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Abstract. Assessing wind fields at a local scale in mountainous terrain has long been a scientific challenge,
partly because of the complex interaction between large-scale flows and local topography. Traditionally, the
operational applications that require high-resolution wind forcings rely on downscaled outputs of numerical
weather prediction systems. Downscaling models either proceed from a function that links large-scale wind
fields to local observations (hence including a corrective step) or use operations that account for local-scale
processes, through statistics or dynamical simulations and without prior knowledge of large-scale modeling er-
rors. This work presents a strategy to first correct and then downscale the wind fields of the numerical weather
prediction model AROME (Application of Research to Operations at Mesoscale) operating at 1300 m grid spac-
ing by using a modular architecture composed of two artificial neural networks and the DEVINE downscaling
model. We show that our method is able to first correct the wind direction and speed from the large-scale model
(1300 m) and then accurately downscale it to a local scale (30 m) by using the DEVINE downscaling model.
The innovative aspect of our method lies in its optimization scheme that accounts for the downscaling step in
the computations of the corrections of the coarse-scale wind fields. This modular architecture yields competitive
results without suppressing the versatility of the DEVINE downscaling model, which remains unbounded to any
wind observations.

1 Introduction

Understanding the declination of synoptic winds at a local
scale in complex terrain is crucial for a wide range of appli-
cations, including assessing the dispersion of pollutants, pre-
dicting wildfire spread, and evaluating wind energy potential
(Giovannini et al., 2020; Wagenbrenner et al., 2016; Dujardin
and Lehning, 2022). Local winds also have a significant im-
pact on the evolution of the snowpack. The high variability
of wind fields in complex terrain generates local gradients in
the surface energy balance, which in turn influences the inter-
action between the snowpack and the atmosphere. These in-

teractions can lead to significant spatial variability in the sea-
sonal snowpack at the slope scale (Mott et al., 2018). In ad-
dition, wind can cause snow redistribution in snow-covered
areas through erosion and deposition processes, which is a
major concern for avalanche hazard prediction (Lehning and
Fierz, 2008).

Wind field variability at a local scale in mountains is
largely driven by two factors: terrain forced flow, which
refers to the direct impact of topography on large-scale
winds, and thermally driven flows, which result from local
temperature gradients caused by terrain inhomogeneity and
variable shading (Whiteman, 2000). Terrain forced flow and
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thermal winds interact with each other, causing local varia-
tions in both speed and direction, making it challenging to
understand and model mountain winds.

Many applications rely on the ability of numerical weather
prediction (NWP) systems to model synoptic-scale wind
fields above mountains (Quéno et al., 2016; Vionnet et al.,
2016). NWP models are generally characterized by their hor-
izontal grid spacing on the order of 1 km or several kilome-
ters. Despite constant increases in horizontal resolution in re-
cent years, a large number of use cases still require downscal-
ing techniques to reach their resolution of interest (Vionnet
et al., 2021; Marsh et al., 2020).

Several methods have emerged to adapt the wind fields
provided by NWP systems (in this work referred to as “large
scale”) to a local scale. Statistical downscaling is a fam-
ily of methods that adapt large-scale information, such as
NWP outputs, to local-scale specificities using statistical op-
erations. Another approach, dynamical downscaling, relies
on models to directly simulate atmospheric and surface pro-
cesses at a higher resolution. A large variety of statistical
downscaling methods can be found in the literature: e.g.,
Dupuy et al. (2021) and Goutham et al. (2021) develop sta-
tistical downscaling methods specifically tailored to operate
at specific individual locations (their calibration sites). In a
different way, Zamo et al. (2016) and Höhlein et al. (2020)
adapt large-scale NWP wind fields to specific target grids at
a higher resolution. By contrast, more general methods such
as in Winstral et al. (2017) can theoretically be applied to
any area with the inclusion of appropriate terrain descrip-
tors as inputs. These methods not only increase the resolu-
tion of the simulated variables, but they also include correc-
tive terms that can compensate for systematic errors in NWP
modeling: this is a direct consequence of the use of an op-
timization or training step that links modeled data to wind
observations. Such methods can also be referred to as model
output statistics (MOS) or bias-correction methods and fre-
quently present favorable statistics when evaluated using ob-
served wind data. Since statistical relationships are derived
by linking outputs from a specific NWP system to observed
values, two challenges emerge. First, their use is restricted to
a unique NWP system or NWP system version. Second, the
model capability to extrapolate wind values to areas where
no calibration has been performed can be challenging and
must be rigorously assessed.

Conversely, other downscaling methods restrict their use
to the modeling or parameterization of local-scale processes
only, without any optimization based on observations. These
methods may improve evaluation metrics through the added
value of the representation of missing processes; however,
they do not compensate for systematic errors in large-scale
modeling and hardly compete in terms of evaluation metrics
with methods including a corrective step. However, their use
is not restricted to any specific NWP or to any specific ge-
ographic area. A large array of the aforementioned models
can be found in the literature, ranging from simple statistical

relationships (Liston and Elder, 2006; Helbig et al., 2017)
to dynamical downscaling methods including atmospheric
models of various complexities (Wagenbrenner et al., 2016;
Raderschall et al., 2008; Vionnet et al., 2017). DEVINE (Le
Toumelin et al., 2023) is a brand-new example of statisti-
cal downscaling models that represent wind fields at a lo-
cal scale without incorporating any fit to observed data. In-
deed, DEVINE simulates the adaptation of large-scale wind
fields to high-resolution terrain (30 m) by using a fully con-
volutional neural network. More specifically, this model was
trained to replicate the behavior of the atmospheric model
ARPS (Advanced Regional Prediction System) over complex
Gaussian topographies (Helbig et al., 2017).

Consequently, systematic errors originating from the NWP
large-scale inputs can eventually be transferred and ampli-
fied through DEVINE. These errors can have a variety of
origins, like missing or imperfect parameterizations, overly
coarse model topography, and errors due to the assimilation
procedure. Furthermore, the use of a downscaling model also
makes it difficult to determine the origin of the modeling er-
rors: whether the downscaling model accurately or inaccu-
rately simulates local-scale processes or whether error com-
pensations between the large-scale forcing and the downscal-
ing model scramble the evaluation. However, even though
error attribution is complex, identifying typical weather and
topographic situations where inputs or downscaled data are
incorrect is more accessible, notably thanks to deep learning.

As an illustration, Le Toumelin et al. (2023) observed
that AROME (Application of Research to Operations at
Mesoscale, an operational numerical weather prediction sys-
tem used by Météo-France) wind fields are frequently un-
derestimated in elevated and exposed areas. After using
DEVINE, they noted smaller errors: thanks to the ability of
the downscaling model to simulate terrain forced flow at a lo-
cal scale and notably strong wind accelerations over summits
and crests, the initial NWP underestimation is reduced. Since
some wind speed underestimation remains, it is not clear
whether the downscaling model does not accelerate the input
wind sufficiently or whether the initial NWP wind speeds are
too low. Whatever their origin, deep-learning techniques to-
gether with in situ measurements and ancillary atmospheric
and topographic data may enable an a posteriori compensa-
tion of such systematic biases.

In this context, we design and present a strategy, based
on deep learning, that corrects NWP input wind fields up-
stream of the DEVINE downscaling method. Indeed, the cor-
rection is made before the downscaling step, but the effect
of downscaling is accounted for in the optimization of the
neural networks’ parameters that are responsible for the cor-
rection. In turn, most errors affecting the coarse-scale wind
fields are corrected without affecting the spatial extrapola-
tion capabilities of the downscaling model and diminishing
the associated performances. By scrutinizing a set of vari-
ables including many variables that can influence air motion
(e.g., temperature, humidity, boundary layer height) and ad-
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vanced topographic metrics, the artificial neural networks de-
veloped for this correction optimize NWP wind speed and di-
rection before calling the downscaling model. With this mod-
ular architecture, we provide an end-to-end chain including
downscaling and model output statistics, which permits us
to boost the evaluation performances of the DEVINE down-
scaling model.

2 Data

In this study, we used forecasts from the AROME NWP sys-
tem as inputs to our new downscaling strategy. We rely on
forecasts from AROME for both large-scale wind fields and
other atmospheric variables used in the corrective step. Our
models also make use of high-resolution topographical in-
formation (30 m). Quality-controlled wind observations ac-
quired over a large network of automatic weather stations
(AWSs) are used for model training (training set) and evalu-
ation (test set). We finally compared the performance of our
models to the operational analysis of the AROME system.

