
Nonlin. Processes Geophys., 31, 449–461, 2024
https://doi.org/10.5194/npg-31-449-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

R
esearch

article

Multifractal structure and Gutenberg–Richter parameter
associated with volcanic emissions of high energy in

Colima, Mexico (years 2013–2015)

Marisol Monterrubio-Velasco1, Xavier Lana2, and Raúl Arámbula-Mendoza3

1Department of Computer Applications of Science and Engineering, Barcelona Supercomputing Center,
08034 Barcelona, Spain

2Department of Physics, Escola Tècnica Superior d’Enginyeria Industrial de Barcelona (ETSEIB), Universitat
Politècnica de Catalunya, Diagonal 647, 08028 Barcelona, Spain

3Centro Universitario de Estudios e Investigaciones de Vulcanología (CUEIV), Universidad de Colima,
Colima 28045, Mexico

Correspondence: Marisol Monterrubio-Velasco (marisol.monterrubio@bsc.es)

Received: 13 January 2024 – Discussion started: 24 January 2024
Revised: 8 July 2024 – Accepted: 15 July 2024 – Published: 23 September 2024

Abstract. The evolution of multifractal structures in various physical processes, such as climatology, seismol-
ogy, or volcanology, serves as a crucial tool for detecting changes in corresponding phenomena. In this study,
we explore the evolution of the multifractal structure of volcanic emissions with varying energy levels (observed
at Colima, Mexico, during the years 2013–2015) to identify clear indicators of imminent high-energy emissions
nearing 8.0× 108 J. These indicators manifest through the evolution of six multifractal parameters: the central
Hölder exponent (α0); the maximum and minimum Hölder exponents (αmax, αmin); the multifractal amplitude
(W = αmax−αmin); the multifractal asymmetry (γ = [αmax−α0]/[α0−αmin]); and the complexity index (CI),
calculated as the sum of the normalized values of α0, W , and γ . Additionally, the results obtained from adapt-
ing the Gutenberg–Richter seismic law to volcanic energy emissions, along with the corresponding skewness
and standard deviation of the volcanic emission data, further support the findings obtained through multifractal
analysis. These results, derived from multifractal structure analysis, adaptation of the Gutenberg–Richter law to
volcanic emissions, and basic statistical parameters, hold significant relevance in anticipating potential volcanic
episodes of high energy. Such anticipation can be further quantified using an appropriate forecasting algorithm.

1 Introduction

The application of fractal and multifractal theory to Earth
sciences (Goltz, 1997; Turcotte, 1997; Karsten et al., 2005,
among others) represents an intriguing avenue for analyz-
ing complex geophysical and atmospheric phenomena, serv-
ing as a significant step in the forecasting process. Exam-
ples include studying rainfall patterns (Koscielny-Bunde et
al., 2006; Lana et al., 2017, 2020, 2023), extreme tempera-
ture variations (Burgueño et al., 2014), wind speed charac-
teristics (Sun et al., 2020), hydrological analyses (Movahed
and Hermanis, 2008), seismic activity (Ghosh et al., 2012;
Telesca and Toth, 2016; Monterrubio-Velasco et al., 2020),

and emissions of volcanic energy (Monterrubio-Velasco et
al., 2023).

The forecasting of volcanic energy emissions through the
monofractal theory, specifically the Hurst exponent and re-
construction theorem (Diks, 1999), along with predictive al-
gorithms and nowcasting processes (Rundle et al., 2016)
could play a crucial role in averting imminent hazardous
events. One application of monofractal theory can be seen in
the analysis of volcanic emission data from Colima, Mexico,
spanning the years 2013 to 2015 (Arámbula-Mendoza et al.,
2018, 2019; Monterrubio-Velasco et al., 2023). This analysis,
in conjunction with nowcasting, helps to predict the probable
energy levels of upcoming emissions. In contrast, a different
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approach is rooted in multifractal theory (Kantelhardt et al.,
2002), which has also been employed in fields such as seis-
mology (Shadkhoo and Jafari, 2009; Telesca and Toth, 2016)
and climatology (Mali, 2014; Lana et al., 2016, 2017). This
theory offers an alternative perspective and methodology for
understanding complex systems and their behaviors across
various scientific domains.

