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Abstract. The design and implementation of boundary conditions for the robust generation and simulation
of periodic finite-amplitude internal waves is examined in a quasi two-layer continuous stratification using a
spectral-element-method-based incompressible flow solver. The commonly used Eulerian approach develops
spurious, and potentially catastrophic small-scale numerical features near the wave-generating boundary in a
non-linear stratification when the parameter A/(δc) is sufficiently larger than unity; A and δ are measures of
the maximum wave-induced vertical velocity and pycnocline thickness, respectively, and c is the linear wave
propagation speed. To this end, an Euler–Lagrange approach is developed and implemented to generate robust
high-amplitude periodic deep-water internal waves. Central to this approach is to take into account the wave-
induced (isopycnal) displacement of the pycnocline in both the vertical and (effectively) upstream directions.
With amplitudes not restricted by the limits of linear theory, the Euler–Lagrange-generated waves maintain their
structural integrity as they propagate away from the source. The advantages of the high-accuracy numerical
method, whose minimal numerical dissipation cannot damp the above near-source spurious numerical features
of the purely Eulerian case, can still be preserved and leveraged further along the wave propagation path through
the robust reproduction of the non-linear adjustments of the waveform. The near- and far-source robustness
of the optimized Euler–Lagrange approach is demonstrated for finite-amplitude waves in a sharp quasi two-
layer continuous stratification representative of seasonally stratified lakes. The findings of this study provide
an enabling framework for two-dimensional simulations of internal swash zones driven by well-developed non-
linear internal waves and, ultimately, the accompanying turbulence-resolving three-dimensional simulations.

1 Introduction

Internal swash zones (ISZs) (Emery and Gunnerson, 1973;
Woodson, 2018) are regions which develop along sloping
oceanic boundaries through the action of periodically inci-
dent internal waves (IWs) in a manner analogous to a sur-
face swash zone on the beach, albeit at slower timescales
(O(10 min) or longer) and over longer wavelengths (O(1 km)
or longer) (Cowen et al., 2003; Elfrink and Baldock, 2002).
In ISZs, energy can effectively flux down the scale to tur-
bulence through either shear or convective instabilities in

the IW interior, similarly to spilling or plunging breaker
waves on the ocean surface (Cowen et al., 2003; Ting and
Kirby, 1996), or the turbulent boundary layer established
through the interaction of the IW-induced current with the
seafloor (Zulberti et al., 2022). In the latter context, partic-
ularly strong turbulence can be generated in the form of a
near-bottom turbulent wake due to boundary layer separation
associated with the along-bed wave-induced adverse pressure
gradient induced by either internal bores or internal solitary
waves (Hosegood et al., 2004; Boegman and Stastna, 2019).
The above turbulence-generation mechanisms presumably
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conspire to drive a significant boundary–interior exchange
(McPhee-Shaw and Kunze, 2002; McPhee-Shaw, 2006), i.e.,
the exchange of water between the boundary layer and the
stratified interior, which effectively drives mixing in the rela-
tively less active stratified waterbody interior (McPhee-Shaw
and Kunze, 2002; Boegman and Ivey, 2009). The periodic
shoaling and breaking of the above IWs in shallow envi-
ronments, such as continental shelves or slopes, has a direct
impact on the internal thermal equilibrium and biogeochem-
istry of the water column (Woodson, 2018). The periodically
on-slope incident IWs are important in the transfer of mass,
whether they transport nutrients and plankton toward the sur-
face in the inner shelf (Omand et al., 2015) or eject bot-
tom boundary layer sediments as high as 40 m into the wa-
ter column during a strong vertical updraft event associated
with the passage of a non-linear internal wave of depression
over the slope (Cheriton et al., 2016). A similar class of long
IW-driven phenomena of comparable biogeochemical impor-
tance also occurs on the slopes of lakes (Thorpe, 1998; Wuest
and Lorke, 2003) and has served as the primary motivator of
the research presented here.

The leading-order component of the periodic wave field
forcing of an ISZ consists of a lower vertical-mode IW whose
wavelength is O(50–100) longer than the water column
depth – namely, in the form of oceanic internal tidal waves
or the basin-scale internal seiche of a lake (Emery and Gun-
nerson, 1973; Nash et al., 2004; Stevens et al., 2005; Martini
et al., 2013; Lemckert and Imberger, 1998). In the latter case,
the internal seiche is further associated with a lower horizon-
tal mode that is itself associated with the longer dimension of
the lake. Such long waves are commonly expected to be rep-
resented with sufficient fidelity through the use of linear IW
theory (Stastna, 2022) at, nonetheless, values of finite wave
amplitude. Frequently, higher-frequency/shorter-wavelength
highly non-linear features, such as turbulent/undular bores
or internal solitary waves (Stastna, 2022), may be embedded
within the longer incident IWs (Hosegood et al., 2004; Lucas
and Pinkel, 2022; Thorpe et al., 1996).

The primary objective of this paper is the development
of a robust numerical method for the generation and sub-
sequent development of the longer component of the deep-
water wave forcing at finite amplitude. The generated wave
should have an amplitude that is not constrained by the lim-
its of linear theory. Practically, this corresponds to wave-
induced maximum isopycnal displacements that are at least
5% of the total water column depth. The wave should also
remain sufficiently robust near the source and, with an equal
degree of robustness, non-linearly adjust its waveform as it
propagates along the waveguide. In this regard, central to this
paper’s scope is that the background stratification extends be-
yond an uniform density gradient (Taylor, 1993) and is actu-
ally subject to variation in the vertical, as characterized by
the presence of a distinct pycnocline which is commonly a
close approximation of the in situ background profiles in the
stratified ocean or lakes. Finally, an additional essential in-

gredient of this study, is that a high-accuracy discretization
is used – specifically, a nodal spectral element method (Dia-
mantopoulos et al., 2022). The particular discretization tech-
nique enables the optimal resolution of the generated waves,
their non-linear adjustments away from the source and ulti-
mately (though not explicitly considered here) the associated
instabilities/turbulence upon encountering the waves with the
slope.

In the laboratory, one approach to generating periodic long
internal IWs is by tilting and releasing the actual laboratory
tank (Boegman et al., 2005): the resulting horizontal standing
wave is a lab-scale surrogate of the basin-scale internal se-
iche generated in a long stratified lake in response to a strong
wind event (Boegman, 2009). An equivalent type of horizon-
tal standing wave may be generated in a numerical simulation
within a long rectangular computational domain using an ini-
tial condition consisting of a tilted pycnocline (Grace et al.,
2019). One issue with the tilting-based wave-generation ap-
proach may be that it immediately produces finite velocities
across the whole domain/tank when one would prefer waves
propagating into an initially quiescent slope region. In many
cases, the standing wave will break down into a propagating
wave train (Grace et al., 2019).

An alternative, more flexible and effectively more control-
lable wave-generation approach involves introducing a form
of deep-water (far from the slope) oscillatory wave excita-
tion. Such an approach would ideally allow for a sufficiently
long propagation distance in uniform depth waters, prior to
the wave encountering the slope, which permits the generated
IW to undergo any required non-linear adjustments. To this
end, in the deep-water section of a laboratory tank, a hor-
izontally oscillating paddle (Wallace and Wilkinson, 1988;
Nakayama and Imberger, 2010; Ghassemi et al., 2022), a
vertically oscillating semi-cylinder (Moore et al., 2016) or
an array of plates vertically stacked on an eccentric camshaft
(Mercier et al., 2010, 2013) have been used. It is worth not-
ing that all the above experimental studies generated rela-
tively short waves as represented by values of aspect ra-
tio λ/H and non-dimensional amplitude ηmax/H ; λ, ηmax
and H are the IW horizontal wavelength, IW-induced max-
imum isopycnal displacement and water depth, respectively.
Reported directly, or inferred, values of λ/H and ηmax/H

lie in the range [2,12.5] and [0.0075,0.2], respectively, in
the above laboratory studies wherever directly identifiable or
inferable. Such a maximum pycnocline displacement range
corresponds to a wave Froude number, Fr = Umax/c, with a
value of [0.02,0.35]; Umax and c are the maximum wave-
induced horizontal current and wave propagation speed.

