; Nishimura,
2014; Tobita, 2016), and in this paper, we adopt an exponen-
tial decay function model. Specifically, the functional model
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Figure 2. Data filling of the (a) random missing 15 % and (b) consecutive missing 30 d.

can be expressed as

x (t)= a+ bt +
8∑
i=1

(ci · sin(2π · fi · t)

+ di · cos(2π · fi · t))+
∑
j

ei ·H
(
t − tj

)
+

∑
z

gz ·

(
1− e−

(t−tz)
τz

)
+ n(t). (4)

t is the observation time, a is the initial position constant, b is
the linear trend, ci and di are the coefficients of the periodic
signal (c1 and d1 represent the annual periodic coefficients,
while c2 and d2 represent the semi-annual periodic coeffi-
cients and others are draconitic-year periodic coefficients),
fi is the frequency, ei is the offset magnitude, tj is the mo-
ment of offset occurrence, H is the Heaviside function, gz is
the after-slip magnitude, tz is the seismic event occurrence
time, τz is the relaxation time and n(t) is the noise term.

Last but not least, the assessment of the signal reliability is
crucial, which can be measured from different perspectives.
Generally, it is measured by correlation coefficients (CCs),
root mean square error (RMSE), mean absolute error (MAE),
power spectral density index (κ) and signal-to-noise (SNR)
(Bos et al., 2008; Chen et al., 2020; Ran et al., 2022). Their
specific calculation formulas are as follows:

CC=
∑N
i=1(Xi − X̄)(Yi − Ȳ )√∑N

i=1(Xi − X̄)2
∑N
i=1(Yi − Ȳ )2

, (5)

RMSE=

√∑N
i=1(Xi −Yi)2

N
, (6)

MAE=
∑N
i=1 |Xi −Yi |

N
, (7)

P (f )= P0

(
f

f0

)κ
, (8)

SNR= 10 · log10

( ∑N
i=1X

2
i∑N

i=1(Xi −Yi)2

)
. (9)

Xi and Yi are the true signal and prediction signal at the
ith sampling point, respectively. X̄ and Ȳ are the means of
the two signals. N is the length of the signal. P (f ) is the
power spectral density of the signal, f is the frequency, P0
and f0 are constants representing the amplitude and refer-
ence frequency and κ is the power spectral density index ob-
tained through linear fitting. However, in the practical analy-
sis of stations, there is no true signal present. Therefore, Xi
and Yi represent the values at the ith sampling point for the
post-processed vertical components (outliers removed, miss-
ing data filled and offset corrected) and the extracted periodic
signal, respectively. P (f ) denotes the power spectral density
of the residual signal (Xi−Yi). Due to the true signal known
in the simulated experiments, the extracted signal was eval-
uated using the RMSE and MAE. For the real data analysis,
the CC, RMSE, κ and SNR were employed. Specifically, the
higher the CC of the extracted periodic signal and the orig-
inal time series, the more accurate the extraction. A smaller
RMSE indicates a more accurate extraction of the periodic
signal. The κ of the residuals is used to evaluate the noise
characteristics and indirectly reflects the accuracy of the ex-
tracted signal, of which the lower absolute values imply more
accurate extraction. Similarly, the larger the SNR, the better
the periodic model established.

3 Synthetic time series analysis

To test and validate the performance of the adaptive EEMD
method, simulation experiments are carried out. In a simpli-
fied scenario, only annual and semi-annual periods are simu-
lated as follows.

s (t)= a+ bt +
2∑
i=1

(ci · sin(2π · fi · t)

+ di · cos(2π · fi · t)) (10)

Specifically, the 5-year data x(t) are simulated and are gen-
erated with the parameters in Table 1. To be more realistic,
not only white noise but also power-law noises are included
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Figure 3. Decomposition of filled series with adaptive EEMD: (a) random missing 15 % and (b) consecutive missing 30 d.

Figure 4. The obtained periodic signal and the real periodic signal of (a) randomly missing and (b) consecutively missing.

(Eq. 11). The magnitudes of white noise p(t) and power-
law noise q(t) are 0.6 mm and 2 mm−0.6. This means that
the power-law spectral index here is −0.60.

x (t)= s (t)+p (t)+ q(t) (11)

Since the missing data and offset are the general cases, these
are mainly investigated in this section.

