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Abstract. A novel method for the inference of spatiotemporal decomposition of oceanic surface flow variability
is presented and its performance assessed in a synthetic idealized configuration with horizontally divergentless
flow. Inference methodology is designed for observations of surface velocity. The ability of networks of surface
drifters and moorings to infer the spatiotemporal scales of surface ocean flow variability is quantified. The
sensitivity of inference performance for both types of platforms to the number of observations, geometrical
configurations, and flow regimes is presented. As drifters simultaneously sample spatial and temporal variability,
they are shown to be able to capture both spatial and temporal flow properties even when deployed in isolation.
Moorings are particularly adept for the characterization of the flow’s temporal variability and may also capture
spatial scales provided they are deployed as arrays. In particular, we show that our method correctly identifies
whether drifters are preferentially sampling spatial vs. temporal variability. Pending further developments, this
method opens novel avenues for the analysis of existing datasets as well as the design of future experimental
campaigns targeting the characterization of small-scale (e.g., < 100 km) ocean variability.

1 Introduction

Characterizing oceanic surface motions in terms of their spa-
tial and temporal scales is a recognized pathway toward the
identification of the numerous processes that occur in the
ocean as well as toward an improved understanding of their
occurrences, life cycle, interactions, and impact on other
components of the ocean variability (Ferrari and Wunsch,
2009). For example, Arbic et al. (2014) relied on horizon-
tal wavenumber-frequency decompositions in order to quan-
tify and rationalize the impact of ocean mesoscale turbulence
on longer-term ocean variability in idealized, realistic nu-
merical simulations and altimetric observations. At higher
frequencies, wavenumber-frequency decomposition enables
the separation of internal gravity waves and balanced mo-
tions that share similar spatial scales and are therefore entan-

gled in instantaneous two-dimensional datasets (Torres et al.,
2019; Jones et al., 2023). For example, using a wavenumber-
frequency decomposition, Qiu et al. (2018) were able to
quantify the so-called “transition scale” above which altimet-
ric observations are dominated by balanced turbulence and
below which smaller scales are dominated by internal gravity
waves. These decompositions are easily performed with nu-
merical simulation output and are provided on complete and
regular spatial and temporal grids. However, the lack of ob-
servational knowledge of the high-frequency and small-scale
distribution of energy is a recognized limitation of the valida-
tion of tide-resolving kilometer-resolution global- or basin-
scale numerical models of the ocean circulation (Arbic et al.,
2018; Yu et al., 2019b; Arbic et al., 2022).

The characterization of ocean variability in terms of spa-
tial and temporal scales is also relevant from an operational
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perspective. The description of an ocean variable’s autocor-
relation properties is required to map sparse observations via
optimal interpolation (Bretherton et al., 1976; Bretherton and
McWilliams, 1980). For instance, estimation of surface cur-
rents heavily relies on the accurate mapping of altimetric ob-
servations which consist of narrow (order 5 to 10 km) geo-
graphically and temporally distant tracks (Pujol et al., 2016).
The advent of wide-swath altimetric (Morrow et al., 2019;
Fu et al., 2024) and upcoming current measuring satellite
missions introduces novel challenges regarding the mapping
of the observed variables and the separation of slower bal-
anced motions and faster internal gravity waves. This has
motivated the development of novel strategies for the separa-
tion of the signatures associated with both classes of motion.
These strategies rely on a priori knowledge of the motions’
spatial and temporal scales (Barth et al., 2014, 2021; Ubel-
mann et al., 2021, 2022).

The in situ characterization of ocean variability at
mesoscale to submesoscale (e.g.,< 100 km,< 10 d) has been
a central objective for a number of ambitious experimen-
tal efforts over the last decade: LatMIX (Shcherbina et al.,
2015), Carthe Consortium (Poje et al., 2014; D’Asaro et
al., 2018), OSMOSIS (Buckingham et al., 2016; Yu et al.,
2019a), and SMODE (Farrar et al., 2020). Estimation of the
time–space decomposition of upper-ocean variability has re-
sulted from the dense dedicated mooring deployments of OS-
MOSIS and further highlighted difficulties associated with
the Doppler shifting of small-scale structures when observed
from fixed platforms (Callies et al., 2020). Such experiments
incur significant financial and environmental costs; therefore
any optimization in the experimental design and/or improved
data analysis strategies are advantageous. Drifters are cheap
and experimentally light platforms for the spatial and tem-
poral characterization of ocean variability but require ade-
quate inference methodologies. This study presents one such
methodological development.

The characterization of horizontal and temporal variabil-
ity of oceanic surface motions from observations represents a
challenge that depends on the class of motions of interest, the
quantity and nature of observations available, and the lack of
a methodology that is both sufficiently versatile to the dif-
fering observation platforms and mathematically coherent.
Fixed-point platforms provide information that is horizon-
tally localized over potentially extended time periods with
fine temporal resolution. Such data are conducive to tempo-
ral decomposition (Polzin and Lvov, 2011). The tracking of
surface and subsurface drifting platforms provides ocean cur-
rent observations, which are also amenable to temporal de-
composition (Lumpkin et al., 2017), albeit representing the
Lagrangian particle and thereby aliasing certain spatial char-
acteristics. At daily to monthly timescales, drifters have en-
abled characterization of mesoscale eddy variability via in-
spection of surface current autocorrelation or spectral prop-
erties (Zhang et al., 2001; Lumpkin et al., 2002; Veneziani et
al., 2004; Sykulski et al., 2016) or rotary wavelet decomposi-

tion (Lilly and Gascard, 2006; Lilly et al., 2011). The Global
Drifter Program has collected surface current information
worldwide for ∼ 30 years. Recently, the advent of GPS and
wider-bandwidth satellite communications has enabled high-
frequency sampling of surface drifter positions and a gener-
ation of surface drifter velocity datasets with global hourly
coverage (Elipot et al., 2016). Over the last decade, global
descriptions of the ocean surface high-frequency variability
have emerged (Elipot et al., 2010, 2016; Yu et al., 2019b; Ar-
bic et al., 2022). These descriptions are timely to validate
recent kilometer-scale tide-resolving basin-scale numerical
simulations (Arbic et al., 2018).