The high-order-accuracy turbulence-resolving fully non-
linear and non-hydrostatic three-dimensional simulations of
Winters (2015) are one of the few computational studies so
far which have considered the generation and incidence of
a periodic long wave and on a relatively steep slope. The
wave aspect ratio and wave Froude number can be inferred
as λ/H = 48 and Fr = 0.1385. Note that the work of Winters
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considered only a uniform background stratification. More-
over, Winters’ generated waves were allowed to have a dis-
tance lower than one prescribed wavelength from the source
to propagate until the slope most likely precluding any deep-
water non-linear adjustments of the waveform.

To the authors’ best knowledge, the only other computa-
tional study which has examined the periodic generation, the
propagation away from the source over at least one wave-
length and the incidence of long internal waves on a slope is
the two-dimensional investigation by Dauhajre et al. (2021).
The wave aspect ratios considered in this study are high and
can be inferred to be residing in the range [50,400] while
noting the very small ratio of computational domain depth
to length. The wave-based Froude number values considered
are in the range [0.05,0.4]. Furthermore, the subset of sim-
ulations that use a two-layer stratification (and not a linear
one) have a thick pycnocline and focus on the aspect ratio of
λ/H = 200 and a wave-based Froude number between 0.1
and 0.2. Note also that the curvature of the density profile at
the base of the pycnocline is reduced by introducing a weakly
stratified layer below. The numerical dissipation inherently
built into the parameterizations of the regional ocean model-
ing code (Regional Ocean Modeling System, ROMS) used in
this study could also effectively damp any spurious numeri-
cal features near the wave-generating deep-water boundary.

Note that the studies of Masunaga et al. (2015, 2016) and
Walter et al. (2012) also considered a non-uniform stratifica-
tion but positioned the wave-generating source only a frac-
tion of the target wavelength from the slope. The generated
waves, therefore, were not afforded an adequate propaga-
tion distance to undergo any non-linear adjustments before
encountering the slope. Additionally, per this paper’s focus
on periodic IW simulation with high-accuracy methods and
high resolution, the nesting-based robust mode-1 long in-
ternal tide generation within a regional-scale nonhydrostatic
model (Rogers et al., 2019) is not pertinent to the scope of
this study as it relies on low-pass filtering and sponge layers.

The laboratory and computational studies discussed above
consider generated waves that may be deemed either short or
long. Even when high-accuracy/resolution numerical meth-
ods are derived and efficiently implemented on a state-of-
the-art high-performance computing platform, a computa-
tional study aiming to sufficiently resolve instability/turbu-
lence formation due to sufficiently high-amplitude waves
over a limited number cycles of an ISZ is practically lim-
ited to a wave aspect ratio in the range [40,50]. This is the
aspect ratio regime accessed by the work of Winters (Win-
ters, 2015), which is, however, limited to a linear stratifica-
tion. The choice of a linear stratification effectively shielded
this study from the challenges that emerge when forcing in-
ternal waves in a pycnocline-dominated stratification profile.
As will be demonstrated later in this paper, the generation
of high-amplitude periodic internal waves in more general,
non-linear stratifications for waves operating in this interme-
diate aspect ratio range is confronted with non-trivial error

if commonly used deep-water forcing approaches, such as
those employed by Winters (2015), Dauhajre et al. (2021),
are actually employed. The minimal numerical dissipation of
a high-order-accuracy numerical method can allow this error
to grow substantially. The stability of the simulation can thus
be effectively undermined, and one can no longer leverage
the high accuracy of the method for representing non-linear
wave adjustments in deeper water and the finer-scale features
once the slope is reached.

Thus, from a computational point of view, a relatively sim-
ple technique for generating larger-amplitude IWs for gen-
eral stratifications in deep water is highly desirable. This is
often achieved by choosing a form of boundary conditions
at the boundary away from the slope region. For most field-
relevant stratifications, a pycnocline dominates the stratifi-
cation, and the vertical motion of the pycnocline is the clear-
est manifestation of internal waves. Historically, descriptions
of internal waves typically built on a linearized theory and
the literature have examples of two different choices for the
vertical coordinate: one which uses the physical coordinate
z and one which uses the upstream height of each isopyc-
nal (and, more concretely, the upstream height of the dom-
inant pycnocline) (Gear and Grimshaw, 1983; Yih, 1977).
Since the former uses the physical coordinates, it is usually
labeled as the Eulerian theory of linear internal waves. The
latter, in contrast, is labeled the Euler–Lagrange theory be-
cause the horizontal coordinate is the physical coordinate
x, while the vertical coordinate is the upstream coordinate,
often written as y = z− η(x,z, t), where η is the isopycnal
displacement. Both the Eulerian (Lamb and Yan, 1996) and
Euler–Lagrange theories (Gear and Grimshaw, 1983) have
been used as a basis for multi-scale asymptotic expansions
that extend the wave description to small but finite-amplitude
waves (i.e., weak non-linearity) and waves of finite wave-
length (i.e., weak dispersion). These lead to model equations
in the Korteweg–de Vries family. The use of the upstream
isopycnal height has found general use in the description of
stratified flow in both the classical (Yih, 1977) and modern
(Stastna, 2022) contexts. In the simulation context, the desire
to generate finite-amplitude waves in a situation with a strong
pycnocline implies that forcing methodologies based on the
Eulerian linear wave theory may not yield robust results. The
Euler–Lagrange theory offers an alternative, if algebraically
more complex, development pathway.

In this paper, by following an Eulerian and an Euler–
Lagrange approach (Turkington et al., 1991; Gear and
Grimshaw, 1983), different types of time-dependent periodic
wave-generating boundary conditions are derived with a par-
ticular emphasis on the subtleties associated with a continu-
ous two-layer background stratification. The efficacy of each
approach in generating a robust deep-water periodic finite-
amplitude IW train and enabling any non-linear adjustments
of the wave-train is thereafter assessed.
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2 Problem setup and model formulation

2.1 Problem geometry

The canonical flow examined in this paper is the propagation
of a two-dimensional finite amplitude periodically forced in-
ternal wave in a quasi two-layer continuous stratification.
The computational domain is a two-dimensional rectangle of
dimensions L×H and is stratified in vertical direction z with
a vertically varying buoyancy frequency N (z), where

N2(z)≡−
g

ρ0

dρ
dz
. (1)

Restricting one’s focus to the Boussinesq approximation,
the total density is decomposed as the addition of a reference
density, ρ0; a stratification, ρ; and a perturbation, ρ′ (Kundu
et al., 2015):

ρ(x, t)= ρ0+ ρ(z)+ ρ′(x, t), with ρ′� ρ� ρ0. (2)

The quasi two-layer continuous stratification ρ (Fig. 1a) is
defined by

ρ(z)=−
ρ0N

2
0 δ

g
tanh

(
z− zp

δ

)
, (3)

where ρ0N
2
0 δ/g is a measure of the density difference across

the pycnocline, N0 is a reference buoyancy frequency equal
to the peak value of N (z) in the water column, δ is a mea-
sure of the pycnocline thickness and zp is the position of the
pycnocline’s center.

The finite-amplitude internal wave of wavenumber k and
angular frequency ω is generated through a forcing imple-
mented within the left boundary conditions. Details on the
exact derivation of the deep-water boundary conditions is
covered in Sect. 3.