One of the most relevant laws in seismology, the
Gutenberg–Richter equation (Gutenberg and Richter, 1944;
Aki, 1981; Amitrano, 2003; Scholz, 2015; Zaccagnino
and Doglioni, 2022), describes the earthquake frequency–
magnitude distribution for local, regional, or global seismic
sequences:

log10{N ≥Mw} = a− b(Mw−Mc), (1)

whereN represents the cumulative number of events exceed-
ing a magnitudeMw and parameter b, usually called b value,
is associated with the scaling of the number of earthquakes
for increasing values of seismic magnitude. The magnitude
of completeness, Mc, refers to the smallest earthquake mag-
nitude that is consistently recorded within a given dataset
or region. It represents the threshold above which all earth-
quakes are reliably detected and cataloged by a seismic net-
work. This concept is crucial for ensuring the accuracy and
reliability of statistical analyses and for making meaningful
interpretations about seismic activity and earthquake distri-
bution. The b value is mainly controlled by (1) the fractal
distribution of seismic sources (Aki, 1981; Zaccagnino et al.,
2022); (2) the fault roughness (Amitrano, 2003); and (3) its
relationship with the differential stress of the Earth’s crust –
highly stressed zones, or faults, usually exhibit low b values,
whereas weakly stressed areas usually exhibit higher b val-
ues (Scholz, 2015). Gulia and Wiemer (2019) suggest that a
decrease in the b value on the mainshock’s fault can indicate
that the strongest event of the sequence has not yet occurred,
this information being useful in forecasting future stronger
earthquakes. For these reasons, analyzing the time series of
the b value can be a powerful tool to enhance seismologist
forecasting capability (Taroni et al., 2021). The Gutenberg–
Richter equation is also useful for the analysis of volcanic
emissions, bearing in mind that the seismic moment magni-
tude,Mw, is related to the emission of seismic energy, Es, by
means of a power law (Kanamori, 1977).

Mw = 2/3log10Es− 3.2 (2)

Hence, it is feasible to utilize an equivalent Gutenberg–
Richter law in the current study, replacing seismic magni-
tudes with the logarithm of volcanic energy emissions (E) in
the series of volcanic explosions at Volcán de Colima:

log10N =−blog10E+ a. (3)

The objective of this research is not to forecast the magnitude
of the next emission but to verify that a specific evolution of a

Figure 1. Volcanic energy (J) emissions above log10(E)= 6.1 and
complying with the Gutenberg–Richter law, as indicated by the red
line.

set of multifractal parameters, based on the successive analy-
sis of data series, could manifest the proximity to a real future
extreme energetic emission. It is also relevant that the results
obtained from the viewpoint of the multifractality agree with
the evolution of the b value when the segments of volcanic
emissions are approaching the extreme emission of energy.

The second section, Database, details the basic charac-
teristics of the complete set of emissions and justifies the
database quality. The third section, “Multifractal method-
ology”, is divided into three parts, corresponding to, first,
a detailed description of the multifractal detrended fluctu-
ation theory; second, the multifractal spectrum; and, third,
the complexity index. The fourth section, Results, depicts the
use of characteristics of all the multifractal parameters to de-
tect the proximity to an extreme emission of volcanic energy.
Additionally, the Gutenberg–Richter evolution confirms the
proximity to an extreme emission of energy by means of
changes in the b value. The fifth section provides a summary
of the obtained results along with a discussion on the effec-
tiveness of this strategy and its comparison with forecasting
and nowcasting processes.

2 Database

Several series of volcanic explosions, also known as vul-
canian explosions (Clarke et al., 2015), emitted by Vol-
cán de Colima (western segment of Trans-Mexican Volcanic
Belt) during the years 2013–2015 (Arámbula-Mendoza et al.,
2018, 2019) have been chosen to analyze, from the point of
view of the multifractal theory, the imminence of emissions
associated with energies close to or exceeding 108 J.
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Figure 1 illustrates the emissions conforming to the
Gutenberg–Richter law, as outlined before, that comprise
a dataset of 6182 instances where the energy is equal to
or exceeds approximately 2× 106 J within the time frame
of the years 2013–2015. The most relevant energy emis-
sions are detected just at the beginning of the recorded
data (log10(energy)= 8.2), approximately at the middle of
the series (log10(energy)= 8.4), and at the end of the se-
ries (log10(energy)= 8.9). Monterrubio-Velasco et al. (2023)
develop a more complete statistical description of volcanic
emissions using the generalized logistic distribution (GLO)
in the framework of the L-moment theory (Hosking and Wal-
lis, 1997). This study includes anticipated values for return
periods associated with extreme emissions that are charac-
terized by probabilities of 90 %, 95 %, and 99 %. These are
determined by the generalized extreme value (GEV) distri-
bution, which are also based on the L-moment distribution.
Particularly, Monterrubio-Velasco et al. (2023) reveal that the
highest extreme emissions, with 90 % probability, exceed the
energy threshold corresponding to log10(energy)= 8.0.