2.1 AROME

The AROME NWP system embeds a limited-area model, no-
tably run by Météo-France for short-term weather forecast-
ing operations. It simulates the state of the atmosphere and
the surface over a European domain including the French
Alps, the Pyrenees and Corsica. The model solves the non-
hydrostatic fully compressible Euler equations by using a
semi-Lagrangian and semi-implicit numerical solver and by
including a spectral representation of several prognostic vari-
ables (Seity et al., 2011; Bénard et al., 2010). The physics
is inherited from the Meso-NH model (Lafore et al., 1998;
Lac et al., 2018) and the dynamical core from ALADIN-NH
(Bubnová et al., 1995). The model is driven at its borders
by the Action de Recherche Petite Echelle Grande Echelle
(ARPEGE) model. It simulates energy and mass exchanges
between the atmosphere and the surface thanks to the SUR-
FEX platform (Masson et al., 2013). Notably, AROME uses
the SURFEX/ISBA model over land (Noilhan and Mahfouf,
1996; Masson et al., 2013) and the simplified snowpack
scheme from Douville et al. (1995) over snow-covered ar-
eas. Since 2018, AROME has operated with a 1.3 km hori-
zontal grid spacing over France, which is of great interest for
applications that require high-resolution information about
the state of the boundary layer such as weather forecast-
ing over complex terrain (Quéno et al., 2016; Vionnet et al.,
2016). The AROME system also includes a 3DVar assimila-
tion scheme, which takes into account radial winds observed
by radars in addition to the assimilation of 10 m wind speeds.
We note that wind observations in complex terrain are fre-
quently neglected for assimilation due to their lack of spa-
tial representativity (Gouttevin et al., 2023). Eventually, their
distance to the AROME initial guess can also lead to their
exclusion of the assimilation cycle.

AROME analyses are produced every UTC hour, whereas
the model is also run in forecast mode every 3 h. For this
study, we built two different products from the aforemen-
tioned cycles. Firstly, we built a continuous time series by ex-
tracting +6 to +29 h AROME forecast lead times initialized
with the analysis of 00:00 UTC, as in Quéno et al. (2016),
Vionnet et al. (2016), and Le Toumelin et al. (2023). This
was done as a way to obtain continuous time series typi-
cally used to force snow and surface models as in Quéno
et al. (2016), Vionnet et al. (2016), and Gouttevin et al.
(2023). In this way, we were able to construct a continuous
time series of 11 variables from AROME forecasts between
1 September 2017 and 1 October 2020 at an hourly time step
(AROMEforecast). The variables are detailed in Table 1, and
their respective use is described in Sect. 3.3. For the same pe-
riod, we extracted the same variables from the analysis cycles
(AROMEanalysis), also at an hourly time step. Finally, we ob-
tain two datasets from AROME: AROMEforecast is represen-
tative of forecasted atmospheric and surface conditions and
AROMEanalysis is representative of an a posteriori product,
giving the most plausible state of the atmosphere at the con-
sidered date. In the following study, AROMEforecast is used
as inputs of the postprocessing and downscaling schemes,
as it would be within an operational high-resolution forecast
system, whereas AROMEanalysis serves as a reference “best”
product to compare with.

2.2 Observations

We gathered hourly wind field observations from AWSs orig-
inating from different observation networks in Switzerland
and France in order to train and evaluate our models (Fig. 1).
In detail, we used a total of 273 observation stations. Of
them, 214 are located in Switzerland and correspond to data
provided by MeteoSwiss, the Swiss Federal Office of Mete-
orology and Climatology. Then, 59 stations are located in
France, of which 54 are from Météo-France observational
networks and 5 are from the GLACIOCLIM network (“Les
GLACIers un observatoire du CLIMat” – “Glacier: an ob-
servatory of the climate”). We note the use of three AWSs
from the Col du Lac Blanc instrumental site, a high-altitude
observatory specifically dedicated to the study of mountain
meteorology and drifting snow (Vionnet et al., 2017; Guy-
omarc’h et al., 2019). The observational sites are located in
various types of environments, all representative of alpine
terrain. This includes snow-covered areas, slopes, exposed
terrain as well as lower-elevation valleys and some stations
localized around urbanized terrain.

Since most of the wind observations used in this study
were obtained in complex terrain and frequently under chal-
lenging meteorological conditions, we applied a quality-
check procedure to our observational dataset, inspired by
Lucio-Eceiza et al. (2018a, b). As extensively detailed in Le
Toumelin et al. (2023), this procedure first asserts a correct
data compilation and storage including chronological sort-
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Table 1. Input variables used in ANNspeed and ANNdirection.

Name Unit ANNspeed ANNdirection Details

Wind speed5m ms−1
×

Wind speed10m ms−1
× ×

Wind speed50m ms−1
×

Wind speed126m ms−1
×

Wind speed515m ms−1
×

Wind direction ◦
× × 10 m wind direction

Boundary layer height m ×

LWnet Wm−2
× Longwave radiation budget

SWnet Wm−2
× Shortwave radiation budget

T2m
◦C × 2 m temperature

Cloud cover × Varies between 0 (no cloud) and 1
Elevationmodel m × AROME surface elevation
Elevation m × Elevation from a 30 m DEM
TPI500m m ×

Laplacian m−1
×

Slope ×

Curvature ×

α ◦
× See Sect. 2.3

Aspect ◦
×

Table 2. Architecture, hyperparameters and loss functions used in Neural Network and Neural Network+DEVINE.

Name ANNspeed ANNdirection Details

Activation function Selu Gelu Excluding the output neuron
Activation function (output) Linear Linear Output neuron only
Batch size 128 128
Dropout rate 0.25 0.35
Epochs 10 5
Initializer GlorotUniform GlorotUniform Glorot and Bengio (2010)
Learning rate 0.001 0.001
Loss function Lspeed Ldirection Section 3.3.3
Number of layers 2 2 Excluding input and output layers
Optimizer Adam Adam Kingma and Ba (2015)
Units per layer [50,10] [50,10]

ing, a search for eventual repeated dates, and the distinc-
tion between true north (360◦) and an undefined direction
when wind speed is null (0◦). Moreover, it ensures the valid-
ity of observed speeds and directions by removing unrealis-
tic observations (e.g., speeds > 100 ms−1 or negative direc-
tions). The quality check also includes the use of log profiles
to unify the observational height of wind fields (here set to
10 m) for measuring devices located below 10 m above the
surface. This procedure uses snow height information when
available to adjust wind profile correction. Moreover, some
additional tests are designed to detect suspicious speeds or
direction sequences. As an example, icing of wind sensors is
a typical case of sensor dysfunction in complex terrain and
is reflected by the acquisition of null or constant speeds and
directions for several consecutive hours. The quality-check
procedure also takes into account other typical suspicious se-

quences of data such as extremely high-speed variations (ex-
treme spikes or lows in time series) and constant sequences
of positive speeds for consecutive hours or days. Finally,
longer-term rolling means are scrutinized to detect the sus-
picious rise or decline of observed mean speeds which can
shed light on the occurrence of systematic errors of a diverse
nature (e.g., mast tilting, new vegetation, or urbanization in
the vicinity of the sensor).

2.3 Terrain parameters

Since the local topography has a large impact on wind fields,
several topographic parameters are used as input variables for
the corrective strategy so as to capture the dominant local fea-
tures of the topography. Among the selected parameters, the
TPI500m (Weiss, 2001) consists of computing the difference
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Figure 1. In situ observation stations used to train the model (218 blue dots) and evaluate the model (55 red dots). All the stations are located
in Switzerland and France. Train–test partitioning was performed using a stratified sampling method described in Sect. 3.4. Note that an
additional dataset (not shown) comprising observations collected in Corsica and in the French Pyrenees has been used in Sect. 4.5 in order
to evaluate the applicability of our model to other mountain ranges.

between a digital elevation model (DEM) pixel elevation and
the mean elevation of neighboring pixels within a fixed ra-
dius (here taken at 500 m). Consequently, TPI500m gives an
integrated vision of the relative elevation of the considered
pixel: positive TPI500m indicates that the pixel of interest is
higher than the neighboring pixels, and negative TPI500m in-
dicates the opposite. The curvature, computed following Lis-
ton and Elder (2006), quantifies how much a terrain differs
from a plane. The Laplacian, computed as in Le Toumelin
et al. (2023), also gives an estimation of the local elevation
variation and enables us to detect small-scale peaks or bowls
within topographic maps. The slope, obtained as the root
mean squared slope using first-order finite differences as in
Helbig et al. (2017), quantifies the local slope of the topog-
raphy. The aspect indicates the orientation of a pixel relative
to the northerly direction. Finally, the parameter α, adapted
from Dujardin and Lehning (2022), is computed following
Eq. (1).

α = arctan(tan(slope) · cos(wind direction− aspect)) (1)

α is a proxy firstly indicating how wind direction should
be modified in order to align perpendicularly to the aspect.
Furthermore, α also increases with the slope, so that it is
higher over steep slopes than over flat terrain. Similarly to
the wind direction, α is expressed in degrees. Since α and
aspect are computed using values from direct neighboring
pixels, they tend to be sensitive to small-scale variations in
topographic features. To reduce this variability, we averaged

all aspects and α values using a 3×3 moving window, i.e., av-
eraging all α values given the eight α values from the neigh-
boring DEM pixels (30 m spaced). In this study, the DEM
used was obtained after merging the RGE Alti DEM resam-
pled to 30 m (IGN, 2013) inside of France’s borders and the
GLO-30 DEM in Switzerland (Fahrland et al., 2020).