2.2 Governing equations

The governing equations for the problem are the incompress-
ible Navier–Stokes equations (INSEs) under the Boussinesq
approximation, written as follows:

∂u
∂t
=−u · ∇u−

g

ρ0
ρ′k−

1
ρ0
∇p′+ ν∇2u , (4)

∂ρ′

∂t
=−u · ∇ρ+ κ∇2ρ′ , (5)

∇ ·u= 0 . (6)

The simulations reported here will be limited to two di-
mensions on the (x,z) plane. Therefore, u will be limited to
its two components, (u,w). Furthermore, ρ′ is the density
perturbation as defined in Eq. (2) and p′ is the pressure per-
turbation defined as the deviation from the hydrostatic pres-
sure. It is important to note that the hydrostatic balance be-
tween ρ(z) and the corresponding background pressure field

.

Figure 1. (a) A two-layer continuous stratification, ρ, defined by its

density jump, 2ρ0
N2

0 δ
g ; its position, zp; and its thickness, δ. (b) Cor-

responding vertical structure eigenfunction, W (z), which is the so-
lution to the eigenvalue problem in Eq. (16).

has been subtracted from Eq. (5). Here, k is the unit vector
in the positive direction, ν and κ are the constant kinematic
viscosity and mass diffusivity, and g is the gravitational con-
stant.

At the deep-water wave-generating boundary condition,
Dirichlet time-dependent boundary conditions are enforced
as follows:

u(x = 0,z, t)= fu(z, t)=
(
fu(z, t)
fw(z, t)

)
, (7)

ρ(x = 0,z, t)= fρ(z, t), (8)

where fu, fw and fρ are explicitly described in Sect. 3 for
the different forcing approaches considered here. A free-slip
boundary condition is prescribed for the velocity field along
all other boundaries, and the density is subject to a boundary
condition of zero diffusive flux:

∂ρ

∂n
=∇ρ ·n= 0. (9)

2.3 Wave-based dimensionless parameters

The definition of the wave-based Reynolds number, Rew, is
given by

Rew ≡
λc

ν
, (10)

where λ is the associated wavelength and c = ω/k the wave-
speed of the prescribed wave. The particular wave-based
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Reynolds number is independent of the wave amplitude and
quantifies the strength of viscous effects during the time re-
quired for the wave to propagate a distance of one wave-
length λ.

The wave aspect ratio, λ/H , is a metric used to describe
how long the wave is in relation to the water depth. Ad-
ditionally, in the context of this study, it effectively repre-
sents the upstream variation in wave-induced flow fields at
the wave-generating deep-water boundary which then deter-
mines which variant of an Euler–Lagrange approach must be
used.

The Froude number quantifies the strength of non-linear
effects within the wave against the restoring effect of buoy-
ancy and is defined as

Fr ≡
U0

c
, (11)

where U0 is the maximum wave-induced horizontal fluid ve-
locity.

2.4 Numerical method

The numerical method used to generate the simulation
data sets examined in this paper is a high-order continu-
ous Galerkin numerical method, originally developed for
the simulation of non-linear, non-hydrostatic internal waves
and turbulence in long computational domains with complex
bathymetry. The time discretization is semi-implicit and re-
lies on a third-order stiffly stable scheme (Karniadakis et al.,
1991). The spatial discretization is based on the nodal spec-
tral element method. Such a discretization enables robust
wave propagation against numerical dispersion and diffusion
effects, a highly accurate representation of complex geome-
tries and a flexibility in localized resolution – namely, the
across pycnocline. Details on the discretization of the Pois-
son pressure equation and its Laplacian operator (which are
directly applicable to the viscous-term treatment) may be
found in Appendix A. More details on the numerical model
may be found elsewhere (Diamantopoulos et al., 2022).

Such a temporal discretization leads to a Poisson equation
for the pseudo-pressure, p, at time level n+ 1:

∇
2pn+1

=∇ ·

(
−

û
1t

)
, (12)

where p is defined as

tn+1∫
tn

∇p′dt =1t∇pn+1. (13)

For the temporal discretization used in this work, the appro-
priate boundary conditions for the pressure Poisson equa-
tion are taken from Karniadakis et al. (1991). The particular
boundary condition is augmented by a term which accounts

Figure 2. Schematic of the generation of a mode-1 wave in the
waveguide analogy using time-dependent boundary conditions for
a two-layer stratification, highlighting the pycnocline displace-
ment, η.

for the time dependence of the wave-generating boundary
condition the boundary-normal velocity:

∂p

∂n
=

n ·
[∑Je−1

q=0
βqN

(
un−q)

+ νβqL
(
un−q)

+
∂fu(z, t)
∂t

]
,

(14)

where coefficient βq correspond to a third-order stiffly stable
scheme and N and L are the non-linear and linear operators,
respectively (Karniadakis et al., 1991).

3 Deep-water wave-generating boundary conditions

The generation of finite-amplitude periodic internal waves
is a key component of this study. To this end, we examine
the spatio-temporal structure of the generated wave as pre-
scribed by linear theory, which is introduced into the com-
putational domain in the form of time-dependent, vertically
variable Dirichlet conditions at the deep-water boundary.

3.1 Internal-wave vertical structure: mathematical
descriptions

The fluid’s top and bottom boundaries naturally confine the
propagation of internal waves so that it occurs in the hori-
zontal direction, along a waveguide formed by the naturally
occurring density stratification as shown in Fig. 2. This den-
sity stratification, which only varies in the z direction, is often
dominated by a region of rapid change (the so-called pycn-
ocline), and it is the up and down motion of this pycnocline
that is essential for an accurate description of wave motion.

Mathematically, internal waves can be represented as a
separation of variable solutions, with a fixed or standing
wave structure in the vertical and a propagating waveform
(a plane wave in the linear theory) in the horizontal. If we
choose the propagation direction to be from left to right and
assume the waves to be periodic in x and t , the vertical com-
ponent of velocity will have the form

w(x, t)=W (z)exp[i(kx−ωt)] . (15)
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The equation governing the vertical structure may be derived
by linearizing the stratified Euler equations under the Boussi-
nesq approximation (which in turn result from dropping the
viscous/diffusive terms in Eq. 4), performing a series of al-
gebraic manipulations to leave an equation for w only and
introducing the wave ansatz above. The buoyancy frequency
profile,N (z), is assumed to be given, and for the scope of this
paper, we are neglecting any form of background shear cur-
rent. W (z) then becomes the solution of the following linear
eigenvalue problem (Gerkema and Zimmerman, 2008) for ei-
ther ω or k, with the other parameter assumed to be specified:

d2W

dz2 + k
2N

2(z)−ω2

ω2 W = 0. (16)

Both top and bottom boundaries are assumed to be imper-
meable, such that

W (0)=W (−H )= 0. (17)

For a given wave number k, an infinite number of eigen-
functions Wn(z) with their corresponding eigenvalue ωn ex-
ist, each one representing a different vertical mode (i.e.,
mode-1 does not cross zero in the interior of the fluid, mode-2
crosses zero once in the interior of the fluid, etc.). Therefore,
the general solution w(x, t) can be represented by a superpo-
sition of such modes, using an arbitrary constant, an ∈ C:

w(x, t)=
∑
n

Wn(z)
[
an exp(i(kx−ωnt))

]
. (18)

Details regarding the derivation of the solution in the linear
stratification case, which are pertinent to the discussion in
Sect. 4, are provided in Appendix B.