As mentioned, two of the three maximum emissions are
detected at the beginning and at the end of the dataset without
the possibility to, respectively, complete the evolution of the
multifractal parameters before and after these two extreme
emissions. The research is finally applied to the emission of
log10(energy)= 8.4 with a detailed analysis applied to suc-
cessive moving windows with a length of 1000 data points
(sufficient in this research for a right multifractality analysis)
and a shift of 100 data points, with 27 samples of the evolu-
tion of the different parameters describing the proximity to
the highest emission obtained in this way. Figure 2a illus-
trates the progression of energy from emission 1500 to 3000,
with the minimum, average, and maximum energy emissions
corresponding to log10(energy) values of approximately 6.3,
6.6, and 8.4, respectively (from the viewpoint of the TNT
(trinitrotoluene) units, these energy emissions range from 0.4
to 67.4 kg TNT). Consequently, the maximum energy emis-
sion surpasses the average energy of this segment by more
than a 100-fold. The evolution of the energy from emission
number 1500 (10 December 2013) up to emission number
3000 (24 April 2015) is also described in Fig. 2b, where an
evident reduction in the volcanic activity is observed during
90–100 consecutive days preceding new activities that are
close to the highest emission of energy.

3 Multifractal methodology

3.1 Multifractal detrended fluctuation analysis (MF-DFA)

The examination of multifractal characteristics in nonstation-
ary series can be addressed by utilizing the multifractal de-
trended fluctuation analysis (MF-DFA) technique pioneered
by Talkner and Weber (2000). A comprehensive description
of the MF-DFA methodology can be found in Kantelhardt et
al. (2002). The MF-DFA methodology is summarized below.

Figure 2. (a) The analyzed segment of energy emissions by means
of multifractal theory, including the highest energy close to 108.4 J.
The red line indicates the threshold value of the Mc completeness
magnitude obtained from the Gutenberg–Richter law fit shown in
Fig. 1. (b) The same segment of energy distributed over close to
500 consecutive days from 10 December 2013 to 24 April 2015.
The largest energetic episode is highlighted with a red line. The red
rectangle shows the low activity prior to the major volcanic explo-
sion.
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We consider xk to be a time series with a length of N , the
algorithm’s steps are as follows:

(a) Firstly, the profile of the time series is computed as

Y (i)=
i∑

k=1
xk −〈x〉, i = 1, . . .,N, (4)

where 〈x〉 is the average value of {xk}.

(b) Y (i) is divided intoNs = int(N/s) non-overlapping seg-
ments of equal length, s. Considering that length N of
the series is often not a multiple of the considered seg-
ment lengths, a short part at the end of the profile would
be discarded. With the aim to not disregard this part of
the series, the same procedure is repeated starting from
the opposite end. Consequently, 2Ns segments are ob-
tained.

(c) The local variance, F 2(s,ν), is computed for each seg-
ment ν of length s using an nth-order least-square poly-
nomial fitting to obtain the differences between “pro-
file” segments (first step) and the corresponding polyno-
mial fitting. The order of the polynomial is selected con-
sidering the best justified multifractal results. A fourth-
order polynomial is appropriate in our case.

(d) The qth-order fluctuation function is calculated by

F (s)q =

[
1

2Ns

2Ns∑
1

ln(F 2(s,ν))q/2
]1/qv

,

q 6= 0,−∞< q <+∞;

(5)

F (s)0 =

[
1

4Ns

2Ns∑
1

ln(F 2(s,ν))

]
, q = 0. (6)

The steps (b), (c), and (d) must be repeated for several
scales s, with it being appropriate that these scales vary
within the range (m+ 2, N/4), where m= 4 is the cho-
sen polynomial order (third step).

(e) The qth-order fluctuation function depicts a power-law
relationship concerning the segment length, s.