Table 1. The simulated parameters in synthetic time series (mm).

a b c1 d1 c2 d2

5 2 10 10 5 5

https://doi.org/10.5194/npg-31-99-2024 Nonlin. Processes Geophys., 31, 99–113, 2024
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Figure 5. RMSE and MAE of (a) randomly missing and (b) consecutively missing.

3.1 Impact of missing data on adaptive EEMD

GNSS provides critical daily position time series for geode-
tic and geophysical studies. However, due to unforeseeable
factors such as receiver malfunctions, human errors or dete-
riorating environmental conditions, the occurrence of miss-
ing data is inevitable (Bao et al., 2021). The IEMD method
described in Sect. 2 is used in data filling due to its advan-
tages of being efficient and accurate. However, its perfor-
mance could be influenced by the percentage of missing data.
Since there are no true data in the missing epochs, it is im-
possible to evaluate the performance. Therefore, the missing
data in the simulations are artificial deletion from the original
data. In practice, data missing may occur randomly or con-
secutively (Shen et al., 2014). To be more realistic, randomly
missing and consecutively missing cases are simulated by
deleting data from the original data. For randomly missing,
we removed 5 %, 10 %, 15 % and 20 % from the original time
series data, while for the simulations of consecutive missing
we randomly deleted data for 15, 30, 45 and 60 consecu-
tive days. Here, we present an example with a missing rate
of 15 % and a consecutive 30 d missing (Fig. 2). We can see
that data marked in red are filled by IEMD, which preserves
the same variation of the original time series. The decom-
position of the filled data using adaptive EEMD is shown
in Fig. 3. From the IMFs, it is easy to identify the simu-
lated annual (IMF6) and semi-annual (IMF5) signals. Fig-
ure 4 demonstrates the obtained periodic signal with the real
periodic signal. As expected, the results indicate that, with
the increase in the percentage of missing data, the extracted
periodic signal gradually deviates from the true values. In or-
der to obtain more reliable statistical results, each simulation
is carried out 300 times. The mean RMSEs and MAEs of
each simulation are presented in Fig. 5. As depicted in the
figure, it can be observed that, with the increase in the miss-
ing data, both RMSE and MAE gradually increase, which
indicates that the stability of the filling results is decreasing
and may lead to larger errors. Especially when the random
missing data rate reaches 15 %, RMSE and MAE show rapid
increases at 0.11 and 0.05, respectively, when consecutively

missing data points are between 30 and 45 and the increase in
RMSE and MAE is more pronounced, at 0.32 and 0.06, re-
spectively. Therefore, to ensure the accuracy and reliability
of adaptive EEMD, the overall random missing rate should
be less than 15 %, and the consecutive missing epochs should
be less than 30 d.

3.2 Impact of offset on adaptive EEMD

The offsets caused by satellite orbit changes, receiver hard-
ware or software problems, data processing algorithm im-
provements, and other unknown factors are common in
GNSS time series (Gazeaux et al., 2013). For the known off-
sets, in data preprocessing, the magnitudes of offsets are es-
timated according to the epochs of earthquake or instrument
replacement, and then the known offsets are corrected. How-
ever, for the unknown factors, it is difficult to detect the off-
set time due to the outliers and noises included. While the
percentage due to unknown factors can be up to 20 %, its in-
fluence cannot be ignored (Griffiths and Ray, 2016). There-
fore, it is urgent to identify and correct the offset. Although
there are many methods to detect the offset (Wang and Her-
ring, 2019; Tehranchi et al., 2020), neither is 100 % effec-
tive. To verify whether the offset correction is essential or
not, tests (with and without offset correction) are carried out.
Traditionally, manual visual inspection is combined with the
STARS method for offset detection, and the LS method is
used for offset correction (Rodionov, 2004; Cai, 2020). Since
the number and magnitude are the two factors of offsets,
these are variables in the simulations. Specifically, the off-
set number ranges from 2 to 8, with an interval of 2. The
simulated offset magnitudes are 0.5σ , 1.0σ , 1.5σ , 2.0σ and
2.5σ mm (Su et al., 2023), with a standard deviation (σ ) of
the simulated time series (σ = 12.70 mm). Also, the simula-
tions are repeated 300 times. Since our focus is the extrac-
tion of periodic signals, the effect of simulated offsets on
the periodic signals is analyzed. Accordingly, the RMSE and
MAE between the periodic signals obtained using the adap-
tive EEMD method with and without offset correction and
the real periodic signal are shown in Fig. 6.
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Figure 6. Periodic signal RMSE and MAE with and without offset correction of different number and magnitude offsets: (a) two offsets,
(b) four offsets, (c) six offsets and (d) eight offsets.