3.2 Eulerian approach

The above description computes w as a function of a fixed
coordinate system. This is often called the “lab frame”, and
the theory is labeled as Eulerian (Kundu et al., 2015). In
this first approach to generate a finite-amplitude periodic
IW, a two-dimensional perturbation field (uE,wE,ρ

′
E) is con-

structed from the solution of the eigenvalue problem for
W (z) via the following set of manipulations of the linearized,
stratified Euler equations under the Boussinesq approxima-
tion:

∂uE

∂t
=−

g

ρ0
ρ′Ek−

1
ρ0
∇p′, (19)

∂ρ′E
∂t
=−wE

∂ρ

∂z
, (20)

∇ ·uE = 0 . (21)

As mentioned above, such an approach can be considered
Eulerian since we are looking at the evolution in time of the
wave-induced velocity and density fields from a fixed frame
of reference. Without a loss of generality, since the chosen

equations are linear, only a mode-1 wave will be considered,
corresponding to the smallest wave number possible. Follow-
ing the stratified waveguide analogy (see Sect. 3.1) and mul-
tiplying the result by an arbitrary scaling factor A, which is
effectively a measure of wave amplitude, the resulting wE
perturbation is

wE(x,z, t)=−Ak cos(kx−ωt)W (z). (22)

Using continuity, Eq. (21), an expression for uE is derived
accordingly:

uE(x,z, t)= Asin(kx−ωt)
dW
dz
. (23)

Further appealing to the linearized form of the advection–
diffusion equation, Eq. (20), the density perturbation, ρ′E, is
then

ρ′E(x,z, t)=−
dρ
dz
Ak

ω
sin(kx−ωt)W. (24)

The result of the above derivation is a field (uE,wE,ρ
′
E),

shown in Fig. 3a and b at an arbitrary time of a propagating
internal-wave solution of the linear Euler equations under the
Boussinesq approximation. The approximate fields are two-
dimensional in space, x,z, and also depend on time t . They
exhibit a separable structure in x− t and the vertical direc-
tion, z.

In practice, the approximations are implemented through a
Dirichlet boundary condition (see Eqs. 7 and 8) along a ver-
tical boundary, which we assume to occur at x = 0, without
any loss of generality.

As a result, the deep-water boundary forcing functions for
the Eulerian approach are defined as follows:

f E
u (z, t)= Asin(−ωt)

dW
dz
, (25)

f E
w (z, t)=−Ak cos(−ωt)W (z), (26)

f E
ρ (z, t)=−

dρ
dz
Ak

ω
sin(−ωt)W. (27)

3.3 Euler–Lagrange approach

When the Eulerian approach in Sect. 3.2 is applied to situa-
tions with a sharp pycnocline, a consistent error is observed
for all but the smallest and shortest waves (see Sect. 3.4.2).
This disintegration of the generated wave is due to the fact
that the up-and-down motion of the pycnocline is not ac-
counted for in the vertical mode description. A natural way to
account for this motion is achieved by introducing the wave-
induced displacement of the pycnocline. This is measured by
the vertical displacement η(x,z, t) of the isopycnals (Fig. 2),
or isopycnal displacement. Such an approach is labeled as
partially Lagrangian since it follows the vertical displace-
ment of individual fluid parcels through time. When com-
bined with the usual description in the horizontal, it is labeled
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Figure 3. Snapshots of the velocity fields over one wavelength in the Eulerian approach (a, b) and in the Euler–Lagrange approach (c, d) at
an arbitrary time t = 0 to highlight the spatial waveform. Panel (e) presents the corresponding wave vertical structures at different locations
represented as vertical lines in panels (a) and (c). The displaced pycnocline is represented as a black line. Velocities are normalized with their
maximum values.

as an Euler–Lagrange approach (Gear and Grimshaw, 1983;
Turkington et al., 1991).

Introducing the vertical displacement η(x,z, t) of the
isopycnals allows for a different, more natural description of
the perturbed stratification. Specifically, neglecting the uni-
form background density, ρ0, for the sake of compactness,
the wave-induced density field can be alternatively expressed
as follows:

ρ(x, t)= ρ(z− η(x,z, t)), (28)

which signifies that the density at a point is the same as that at
an appropriate height far upstream. The density perturbation,
ρ′E-L, can also be rewritten as follows:

ρ′E-L = ρ (z− η(x,z, t))− ρ(z). (29)

Taylor-expanding the right hand side shows that ρ′E-L is a
polynomial in η, with the classical Eulerian description giv-
ing only the first term:

ρ′E-L ≈−η
dρ
dz
+

1
2

d2ρ

dz2 η
2. (30)

By effectively keeping more terms in the expansion, the
efficacy of the deep-water forcing is significantly improved.
The first term carries a structure representative of the Eule-
rian approach in Eq. (24). However, from the second deriva-
tive of the background density profile in the second term, we
can see that Euler–Lagrange effects can be expected to be
important for finite-amplitude waves when the stratification
exhibits a sharp pycnocline. Such is exactly the case for the

study at hand and the continuous two-layer stratification it
uses (see Fig. 1 and Sect. 3.4.1).

At this juncture, it is worth emphasizing that the inclu-
sion of the second term in the Taylor expansion of Eq. (30)
still only provides an approximate solution of the governing
equations (both the linear and non-linear Euler equations) for
the input wave field. The purpose of this study is not to pro-
vide an exact solution in this context, particularly in a non-
linear sense, as enabled, e.g., by the internal-solitary-wave-
generating algorithm of Turkington et al. (1991) as it was
implemented in Dunphy et al. (2011). Instead, as is subse-
quently demonstrated, we are aiming for an approximate so-
lution of the linear Euler equations that will drive the deep-
water boundary forcing of finite-amplitude waves in a fully
non-linear simulation such that the waves can remain robust
both near the source and further along the propagation path
when non-linear effects modify their waveform.

For the quasi two-layer continuous stratification case, an
order-of-magnitude comparison between the two terms on
the right-hand side of Eq. (30) may be obtained if one uses
as characteristic density and length scales the density jump,
1ρ, across the pycnocline and the pycnocline thickness, δ.
Per Eqs. (34) and (40), as outlined in the next two sections,
one may further write out the isopycnal displacement func-
tion as follows:

η(x,z, t)= A
k

ω
r(x,z, t) , (31)

where A is the previously introduced amplitude factor and
r(x,z, t) is a structure function, harmonic in x and t and de-
termined by the eigenfunction W (z) in the vertical, which
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assumes values in the range [−1,1]. Using the characteris-
tic scales above and Eq. (31), one can show that the ratio of
the magnitude of the second term to that of the first one on
the right-hand side of Eq. (30) scales as (A/δ)(k/ω)r(x,z, t).
Therefore, the strength of the Euler–Lagrange effects be-
comes important when the parameter (A/δ)/(k/ω)= A/(δc)
is sufficiently larger than unity; here, c = ω/k is the linear-
phase speed obtained by solving the eigenvalue problem out-
lined in Sect. 3.1. The particular condition is satisfied for
high wave amplitudes, small pycnocline thickness and slow
wave propagation speeds.

Restricting the scope to vertical mode-1 waves if A/(δc)
is sufficiently larger than unity; Euler–Lagrange effects also
become important when the structure function r(x,z, t) is
O(1) over a long enough horizontal length scale. For very
long waves, λ/H � 1, this is the case over effectively the
entire wavelength, and r(x,z, t)= r(z, t). For a wave with fi-
nite horizontal wavelength, λ, which is a finite multiple of the
water depth (H ), the along-wave variation in r(x,z, t) needs
to be retained. These two properties of the horizontal struc-
ture of r(x,z, t) are at the crux of the formulations outlined
in the next two sections.

Inserting the density perturbation, Eq. (29), into Eq. (20), a
definition analogous to the free-surface kinematic boundary
condition (Hodges and Street, 1999) arises for the isopycnal
displacement, η:

Dη

Dt
= w. (32)

When deriving the actual velocity field using the Euler–
Lagrange approach, the stratified waveguide analogy is still
valid, but with a time-dependent stratification to account for
the wave-induced changes to justify the dynamic nature of
the pycnocline. The derivation is the same as above, only
replacing the fixed frame of reference by the one tracking
the displaced pycnocline. The decomposition presented in
Eq. (15) is still valid as the change in the frame of reference
considered only involves a vertical translation in W . There-
fore, the vertical velocity wE-L is now actually given by

wE-L(x,z, t)= wEul(x,z− η, t)

=−Ak cos(kx−ωt)W (z− η).
(33)

Note that in Eqs. (29) and (33), η is defined using Eqs. (34)
or (40), as elaborated in Sect. 3.3.1 and 3.3.2.