Satellite observations are well posed to characterize sur-
face ocean spatial variability. The constellation of conven-
tional nadir altimeters provide maps of sea level and surface
currents that resolve larger mesoscale motions (Ballarotta
et al., 2019). However, spatial and temporal gaps between
nadir altimeters impose limitations on the resolvable spa-
tial and temporal resolutions (Ballarotta et al., 2023). Con-
sequently, there are multiple spatial and temporal characteri-
zations of ocean variability that combine altimetry with other
in situ datasets, e.g., moorings, XBTs (expendable bathyther-
mographs), and tomography (Zang and Wunsch, 2001; Wun-
sch, 2010; Wortham and Wunsch, 2014). For smaller spatial
scales, ship-based measurements of tracers and currents have
informed the estimation of spatial scales of ocean variability
(Callies and Ferrari, 2013), but such measurements poten-
tially entangle spatial and temporal contributions to an un-
clear extent. Drifters are thought to offer promising data for
the description of smaller mesoscale and submesoscale vari-
ability (Balwada et al., 2016, 2021). Dedicated experiments
with deployments of a large number of surface drifters such
as the experiment conducted by the Carthe Consortium have
provided useful datasets to demonstrate small-scale ocean
variability despite also highlighting potential biases associ-
ated with the horizontally divergent character of the flow at
these scales (Poje et al., 2017; Pearson et al., 2019, 2020;
Wang and Bühler, 2021).

Here we present a new method for the spatial and tempo-
ral characterization of oceanic surface flow variability. To test
the method we consider an idealized configuration of ocean
variability, whose properties and synthetic generation are de-
scribed in Sect. 2.1. The novel method for the inference of
the flow properties is described in Sect. 2.3. The inference is
then applied to several scenarios of observations in order to
explore the performance of the inference relative to the num-
ber of observations (Sect. 3.2), to platform spatial separation
(Sect. 3.1), and to flow regime (Sect. 3.4). The results are
discussed and conclusions drawn in Sect. 4.
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2 Method

2.1 Idealized ocean surface flow design

We consider a two-dimensional and time-variable flow, de-
scribed by the sum of rotational and divergent contributions:

u=−∂yψ + ∂xφ, (1)
v = ∂xψ + ∂yφ, (2)

where u and v are the zonal (toward positive x) and merid-
ional (toward positive y) velocities in the respective direc-
tions x and y, ψ is the streamfunction, φ is the velocity
potential, and ∂x and ∂y are the partial derivatives in x and
y. We can describe the second-order behavior of ψ and φ,
equivalently, by either their covariance functions or spectral
densities. For general random fields a and b, defined over
x, we define the stationary covariance function as Cab(τ )=
〈a(x0),b(x0+τ )〉, where the inner product is given as the co-
variance inner product 〈a,b〉 = E[(a−E[a])(b−E[b])]. Here,
the boldface x0 and τ denote a location and distance in x, re-
spectively, in space and time. As stationarity is assumed, co-
variance is defined only as a function of τ . We define the cor-
responding spectral density as Sab(ω), where the boldface ω
represents a location in wavenumber and frequency space. As
shown by Wiener–Khinchin’s theorem, the covariance func-
tion and the spectral density are Fourier pairs, so that

Cab(τ )=
∫
∞

−∞

Sab(ω)exp(2πiωτ ) dω, and

Sab(ω)=
∫
∞

−∞

Cab(τ )exp(−2πiωτ ) dτ .
(3)

Given an assumed parameterization of Cψψ , Cφφ , and Cψφ ,
the horizontal velocity auto- and cross-covariances are thus

Cuu =−∂yyCψψ − ∂xxCφφ + ∂xyCφψ + ∂xyCψφ, (4)
Cvv =−∂xxCψψ − ∂yyCφφ − ∂xyCφψ − ∂xyCψφ, (5)
Cuv = ∂xyCψψ − ∂xyCφφ + ∂yyCψφ − ∂xxCφψ . (6)

Similarly, given the spectral densities Sψψ , Sφφ , and Sψφ ,
we define the power and cross-power spectral densities of
the horizontal velocities as

Suu = l
2Sψψ + k

2Sφφ − kl(Sψφ + Sφψ ), (7)

Svv = k
2Sψψ + l

2Sφφ + kl(Sψφ + Sφψ ), (8)

Suv = kl(Sφφ − Sψψ )− k2Sψφ + l
2Sφψ , (9)

where k and l are horizontal wavenumbers. For our numer-
ical experiment, we derive a purely rotational flow by set-
ting φ = 0 and, so, simply, u=−∂yψ and v = ∂xψ . This
leads to the covariance functions Cuu =−∂yyCψψ , Cvv =
−∂xxCψψ , and Cuv = ∂xyCψψ and spectral densities Suu =
l2Sψψ , Svv = k2Sψψ , and Suv =−klSψψ .