It is found that, with no correction beforehand, RMSE and
MAE rapidly increase as the magnitude and the number of
offsets increase. With the offset corrected, both RMSE and
MAE reveal a substantial decrease. This indicates that, in
adaptive EEMD application, the presence of offsets signifi-
cantly leads to the reduction in the accuracy of periodic sig-
nal extraction. Further, the improvement ratio of the offset
correction to without correction is shown in Table 2. We can
see that, even when the offset magnitude is 0.5σ and the off-
set number is 2, the ratios for RMSE and MAE are 68.15 %
and 67.39 %, respectively. Meanwhile, as the offset number
increases, the improvement ratios for RMSE and MAE grad-
ually rise. This indicates the necessity for offset correction
even under conditions of small magnitudes. However, these
findings are based on all the offsets detected as accurate, al-
though, in reality, this is hard to realize. Thus, we recommend
performing offset correction for the adaptive EEMD applica-
tion in the GNSS coordinate time series analysis.

4 Results and analysis

4.1 Data sources

Thirteen GNSS stations located in the Australian region are
selected for the study, and their locations are shown in Fig. 7.
The vertical components for these selected stations can be

Table 2. The improvement ratios of RMSE and MAE with an offset
magnitude of 0.5σ .

Number of offsets
Improvement ratio (%)

RMSE MAE

2 68.15 67.39
4 74.07 74.45
6 74.89 75.44
8 75.00 75.88

downloaded from the SONEL website (https://www.sonel.
org/spip.php?page=cgps&lang=en, last access: May 2023).
Table 3 provides essential station information, including lon-
gitude and latitude coordinates, the time span, the raw miss-
ing rate (%) and the missing rate after gross error elimination
(%), among which the longest time span is the MAC1 station
and the shortest one is the BRO1 station. Additionally, the
XMIS station exhibits the highest missing rate after outlier
removal, which reaches 13.60 %. The known offset epochs
and magnitudes available from the SONEL website, together
with the offset that occurred on 12 August 2011 at the NORF
station detected with the STARS method along with its mag-
nitude estimated by LS, are shown in Table 4.
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Table 3. GNSS station information used in this study.

Site Longitude Latitude Span Length Raw missing Missing rate after
(degree) (degree) (year) (year) rate (%) gross error elimination (%)

THEV 133.6968 −32.1286 2014.8726–2020.1189 5.25 3.44 4.27
XMIS 105.6884 −10.4499 2005.4890–2020.9303 15.44 13.15 13.60
SYDN 151.1503 −33.7808 2004.3429–2020.9932 16.65 5.16 5.54
SPBY 147.9308 −42.5464 2008.7336–2013.9959 5.26 4.99 6.03
PTLD 141.6134 −38.3444 2009.7712–2020.9932 11.22 8.07 8.48
PTHL 118.6788 −20.5397 2016.8624–2021.9849 5.12 1.12 1.81
NORF 167.9388 −29.0433 2008.4768–2020.9959 12.52 6.18 6.31
MAC1 158.9358 −54.4995 1996.9850–2013.9959 17.01 8.30 8.98
LORD 159.0611 −31.5198 2009.4836–2020.9686 11.48 8.05 8.69
ESPA 121.8943 −33.8743 2008.4495–2020.9418 12.49 6.16 6.61
COCO 96.8339 −12.1883 1997.7521–2013.9959 16.24 7.02 8.96
BRO1 122.2090 −18.0039 2015.8808–2020.9658 5.09 6.99 8.06
02NA 130.8817 −12.3559 2008.7255–2014.0890 5.36 7.44 7.90

Table 4. Offsets of the 13 investigated GNSS stations.

Site Offset epoch (year) Offset magnitude (mm)

THEV – –
XMIS 2006.5411\2007.6973\2012.2801\2014.4836 1.9\−2.5\0.7\−0.7
SYDN – –
SPBY – –
PTLD 2012.1052\2012.3347\2012.9331\2017.4836\2018.3192 0.3\0.9\0.5\8.1\−7.7
PTHL – –
NORF 2011.6123\2016.7582 3.2\1.8
MAC1 – –
LORD – –
ESPA 2016.1544 −4.8
COCO – –
BRO1 – –
02NA – –

Figure 7. Location of the 13 selected GNSS stations in Australia.