3.3.1 Long waves

As a first approximation, since the waves of interest are long
(λ/H � 1) and as outlined in the previous section, the x de-
pendence of the vertical displacement, η, is neglected and
η is considered to depend only on the vertical position z and
time t . The displacement of the fluid in the vertical direc-
tion along the wall, η(x = 0,z, t), is therefore computed by
integrating in time the w component of the velocity field in

time. The Eulerian approach discussed previously then gives
a good approximation, as a starting point, of the w field
(Eq. 22), and η may be derived as follows:

η(z, t)=

t∫
0

wE(x = 0,z, t)dt =
Ak

ω
sin(−ωt)W (z). (34)

Using the continuity equation, Eq. (21), uE-L is derived ac-
cordingly. Specific attention needs to be paid to the z varia-
tion in the pycnocline’s displacement, η. In this regard, using
the chain rule in differentiating W (z− η), one obtains

∂uE-L

∂x
=−

∂wE-L

∂z

= Ak cos(kx−ωt)
(

1−
∂η

∂z

)
W ′(z− η),

(35)

leading to

uE-L = Asin(kx−ωt)
(

1−
∂η

∂z

)
W ′(z− η). (36)

An extra term depending on the z dependence of η now ap-
pears in the expression of uE-L to account for the movement
of the pycnocline in contrast with Eq. (23). Note also that the
prime denotes a derivative with respect to the argument of
W .

As a result, the deep-water boundary forcing functions for
the Euler–Lagrange approach are defined as

f E-L
u (z, t)= Asin(−ωt)

(
1−

∂η

∂z

)
W ′(z− η), (37)

f E-L
w (z, t)=−Ak cos(−ωt)W (z− η), (38)

f E-L
ρ (z, t)= ρ (z− η)− ρ(z). (39)

By comparing the spatial structure of the two approaches
(Fig. 3), the main difference resides in the structure of the
velocity fields: in the Euler–Lagrange approach, the veloc-
ity field’s deformation tracks that of the pycnocline (plotted
in black in Fig. 3c and d) in contrast to the purely Eulerian
case where the velocity field treats the pycnocline’s position
as constant (Fig. 3a and b). Panel (e) shows how the verti-
cal eigenfunctions computed for the wave-displaced pycno-
cline at the wave peak and trough are offset from the corre-
sponding eigenfunction computed for the initial undisturbed
stratification. In the Euler–Lagrange approach, this vertical
wave-induced pycnocline displacement is indeed accounted
for. For a more detailed discussion of modified vertical eigen-
functions due to wave-induced displacements of the pycno-
cline and a more thorough mathematical elaboration thereof,
the interested reader is referred to the paper by Lamb (1998).

3.3.2 Waves of finite wavelength

So far, the dependence of η on the along-wave position x has
been neglected in a first approximation since the considered
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waves are assumed to be long. Practically, numerical simu-
lations are often required to consider waves of finite wave-
length. In this case, to accurately satisfy the continuity equa-
tion, Eq. (21), the x dependence must be accounted for and
the displacement, η, is expressed as follows:

η(x,z, t)=
∫ t

0
wEul(x,z, t)dt

=
Ak

ω
sin(kx−ωt)W (z).

(40)

Integrating Eq. (35) now needs to take into account the x
dependence of η, leading to a new expression for the hori-
zontal velocity perturbation:

uE-L =−
ω

kW (z)

(
1−

∂η

∂z

)
W (z− η)

+
ωW ′(z)
kW 2(z)

8(z− η)+B,
(41)

where 8 is the antiderivative of W and B is an integration
constant. The second term on the right-hand side of Eq. (41)
appears to be, by evaluation of terms across the height of the
domain, orders of magnitude smaller than the first one for a
typically used wave and is therefore dropped:

uE-L =−
ω

kW (z)

(
1−

∂η

∂z

)
W (z− η)+B. (42)

B can be derived from the fact that the horizontal velocity
is zero at the depth of the pycnocline, leading to

B =
ω

kW (zp)

(
1−

∂η

∂z
(0,zp, t = 0)

)
×W (zp− η(0,zp, t = 0)).

(43)

Since the right-hand side of Eq. (42) is not defined on the
boundaries for z= 0 and z=−H , it can be extended using a
continuous linear extension, finally resulting in

uE-L(z, t)=

ω

kW (z)

(
1−

∂η

∂z

)
W (z− η)+B for 0> z >−H

ω

k

(
1−

∂η

∂z
(0,0, t)

)
+B for z= 0

ω

k

(
1−

∂η

∂z
(0,−H,t)

)
+B for z=−H

.
(44)

This approach is hereafter referred to as “optimized Euler–
Lagrange”.

Note that, when used to implement deep-water wave-
generating boundary conditions, in all final expressions for
uE-L, wE-L and ρ′E-L derived in this section or Sect. 3.3.1,
the value of x is set to zero without any loss of generality
in a manner similar to the Eulerian approach as discussed in
Sect. 3.2.

As a result, the deep-water boundary forcing functions for
the optimized Euler–Lagrange approach are defined as fol-
lows:

f
optimized E-L
u (z, t)=

ω

kW (z)

(
1−

∂η

∂z

)
W (z− η)+B for 0> z >−H

ω

k

(
1−

∂η

∂z
(0,0, t)

)
+B for z= 0

ω

k

(
1−

∂η

∂z
(0,−H,t)

)
+B for z=−H

,
(45)

f
optimized E-L
w (z, t)=−Ak cos(−ωt)W (z− η), (46)

f
optimized E-L
ρ (z, t)= ρ (z− η)− ρ(z). (47)

The associated adjustments introduced in the pressure
boundary condition due to the presence of a time-dependent
boundary-normal velocity field at the deep-water boundary
are discussed in Sect. 2.4.

Finally, per the previous discussion of Eq. (30), we em-
phasize that, by construction, neither of the outlined vari-
ants of the Euler–Lagrange approach are designed as exact
solutions to the linearized Euler equations: perfectly shaped
monochromatic waves should not be expected. As illustrated
by the results in Sect. 3.4.3, the waves generated through the
most suitable of the two Euler–Lagrange approaches (dic-
tated by the aspect ratio λ/H at hand) are far more robust
than those produced by the purely Eulerian approach. As a
result, higher-amplitude longer waves can be used as forcing
of fully non-linear simulations (see Sect. 3.4.4).

3.4 Simulations of periodic internal waves in
uniform-depth water

3.4.1 Numerical setup

Across all numerical simulations conducted in this study,
the wave-based Reynolds number is held constant at Rew =

2.5×105. Such a value of Rew is representative of the labora-
tory scale yet is sufficiently high to avoid any attenuation in
wave amplitude in the propagation zone. The Schmidt num-
ber, Sc= ν/κ , is fixed at unity. A wave-based Froude num-
ber of Fr = 0.2 is linked to generated waves that may con-
fidently be characterized as finite-amplitude and can support
the development of sufficiently strong non-linear effects as
they propagate away from the forcing boundary.

The quasi two-layer continuous stratification profile for
ρ(z), given by Eq. (3), is kept the same across all runs.
A relatively thin pycnocline with δ/H = 0.09 is used, with
a non-dimensional density jump across the pycnocline of
1ρ/ρ0 = 2N2

0 δ/g = 1.7× 10−3 located at relative position
zp/H =−0.4. The particular value of δ/H is chosen to
mimic the thinner pycnocline of the early fall stratification
profile in a long deep lake (Schweitzer, 2010). The deep-
water-generated wave used in these simulations is chosen
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Table 1. Grid point count and resolution for the two-dimensional
simulations in a uniform-depth tank.