To parameterize the flow we seek either a covariance func-
tion or spectral density that satisfies the physical require-
ments of the streamfunction ψ ; namely, we require a log-
linear decay in the high frequency or wavenumber of the
spectral density. A good candidate for this is the isotropic
Matérn covariance function (Rasmussen and Williams, 2005)
with auto-covariance function and power spectral density
(PSD),

C(τ )=
21−ν

0(ν)
(λ‖τ‖2)νKν(λ‖τ‖2), and

S(ω)=
cν(

‖ω‖22+ λ
2
)ν+D/2 , where

cν =
2DπD/2λ2ν0(ν+D/2)

0(ν)
,

where ‖·‖2 denotes the Euclidean norm/distance, D is the di-
mension of τ and ω, 0(·) denotes the Gamma function, and
Kν is the modified Bessel function of the second kind of or-
der ν ≥ 0. For positive half-integers of ν, i.e., ν = p− 1/2,
where p ∈ N+, Kν has an analytical expression, otherwise it
must be numerically calculated. We assume ψ to follow a
separable Matérn process in space (D= 2) and time (D= 1),
so that Cψψ (τ )=92Css(τd)·Ctt(τt), where9 is the standard
deviation of the streamfunction, τ = [τd,τt], where τd repre-
sents the isotropic distance in space and τt represents the time
lag, and both Css(τd) and Ctt(τt) are specified as correlation
functions, that is, Css(0)= Ctt(0)= 1. For the kernel defined
over space Css(τd), we define the slope and decorrelation pa-
rameters νs and λs, respectively. For the kernel defined over
time Ctt(τt), we define the slope and decorrelation parame-
ters νt and λt, respectively. This separability assumption is a
concession on realism, which substantially eases the compu-
tational cost of the flow generation step and is not expected to
affect our evaluation of the inference performance (Wortham
and Wunsch, 2014; De Marez et al., 2023). The covariance
functions with respect to u and v are thus

Cuu(τ )=−92Ctt(τt) ·
y2C′′ss(τd)+ x2τ−1

d C′ss(τd)

τ 2
d

, (10)

Cvv(τ )=−92Ctt(τt) ·
x2C′′ss(τd)+ y2τ−1

d C′ss(τd)

τ 2
d

, (11)

Cuv(τ )=92Ctt(τt) ·
xy
(
C′′ss(τd)− τ−1

d C′ss(τd)
)

τ 2
d

, (12)

where primes denote derivatives with respect to the horizon-
tal distance τd.

2.2 Synthetic flow data generation

The amplitude of the streamfunction 9 is related to the
flow standard deviation U via 9 = Uλs

√
(νs− 1)/νs. The

reference flow simulation is defined such as to be repre-
sentative of moderately energetic mesoscale turbulence with
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U = 0.1 ms−1, λs = 100 km, and λt = 5 d (Fig. 1) (Ferrari
and Wunsch, 2009). Matérn slope parameters are chosen to
be νt = 1/2 and νs = 5/2, leading to a−2 temporal spectrum
slope and a spatial isotropic spectral slope of −6. While the
temporal spectral slope fits expectations, the spatial spectral
slope is steeper by a value of 1 (20 %) compared to the value
typical of quasi-geostrophic turbulence (Callies and Ferrari,
2013; Wortham and Wunsch, 2014). This concession to re-
alism was made because it yields an analytical form for the
Matérn covariance function, which alleviates the computa-
tional cost of the inference substantially. We reparameterize
the covariance functions by 9 = γ λs, where γ is interpreted
as the amplitude parameter of the horizontal velocity pro-
cess; as well as interpretability, this has some computational
benefits.

With the previous choice of parameters, the streamfunc-
tion is generated over a 1000 km by 1000 km domain with
2 km grid spacing and over 100 d with hourly resolution
(Fig. 1). This resolution is a factor of ∼ 50 times smaller
than decorrelation, which is considered enough to resolve
the synthesized variability and mitigate numerical interpola-
tion errors in Lagrangian numerical simulations. Sizes of the
spatial domain and the time series are ∼ 10 and ∼ 20 times
larger than decorrelation scales, which ensures we are cap-
turing multiple, effectively independent, realizations of the
process.

The hourly synthetic flow is fed to the Parcels Python li-
brary configured with fourth-order Runge–Kutta time step-
ping and the default A-grid interpolation scheme in order
to produce synthetic drifter trajectories (Delandmeter and
van Sebille, 2019). Drifters are released initially at all flow
grid points with the exception of a 20 km strip around all
boundaries, amounting to a total of 9216 drifters for each
simulation. Trajectories reaching domain boundaries are de-
activated and not advected further in time and discarded from
the list of observations that will be used for inference. The
fraction of trajectories discarded was 52 % in the reference
configuration. Drifter positions are stored at hourly reso-
lution and velocities estimated from drifter positions with
second-order finite differencing. An example of drifter tra-
jectories is shown in Fig. 1. The flow amplitude averaged
over time and space is about 1.8 % larger than that computed
from drifter trajectories which reveals small turbophoresis,
i.e., concentration of drifters in areas of lower energy (Free-
land et al., 1975).

A non-dimensional parameter used to characterize flow is
α = Uλt/λs. This parameter is expected to control the rela-
tive importance of spatial vs. temporal variability in the pro-
jection onto Lagrangian time series (Middleton, 1985). In the
reference scenario, the value of α is 0.4, which is in the range
of observed ocean values (Lumpkin et al., 2002). In order to
obtain mooring and drifter time series with different α values,
the synthetic flow is simply rescaled, and new Lagrangian
trajectories are simulated with the rescaled flow.

2.3 Inference

Observed data y are composed of flow time series collected
over time by Np drifters or moorings to which a white noise
n of standard deviation σ is added. The critical difference
between drifter and mooring observations is that they are
collected along drifter trajectories in the former case, i.e.,
u[x(t)]+n(t), where x(t) is a drifter trajectory, while they are
collected at a fixed location in the latter one, i.e., u[x, t]+n(t)
where x is a mooring location.