4.2 Data processing and analysis

In this section, we carry out a comparative analysis of the
periodic signal in the vertical component of the 13 selected
GNSS stations derived by the adaptive EEMD method and
the LS method. Figure 8 presents the post-processed verti-
cal components (outliers removed, missing data filled and
the offset corrected) and the extracted signal. It is appar-
ent that the signal extracted is significantly different, from
which the adaptive EEMD method shows its advantage in
time-varying signal extraction. For example, the signals of
XMIS and ESPA demonstrate an apparent peak signal in
2016 and 2015. To further evaluate its performance, com-
prehensive assessment indicators are displayed in Fig. 9. It
is observed that, the higher the CC (Fig. 9a), the lower the
RMSE (Fig. 9b), the lower the absolute of κ (Fig. 9c) and
the higher the SNR (Fig. 9d) of the adaptive EEMD, which
shows its outstanding advantage over LS.
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Figure 8. Signals derived by the adaptive EEMD and LS of the vertical components at 13 stations.

In addition, power spectral stacking analysis is performed
on residuals obtained from 13 stations. From Fig. 10 we can
see that residuals derived by adaptive EEMD have the lower
power of the frequency band in periodic signals than LS.
However, it is also noted that the residual signal using the
adaptive EEMD method still shows an annual peak. To con-
firm the significance of this signal within the residual signals,
a power spectral significance test is conducted (Horne and
Baliunas, 1986; Press et al., 2010), as shown in Fig. 11. The
false alarm probability, which is used to estimate the signif-
icance of peaks in the power spectrum, indicates the proba-
bility of being a result of true signals as opposed to a random
noise distribution. Generally, lower values (< 0.01) indicate
higher probability. The results indicate that the 1.00 cpy sig-
nal is not significant in the residuals. In contrast, the residual
signal using the LS method still shows a significant presence
of the 1.00 cpy signal. This further highlights the superiority
of the adaptive EEMD method in extracting periodic signals.

Moreover, the length of the time series in EEMD appli-
cation is an important factor to consider, which is essential
for investigating the impact on periodic signal extraction.
Thus, the aforementioned 13 stations are categorized into
two groups based on data length: stations with time series
exceeding 10 years (mean time series length of 14.13 years)
and stations with time series shorter than 10 years (mean time
series length of 5.21 years). Also, significance tests are con-
ducted on stacked residual signals for these two groups of
stations. As illustrated in Figs. 12–13, the results demonstrate
that, the longer the time series, the better the performance
of both methods in extracting periodic signals. Furthermore,
the adaptive EEMD method outperforms in both scenarios,
which is no matter for data longer or shorter than 10 years.

4.3 Discussion

Figure 14 displays all the periodic signals of the 13 stations
in the vertical direction. It is evident that all the stations ex-
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Figure 9. Reliability indicators for periodic model assessment: (a) CC, (b) RMSE, (c) κ and (d) SNR.

Figure 10. Stacked comparison of power spectrum analysis.

hibit significant periodic patterns but with varying ampli-
tudes. This may be significantly influenced by geophysical
phenomena (Abraha et al., 2017). It is noteworthy that an
anomalous peak is observed in the periodic signal of the
XMIS station on 2 May 2016 (approximately 2016.35 years)

characterized by an approximately twice-larger amplitude
than its mean amplitude (which is approximately 0.5 cm).
Similar phenomena are also observed at the ESPA station on
10 February 2015 (approximately 2015.11 years). To find a
rational explanation, detailed analysis is conducted and uti-
lized hydrological loading data from the EOST Loading Ser-
vice (http://loading.u-strasbg.fr/listdata.php?dirn=_dicf, last
access: July 2023), which possesses a spatial resolution of
0.5◦× 0.5◦ and a time resolution of 3 h. Additionally, the
daily rainfall time series provided by the Australian Bu-
reau of Meteorology (http://www.bom.gov.au/climate/, last
access: July 2023) is adopted. Rainfall anomalies are de-
fined as the difference between the daily rainfall and its
mean value. The accumulated rainfall anomalies are obtained
by summing the daily anomalies with the preceding days’
anomalies (Singh et al., 2021). All the possible factors of the
two example stations are demonstrated in Fig. 15.