Polynomial order (p) 7
Number of elements in the x direction (mx ) 120
Number of elements in the z direction (mz) 20
Total number of points in the x direction (Nx ) 2241
Total number of points in the z direction (Nz) 161
1x/H range [0.0181, 0.0656]
1z/H range [0.0025, 0.0091]

to have an aspect ratio of λx/H = 10.12. Such a value of
λx/H qualifies the wave as finite-length, albeit not short.
Finally, for the particular thin-pycnocline stratification pro-
file and choice of λx , the amplitude coefficient A leading to
a value of Fr = 0.2 corresponds to a value of A/(δc)= 5.
Euler–Lagrange effects will clearly be present. The choice of
λx/H further motivates the question as to whether the fully
optimized Euler–Lagrange approach is needed.

All simulations are performed in a uniform-depth tank of
depth H and length L= 10λx . The domain is chosen to be
sufficiently long to allow for the development of non-linear
effects within the generated waves. Uniformly sized rect-
angular spectral elements with 224 points per wavelength
λx are employed in the horizontal direction, whereas 161
points span the entire water column in the vertical direc-
tion. The resolutions are given in Table 1, and the elements
are uniformly spaced in both length and height. The in-
ternal grid point distribution in each element consists of
non-uniformly distributed two-dimensional Gauss–Lobatto–
Legendre (GLL) integration points (Canuto et al., 2007).

3.4.2 Limitations of the Eulerian approach

The limitations of the Eulerian approach for the wave forc-
ing are visible in a linear INSE solver (not shown here) but
are more readily demonstrated in the framework of a non-
linear solver of this type. As shown in Fig. 4a, the Eulerian-
generated u velocity field – namely, the shear layer between
the upper and lower lobes of opposite velocity tracks hor-
izontally along the location of the undisturbed pycnocline
(similar to the top-left panel of Fig. 3) and does not follow the
actual pycnocline location (see bottom-left panel of Fig. 3).
Immediately visible non-physical numerical features emerge
near the forcing boundary at near grid scale, as evidenced by
the lobes of alternating sign in the vertical velocity in that
region. These spurious vertical velocities are a factor of 2
larger than the theoretically prescribed ones within the tar-
get wave, leading to a commensurate reduction in the time
step by virtue of the Courant–Friedrichs–Lewy (CFL) condi-
tion. Finally, non-negligible regions with density values that
exceed the bounds of the background stratification by a fac-
tor of 2 to 2.5 are observed (see the blanked-out regions in
Fig. 4c). These spurious numerical effects intensify as more

waves are generated for the value Fr = 0.2. Further intensifi-
cation of these effects is observed at Fr = 0.5 (not shown). In
this case, the non-physical non-linear interactions are strong
enough to further amplify the near-source spurious vertical
velocities and cause an aggressive and prohibitive reduction
in the time step.

Numerical experimentation indicates that for cases with a
well-defined pycnocline, the Eulerian approach produces ro-
bust waves and is effectively only valid for small-amplitude
(Fr . 0.05, ηmax/H . 0.02) and short-wavelength waves
(λ/H . 5). It is important to note that the ad hoc lineariz-
ing that leads to the Eulerian approach is effectively a lin-
ear truncation of a Taylor series. In the amplitude tending to
the zero limit, the Eulerian and Euler–Lagrange approaches
match. However, even at moderate amplitudes, a significant
mismatch is observed (see dotted black lines in Fig. 4). Our
approach retains the notation of the Eulerian approach, which
is easier to implement in a software setting but effectively in-
troduces the higher-order terms in the Taylor series (at the
cost of some algebra).

3.4.3 Linearized Navier–Stokes simulations

To differentiate the features strictly resulting from the differ-
ences in the wave-generation approach from the ones result-
ing from the non-linear effects downstream of the source, the
first set of simulations are restricted to solving the linearized
incompressible Navier–Stokes equations under the Boussi-
nesq approximation. The non-linear terms have been dropped
in Eqs. (4), (5) and (6) analogously to what has been done in
the linearized Euler equations, i.e., Eqs. (19), (20) and (21).
Per the discussion of the previous section on the limitations
of the Euler approach, only the Euler–Lagrange approach is
considered here.

The sensitivity to including the x dependence of the isopy-
cnal displacement, η, in the Euler–Lagrange approach is as-
sessed in Fig. 5 by examining the velocity and density fields
that are produced by the approaches outlined in Sect. 3.3.1
and 3.3.2 per the corresponding expressions for f E-L

u and
f

optimized E-L
u in Eqs. (37) and (45). The forcing functions fw

and fρ have the same structure in both cases and are given
by Eqs. (38) and (39), noting any adjustments for the x de-
pendence of η in the optimized Euler–Lagrange formulation.
Results are shown after approximately seven wave periods
since the initiation of deep-water boundary wave forcing.

Close to the wave source, periodic shorter-wavelength fea-
tures are observed for both approaches. These smaller-scale
oscillations result from neither of the Euler–Lagrange ap-
proaches being an exact solution of the linearized Euler equa-
tions as discussed in Sect. 3.3. The amplitude and down-
stream persistence, however, of these shorter-wavelength ef-
fects is markedly weaker in the optimized Euler–Lagrange
approach (right panels in Fig. 5), because of the finite wave-
length of the generated wave (see Sect. 3.3). To this end, the
optimized Euler–Lagrange approach is the method of choice
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Figure 4. Fully non-linear simulation using Eulerian wave-generation boundary conditions at t/T = 5.8 for Fr = 0.2 and λ/H = 10. The
initial undisturbed pycnocline location is represented as a black line. Velocities (a, b) are normalized with their maximum values and the
adjusted density (c) by the density jump at the pycnocline. Near-source near-grid-scale lobes of vertical velocity are a factor of 2 to 2.5 larger
than that of the prescribed wave. White regions in the density contours correspond to values exceeding the color bar limits which are set by
the undisturbed background density profile.

in the fully non-linear simulations given that our baseline
wave has an aspect ratio of λ/H : using it minimizes any
possible non-linear interactions between the above parasitic
smaller-scale waves and the main target wave which other-
wise pose non-trivial challenges for the robustness of the lat-
ter wave.

3.4.4 Fully non-linear simulations

The resulting velocity and density fields, obtained by solv-
ing the fully non-linear Navier–Stokes equations under the
Boussinesq approximation (Eqs. 4, 5 and 6), forced by the
optimized Euler–Lagrange approach are shown in Fig. 6 af-
ter 10 wave periods. The spurious numerical features close
to the boundary have been found to be significantly weaker
(not shown here) as compared to what is shown in Fig. 4,
whereas the shear layer of the horizontal velocity field tracks
the oscillating pycnocline according to Fig. 3 and does not
affect the wave generation. Additionally, no spurious mass
generation is observed, with density values restricted within
the limits dictated by the background stratification. Finally,
near-grid-scale vertical velocity near the source remains very
small in magnitude and such that the wave-induced vertical
velocity is the only factor controlling the time step, as ex-
pected. The non-linear response of the generated wave may
now be examined along the propagation path without con-
tamination by spurious non-linear interactions due to small-
scale near-source transients.

The structure of the generated waves is indeed visibly
modified by non-linearity as they propagate away from their

source, with different waveform geometries becoming im-
mediately identifiable as a function of distance from the
source. Figure 7 attempts to offer such a waveform classi-
fication across three different sub-windows along the prop-
agation path. Figure 7a shows waves of depression that de-
velop close to the source. Since the particular waves have
large flat plateaus and narrow troughs, a clear similarity with
cnoidal waves (Boyd, 2015) is suggested. During a transi-
tional phase, shown in Fig. 7c, the wave troughs broaden.
Further downstream, the waves tend to assume a near-
sinusoidal shape with peaks and troughs of comparable width
(Fig. 7e).