We treat the collection of parameters 2= {γ,λs,λt,σ
2
}

as uncertain and unknown and probabilistically quantify this
uncertainty. We treat2 as a random variable and so naturally
adopt the Bayesian paradigm of probability. Bayes’ theorem
states p(2 | y)∝ p(y |2)p(2), where p(2 | y) is the poste-
rior distribution, p(y |2) is the likelihood, and p(2) is the
prior distribution. The posterior is our target quantity and
describes the probability distribution of 2 conditioned on
the observed data. The likelihood is a probability distribution
that assesses the probability of the data being generated, con-
ditioned on some value of2. Finally, the prior represents our
knowledge of 2 before we observe the data y; in this term
we may include the results from previous analyses, bounds
on values that 2 may take or any physically derived struc-
ture between the constituent parameters inside of 2. Prior
distributions are chosen here to be uniform between 0 and 10
times true parameter values.

Exact computation of p(2 | y) is analytically achievable
for a small class of model problems; however, this is typi-
cally not so, and so p(2 | y) is computed numerically using
Markov chain Monte Carlo (MCMC), as this is the gold stan-
dard in statistical computing. MCMC generates a dependent
chain of draws from the posterior p(2 | y), such that sub-
sets of 2 are visited proportionally to the posterior proba-
bility of the subsets. We show an example of this in Fig. 2
for the moored data reference scenario. The trace plots con-
sist of 20 000 dependent samples from which we may derive
summaries of the posterior distribution, p(2 | y), via stan-
dard Monte Carlo methods. For example, the marginal distri-
butions of each parameter are represented by the histograms
in the right-hand column of Fig. 2. MCMC is asymptoti-
cally exact in that the sampled draws converge to the exact
posterior probability distribution. We generate samples us-
ing Metropolis–Hastings (MH), a well-known and accessible
MCMC algorithm. Description and particulars are provided
in the Appendix.

As discussed above, we parameterize our model using the
Matérn covariance function as it exemplifies a number of de-
sirable physical characteristics. However, the derivative of
the Matérn covariance function is difficult to obtain due to
Kν(·): analytical derivatives are only available at integer val-
ues of ν− 1/2, and numerical calculations of Kν(·) are not
available in any symbolic toolboxes that we are aware of.
To mitigate the computational burden and enable the per-
formance of ensemble of statistical experiments, we decided
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Figure 1. Overview of the inference input data for the reference scenario: (a) streamfunction snapshot in color overlaid with eight drifter
tracks and moorings used for the inference, (b) x velocity time series of the drifter identified by the black track in (a), and (c) x velocity time
series at the mooring indicated by the black star in (a). In (b) and (c), black dots indicate the 2 d of sub-sampled data used in the inference.

Figure 2. Trace plots of MCMC sampling for the flow parameters (left) and associated histograms (right) for a single inference based on
eight drifter trajectories for the reference scenario. True parameter values are indicated by the black lines, while MAP location and values
are indicated by thick gray lines.

to fix the slope parameters νs and νt to half-integer values
described in Sect. 2.2 and exclude these parameters from
those inferred. This choice is relaxed in Sect. 3.5 in order
to demonstrate that the inference of these parameters is pos-
sible as achieved in the purely temporal domain by Sykulski
et al. (2016).

The noise chosen here (σ = 0.01 ms−1) is representative
of oceanographic velocity observations. State-of-the-art sur-
face drifters are for instance equipped with GPS and provide
hourly position observations with 10 m accuracy (Poulain et
al., 2022). Under the assumption that the noise is white, this
leads to a noise standard deviation on velocity observations
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of about 0.004 ms−1, which is less than half of what we con-
sidered. Acoustic Doppler current profilers (ADCPs), such as
those deployed on moorings, exhibit typical accuracies in the
0.01 to 0.1 ms−1 range (Klema et al., 2020). Our expectation
is that the performance of the inference should eventually de-
cay as the noise on velocity observations increases, and this
should be verified in a future study.

2.4 Validation of the inference methodology

As the mooring and drifter data are simulated, we know
the ground truth and so may validate the MCMC sampling
methodology. We show this for two cases: first, we show
the probabilistic parameter estimates from the reference flow
(Sect. 2.1), and second, we compare the maximum a poste-
riori (MAP) estimates, i.e., 2̂ := argmax2{p(2 | y)}, of an
100-member ensemble with their true values. Examining a
single scenario demonstrates the inherent uncertainty asso-
ciated with a single experiment, whereas, inference across
an ensemble looks at the variability that arises between data
samples. In all cases, the data comprise a bivariate u and v
time series collected either along eight trajectories (drifters)
or at eight stationary locations (moorings), with 2 d tempo-
ral sampling over 100 d, amounting to 400 data points. The
ensemble data are generated from the single spatiotemporal
field with randomly sampled drifter tracks and mooring lo-
cations. Figure 2 shows the marginal posterior probability
distributions of the single-member reference scenario. For all
parameters, the true values lie well within the probability dis-
tribution. Note, σ 2 is not well resolved; this is because of the
roughness of the Matérn process at the set sampling interval
(see Fig. 1), confounds with the noise signal so that both pro-
cesses may be viable in explaining the observed data. This is
somewhat expected, and more detailed statistical diagnostics
accompany the code in the Supplement. Figure 3 plots a his-
togram of the MAP values calculated from each ensemble
member’s MCMC chain against the true value. This shows
the variability of the distributions about the true value over
the ensemble. Again, all distributions are centered on the true
values, and there exists some difficulty in observing σ 2 with
precision. The precision of the inference will also be quan-
tified by the difference between the third and first quartiles,
which will be referred to as the interquartile width (IQW).

2.5 Inference scenarios

This study reports on the performance of the inference
method under several scenarios (summarized in Table 1):

– REF corresponds to the nominal configuration de-
scribed in Sect. 2.4 with eight simultaneously deployed
platforms.

– Under SEP[dx], when multiple platforms are simulta-
neously sampling the flow, the separation between plat-
forms and more generally their geometrical distribution

is expected to modulate the performance of the infer-
ence. To simplify the analysis, we restrict the configura-
tion to two simultaneous observing platforms (e.g., two
drifters or two moorings) and investigate the sensitivity
of the inference performance to their separation (with
10 % tolerance). For drifters, the separation is the initial
one between the two drifters.