3 Method

3.1 Artificial neural network

Artificial neural networks (ANNs) are a specific type of
machine-learning model. They are composed of intercon-
nected units called neurons, which hold floating-point values,
all organized into different layers. In a layer, neurons transmit
the information received from the previous layer’s neurons
to the next layer’s neurons. Communication consists first of
an affine modification of each neuron value using weights
(slope parameters) and biases (intercepts). Then, all neuron-
modified values are summed and pass through a nonlinear ac-
tivation function which produces the next layer’s neuron in-
put values. Finally, the first layer holds the raw inputs, while
the last layer holds the predicted values. All weights and bi-
ases are typically initialized using random values and are
then modified using optimization algorithms based on gra-
dient descent methods. Such methods are based on the com-
putation of the gradient of a loss function between the neural
network output and the expected output with respect to the
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network weights and biases. Weights and biases are then op-
timized in the opposite direction of the gradient in order to
minimize the loss. By replicating this strategy a large number
of times over a large number of samples, artificial neural net-
works can learn complex patterns that link the training inputs
to the training target outputs. Finally, we note the existence of
different hyperparameters, which consist of parameters that
are not weights and biases (e.g., the number of neurons and
the number of layers). These parameters are not learned dur-
ing the training process but are rather fixed independently.

3.2 DEVINE

DEVINE is a downscaling model based on a U-Net convo-
lutional neural network (Ronneberger et al., 2015) designed
to adapt wind fields to high-resolution topography (30 m)
in complex terrain (Le Toumelin et al., 2023). This model
takes as inputs high-resolution topography (30 m) and large-
scale wind fields above the topography and provides three-
dimensional wind fields with a 30 m grid spacing as output.
DEVINE uses convolutions to detect advanced spatial fea-
tures on topographic maps and to assemble them into more
complex patterns within a latent space. This latent represen-
tation is then used to reconstruct high-resolution wind fields
using spatial interpolation and convolutions to finally obtain
wind simulations at the same resolution as the input topog-
raphy. The model was trained using 7279 ARPS simulations
performed by Helbig et al. (2017). These simulations were
run over a large range of synthetic Gaussian topographies of
diverse complexity using similar constant initial atmospheric
conditions across all the simulations. The trained model
showed good behavior at reproducing an ARPS simulation
on an evaluation dataset. As a case study, Le Toumelin et al.
(2023) applied DEVINE to downscale AROME-forecasted
wind fields in the French Alps and used observations from
61 in situ stations for model evaluation. Qualitatively, the
model simulates coherent spatial structures and notably sim-
ulates several characteristics of terrain forced flows. Notably,
the model is able to detect ridges and summits and to simu-
late acceleration as observed within ARPS simulations that
served as targets. Similarly, DEVINE shows good behavior
in detecting windward and leeward areas and is able to mod-
ify speed accordingly. Some directional shifts were observed
around topographic barriers (channeling) but remain modest.
Some other features of mountain winds occurring at the slope
scale such as recirculation areas or upslope and downslope
thermal flows are not accounted for. Quantitatively, in addi-
tion to its spatial extrapolation abilities, DEVINE improves
AROME evaluation metrics, notably at the most elevated and
exposed stations. A significant improvement in modeling the
highest wind speeds has also been observed, which is of great
interest for applications requiring good precision above a cer-
tain speed threshold such as drifting-snow modeling.

3.3 Neural Network+DEVINE

3.3.1 Architecture

The model presented in this study corresponds to an exten-
sion of the DEVINE model. It consists of the addition of two
ANNs that process large-scale NWP data and local-scale to-
pographic data prior to the use of the DEVINE downscal-
ing model. More precisely, a first neural network is designed
to compute an additive correction for the NWP wind direc-
tion (ANNdirection) aiming at compensating for large-scale
modeling errors, and a second network performs similar cor-
rections for the NWP wind speed (ANNspeed). The modi-
fied large-scale wind speed and direction are then used to
feed the DEVINE downscaling model, which also uses a
high-resolution topographic map (30 m) of the area consid-
ered. In detail, ANNdirection uses 4 input variables (2 topo-
graphic parameters and 2 variables from the NWP system),
and ANNspeed uses 17 variables (5 topographic variables and
12 NWP variables), all listed in Table 1. The outputs of the
overall model (referred to as Neural Network+DEVINE) are
the same as DEVINE outputs, i.e., high-resolution maps of
the three components of the wind vector.

As ANNdirection and ANNspeed need to output wind speed
and direction, they need to take into account the typical range
of wind speed (positive values, generally below 100 ms−1)
and direction values (0 to 360◦). To facilitate such a task, we
used skip connections: considering ANNdirection (ANNspeed),
the initial NWP direction (speed) is added to the value of
the ANN’s output neuron so that the network concentrates on
the computation of a directional difference (speed difference)
instead of computing the direction (speed) directly. Further-
more, care has to be taken with activation functions used be-
fore the skip connection: the direction difference (or speed
difference) should not be constrained to positive or negative
values only (as in relu functions for instance) since modifica-
tions can be either positive or negative depending on weather
and topographic situations. Hence, we selected a linear ac-
tivation function for the last layer of both input networks
before calling the skip connection layer. Furthermore, after
adding modifications suggested by the network to the initial
wind direction (speed), i.e., after the skip connection layer,
we had to ensure that no negative values were produced. For
that, we used a relu activation function that caps negative
values to zero. Hyperparameters and architecture details are
summarized in Table 2. Diverse architectures and hyperpa-
rameters were tested in order to converge to the final model.
We checked that our model does not overfit the test set by
computing metrics using a three-fold cross-validation strat-
egy presented in Table S1 in the Supplement.

3.3.2 Training

In order to adapt the weights and biases of the ANNs,
we adopted a sequential approach. First, we optimized
ANNdirection for wind direction, and then we optimized
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ANNspeed for wind speed. This order is motivated by the fact
that an erroneous direction can translate into erroneous high-
resolution wind speeds with DEVINE as a result of wrong
topography adjustments, whereas the opposite will have less
impact. We selected 218 training observation stations in the
French Alps measuring wind speed and direction. Addition-
ally, we used data from the nearest grid cell of AROME at
each of these stations to take into account large-scale atmo-
spheric conditions and extracted topographic maps around
these observation stations to take into account topography. It
is important to note that, in the end, our model outputs wind
field maps, whereas observation stations provide information
for isolated points in space. In order to optimize the neu-
ral networks, we selected a single wind value at the center
of each simulated map that is compared to the correspond-
ing target from the observation station. This step required us
to accurately match the position of the center of the simu-
lated map with the observation station: this was possible by
providing input topographies to our model that were already
centered on the location of the observation sites. The opti-
mization process involved back-propagating the gradient of a
loss function, which was computed using the wind direction
or speed value simulated by DEVINE and the targets. The
loss functions used in this study are described in Sect. 3.3.3
and correspond to a cosine distance for optimizations of the
direction and a modified mean squared error for optimiza-
tion of wind speed. During the optimization of ANNdirection,
both DEVINE and ANNspeed weights and biases are kept
frozen. Similarly, DEVINE and ANNdirection weights and bi-
ases are not updated during ANNspeed optimization. We note
that DEVINE parameters were directly taken from the origi-
nal model (Le Toumelin et al., 2023) and have not been modi-
fied in this study. This choice was made because our goal was
to develop an optimization system to be used with DEVINE
rather than fitting DEVINE to AROME wind fields. Modify-
ing DEVINE weights would lead to the creation of a new and
less versatile downscaling model (see Sect. 5) that assumes
a specific type of input data (here AROME data), with po-
tential limitations in its scope of applicability. Once trained,
Neural Network+DEVINE can model wind fields at high res-
olution, even over areas not included in the training pro-
cess. Additionally, intermediate values (i.e., ANN outputs,
referred to as Neural Network) are saved for model inter-
pretability purposes (red dots in Fig. 2).

3.3.3 Loss functions

Two loss functions were selected for training ANNdirection
and ANNspeed. For ANNdirection we selected the cosine dis-
tance (Ldirection, Eq. 2) to account for angular differences be-
tween direction predictions (directionmodel) and observations
(directionobs). We also took care to express all the directions
in degrees or radians when required.

Ldirection = 1− cos(directionobs− directionmodel) (2)

For ANNspeed we designed a custom loss function that tar-
gets the main errors typically found in AROME forecasted
wind fields. Previous studies (e.g., Dujardin and Lehning,
2022; Bolibar et al., 2020) demonstrated that the use of a
classic loss function (e.g., mean squared error) tends to pro-
duce a squeezed distribution around the mean value of the
output and poor evaluation metrics. Our loss function, de-
noted as Lspeed (Eq. 3), is designed to penalize three spe-
cific characteristics of AROME’s wind field errors as fol-
lows: Lspeed (i) compares simulated values to actual in situ
observations using the mean squared error (mse), (ii) uses the
factor τ to foster the correction of speed underestimations
over overestimations (τ is arbitrarily fixed to 0.6 for cases
of underestimations and 0.4 for overestimations), and (iii)
places a higher penalty on errors made at high wind speeds
by scaling Lspeed with observed speeds (speedobs).