A more quantitative description of the different types of
observed waveforms is enabled by examining the corre-
sponding along-wave spectral content. One-dimensional spa-
tial fast Fourier transforms (FFTs) of the density ρ̂(k) are
computed streamwise for each sub-window focused at the
depth of the undisturbed pycnocline. Special attention needs
to be paid when computing the FFTs for the simulations at
hand, since the internal grid point distribution within each
spectral is non-uniform (Sect. 3.4.1). A non-uniform FFT al-
gorithm is therefore used (Dutt and Rokhlin, 1993; Potter
et al., 2017), as it is well tested and readily available.

Closer examination of the right column of panels in Fig. 7,
suggests that the along-wave spectral content has power
spectral density in regions not specified by the forcing. In
particular, a strong second harmonic persists at a downstream
distance as large as 60H . Further downstream of the forcing
boundary, the amplitude of this harmonic significantly atten-
uates, resulting in a wave that is closer to being monochro-
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Figure 5. Comparison of the velocity and density structures generated by the two different Euler–Lagrange wave-generation approaches in
a fully linear simulation at t/T = 7.4. The left panels, panels (a) and (c), use the Euler–Lagrange approach and the right panels, panels (b)
and (d), use the optimized one. The bottom panels, panels (c) and (d), correspond to an enhanced view of the respective top panels, panels
(a) and (b). Velocities are normalized with their maximum values and the adjusted density by the density jump at the pycnocline.

matic (as confirmed by the visualization of Fig. 7e). In the
context of a fully non-linear simulation with a sloping bound-
ary, adjusting the length of the section of the computational
domain over which the waves propagate prior to reaching the
slope allows one to decide how much the waves are allowed
to naturally adjust due to their finite amplitude and disper-
sion. Equivalent simulations, which separate the slope from
the source by only a fraction of the horizontal wavelength
(Masunaga et al., 2015, 2016), are not expected to support a
non-linearly adjusted (and potentially steepened) waveform
as the incident wave reaches a slope.

The vertically integrated kinetic energy (KE) at any down-
stream position x is

KE=

0∫
−H

1
2
ρ0(u2

+w2)dz. (48)

KE is shown as a function of time and position for both
the fully linear case (Fig. 8a) and non-linear case (Fig. 8b).
The theoretically prescribed characteristic of energy trans-

port given by the wave speed, c = λx/T , is also plotted. Fig-
ure 9 presents the interpolation of the kinetic energy along
the prescribed characteristic of energy transport in the linear
case, shown in white in Fig. 8a. The slope of the KE con-
tours, a measure of the group velocity, appears to match well
with the theoretical value. Viscous decay can be considered
negligible since the wave-based Reynolds number is chosen
to be Rew = (λ2

x/ν)/T � 1. The deviation along the charac-
teristic in Fig. 9 can therefore be attributed to the dispersive
aspect of the continuous two-layer stratification. In the non-
linear case, characteristics also appear to be parallel to the
theoretical solution even if the KE is not constant along it
due to non-linearities generating extra wavelengths.

4 Discussion

The generation process of finite-amplitude periodic waves
through a time-dependent deep-water Dirichlet boundary
condition has been examined for the case of a quasi two-
layer continuous stratification (Fig. 1). In the case of a lin-
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Figure 6. Fully non-linear simulation using optimized Euler–Lagrange wave-generation boundary conditions at t/T = 10. Velocities (a, b)
are normalized with their maximum values and the adjusted density (c) by the density jump at the pycnocline.

Figure 7. Exploded view of full density contours at different downstream locations for the waves shown in Fig. 6, illustrating the development
of waveforms (a, c, e). Respective streamwise Fourier spectra ρ̂ of ρ(x), computed at z/H = zp =−0.4 and t/T = 10 and normalized by
the maximum peak depending on the wavenumber normalized by the prescribed wave number kx (b, d, f).

ear stratification, N2 is constant in time and space and there-
fore Eq. (16) has an analytical solution, Wn. Such a solu-
tion leads to an exact expression of the perturbation fields
for the linear Euler equations under the Boussinesq approxi-
mation with an analytical vertical structure and explicit time
dependence (see Appendix B). The amplitude of the gener-

ated waves can non-trivially exceed the limit prescribed by
linear theory without any impact on wave robustness as evi-
denced by the deep-water waves used in the linearly stratified
simulations of Winters (2015).

As described in Sect. 3, the quasi two-layer stratification
studied here appears to be more complex. In this context, we
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Figure 8. Vertically integrated kinetic energy KE normalized by its maximum value KE∗ as a function of the downstream position and time
for both the linear and non-linear case. The white line corresponds the theoretical energy transport characteristic, x = c× t .

Figure 9. Kinetic energy along the prescribed characteristic of en-
ergy transport in the linear case shown in Fig. 8a.

do not have an analytical expression for W (z, t), leading to
the different approximations introduced in this study. These
extra layers of approximations will therefore tighten the am-
plitude limitations of the wave that can be generated. Nev-
ertheless, depending on the chosen stratification, numerical
experiments (not shown here) have demonstrated that robust
waves of up to Fr = 0.5 are achievable using the optimized
Euler–Lagrange approach.

Another important feature that has been demonstrated by
Fig. 7 is the fact that in the quasi two-layer continuous
stratification the forcing produces wave-trains that are non-
monochromatic. Equation (44) reveals that the optimized
Euler–Lagrange approach results from the multiplication of
temporarily oscillating terms, leading to the appearance of
multiple harmonic wavelengths in the generated wave. Suffi-
ciently downstream of the source, the strength of these har-
monics seems to diminish for the Fr = 0.2 waves shown in
Fig. 7e, with wave-induced perturbations that may be re-
garded as assuming a near-sinusoidal waveform. Nonethe-

less, the wave trains at the same downstream location in our
experiments, with Fr = 0.5 (not shown here), are found to
remain remarkably non-linear, with extremely steep fronts
therein.

Per the literature review in the introduction, the only
other computational study considering the generation of long
finite-amplitude waves in a two-layer stratification with suf-
ficient distance for the waves to develop downstream of the
source that the authors are aware of is that of Dauhajre et al.
(2021). We suspect that no issues were reported with regard
to the deep-water generated waves for two reasons. First, mo-
tivated by apparently different objectives than this study, the
use of the wave aspect ratio of λ/H = 200 is remarkably long
and, most likely, restrictive if a turbulence-resolving capa-
bility (and not a turbulence parameterization) is preferred.
Additionally, the inferred normalized pycnocline thickness
value of δ/H = 0.35 is more representative of that in the
oceanic continental shelf and not of a deep and long sea-
sonally stratified lake, the primary motivator of this study.
Most importantly, noting that Ak =Wmax, where Wmax is
the maximum wave-induced vertical velocity, Dauhajre et
al. (2021) work with a typical value of A/(δc)≈ 1.8. These
non-dimensional parameter values along with any reduction
in the curvature at the base of the pycnocline through the
insertion of a weakly yet non-trivially stratified lower layer
may diminish the intensity of any Euler–Lagrange effects per
Eq. (30) and the associated discussion. Finally, it is unclear
how the numerical dissipation built into the K-profile pa-
rameterization (Large et al., 1994) actively used by Dauhajre
et al. (2021) may have damped out any near-source short-
wavelength initialization transients such as those reported in
Sect. 3.4.3.
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5 Conclusions