– In the IND scenario, inference is performed by assum-
ing time series from different platforms are independent
from each other. Such a situation would occur if indi-
vidual moorings/drifters were deployed at the same lo-
cation, but at times sufficiently far apart, no correlation
is expected across the velocity time series recorded by
each platform. In effect this amounts to quantifying the
ability of one platform at capturing flow parameters and
investigating the sensitivity to the length of the time se-
ries.

– Under OPT[Np], platforms are deployed in a spiral con-
figuration that leads to separations that span the flow
spatial decorrelation scale (see Sect. A2). The purpose
of this experiment is to perform a simple experimen-
tal design optimization of the number of platforms de-
ployed and of the choice between moorings and drifters.

– In REG[α], the amplitude of the flow is rescaled in or-
der to explore different values of the flow regime param-
eter α = Uλt/λs. The amplitude of the noise is linearly
scaled as a function of α in order to maintain a fixed
signal-to-noise ratio. Inference is performed with a sin-
gle platform.

– The NU scenario is similar to OPT[Np] with Np = 8,
with the exception that the spectral slope parameters νs
and νt are also inferred.

3 Results

3.1 Platform separation sensitivity

Under scenario SEP[dx], estimations of the flow amplitude
are comparable for observations from two moorings or two
drifters and precise, with IQWs lower than 13 % of true am-
plitudes and no sensitivity to separation (Fig. 4a). We argue
this follows from the fact that inferences are provided with
velocity observations as inputs. Drifter inferences of the flow
amplitude exhibit a 1 % to 3 % low bias, which is comparable
to that associated with turbophoresis (Sect. 2.2).

Mooring spatial-scale estimates are sensitive to separation
(Fig. 4b). After a modest decrease in performance of the in-
ference with separation as measured by IQWs, the best infer-
ence is obtained for separation in the range of 40 to 80 km.
For larger separations, the inference precision decreases,
with IQW reaching values of about 0 % of true values at
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Figure 3. Distribution of parameters MAP values for the reference flow and reference observation scenario (scenario REF). True parameter
values are represented by vertical black lines. First and third quartiles are vertical dashed gray lines and provide insight into the interquartile
width (IQW).

Table 1. Inference scenarios. All other parameters are held constant across the scenarios.

Scenario γ [ms−1] Np Drifters Moorings

REF 7.7× 10−2 8 random draw random draw
SEP[dx] 7.7× 10−2 2 random with initial separation dx random with separation dx
IND[Np] 7.7× 10−2 [1–16] random draw and independent observations random draw independent observations
OPT[Np] 7.7× 10−2 [1–16] spiral deployment spiral deployment
REG[α] [1.6× 10−3

− 4× 10−1
] 1 random draw random draw

NU 7.7× 10−2 8 spiral deployment, νs and νt inferred spiral deployment, νs and νt inferred

300 km, i.e., 3 times the flow spatial scale. This loss of per-
formance with separation reflects the loss of correlation be-
tween the flow measured by each mooring and thus the lack
of information about spatial structure in the dataset. Drifters
exhibit no clear sensitivity to separation for the spatial-scale
estimate. This may first be explained by the substantial dis-
placements of the drifters compared to the separations con-
sidered. A flow exponentially autocorrelated over 10 d with a
standard deviation of 10 cms−1 leads to an absolute disper-
sion of (250 km)2 (Gurarie et al., 2017). The natural ability
of drifters to explore space and time and therefore constrain
spatial scales (see Sect. 3.2) provides a second explanation.

Mooring and drifter inferences of the flow temporal scale
both exhibit a modest high bias of 5 % to 10 % (Fig. 4c).
As expected, drifters are overall less effective than moorings
at estimating the flow temporal-scale parameter. IQWs as-
sociated with drifter inferences are systematically larger than
those associated with moorings, which fluctuate around 30 %
for moorings, compared with drifters, which increase with
separation up to 60 %.

3.2 Sensitivity to the number of independent platforms

Under scenario IND[Np], single moorings (i.e., Np = 1) pro-
vide estimates of the flow amplitude, γ , and temporal decor-
relation scale, λt, parameters that are precise, with IQW start-
ing at about 16 % and 45 % of true values, respectively. Pa-

rameters γ and λt converge to true values as the number of
independent moorings is increased (Fig. 5). For the maxi-
mum number of platforms considered, the IQW of the flow
amplitude and temporal decorrelation has decreased to 4 %
and 11 %, respectively. As expected from their inability to
explore the spatial dimension, single moorings are however
globally unable to capture the flow spatial scale, with IQW
comparable to half the width of the parameter space allowed
to be explored, i.e., [0,1000km], which amounts to the prior
uncertainty (that is, there is no resolution of uncertainty).

In comparison, drifters provide reasonable estimates of all
three flow parameters (γ , λs, λt), with IQW starting at about
14 %, 92 %, and 95 % for one platform. These estimates con-
verge toward truth as the number of platforms is increased,
with IQW smaller than 16 % for all three parameters with
16 drifters. The ability of drifters to capture both spatial and
temporal scales is explained by their ability to sample space
and time simultaneously. MAP medians indicate mild biases
with an underestimation of amplitude and overestimation of
temporal decorrelation scale, which decrease as the num-
ber of drifters is increased. The amplitude low bias is about
7 % with a single drifter and reduces to about 1.4 % with
16 drifters, which is comparable to the turbophoresis bias
(Sect. 2.2). The temporal decorrelation scale λt of drifters is
always less accurate than that obtained with moorings, which
we interpret as the price to pay for the simultaneous sampling
of spatial and temporal variability.
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Figure 4. Sensitivity of parameter MAP estimates to platform separation (in km) for the two platform configurations (scenario SEP[dx]).
Lines represent the median, while shaded areas are bounded by first and third quartiles. True values are in black. When visible, gray shadings
represent the no-go zone of the prior and inference parameter exploration.