Lspeed = speedobs · τ ·mse(speedobs,speedmodel),

where

{
τ = 0.6 if speedobs ≤ speedmodel,

τ = 0.4 if speedobs > speedmodel.
(3)

3.4 Data partitioning

Deep-learning applications commonly involve the use of a
training set for model optimization and a test set for model
evaluation. Many studies (Goutham et al., 2021, e.g.,) im-
plement a random train–test split, i.e., randomly extracting
test samples from the training set to form a test set. As un-
derlined by Dujardin and Lehning (2022), this method can
lead to an overestimation of the model performance. Evalu-
ating a model after random sampling in a temporal context
is equivalent to assessing the ability of the model to recon-
struct an incomplete time series given the information of all
other known time steps. Furthermore, using a random split
or a simple temporal split means that the ability of the model
to predict in unknown areas is not documented. This can be
detrimental for a large number of applications that require
downscaled data over areas different from the calibration
area. In this study, we decided to evaluate our model both
over observational sites not used during training and for a
year that was not included during training. This method cor-
responds to a spatiotemporal extrapolation assessment and
provides a strict evaluation procedure closer to real use cases
where a model is run over diverse areas largely not present in
the training set. Consequently, we divided our dataset into a
training set and a test set using a temporal split and a spatial
split.

Space partitioning

The spatial split involved a stratified selection process that
resulted in the selection of 55 AWS sites from the 273 sites
available in the Alps. We first identified six topographic and
geographic descriptors for the AWS locations, calculated as
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Figure 2. Scheme of the new model architecture. The architecture is composed of two artificial neural networks (ANNs) in addition to the
DEVINE downscaling model. The first ANN predicts wind direction (orange, ANNdirection), and the second one predicts wind speed (blue,
ANNspeed). Skip connections are represented by blue and orange connections associated with the sign “+”. Modified wind speed and direction
together with a high-resolution topographic map are then sent to DEVINE (Le Toumelin et al., 2023), which in turn outputs maps of the
three components of wind fields (U , V ,W ) at high resolution (30 m). During the training step, wind direction and speed values are computed
at the maps’ center (taken to coincide with an observation station) and sequentially compared to in situ observation using appropriate loss
functions (see Sect. 3.3.3). ANNdirection and ANNspeed optimizations are guided by the gradient of these losses. We note that ANNdirection
and ANNspeed both have an independent model architecture, including the nature of input variables. “Topo. variables” refers to input variables
of a topographic nature, “NWP variables” to inputs corresponding to forecasted meteorological and surface variables, “NWP direction” to
forecasted wind direction, and “NWP speed” to forecasted wind speed. The mathematical operations performed within DEVINE are listed
using colored boxes and are made explicit in Le Toumelin et al. (2023). Finally, red dots following ANNdirection and ANNspeed consist of
the intermediate results of the network (i.e., the ANN outputs) and are referred to as Neural Network.

described in Sect. 2.3: elevation, the TPI, the slope, the lo-
cal Laplacian, and the x and y geographical coordinates of
the stations (expressed using the Lambert93 projection). For
each parameter, we split the 273 AWS sites into three groups
according to their position in the parameter’s distribution:
stations with a parameter below the 0.33 quantile, between
the 0.33 and 0.66 quantiles, or above the 0.66 quantile. We
then divided each of these three groups into three additional
categories according to the root mean square error (RMSE)
of AROMEforecast at each site. We applied a random sam-
pling without replacement in the final three groups and en-
sured that no station was selected twice. Considering the 6
parameters categorized into 3 intermediate groups that are
in turn categorized into 3 groups, we identify 6× 3× 3= 54
stations that are representative of diverse topographic param-
eters, geographic locations, and AROME performances. We
also included Col du Lac Blanc station (latitude= 45.12◦,
longitude= 6.11◦; elevation= 2720 m), as it has been stud-

ied in Le Toumelin et al. (2023) and we wanted to study our
new model at this site. After this spatial split, our training
set is composed of the remaining 218 AWS sites and our test
set of the 55 selected AWS sites. The stratified selection pro-
cess favors the selection of a test set that is balanced among
the six selected parameters and that has a diverse range of
AROME performance, limiting the risk of unbalanced prop-
erties of the observational sites among training and test sets.

Time partitioning

The temporal split simply consisted of excluding the last year
of data from the training set and excluding the first 2 years
from the test set. Finally, we obtain 2 years of data at 218 sites
for training and 1 other year at 55 other sites for evaluation.
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3.5 Neural network interpretability

3.5.1 Partial dependence plots

In statistical modeling, interpretability methods give insights
into the causes that lead a model to make a specific decision.
Among these methods, partial dependence plots (PDPs) form
an intuitive method giving insights into the isolated effect
of a given variable on the model outputs. Their computation
consists of iteratively fixing all instances of the studied input
variable variablei at a precise value defined in a given range
and observing the mean effect on the model outputs. By av-
eraging over all the model outputs, PDPs permit us to fo-
cus solely on the influence of variablei on the outputs. PDPs
suppose independence between input variables since fixing
variablei to a given value comes with no modification of the
other input variables. Using PDPs with correlated features
can lead to unrealistic situations where model predictions
are performed for implausible data instances (e.g., studying
the effect of temperatures> 20 ◦C over high-altitude stations
during winter nights). However, in contrast to accumulated
local effects (see Sect. 3.5.2), PDPs do not suppose any or-
dering in the input variable, in contrast to accumulated lo-
cal effects (see Sect. 3.5.2). Following this property, we use
PDPs in this work to study the impact of ANNdirection input
features on wind direction simulations.

3.5.2 Accumulated local effects

Accumulated local effects (ALE) also permit us to study the
influence of a given input variable on the model outputs. Un-
like more common methods such as PDPs or feature impor-
tance ranking (McGovern et al., 2019), ALE are robust to
correlated structures in the input variables, which frequently
occur in the atmospheric sciences. In contrast to PDPs, ALE
compute differences of prediction for a small window around
specific values of a given input variable variablei based on
its conditional distribution. In detail, this is done by firstly
grouping variablei values in n bins of an identical number
of instances (quantiles). For each bin, a difference in model
predictions is obtained after fixing all instances of variablei
to the uppermost value of the bin and subtracting predictions
obtained after fixing the same instances to the lowermost val-
ues of the bins. This permits us to overcome the correlation
issue of PDPs because prediction differences are only com-
puted for data instances in the considered variablei’s bin.
This step can be interpreted as a computation of a partial
derivative around a specific value of variablei . The differ-
ences are then averaged to obtain the local effect of variablei
for the considered bin. A standard deviation around the mean
value is also computed as a way of tracking the dispersion
of individual effects. Local effects are then accumulated and
centered across each bin to finally obtain ALE. This step
corresponds to an integration of the (averaged) local gradi-
ents and enables us to represent the dependence of model
outputs on variablei across its range. In this study, we also

accumulated the standard deviations as a way of keeping
track of the dispersion characterizing the individual effects
(shaded regions in Fig. 10). Similarly, two-dimensional ALE
plots can also be obtained to highlight the effects of the in-
teraction of two features within the model without consider-
ing first-order effects. Two-dimensional ALE plots are well
suited to observing whether two features interact within the
model and help to decompose higher-order causes that lead
to model prediction. In this study, ALE are used to under-
stand how input variables of ANNspeed influence Neural Net-
work+DEVINE simulations. More details about ALE can be
found in Molnar (2022).

4 Results

4.1 AROME performance in the Alps

AROMEforecast performances in simulating wind speed in
complex terrain depend on the topography. Indeed, we com-
pared AROMEforecast outputs to observed wind speeds in
Fig. 3 for a 3-year period at an hourly time step and for all
stations available in the Alps (training and test). We then an-
alyzed the influence of topography by grouping observation
stations by their quartiles in both TPI500m and elevation dis-
tributions. We observe that AROMEforecast is marked by a
negative mean bias at both elevated and high TPI500m sta-
tions. The joint effect of TPI500m and elevation is all the more
marked since speed discrepancies increase with TPI500m for
the highest elevation category. In contrast, for lower elevation
and TPI500m closer to 0 (i.e., TPI500m in the second and third
quartiles), we note a positive speed bias that is less intense
than its negative counterpart. Numbers in Fig. 3 indicate the
number of observation stations in each group and inform the
topographic characteristics of our observational dataset. No-
tably, we observe that elevated stations are partially corre-
lated with TPI500m (Pearson correlation coefficient = 0.39).
High positive values of TPI500m indicate that the observation
station dominates its neighborhood and is to some extent “ex-
posed”. TPI500m close to zero characterizes stations on aver-
age at the same elevation as their neighborhood in a radius of
500 m, a definition that includes flat terrain.