This study has examined the formulation of robust finite-
amplitude periodic internal-wave-generating boundary con-
ditions for a non-linear stratification, highlighting extra lev-
els of subtlety compared to the linear stratification case
while relying on a higher-order-of-accuracy spectral element
method to discretize the governing equations. The commonly
used Eulerian approach, which relies on a fixed reference
frame, is found to develop non-trivial errors when imple-
mented in simulations with a sharp quasi two-layer contin-
uous stratification and higher-amplitude internal waves with
a horizontal-wavelength-to-depth (wave aspect) ratio that is
finite albeit not excessively large. This results in errors be-
cause the prescribed wave forcing assumes a fixed/unper-
turbed pycnocline and does not account for the upstream and
vertical wave-induced displacement of the pycnocline. This
mismatch between fixed wave-forcing and moving pycno-
cline is shown to scale with the parameter A/(δc), where A
is a measure of wave amplitude, δ is the pycnocline thick-
ness and c is the wave propagation speed. Simulations with
values of A/(δc)= 5 show spurious mass generation near
the wave-generating source, with accompanying unphysical
near-grid-scale vertical velocities that can detrimentally re-
duce the computational time step and even prohibitively re-
strict it for a long enough time and higher values of the wave-
induced Froude number, Fr. The minimal numerical dissipa-
tion of the spectral element method cannot damp these spu-
rious numerical features.

For values of A/(δc) sufficiently larger than unity, an
Euler–Lagrange approach needs to be used instead in the
wave generation, which does account for the above pycn-
ocline displacement. Although an exact solution of the lin-
earized Euler equations under the Boussinesq approximation
is not actually attained through this approach, the resulting
waves are sufficiently robust: they can propagate away from
the source; non-linear adjustments of their waveform are pos-
sible through leveraging the higher-order-accuracy spectral
element scheme.

The findings of this study will serve as a platform to
enable a detailed numerical study of internal swash zones
(ISZs), which are zones driven by the interaction of long
periodic non-linear internal waves with a sloping boundary.
Such simulations will aim to investigate the parameter space
in two dimensions, which would include the wave Froude
number; pycnocline thickness and depth; wave–aspect ratio;
slope value; and the role of no-slip vs. free-slip boundary
conditions, particularly on the slope. Select two-dimensional
studies will operate as the springboard for full-scale three-
dimensional turbulence-resolving simulations These larger
simulations may invariably be restricted by existing compu-
tational resources to wave aspect ratios in the range [20,40].
As our interests are motivated by internal swash zones in sea-
sonally stratified deep lakes, we will use a two-layer contin-
uous stratification with thinner pycnoclines typical of such

environments (Schweitzer, 2015). As such, the parameter
A/(δc) will be non-trivially larger than unity. To address this
region of parameter space, an Euler–Lagrange approach is
needed to account for the wave-induced displacement of the
isopycnal field in both vertical and horizontal directions. The
optimized Euler–Lagrange approach will be used to generate
robust high-amplitude deep-water internal waves at values of
the Froude number of up to Fr = 0.2.

A parallel avenue of future investigation into the find-
ings of this paper may be their translation to experimen-
tal internal-wave generators. Horizontally oscillating paddles
are reported as limited to significantly short waves with an as-
pect ratio of around 10 (Ghassemi et al., 2022). The vertically
stacked plate/eccentric camshaft structure of Mercier, Gosti-
aux and co-workers (Mercier et al., 2010; Gostiaux et al.,
2006), through its ability to reproduce a baroclinic structure
in the vertical, may be the most amenable experimental tech-
nique to adopt aspects of the optimized Euler–Lagrange ap-
proach presented here.

Appendix A: Spectral element method

Following the work of Diamantopoulos et al. (2022), the
Poisson problem (see Eq. 14) can be rewritten as follows:

−∇
2
xzp(x,z)= f (A1)

The discretization of the Laplacian in the non-homogeneous
directions x and z is presented. Let VN ⊂H 1(�) be a finite
subspace where p,v ∈ VN are a part of the solution. Accord-
ingly, the weak form of Eq. (A1) under the Galerkin approx-
imation becomes∫
�

∇v · ∇pd�=
∫
�

vf d�+
∮
∂�

v∇p ·ndS , (A2)

where ∇p ·n= ∂p/∂n is the natural boundary condition
(Deville et al., 2002). By defining VN as the finite subspace
spanned by two-dimensional Lagrangian basis functions up
to the order of N , i.e., VN = span{h1(x,z), . . .,hn(x,z)}, p
and v are approximated as p =

∑
kpkhk and v =

∑
kvkhk ,

where k ∈ {1, . . .,n} is the corresponding index set, and n is
the total number of degrees of freedom on the x–z plane.
Note that each element has the same polynomial order. Thus,
the discretized Eq. (A2) is written in matrix form:

Kp=Mf⇒Kp= g , (A3)

where Kij =
∫
�
∇hi · ∇hjd� and Mij =

∫
�
hihjd� are the

respective entries of the assembled stiffness and mass matri-
ces (Deville et al., 2002), where i,j ∈ {1, . . .,n}. Note that
the viscous/diffusive equations for the velocity and density
field follow the same weak-form-based formulation and dis-
cretization.

A non-overlapping domain decomposition (DD) method
with iterative substructuring/static condensation is used
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when solving for the pressure (Karniadakis and Sherwin,
2013). In tandem with a logically Cartesian topology,
Eq. (A3) is broken down into a hierarchy of smaller prob-
lems with homogeneous Dirichlet boundary conditions for
the two levels of the condensation (Karniadakis and Sherwin,
2013; Huismann et al., 2017; Deville et al., 2002). Once the
second and last stage of DD is reached, a Schur complement
problem on the vertical interfaces, 0v , of the subdomains is
iteratively solved. In the context of the hierarchy of prob-
lems, a subsequent backward sweep ensures the solution on
the global computational domain.

A simple strategy is adopted for the numerical solution of
the viscous and diffusive parts of the solver. It is during this
step of the solver where boundary conditions for the veloc-
ity field and the density perturbation are enforced (Diaman-
topoulos et al., 2021). Following the discretization presented
above, the respective Helmholtz matrix, Hu, is given by

Hu
= αK+M , (A4)

where the time-step coefficient α scales linearly with ν1t or
κ1t .

Appendix B: Details on the derivation of the vertical
structure in the linear stratification case

In the case of a linear stratification, we have by definition

N (z)=N0. (B1)

Equation (16) becomes a classic second-order linear dif-
ferential equation, analogous to that of a simple harmonic
oscillator. The solution is oscillatory in z:

Wn(z)= sin
(nπz
H

)
with kn =

nπ

H

(
ω2

N2−ω2

)1/2

. (B2)

Appendix C: Subtleties of the implementation of the
time-dependent deep-water boundary conditions

To implement the different time-dependent deep-water
boundary condition approaches described in Sect. 3.2
and 3.3, the eigenfunction W (z) and corresponding eigen-
value k need to be calculated from Eqs. (16) and (17). A
high-order spectral element method (Diamantopoulos et al.,
2022) is used to for this purpose.

The values of the eigenfunction and its vertical derivative
on locations offset from the actual grid points, W (z− η) and
W ′(z− η), are required for either of the Euler–Lagrange ap-
proaches (see Sect. 3.3). These values are obtained at each
time step through a cubic spline interpolation in the vertical.

Additionally, to reduce transient-driven contamination of
the generated deep-water waves and force both velocity com-
ponents and density perturbation to be zero at the deep-water

boundary at time t = 0, the amplitude of the boundary forc-
ing is ramped up in time through application of an exponen-
tial envelope. The three forcing expressions for u, w and ρ′

(see Sect. 3.2 and 3.3) are multiplied by an envelope func-
tion, f (t), defined by

f (t)=
(

1− exp
(
t

τ

))
, (C1)

where τ is a characteristic timescale of the ramp-up con-
strained by τ � T and set to τ = 5

100T in this study.
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