Figure 5. Sensitivity of parameter MAP estimates to the number of platforms (scenario IND[Np]). Platforms are assumed independent from
each other. Same representation as Fig. 4.

3.3 Experimental design optimization

Optimizing an experimental design is a complex task that
results from a compromise between scientific goals, a pri-
ori knowledge of the variables to be measured, financial and
logistical constraints, and the need for redundancy, among
other aspects. Scenario OPT[Np] illustrates how one could
identify what the minimum experimental design is, enabling
an accurate estimation of flow properties.

Consistent with the results of the previous scenarios, no
substantial bias is observed. IQW is used to quantify accu-
racy and therefore is the target variable to minimize to iden-
tify optimal design (Fig. 6). Apart from the one platform con-
figuration, where the mooring is unable to estimate the spa-
tial scale of variability, moorings and drifters present compa-
rable sensitivities as a function of the number of platforms.
The number of platforms required to reach a target IQW of
20 % of the true value for all parameters except for σ is 4 for
both platforms (Fig. 6).

In light of the low cost of drifters compared to moorings
(factor of about 100 for deep sea applications), this result
is particularly striking. However, we note the simplicity of
the present exercise (idealized flow, constrained geometry

of deployment; see Sect. A2) in light of past efforts on the
matter (Bretherton and McWilliams, 1980; Barth and Wun-
sch, 1990). As stated in the preamble, optimizing for char-
acterization of flow properties constitutes one consideration
among many that may be taken in an experimental design
optimization. Scientific goals may in general go well beyond
the characterization of flow properties. If flow properties are
suspected to evolve temporally, the use of drifters which are
expected to eventually disperse will require multiple deploy-
ments in the area of interest unlike with moorings.

3.4 Flow regime sensitivity

We turn now to an investigation of the sensitivity of infer-
ences to the flow parameter α (scenario REG[α]). We revert
to the single-platform configuration in order to limit the ex-
change of information across platforms and the resulting con-
straint it brings for inference which may mask the α sensitiv-
ity. For comparison purposes we also perform a “time-only”
inference of drifter velocity time series, which estimates flow
amplitude, temporal decorrelation scale, and noise only and
not the spatial decorrelation scale λs.
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Figure 6. Sensitivity of parameter MAP estimates to the number of platforms (scenario OPT[Np]). Same representation as Fig. 4.

As anticipated from Sect. 3.2, inferences of flow amplitude
and temporal decorrelation scale from mooring observations
are relatively accurate, with IQW of about 15 % and 50 %
of true values, respectively (Fig. 7a and c). The amplitude
inference reflects the linear sensitivity to α. Spatial scales
remain undetermined for all α values (Fig. 7b). This lack of
sensitivity is expected due to exclusive sampling of temporal
variability by a single mooring.

Inferences of flow amplitude from drifter observations are
comparable to mooring inferences in terms of IQW albeit
with a low bias of about 5 % (Fig. 7a). A comparable bias
is observed on time-only inferences for small α values but
is exacerbated for α larger than unity where it reaches about
35 % of the true amplitude (Fig. 7c). For large α, distortions
of the temporal spectrum shape are likely affecting the over-
all performance of the time-only inferences which rely on the
spectral distribution following that of a Matérn 1/2 process.

For small α values (< 0.2), inference of the flow spatial
decorrelation scale from drifter observations are the worst,
and the IQW is nearly comparable to those from mooring
observations (Fig. 7b). Drifters indeed merely move over a
flow timescale comparable to the spatial decorrelation scale
in this flow regime, which has been historically coined a
“fixed float” and can be effectively considered a mooring
(Middleton, 1985; Lumpkin et al., 2002). Accordingly, when
α < 0.2, estimates of the flow amplitude γ and temporal
decorrelation scale λt are comparable for moorings and for
drifters whether with the standard inference or the “time-
only” inference.

For larger values of α (e.g., > 0.2), the precision of the
flow spatial decorrelation-scale inference from drifter obser-
vations improves substantially with decreasing IQW (down
to 50 % at α ∼ 1). In contrast, estimates of the temporal
decorrelation scale deteriorate, with a bias high of about
25 % and IQW width of about 120 %. At these values of α,
the flow is in the so-called “frozen turbulence” regime, and
drifters are in effect experiencing the spatial variability of
the flow field (Middleton, 1985; Lumpkin et al., 2002). This
is directly reflected in the estimate of the temporal scale ob-
tained from the “time-only” inference, which monotonically

decreases with α. The fact that the temporal scale from the
space–time inference does not follow a similar trend is a tes-
timony to the relevance of the latter method, which is able to
identify that observations reflect a predominance of spatial
variability and attribute reasonable space-scale and timescale
estimates, albeit with moderate error and bias.

3.5 Spectral slope estimation

For the final experiment (NU), the assumption that spectral
slopes are known is relaxed, and Matérn slope parameters νs
and νt are inferred along with the other parameters, i.e., γ ,
λs, λt, and σ . The assumed prior distributions are uniform
over [1,5] and [0,5] for νs and νt, which is larger than typi-
cal uncertainties in the ocean for these parameters. Estimat-
ing these parameters leads to a 45-fold increase in computing
time, due to computation of the Bessel function Kν , as dis-
cussed in Sect. 2.1.

The impact on flow parameter estimation is a modest in-
crease of normalized IQW (Fig. 8) compared to OPT[Np]
with Np = 8 (Fig. 6). For instance, spatial and temporal
decorrelation scales IQW estimated with mooring observa-
tions increase from 7 % and 14 % to 10 % and 18 % of true
values, respectively. Inferences from drifter observations un-
dergo comparable increases.