In addition, we observe that the AROMEforecast negative
bias varies with the observed wind speed. Figure 4a com-
pares AROMEforecast hourly simulations to hourly observa-
tions and shows the onset of a negative bias with increasing
observed speed. This behavior is characterized by a depar-
ture from the 1-1 line for the highest observed wind speeds.
This observation is consistent with Fig. 3 since, generally, (i)
wind speed increases with elevation and (ii) high speeds are
generally observed over summits, crests, and ridges (White-
man, 2000), which designate topographic features often char-
acterized by a high TPI500m. Figure 4 confirms and gener-
alizes the results from Le Toumelin et al. (2023), who al-
ready showed this AROMEforecast underestimation pattern in
the French Alps: note that the test set used in Fig. 4 shares
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Figure 3. Mean wind speed error of AROME forecasts versus observed wind speed (color) at all stations available (training and test) in
the Alps. The results are categorized by TPI500m and elevation quartiles (q) at the observation stations. The numbers indicate the number
of observation stations within each category. The TPI500m (elevation) values of q25, q50, and q75 are −20, −2, and 11 m (482, 859, and
1605 m).

five observation stations with the Le Toumelin et al. (2023)
dataset.

Finally, AROMEforecast captures realistic wind direction
patterns in the Alps. This is qualitatively shown in Fig. 5a
and d, where the AROME wind distribution closely resem-
bles the observed wind distribution. We nevertheless observe
discrepancies such as a shift in the most frequent wind di-
rection. Indeed, the west-southwesterly wind direction is the
most frequent direction among our observations, whereas
AROMEforecast predominantly simulates southwesterly wind
fields. For all the directions, we note that most wind direction
errors are less than 60◦ and less than 30◦ when forecasted
among the dominant directions (west-southwest and south-
west). The largest direction errors (i.e., errors greater than
90◦) affect all the directions in comparable proportions. We
finally observe that AROMEforecast tends to overestimate the
west-northwesterly, northwesterly, and north-northwesterly
directions while underestimating the northerly direction.

4.2 Model evaluations

In this section, we evaluate the performances of dif-
ferent wind products, including AROMEforecast and
AROMEanalysis, as well as the results of our deep-learning
corrections and/or downscaling models (DEVINE, Neural
Network, and Neural Network+DEVINE). Consequently,
we use the test dataset, which was not used to train the deep-
learning models. We remind the reader that AROMEforecast
serves as input for DEVINE and Neural Network+DEVINE,

while both deep-learning models did not use directly any
data from AROMEanalysis as input. Integrated evaluation
metrics first highlight an improved RMSE, MAE (mean
absolute error), mean bias, and coefficient correlation with
DEVINE over AROMEforecast (Table 3). Such improvements
are not able to bridge the gap between AROMEforecast and
AROMEanalysis, the latest showing largely improved evalua-
tion metrics. However, the use of Neural Network+DEVINE
improves statistics (except mean bias), ultimately showing
the best results among all the wind products.

We also observe (as expected) improved behavior of
AROMEanalysis over AROMEforecast, notably through a par-
tial correction of the departure from the 1-1 line for high ob-
served speeds initially observed in AROMEforecast (Fig. 4).
More generally, AROMEanalysis data are centered around the
1–1 line, suggesting better agreement between simulations
and observations. Similarly, we observe that DEVINE gen-
erates increased wind speed, notably for the highest ob-
served speeds. Such a modification compensates for the
AROMEforecast initial underestimation. However, contour
lines which indicate data density still reveal some dis-
persion around the 1-1 line with DEVINE. Neural Net-
work+DEVINE also shows a partial correction for the high-
est observed speeds and shows generally less dispersion
around the 1-1 line. A close inspection of the lowest wind
speeds however indicates some overestimation of null speeds
and speeds less than 1 ms−1.

We then scrutinized the model performances for wind
speed with respect to elevation in Fig. 6a. DEVINE perfor-
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Figure 4. The 1-1 plots of simulated versus observed wind speed. The models are (a) AROMEforecast, (b) DEVINE, (c) Neural Network,
(d) Neural Network+DEVINE, and (e) AROMEanalysis. Black lines indicate data density. This figure only uses data from the test set.

Figure 5. Wind roses of modeled wind directions for (a) AROMEforecast, (b) DEVINE, (c) Neural Network+DEVINE, (e) Neural Network,
(f) AROMEanalysis, and (d) observed wind directions. Colors in panels (a–c, e, and f) indicate the wind direction modeling error, obtained by
comparing modeled and observed wind directions. Colors in panel (d) indicate the speed category of the observed wind. Only wind directions
acquired for observed and modeled wind speeds above 1 ms−1 have been considered. The spoke on the radial axis indicates the proportion
in the percentage of data that is predicted in the considered direction.
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Table 3. Evaluation metrics obtained on the test dataset (Alps). MAE designates the mean absolute error, RMSE the root mean square error,
and ρ the Pearson correlation coefficient. The mean absolute error for wind direction was computed by taking into account the cyclic nature
of wind direction. The best metrics are shown in bold font.

Variable Metric AROMEforecast DEVINE Neural Network Neural Network+DEVINE AROMEanalysis

Speed MAE (ms−1) 1.34 1.29 1.21 1.16 1.18
RMSE (ms−1) 1.92 1.81 1.73 1.62 1.71
Mean bias (ms−1) −0.14 −0.02 −0.17 −0.05 −0.15
ρ (–) 0.60 0.66 0.68 0.72 0.69

Direction MAE (◦) 44 43 35 35 37

mances are comparable to AROMEforecast performances for
low-elevation stations, in addition to the fact that, in con-
trast to AROMEforecast, DEVINE provides a spatialized sig-
nal at a local scale. Improvements are however observed
for higher stations and can be attributed to the ability of
DEVINE to simulate acceleration at exposed and elevated
stations where AROMEforecast denotes a negative bias com-
pared to observations. These results reinforce a study with
DEVINE (Le Toumelin et al., 2023) that observed similar
behaviors. AROMEanalysis presents better evaluation metrics
compared to AROMEforecast and DEVINE in all the eleva-
tion categories. However, we still observe some errors at
the most elevated stations. Neural Network+DEVINE finally
improves DEVINE evaluation metrics in all the elevation
categories, matching AROMEanalysis metrics on the second
and third quartiles and outperforming them for the most ele-
vated stations. In detail, the boxplot indicates slightly lower
median errors for AROMEanalysis compared to Neural Net-
work+DEVINE in all the categories except for the high-
est stations but also shows that the largest modeling errors
are less frequent with Neural Network+DEVINE among the
third and fourth quartiles.

In terms of wind direction, AROMEanalysis largely
decreases the largest modeling errors observed in
AROMEforecast. Wind distribution patterns highlight a
reinforcement of the occurrence of wind in the southwest-
erly direction, which is still different from the observed
wind patterns (Fig. 5). However, we see improvement in
the reduction of north-northwesterly predictions and better
characteristics concerning the northerly to easterly winds.
On the other hand, as noted in Le Toumelin et al. (2023),
DEVINE simulates directions close to AROMEforecast
without introducing any major change. Similarly to obser-
vations, Neural Network+DEVINE simulates most winds
in the west-southwesterly direction and largely reduces the
occurrence of the largest wind direction errors (Fig. 5). The
improved performance is striking in the dominant westerly
directions. Figure 6b sheds light on the distribution of
errors according to the elevation category of the observation
stations and shows similar characteristics to speed errors.
Similarly to AROMEanalysis, Neural Network+DEVINE
improves wind direction modeling over AROMEforecast and

DEVINE in all the elevation categories, notably at the most
elevated stations where Neural Network+DEVINE has the
lowermost median value for direction errors among all the
products compared.

4.3 Influence of forecast lead time and seasonality

In this section, we analyze model performances with respect
to forecast lead times (Fig. 7a and c) and month of the year
(Fig. 7b and d). We note that, in our study, a forecast lead
time has a one-to-one relationship with the hour of the day.
In terms of speed, AROMEforecast errors are characterized
by a peak occurring for lead times between 10 and 20 h,
i.e., mostly during midday and afternoons, in phase with the
daily peak of the average wind speed. This peak vanishes
with AROMEanalysis, which shows considerable improve-
ments compared to the forecasts. Moreover, we observe that
DEVINE shows small yet notable improvements compared
to AROMEforecast. Neural Network shows general improve-
ments compared to AROMEforecast and DEVINE by shift-
ing down the error curve but still preserves a peak around
lead time 15 h. Finally, the use of DEVINE after Neural
Network (Neural Network+DEVINE) again diminishes the
mean error in a manner quite similar to the use of DEVINE
after AROMEforecast. Ultimately, we observe that mean er-
rors are lower with Neural Network+DEVINE than with
AROMEanalysis for the longest (> 18 h) and shortest (< 8 h)
lead times.