F (s)q ≈ sh(q) (7)

The generalized Hurst exponent, h(q), can be deter-
mined by a linear regression of ln(F (s)q ) versus ln(s).

In the case of nonstationary series, such as fractal Brow-
nian signals, the exponent h(q = 2) will be larger than 1.0
and will satisfy h(2)=H + 1, where H is the well-known
Hurst exponent (Movahed and Hermanis, 2008). For station-
ary time series, the value h(q = 2) is identical to the Hurst
exponent.H > 0.5 indicates persistence in long-range corre-
lation, H ≈ 0.5 manifests the random character of the series,

and H < 0.5 reflects anti-persistence. In the case of multi-
fractal series, if positive values of q are considered, the seg-
ments ν with large variance (i.e., large deviations from the
corresponding polynomial fit) will dominate the F (q(s)) av-
erage. Thus, for positive values of q, h(q) corresponds to
the scaling behavior of the segments with large fluctuations.
For negative values of q, each segment ν with small vari-
ance F 2(s,ν) will dominate the F (q(s)) average, h(q) then
describing the scaling behavior of the segments with small
fluctuations (Movahed and Hermanis, 2008; Burgueño et al.,
2014).

3.2 The singularity spectrum

The singularity spectrum, f (α), is related to the general-
ized Hurst exponent, h(q), through of the Legendre transform
(Kantelhardt et al., 2002). This relationship is articulated as
follows:

α = h(q)+ q
dh(q)

dq
←Legendre transform→

f (α)= q{α−h(q)}+ 1,
(8)

where α is the Hölder exponent, which is used to study the
scaling properties and the distribution of singularities. Each
value of α corresponds to a different type of singularity, and
the function of these exponents, known as the singularity
spectrum, f (α), describes the fractal dimension of the sets of
points sharing the same Hölder exponent (Frisch and Parisi,
1985; Lux, 2004). The multifractal scaling exponent is also
known as the mass exponent:

τ (q)= qh(q)− 1, (9)

and the Hölder exponent is defined as

α(q)= dτ (q)/dq. (10)

The function f (α) describes the subset dimension of the se-
ries characterized by the same singularity strength, α, with
the singularity strength with maximum spectrum denoted by
α0. Small values of α0 mean that the underlying process loses
fine-structure – that is, becomes more regular in appearance;
conversely, a large value of α0 ensures higher complexity.
The shape of f (α) may be fitted to a quadratic function
around the position α0:

f (α)= A(α−α0)2
+B(α−α0)+C. (11)

The coefficient B shows the asymmetry of the spectrum, be-
ing null for a symmetric spectrum. A right-skewed spectrum,
B > 0, indicates a fine structure, while left-skewed shapes,
B < 0, point to a smooth structure. The width of the spec-
trum, W , can be obtained by extrapolating the fitted curve
f (α) to zero or, in other words, extrapolating the multifractal
spectrum to q→±∞. The spectral amplitude is defined as

W = αmax−αmin, (12)

Nonlin. Processes Geophys., 31, 449–461, 2024 https://doi.org/10.5194/npg-31-449-2024



M. Monterrubio-Velasco et al.: Multifractal and statistical structure of Volcanic explosions 453

Figure 3. Six examples of multifractal spectrum. (a–d) The multifractal spectrum for four moving windows (before the highest emission).
(e, f) The last two (after the highest emission) moving windows, including the extreme energy episode.
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Figure 4. Evolution of parameters (a) αmax, (b) αmin, (c) α0, and (d)1α, describing the structure of the multifractality along the 27 moving
windows. The red lines describe the smooth evolution of these parameters by means of a fifth-degree polynomial, with an r2 of 0.88, 0.74,
0.72, and 0.85, respectively. The dashed line indicates MW= 15, which is the window preceding the highest emission.

with f (αmax)= f (αmin)= 0 and αmax(q→−∞) being
larger than αmin(q→+∞). Given that q needs to be cho-
sen many times, ranging, for instance, within the (−15,+15)
interval, αmax and αmin are obtained by numerically extrapo-
lating Eq. (11) for f (α)= 0.

The multifractal parameters used to detect the evolution
towards an extreme energy emission are the central Hölder
α0 and the extreme Hölder exponents, αmax and αmin, respec-
tively, accomplishing f (a0)= 1.0 and f (αmax)= f (αmin)=
0. The multi-spectral amplitude W (Eq. 12) and the multi-
fractal asymmetry, γ , also contribute to detecting the prox-
imity to an extreme emission.