The inference of spatial and temporal Matérn slopes is suc-
cessful with posterior distributions centered around their true
values and IQW of less than 22 % of true values. Indepen-
dent experiments with random platform deployments similar
to REF lead to more contrasted results, with the temporal
slope being effectively resolved but not the spatial slope (not
shown). This is an indication that the estimation of Matérn
slope parameters is more demanding on observation quality
and information content. Pending improvements in the per-
formance of the inference computation, these results present
promising perspectives for the systematic inference of spec-
tral slopes.
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Figure 7. Sensitivity of parameter MAP estimates to flow regime α for the single-platform configuration (scenario REG[α]). Time-only
drifter inference is in red in (a) (median MAP dashed) and (c) (quartiles and median). Same representation as Fig. 4 otherwise.

Figure 8. Distribution of parameter MAP values for the reference flow and reference observation scenario with inference of Matérn spectral
slopes (scenario NU). True parameter values are represented by vertical black lines. First and third quartiles of the posterior distribution are
vertical dashed gray lines and provide insight into IQW.

4 Conclusions

We have presented a novel Bayesian method to infer surface
ocean circulation spectral parameters (e.g., amplitude and
spatial and temporal decorrelation scales) from sparse obser-
vations of the flow. The intention was to quantify parameter
uncertainty due to sampling and flow regimes. These results
may guide the design and analysis of future field campaigns
and open novel avenues for the analysis of existing datasets.
We considered flow observation from two platforms typically
employed in oceanography: moorings which provide fixed-

point flow observations and drifters that provide along-flow
flow observations. Inference based on both types of platforms
provides flow characterization estimates that converge to true
values as the number of observations is increased. The per-
formance of the method was quantified in various observing
configurations, which allowed us to highlight the pros and
cons of each type of platform. As already recognized, moor-
ings are well suited to characterizing temporal scales of vari-
ability and if deployed as appropriately spaced simultaneous
networks can constrain flow spatial scales. Drifters naturally
sample both space and time, and we showed they can si-
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multaneously constrain and separate the flow’s space scales
and timescales even when deployed in isolation, which is the
first demonstration to our knowledge. We also showed that
the ability of drifter observations to characterize flow proper-
ties depends on a non-dimensional parameter that quantifies
the relative magnitude of the spatial and temporal decorre-
lation scales. Given the relative low cost and low environ-
mental impact associated with drifter deployments compared
with moorings, we argue they provide a powerful and more
sustainable means to characterize surface flow properties. Fi-
nally, the present inference method may be of more general
relevance for the simultaneous space–time characterization
of flow properties in other fluid mechanics configurations
(Reneuve and Chevillard, 2020).

More developments are required in order to make this
method applicable to realistic oceanographic configurations.
First the method needs to be extended to flows that are com-
posed of a superposition of processes commonly occurring in
the ocean, e.g., internal waves and tides, near-inertial waves.
Such an extension will present methodological challenges as-
sociated with the parameterization of the space–time vari-
ability associated with these processes. The assumption of
space–time separability, which was imposed here by the se-
lected method of flow field generation, may have to be re-
laxed in a realistic configuration (Wortham and Wunsch,
2014; De Marez et al., 2023). As long as correlations may
be expressed in physical space, extension of the inference to
non-separable cases is direct. The issue introduced by non-
separable kernels is arguably the most difficult challenge that
needs to be addressed. It may also be useful to generalize
the inference method to simultaneously account for observa-
tions that are of diverse nature, for instance current obser-
vations from drifters, pressure from moorings, and sea level
observations from satellite altimetry. Such an extension will
require deriving the expected correlation between each of
the variables concerned and will in any case depend on the
process modeled. A first application of the method to real
data may be with gridded altimetric sea level or current data
(AVISO+, 2024). The smoothing applied to generate these
products may allow alleviation of the complexity associated
with high-frequency processes.

Moving to a more realistic flow configuration will require
evolving the synthetic flow strategy. The present choice al-
lowed us to generate flows with arbitrary spatiotemporal
structure, including some flows that are unlikely to occur
in the ocean, in order to enable a broad exploration of the
inference performance. This approach could be pushed fur-
ther with the superposition of multiple processes and non-
separable kernels and will likely require leveraging spectral
domain approaches. As highlighted in Sect. 3.5, there are
some computational difficulties with estimating the spectral
slope via the Matérn covariance function. Slope estimation
in the spectral domain is simple as the slope appears in the
PSD in an analytically tractable form (see Sykulski et al.,
2016); however, for drifter-based inference, as we are in-

terested in estimation of the Eulerian properties, we cannot
use such Lagrangian spectral techniques. There are some re-
cent results that resolve the computational burden imparted
by the calculation of the Bessel function and its derivatives
(Geoga et al., 2022). Regrettably, at the time of writing, code
for this study’s methodology is not widely available across
coding platforms. We hope that this, or similar methodolog-
ical advancements, may be included in future work that will
focus on estimating more realistic flows. Using flows gen-
erated from dynamical models (quasi-geostrophic, primitive
equations) may eventually be necessary to capture regimes
of variability more closely, representative of the actual ocean
dynamics, with more realistic representations of process life
cycles. Finally, the advection of drifters could account for a
stochastic component in order to represent inaccuracies as-
sociated with the dynamical system considered (Mínguez et
al., 2012).

Applications of the inference method to realistic obser-
vation datasets (e.g., velocity observations from the Global
Drifter Program – Lumpkin et al., 2017) would be computa-
tionally prevented in the present form due to the use of dense
covariance arrays. Alleviating this constraint will require us
to leverage sparsity in the inference inputs associated with
observations that are distant in space and/or time compared to
associated decorrelation scales. This represents the second-
most-important challenge that will have to be faced for ap-
plications in realistic configurations. Data collected from re-
gional campaigns may be more suitable in the short term.