We obtain similar model rankings in terms of wind direc-
tion. Nevertheless, we observe that the AROMEforecast direc-
tion error is marked by a minimum around 12 h, which is
interestingly shifted from the maximum in the speed error
observed at 15 h. This minimum is shifted by 1 h, is inten-
sified in AROMEanalysis, and is not modified in Neural Net-
work or Neural Network+DEVINE. The modifications added
by DEVINE to the evaluation metrics are low in terms of di-
rection. However, a clear diminution of the error is observed
when using Neural Network and Neural Network+DEVINE,
which underlines the added value of Neural Network, far
more than DEVINE, in terms of directional predictions. Sim-
ilarly to speed predictions, the best statistics among all the
products are obtained with Neural Network+DEVINE over
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Figure 6. Wind direction absolute error (a) and wind speed absolute error (b) categorized by the elevation of the observation station where
the measurements were taken. In detail, the four categories correspond to the four quartiles of the elevation distribution among the observation
stations: elevation increases from left to right. Each boxplot color indicates a different model. This figure only uses data from the test set.

the largest part of the day, especially for the lowermost and
uppermost lead times, when it outperforms AROMEanalysis.

When modeling errors are interpreted with regards to the
month of the year, we observe a peak in speed error during
the winter months (Fig. 7b and d). This observation is con-
sistent with the fact that, in mountainous terrain, the highest
wind speeds often occur in winter (Kruyt et al., 2017). Model
intercomparison highlights a similar ordering between mod-

els to that which happens at the daily scale. The use of Neural
Network notably decreases the error curve. Ultimately, Neu-
ral Network+DEVINE compares well with AROMEanalysis,
notably during the winter months, when it outperforms it. In
contrast to wind speeds, wind direction errors do not show
any dependence on seasonality. Model ordering is however
comparable to the ordering concerning speed metrics, with
the difference that the use of DEVINE does not show any
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Figure 7. Wind speed absolute error as a function of the forecast lead time (a) and month of the year (b). Wind direction absolute error as a
function of the forecast lead time (c) and month of the year (d). Colors indicate the different models. This figure only uses data from the test
set.

improvements in terms of aggregated metrics. Again, Neu-
ral Network+DEVINE permits us to reduce wind modeling
error, with a reduction leading to lower errors in winter com-
pared to AROMEanalysis.

4.4 Influence of the loss function

The design of an appropriate loss function was important for
ultimately obtaining the best-performing model presented in
this study. The function used to optimize ANNspeed (Lspeed)
permits us to obtain better integrated metrics (MAE, RMSE,
and Pearson correlation coefficient) and to capture a wind
speed distribution closer to the observed speed distribution.
As demonstrated in Fig. 8, which compares observed speed
quantiles to simulated quantiles, the use of Lspeed short-
ens the gap between AROMEforecast quantiles and the 1-1
line. When fitting the ANNspeed with a classical MSE loss
function, we obtain a speed distribution with Neural Net-
work+DEVINE which overestimates low quantiles and un-
derestimates high quantiles, i.e., has a tendency to squeeze
results around a mean value as already observed by Dujardin
and Lehning (2022) for similar applications. The improve-
ments observed after using Lspeed are most notable for high
wind speed, which is consistent with the different terms com-
prising Lspeed (see Sect. 3.3.3). This however contrasts with a
degradation of the simulation of very low wind speeds: em-

phasizing the correction of high wind speeds comes at the
cost of putting less penalty on lower wind speeds and hence
results in a model that performs worse concerning the first
speed quantiles. The use of MSE in place of Lspeed to op-
timize ANNspeed also deteriorates integrated metrics, illus-
trated by a 12 % increase in MAE on the test set. We did
not design a custom loss function for direction but simply
selected Ldirection (Eq. 2), which immediately yielded satis-
factory results.

4.5 Sensitivity to the geographical situation

When fitted using observation from the Alps, Neural Net-
work+DEVINE yields poor evaluation metrics in terms of
speed when evaluated against data from other mountain
ranges but performs well when downscaling wind direc-
tion. We evaluate the ability of our models to correct and
downscale AROMEforecast over 18 AWSs in Corsica and 21
AWSs in the Pyrenees, which are both located hundreds
of kilometers from the Alps and are exposed to different
weather regimes. Data from these ranges were not used
during training. In Corsica and the Pyrenees, Neural Net-
work+DEVINE systematically degrades the RMSE, MAE,
and Pearson correlation coefficient for wind speed when
compared to AROMEforecast and AROMEanalysis (Table 4).
As an illustration, the RMSE increases by 7 % with Neural
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Figure 8. Plot of the observed quantiles versus the modeled quan-
tiles for different models. A perfect simulation would present all
quantiles along the 1-1 line (red). Each color refers to a single
model, mse refers to Neural Network+DEVINE optimized using a
mean square error loss function, and Lspeed refers to the reference
simulation, i.e., Neural Network+DEVINE optimized using Lspeed
(Eq. 3). This figure only uses data from the test set.

Network+DEVINE compared to AROMEforecast. In contrast,
we observe that DEVINE alone improves AROMEforecast
metrics in a manner similar to the evaluation performed in the
Alps (Table 3). Surprisingly, the evaluation of wind direction
highlights the improvement with Neural Network+DEVINE
with respect to AROMEforecast (MAE is reduced by 6◦),
whereas DEVINE again does not influence the mean wind di-
rection. Wind directions from Neural Network+DEVINE are
however on average less precise than with AROMEanalysis,
in contrast to the Alpine situation. We can hypothesize
that, since ANNdirection input variables include almost only
variables of a topographic nature, corrections added by
ANNdirection are more linked to local topography than to me-
teorological situations and hence better generalize to other
mountain ranges. This exploration of the extrapolation abil-
ities of our models to other mountain ranges points towards
the need for additional training if the models are to target
areas outside the western (French and Swiss) Alps. It does
however confirm the generic character of DEVINE as already
highlighted in Le Toumelin et al. (2023), which does not re-
quire any further calibration to be applied to a diversity of
Alpine-type mountain ranges.

4.6 Case study

To illustrate the added value of Neural Network+DEVINE
compared to DEVINE alone, we selected a case study at
a mountain observation station located near Piz Corvatsch
in southwestern Switzerland (latitude= 46.41, longitude=
9.82; elevation= 3294 m). On 8 October 2019 at 06:00 UTC,
AROMEforecast simulates calm wind conditions (1 ms−1) for
a wind coming from the southwest (242◦). DEVINE down-
scales the large-scale wind field of AROMEforecast to a lo-
cal scale. As a result, it increases AROMEforecast wind speed
to 1.47 ms−1 in the close vicinity of the location of the
AWSs, since the site is localized on a ridge prone to wind
acceleration (Fig. 9). In contrast to both AROMEforecast and
DEVINE, the observation indicates a wind coming from the
northwest (329◦) and a much higher speed (6.4 ms−1), which
is also partially captured by AROMEanalysis and indicates a
direction of 293◦ and a speed of 1.81 ms−1. This example
sheds light on high discrepancies than can affect DEVINE
input variables (5.4 ms−1 speed error, 87◦ direction error). In
contrast, Neural Network modifies the AROMEforecast wind
direction by introducing a 80◦ clockwise direction change,
which puts the direction closer to the observations. Simi-
larly, Neural Network multiplies the speed by a factor of
2.6, ultimately reaching a value of 2.7 ms−1. After Neural
Network, DEVINE downscales these modified large-scale
conditions. As typically observed with DEVINE, modifi-
cations in wind directions are modest. However, the speed
reaches 3.02 ms−1, reducing the initial error by 31 %. Since
the optimization of Neural Network has been obtained af-
ter back-propagating error gradients through both DEVINE
and ANNs, we can expect that the deep-learning model is to
some extent aware of the expected effect of DEVINE and
prevents it from overcorrecting AROMEforecast. By scruti-
nizing the day before and after this specific meteorologi-
cal situation, we observe that AROMEforecast systematically
underestimated wind speed at this specific location, which
is partially corrected by Neural Network+DEVINE. How-
ever, this model chain is also responsible for lowering the
speed’s temporal variability, which was already too low with
AROMEforecast. During this period, the direction shifts from
a northeasterly direction to a westerly direction. The largest
modeling errors are observed during the transition period,
when Neural Network+DEVINE contributes to bridging the
gaps to observations. During the final hours, AROMEforecast
captures a more correct wind direction at the station, and the
added value of Neural Network+DEVINE is lower. Neural
Network+DEVINE however still keeps its ability to spatial-
ize the wind signal over the study area, which is necessary
for many applications that require high-resolution forcings
in complex terrain.
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Table 4. Evaluation metrics obtained by comparing simulation and observed data in other mountain ranges (Corsica and the Pyrenees) than
the one used during training (Alps). No data from Corsica (18 AWSs) or the Pyrenees (21 AWSs) were used during training. MAE designates
the mean absolute error, RMSE the root mean square error, and ρ the Pearson correlation coefficient. The mean absolute error for wind
direction was computed by taking into account the cyclic nature of wind direction. The best metrics are shown in bold font.