We can see that the extremely low rainfall in the sec-
ond half of 2015 led to the minimum accumulated rainfall
anomaly at the XMIS station on 7 May 2016. The increasing
hydrological loading responded to the low rainfall but with
a time lag reaching its maximum. According to the reports
from the Australian Bureau of Meteorology, the presence of
a strong El Niño phenomenon in 2016 (Kennedy et al., 2017)
caused the spread of moist water vapor across the Australian
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Figure 11. Significance test of the residual signal derived from (a) adaptive EEMD and (b) LS.

Figure 12. Significance test of the residual signal derived from (a) adaptive EEMD and (b) LS for stations with data lower than 10 years.

Figure 13. Significance test of the residual signal derived from (a) adaptive EEMD and (b) LS for stations with data more than 10 years.

continent. The hydrological loading decreased, which was
affected by the rainfall directly. Meanwhile, the hydrolog-
ical loading shows the visible annual features. The CC of
0.50 between hydrological loading data (detrended) and pe-
riodic signals for the year 2016 indicates that hydrological
loading is one of the primary factors contributing to periodic
changes. In addition, the ESPA station also exhibits a simi-
lar phenomenon around February 2015, with extremely low
rainfall during the first 3 months of the year. This leads to
a gradual decrease in accumulated rainfall anomalies, reach-
ing its minimum on 29 March 2015. Hydrological loading
during the same period reaches its current peak. The CC be-

tween the hydrological loading data (detrended) and the 2015
periodic signal is 0.57. This further emphasizes the signif-
icance of hydrological loading variations in relation to pe-
riodic changes. In summary, the primary characteristics of
periodic variations are induced by hydrological loading, and
other factors may also affect the periodic signals to some ex-
tent, which provides a direction for future research to explore
in depth.
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Figure 14. Periodic signals derived by adaptive EEMD of vertical components of 13 stations.

5 Summary and conclusions

This paper employed the adaptive EEMD method for more
efficient and accurate extraction of periodic signals. The
simulations are conducted focusing on the inevitable miss-
ing data and offset issues. The results revealed that, with
the missing data filled with the IEMD method, the adap-
tive EEMD method exhibits efficiency in signal extraction.
As expected, when the percentage of missing data increases,
the extracted periodic signals may gradually deviate from the
true values. Specifically, for the missing random data, when
the missing rate reaches 15 %, RMSE and MAE show rapid
increases at 0.11 and 0.05, respectively. For the missing con-
secutive data, when missing lasts for 1 month, the increases
in RMSE and MAE also reach their maximum values at 0.32
and 0.06, respectively. Therefore, it is recommended that
high accuracy could reach the overall random missing rate
below 15 % and avoid consecutive missing epochs exceed-
ing 30 d when dealing with GNSS coordinate time series. Re-
garding the offset, it is apparent that correction beforehand is
essential since RMSE and MAE are markedly reduced. This
also means that the offset detection and correction cannot be
ignored for the adaptive EEMD application. For the process-
ing vertical component from 13 GNSS stations in Australia,
adaptive EEMD shows its advantage over LS. The mean val-

ues for CC, RMSE, κ and SNR for the adaptive EEMD are
0.36, 0.81,−0.18 and 0.48, respectively, while the mean val-
ues for LS are 0.27, 0.86, −0.50 and 0.23. Moreover, sig-
nificance tests are conducted on the residuals, which further
confirms that annual signals still exist in the residuals for LS
but not for the EEMD. The periodic signals of the 13 investi-
gated GNSS stations reflect the time-varying characteristics.
It is found that there are significant variations of the XMIS
in 2016 and ESPA in 2015. Their CC with hydrological load-
ing are 0.50 and 0.57, respectively, indicating that hydrologi-
cal loading is one primary factor contributing to the periodic
variations.

In conclusion, this research highlights the advantages of
the adaptive EEMD method for periodic signal extraction
no matter the synthetic or real GNSS coordinate time series
analysis. The handling of the missing data and offset is firstly
comprehensively investigated, which provides a helpful so-
lution to preprocessing EEMD. Furthermore, it reveals the
time-varying characteristics of the periodic signal, which is
favorable in the subsequent trend analysis of the GNSS sta-
tions in the SONEL network. Without doubt, the adaptive
EEMD can also be applied not only to the GNSS coordinate
time series, but also other geophysical data.
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Figure 15. Abnormal periodic signal analysis at (a) the XMIS sta-
tion (2015–2017) and (b) the ESPA station (2014–2016).
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