Appendix A

A1 MCMC sampling

A1.1 Metropolis–Hastings algorithm

The Markovian property of MCMC implies that a sample
2[i] only depends on its previous sample2[i−1]; the method
by which 2[i] is generated from 2[i−1] distinguishes the
various MCMC algorithms. All MCMC algorithms propose
some 2[∗] from 2[i−1] and with probability α either accept
2[∗], in which case 2[i] =2[∗], or reject 2[∗], in which
case 2[i] =2[i−1]. The Metropolis–Hastings (MH) algo-
rithm, initially presented in Metropolis et al. (1953) and
later extended by Hastings (1970), generates a proposal 2[∗]

from 2[i−1] using some user-specified proposal distribution
f (2[∗] |2[i−1]). Given a proposal 2[∗], we accept the sam-
ple with probability r , where

r =min

(
1,

p(2[∗] | y)f (2[i−1]
|2[∗])

p(2[i−1]
| y)f (2[∗] |2[i−1])

)
. (A1)

If the proposal density is symmetrical, that is, f (2[i−1]
|

2[∗])= f (2[∗] |2[i−1]), then Eq. (A1) reduces to the ra-
tio of the posterior densities, and so the MH algorithm will
always accept a proposed 2[∗] that is more probable than
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Figure A1. (a) Illustration of an array of Np = 16 platforms for L= 200 km and β = π/3 used in OPT[Np]. (b) Corresponding distribution
of platform separations.

2[i−1]. The choice of f (· | ·) is critical to the success of the
MH algorithm. If f (· | ·) is too wide, then the algorithm can
become stuck for many iterations, thus generating very few
unique proposals. Conversely, if f (· | ·) is too narrow, the al-
gorithm will not effectively explore the parameter space; the
sampled 2[1], . . .,2[n] will be highly correlated; and again,
few independent samples will be generated. One of the main
drawbacks of the MH algorithm is that there are sampling
parameters that need to be hand-tuned.

We parameterize f (· | ·) as a multivariate normal distri-
bution with mean 2[i−1] and diagonal covariance matrix.
A widely agreed upon rule of thumb to balance exploration
and exploitation of the posterior distribution is an accep-
tance probability of ∼ 0.25. Accordingly, we set the stan-
dard deviations of the proposal distribution to be between
0.05 and 0.2 of the true parameter values, corresponding to
situations where we have larger and lower instances of ob-
served data. The reason for this is simple: as the number
of observations increases, the uncertainty of our parameter
values decreases, implying a tighter posterior distribution.
Consequently, a tighter proposal distribution is required to
achieve a comparable acceptance probability. Full validation
results to guarantee fit and convergence of the MCMC esti-
mation algorithm are presented alongside the code at https:
//github.com/apatlpo/nwastats (last access: 31 July 2024).

A1.2 Notes on alternative MCMC sampling algorithms

Modern MCMC algorithms have been dominated by
gradient-based proposal methods, where a proposal 2[∗]

is generated by assessing the local topology surrounding
2[i−1]: this allows the algorithm to efficiently trade off no-
tions of exploration and exploitation of the posterior distri-
bution. Included in these algorithms are the popular Hamil-

tonian Monte Carlo techniques, such as those implemented in
Stan (Carpenter et al., 2017), PyMC3 (Salvatier et al., 2016),
and Pyro (Bingham et al., 2019); these implementations, as
well as others such as GPJax (Pinder and Dodd, 2022), will
typically use symbolic toolboxes to define the local topol-
ogy of the posterior. Alternative MCMC algorithms should
not affect the accuracy of the posterior estimation; but rather,
they will differ in their sampling efficiency. This study is con-
cerned with inference, and not operationalization, and so we
choose the Metropolis–Hastings algorithm so as to avoid the
issue of gradients at the cost of some hand tuning of the al-
gorithm.

A2 Platform array design

For the experiment OPT[Np], platforms are deployed at lo-
cations that aim to span a wide range of platform separations
around some expectation of the spatial-scale decorrelation.
For that purpose, locations were set along a spiral defined
by its spatial footprint L, orientation β, and center (xc,yc)
according to

xj + iyj = xc+ iyc+ rθj × e
i(θj+β), with (A2)

θj =j × δ, and, r =

{
L/δ, if Np = 2

L/(2Npδ), otherwise
(A3)

where 0≤ j < Np is a platform digit identifier. We have
made the choice δ = π/3. An illustration of such platform
deployment is illustrated in Fig. A1a. The distribution of plat-
form separations successfully spans the ensemble of length
scales up to L (Fig. A1b).

Each draw in the OPT[Np] ensemble experiment is based
upon uniform random draws of the spiral center within the
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domain, of the spatial footprint L within [50km,300km],
and of the orientation β within [0,2π ].

Appendix B: Notations

Inferred parameters
γ streamfunction amplitude to spatial-

decorrelation-scale ratio
λs spatial decorrelation scale
λt temporal decorrelation scale
σ noise standard deviation
νs spatial slope parameter, only inferred in

Sect. 3.5
νt temporal slope parameter, only inferred in

Sect. 3.5
2 vector composed of all inferred parameters
Other parameters
U flow amplitude
9 streamfunction amplitude
α = Uλt/λs non-dimensional flow parameter
Np number of observing platforms

(e.g., drifters or moorings)
Variables
x,y spatial coordinate or increment
t temporal coordinate or increment
u,v horizontal velocity field
ψ streamfunction
φ flow potential
Cab cross-correlation between variables a

and b
Sab cross-spectrum between variables a and b
(k, l) horizontal wavenumbers
Kν modified Bessel function of the second

kind of order ν
0 Gamma function
y observation vector
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