Variable Metric AROMEforecast DEVINE Neural Network Neural Network+DEVINE AROMEanalysis

Speed MAE (ms−1) 1.53 1.51 1.69 1.64 1.23
RMSE (ms−1) 2.28 2.20 2.49 2.38 1.85
Mean bias (ms−1) −0.37 −0.13 −0.52 −0.28 −0.31
ρ (–) 0.71 0.73 0.65 0.67 0.82

Direction MAE (◦) 40 40 34 34 30

Figure 9. Use case of Neural Network+DEVINE at Piz Corvatsch in Switzerland for 7 to 9 October 2019. Panel (a) presents a time series
of observed and simulated wind speeds, panel (b) presents observed and simulated wind directions, and panel (c) shows the modeling errors
in the wind direction. Panel (d) represents a two-dimensional view of the wind map around the station for 8 October 2019 at 06:00 UTC.
This date corresponds to the shaded areas in panels (a–c). Small arrows were obtained using DEVINE, fed by AROMEforecast. Panel (e)
was similarly obtained but using Neural Network+DEVINE. AROMEanalysis and Neural Network (the intermediate result) are shown for
interpretation. Colors inside arrows indicate wind speed: red colors indicate speeds larger than AROMEforecast and blue arrows the opposite.
The geographical position of AROMEforecast corresponds to the location of the nearest grid cell from the observation station in the AROME
grid. AROMEanalysis and Neural Network are located at the same position but were moved to the close vicinity of AROMEforecast for visual
purposes. The high-resolution arrows in panels (d) and (e) correspond to the downscaled signals by DEVINE and Neural Network+DEVINE
characterized by a lower grid spacing than the other wind products; these arrows were initially distant from 30 m and have been downsampled
to 90 m for visual purposes. The location (Piz Corvatsch) and times (7 to 9 October 2019) are only found in the test set.

5 Discussion

5.1 Performances and modularity of the chosen
architecture

Neural Network+DEVINE shows improved metrics when
compared to AROMEforecast and DEVINE in terms of both
speed and direction. This is highlighted by more accurate

1-1 plots for wind speed (Fig. 4), better wind distribu-
tions (Fig. 5), lower speed and direction errors when errors
are categorized by elevation (Fig. 6), forecast lead time or
month (Fig. 7), and improvements in the integrated metrics
(RMSE, MAE, and correlation coefficient, Table 3). Evalua-
tion metrics obtained with Neural Network+DEVINE some-
times overpass metrics obtained with AROMEanalysis, e.g.,
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at elevated stations or during the winter months, suggest-
ing that our method introduces notable added values when
compared to other well-known atmospheric products. Even
though comparisons between Neural Network+DEVINE and
AROMEanalysis are limited by a scale discrepancy, supple-
mentary analysis shows that the comparison still holds when
AROMEanalysis is downscaled to a 30 m horizontal grid spac-
ing with DEVINE (Fig. S1 in the Supplement). Improved
evaluation metrics are all the more encouraging as metrics
have been obtained using a spatiotemporal extrapolation as-
sessment, i.e., testing the model at locations not included in
the training set and for a year not included either. This cor-
responds to a very strict evaluation procedure, which makes
it generally harder to obtain good evaluation metrics versus
simpler evaluation procedures that only perform tests at the
sites included in the training set (Bolibar et al., 2020; Du-
jardin and Lehning, 2022).

The modular architecture of Neural Network+DEVINE
appears to us to be one of its greatest assets. Decoupling
the spatial interpolation of wind fields (in DEVINE) from
its correction (in Neural Network) makes the model robust
to new NWP systems or NWP version evolutions. Indeed, if
a new version of AROMEforecast were to be released with
important changes, possibly breaking the learned relation-
ships between input variables and observed wind, our archi-
tecture permits us to simply bypass Neural Network and rely
on DEVINE while a new fit is performed with the new NWP
version. The same reflection applies to the use of Neural Net-
work+DEVINE at other mountain ranges. As demonstrated
in Sect. 4.5, the full model chain is not directly operable
on mountain ranges where no data were used during train-
ing. As a consequence, a training step is required to adapt
Neural Network weights and biases to learn geographically
variable relationships between inputs and targets (mostly for
ANNspeed). In the meantime, and in contrast to more clas-
sical models that perform model output statistics, the user
could rely on the standalone use of DEVINE, which showed
good generalization capabilities in other Alpine-type moun-
tain ranges. Conversely, if user applications that require high-
resolution wind forcing are not only dependent on the spatial
structure of the signal but also require a high degree of plausi-
bility of the downscaled values, the integration of a training
phase in the pipeline is possible and would lead to an op-
timized version of the downscaling scheme. This flexibility
does not exist in downscaling methods that do not incorpo-
rate any fit to observed data.

Since we did not modify the DEVINE downscaling model
in this study but only added upstream modifications related
to coarse-scale wind fields, our new architecture inherits the
pros and cons of the downscaling model concerning the lo-
cal structures of simulated wind fields. On the one hand,
using DEVINE favors the simulation of spatially consistent
three-dimensional outputs at a local scale since DEVINE was
built to replicate the structure of outputs provided by an at-
mospheric model (Helbig et al., 2017). On the other hand,

DEVINE limitations persist, which is illustrated for instance
by the absence of local-scale turbulent structure in the wind
outputs (Le Toumelin et al., 2023).

In addition to potential applications in wildfire spread
modeling, wind energy forecast, wind energy potential
assessment, pollutant dispersion evaluation, drifting-snow
modeling, and avalanche hazard forecasting (Giovannini et
al., 2020; Wagenbrenner et al., 2016; Dujardin and Lehn-
ing, 2022; Lehning and Fierz, 2008), other applications are
sensitive to the accuracy of wind forcing in mountainous ter-
rain. For instance, meteorological forecasters rely on accu-
rate wind predictions in mountains for weather nowcasting
and short-term forecasting: they could benefit from the use of
a high-resolution product such as Neural Network+DEVINE
since the modeling chain yields improved wind values
when compared to other products (e.g., AROMEforecast and
AROMEanalysis) under specific topographic and weather sit-
uations. Other examples are the use of physics-based mod-
els for research purposes in past and future trends in water
availability, glacier evolution, and more generally environ-
mental changes. These models often require meteorological
information such as wind speed at various scales of interest,
including the hectometric scale. For instance, Réveillet et al.
(2018) showed the importance of correctly simulating wind
speed in order to simulate the mass balance of a medium-
sized Alpine glacier when using an energy-balance model, an
issue that concerns past simulations as much as future pro-
jections. Since input variables used in Neural Network are
standard NWP output and topographic indicators derivable
from DEMs, we hypothesize that Neural Network could be
trained by using reanalyses (e.g., SAFRAN, Vernay et al.,
2022; ERA5, Hersbach et al., 2020). On top of a capability
to downscale reanalysis wind fields in the past, this could
also enable us to downscale the wind of climate projections
bias-corrected against these reanalyses, e.g., the ADAMONT
projections (Verfaillie et al., 2017) widely used in France.

5.2 Neural network explainability

ANNspeed input features have various, unequal, and nonlinear
contributions to Neural Network+DEVINE outputs (Fig. 10),
as estimated using ALE (see Sect. 3.5.2). In summary, ALE
determine the effect of each input variable on the average
output, conditional on the values of an input feature. The
most prominent effects are observed for the Wind Speed10m
input feature (Fig. 10p), which confirms our expectations
since it corresponds to the downscaled variable modified in
ANNspeed output. The use of a skip connection (Fig. 2) for
this variable may also play a role in maintaining it as the most
important variable for downscaling even though correlated
variables, such as wind speed at other atmospheric levels, are
also used as inputs. Wind speed computed by AROMEforecast
at other atmospheric levels shows strong effects on the out-
puts, most notably when it concerns high speed values.
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Figure 10. Accumulated local effects (ALE) associated with each input variable of ANNspeed (solid lines). ALE are expressed in meters
per second and can be interpreted as the effect of a specific variable at a certain value compared to an average prediction. Shaded areas
indicate cumulative dispersion around the mean local effects and increase in each panel from left to right by design. Variations in shaded
areas indicate additional uncertainty, and comparisons of shaded areas across the panels give insights into uncertainty differences in ALE
computation. The small ticks at the top of each panel represent distribution quantiles that were used to compute ALE. Green, violet, and
yellow colors indicate, respectively, input meteorological variables, topographic variables, and wind-related variables.

Topographic parameters also have strong impacts on the
speed outputs, particularly when this concerns the tails of the
parameter distributions. Real elevation (elevation, Fig. 10g)
and model elevation (elevationmodel, Fig. 10f) have oppo-
site effects: the first one tends to be positively correlated
with speed outputs, and the second one presents a negative
correlation. Two-dimensional ALE plots (not shown) sug-
gest almost no second-order interaction between either vari-
able. The joint effect of these variables, approximated by
the sum of the first- and second-order effects, suggests in-
creasing speed outputs with increasing elevation. This con-
firms our initial interpretation of AROMEforecast biases (see
Sect. 4.1) that highlighted an average underestimation of
speed by AROMEforecast over elevated regions. Interestingly,
TPI500m, which was also a variable we identified to possibly
account for AROMEforecast biases, presents diverse effects on
the outputs. As Neural Network+DEVINE was trained af-
ter comparing observed values to downscaled simulations,
the effects in Fig. 10 not only compensate for biases in
AROMEforecast, but can also relate to local-scale effects in
the downscaling module, i.e., counterbalancing missing or
incorrectly represented local processes in DEVINE.

Finally, we observe that input variables related to the state
of the atmosphere (green-shaded areas in Fig. 10) have a
lower influence on the output and tend to be less dispersed.
Interestingly, we see that net shortwave radiations at the sur-
face (SWnet, Fig. 10c) increase the speed outputs. This sup-
ports Le Toumelin et al. (2023), who observed speed un-
derestimation with AROMEforecast during the afternoons of
the summer months, where SWnet is generally high. In con-
trast, net longwave radiations (LWnet, Fig. 10a), 2 m temper-
ature (T2m, Fig. 10b), cloud cover (Fig. 10e), and local slope
(Fig. 10j) show a very modest influence on the outputs. Re-
moving iteratively slope and cloud cover from the input fea-
tures (which are the less impactful input variables according
to ALE) and re-training the model did not impact the evalua-
tion metrics. However, removing all variables with low ALE
(LWnet, T2m, cloud cover, and slope) starts to show modifica-
tions in evaluation metrics, with for instance the correlation
coefficient dropping from 0.72 to 0.70. This could be due to
(i) feature interactions not observed in one-dimensional ALE
plots, (ii) some unexpected overfitting of the test set, and (iii)
the visualization artifact from Fig. 10. Indeed, Fig. 10 high-
lights the largest effects on the outputs, making ALE close to
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1 ms−1 look negligible. However, we remind the reader that
1 ms−1 almost accounts for 50 % of the mean speed value
(2.23 ms−1 in AROMEforecast).

Here, ALE appear to be useful for model interpretation
and as a tool for input variable selection. Indeed, we can
distinguish between three groups of input features of un-
equal importance within the model (topographic variables,
wind-related variables, and other weather-related variables).
This is partly supported by additional sensitivity tests that
reveal a larger increase in the RMSE when removing the to-
pographic variables (RMSE= 1.68 ms−1 versus 1.62 ms−1

with all variables included) or the wind-related variables with
the exception of Wind speed10m (RMSE= 1.67 ms−1) from
ANNspeed input features than when removing other meteoro-
logical variables (RMSE= 1.65 ms−1).

This is of interest for the application of the Neural Net-
work+DEVINE correction and downscaling strategy to a va-
riety of products like reanalyses, as solely topographic or to-
pographic plus basic atmospheric variables may be easier to
access, retrieve, and process than a complex suite of ancil-
lary weather variables not always available in the reanalysis
archives.

Input variables of ANNdirection present scattered individual
effects probably showing large interactions among input vari-
ables within the model when computing the output, as visible
in PDPs (Fig. 11). Before using PDPs for ANNdirection, we
confirmed that the input variables were not correlated with
each other by checking Pearson correlation coefficients. We
studied the impact of input features on the directional differ-
ence added to the NWP direction on the final ANNdirection
output neuron rather than on the value of the downscaled
wind direction, as a classic mean value is not defined for
cyclic variables such as wind direction. Note that the mod-
ifications computed by ANNdirection also take into account
DEVINE effects, which are modest concerning wind direc-
tion and which can eventually influence model interpretation.
Wind Speed10m does not modify the mean direction, which
was expected. The mean effect for wind direction fluctuates
around 0, which suggests some small adjustment given cer-
tain azimuths. The mean effect of aspect is also close to 0,
except around 50 and 100◦. The three aforementioned vari-
ables were not expected to have a mean effect, which is ar-
guably confirmed by the PDPs. However, interactions among
the variables could be anticipated, which is also suggested by
the large dispersions around the mean effects. In contrast, α
has a strong effect for negative values, which was intuitively
expected since this variable already incorporates some inter-
action between wind direction and aspect. Surprisingly, we
do not observe the same behavior for positive α. We remind
the reader that the highest absolute values for α are obtained
when a flow arrives perpendicularly to a steep vertical slope.
The large dispersion around each PDP mean value suggests
different scenarios and large variable interactions. Finally,
we underline the fact that interpretability methods are impor-
tant not only for understanding how a model deals with in-

puts and for feature selection, but also for anticipating model
output modifications linked to future evolutions of the model
providing input data (here AROMEforecast). As discussed in
the previous section, NWP is under constant evolution, fre-
quently incorporating new or modified parameterizations that
tend to modify the model’s general behavior and affect sev-
eral atmospheric variables. Interpretability methods such as
in Fig. 10 permit us to approximate typical effects that can be
obtained through the correction and downscaling model and
to anticipate the upcoming possible modeling errors follow-
ing NWP updates.

6 Conclusions and perspectives

Understanding the complex patterns that characterize wind
in mountainous terrain is of great importance for several ap-
plications, with direct consequences for the environment and
human societies. Despite years of continuous improvements,
NWP models still rely on downscaling techniques to repre-
sent wind features at a local scale in mountains. Not only
does the typical kilometer-scale spatial resolution limit their
use for several applications, but NWP models are also af-
fected by systematic errors linked to typical meteorologi-
cal or topographic situations. In this study, we used a large
network of observation stations to identify and understand
AROMEforecast systematic errors. We observed a strong link
between model biases and topographic parameters (a joint
effect of elevation and TPI500m) as well as a tendency to un-
derestimate the highest observed speeds.

Aware of the aforementioned limits, here we designed
a new postprocessing architecture, called Neural Net-
work+DEVINE, with the purposes of both correcting
AROMEforecast errors (i.e., applying model output statistics)
and increasing the spatial resolution of the wind signal (i.e.,
downscaling). This new combined architecture benefits from
the use of two artificial neural networks to sequentially cor-
rect the coarse-scale wind signal for direction and speed ac-
cording to specific meteorological and topographic situations
before using the statistical downscaling model DEVINE for
the spatial interpolation of the wind fields.

This hybrid architecture yields better integrated metrics
(MAE, RMSE, mean bias, and correlation coefficient) com-
pared to previous alternatives. The evaluation metrics show
performances similar to AROMEanalysis, a system benefiting
from assimilation techniques to estimate the most plausible
state of the atmosphere in complex terrain. Notably, most
improvements are obtained at elevated and exposed stations
during winter months and more generally for simulating the
largest observed speeds, which suggests that our new method
is well tailored for drifting-snow applications.

This new type of downscaling model greatly benefits from
its modular architecture on several points. By making a
distinction between correction and downscaling, our design
adds flexibility to the different use cases of our model: it is
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Figure 11. Partial dependence plot (PDP) for each input variable of ANNdirection. PDPs represent the mean prediction value obtained after
fixing all instances of a specific input variable to a certain value. Shaded areas indicate 1 standard deviation around the mean effect.

now easy to either use the optimized version (Neural Net-
work+DEVINE) or only rely on DEVINE downscaling mod-
els when required. Finally, the whole architecture permits
us to output consistent three-dimensional wind fields previ-
ously corrected with wind observations. This is a direct con-
sequence of relying on DEVINE for modeling winds at a lo-
cal scale, an advantage that is counterbalanced by the fact
that DEVINE limitations are also inherited by our new archi-
tecture.

This work also stresses the potential of deep-learning tech-
niques for the correction of other near-surface atmospheric
variables. The general architecture designed here, with a
model tailored to correct large-scale errors followed by a
more general downscaling scheme, could favorably be ap-
plied for the bias correction and downscaling of other vari-
ables like 2 m air temperature that similarly exhibit high spa-
tial variations in complex terrain in relation to topographic
and meteorological gradients.

Future work should include a generalization of our model
to other forecast cycles. Indeed, here we only used forecasts
initialized from the 00:00 LT analysis, making our model a
proof of concept that needs to be generalized to other fore-
cast cycles. Furthermore, our design adds up to a large array
of existing solutions to downscale wind fields in complex ter-
rain for which an intercomparison project is highly required.
Such a project could include the use of dense observational

networks to assess precisely the behavior of wind at a local
scale. This exercise could help list the pros and cons of each
method, often developed over different areas and targeting
distinct end-user application cases, and reveal each method’s
value for operational applications. The wealth of near-surface
observations to be acquired at high spatial resolution in the
central European Alps within the TeamX campaign (Serafin
et al., 2020), complemented with the observations routinely
acquired by the local meteorological services, will provide
an adequate database for this venture.

Code availability. The code used to build, train and evaluate the
model is available at https://doi.org/10.5281/zenodo.10594273 (Le
Toumelin, 2024).

Data availability. AROME outputs and weather ob-
servations from Météo-France can be requested online
(https://donneespubliques.meteofrance.fr/, Météo France,
2024). Wind observations from the GLACIOCLIM network
are available at https://glacioclim.osug.fr/ (GLACIOCLIM,
2024). Col du Lac Blanc data are freely available online
(https://doi.osug.fr/public/CRYOBSCLIM_CLB/, OSUG DOI,
2024). Wind observations for stations in Switzerland can be re-
quested on the Idaweb website (https://gate.meteoswiss.ch/idaweb,
MeteoSchweiz, 2024).
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