γ =
αmax−α0

α0−αmin
(13)

All these parameters are combined in a single complexity
index, CI, defined in Shimizu et al. (2002) as

CI(j )=
[
α0(j )−〈α0〉

σ (α0)

]
+

[
Wj −〈W 〉

σ (W )

]
+

[
γj −〈γ 〉

σ (γ )

]
, (14)

with j = 1, . . .,N representing the N data segments for
which the multifractal spectrum is computed and 〈∗〉 and
σ (∗), the corresponding average and standard deviation per
each parameter, calculated in the N samples. The evolution
of every multifractal parameter close to the extreme emission
of energy will be clearly decreasing or increasing depending
on every one of the specific parameters (α0, αmax, αmin, W ,
and γ ), which will then affect the global CI.
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Figure 5. Evolution of the (a) Hurst exponent, H (q = 2); (b) asymmetry, g; and (c) complexity index, CI, of the multifractal structure. Red
lines describe the smooth evolution of these parameters by means of a fifth-degree polynomial with a r2

= 0.85, 0.68, 0.89, respectively. The
dashed line indicates MW= 15, which is the window that precedes the highest emission.

4 Results

4.1 Evolution of the multifractal parameters

The evolution of the multifractal parameters is analyzed by
applying the multifractal detrended fluctuation analysis al-
gorithm (MF-DFA) to 27 moving window (MW) data of
1000 elements in length (sufficient to obtain accurate multi-
fractal analyses, manifested by the obtained evolution of the
Hölder exponent, the generalized Hurst exponent, and a well-
obtained multifractal spectrum) and shift of 100 elements in
length. In this way, the multifractal structure is analyzed from
the beginning of the available data series up to a notable num-
ber of volcanic energy emissions after the onset of extreme
energy, E, which is close to log10E = 8.4. A first point of
view of the evolution of the multifractal structure is depicted

in Fig. 3, where neither the first four moving windows (be-
fore the highest emission) nor the final two (after the highest
emission) include the emission of the mentioned extreme en-
ergy. A simple review of the multifractal structure is not suf-
ficient to detect the proximity to the highest emission given
that a good fit of the empiric values of multifractality to a
theoretical second-degree polynomial structure does not im-
ply vicinity to an extreme maximum emission. Nevertheless,
the Hölder exponents, describing different multifractal am-
plitudes and asymmetries for every moving window suggest
an alternative to detect the proximity to the highest emission.

Figure 4 describes the evolution of the Hölder parameter
characteristics (α0, αmax, αmin, W ) for the 27 moving win-
dows. Bearing in mind that the highest emission is included
between MWs number 16 and 25, the most relevant results
are
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Figure 6. Three examples of τ (q) for moving windows not including the highest emission (a–c) and three including the highest energy
emission (d–f). The change in dτ (q)/dq is always detected at q = 0, and the corresponding square regression coefficients of both linear
evolutions are very close to 1.0.
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(a) an increasing tendency of αmax, with some fluctuations
before MW15 and a clear decrease after the emission of
the highest energy (MW16);

(b) some fluctuation in αmin up to MW16 and a fast increase
after this MW;

(c) a clear decrease in α0 when arriving to MW15, with a
notable increase for some of the next MWs, including
in the highest emission of energy;

(d) a clear maximum of W for MW16, together with evi-
dent increasing and decreasing evolutions, respectively,
before and after MW16.

Additionally, Fig. 5 depicts the evolution of the Hurst ex-
ponent, h(q = 2); the multifractal asymmetry, γ ; and the
complexity index, CI. The corresponding characteristics are

(a) quite a similar structure of the Hurst exponent, h(q =
2), in comparison with the evolution of α0;

(b) an evolution of the asymmetry, γ , quite similar to that
of W ;

(c) an evolution of CI, which is also quite similar to the
evolution of W .

Another possibility for the detection of the immediacy of
a high-energy emission is based on the evolution of the pa-
rameter τ (q)= qh(q)− 1. Figure 6 depicts six examples of
MWs (the first three not including the highest emission and
the other three including it). As anticipated by the mathe-
matical theory of the multifractal algorithm, the change in
dτ (q)/dq is always detected in q = 0 and the corresponding
square regression coefficients of both linear evolutions are
very close to 1.0. Figure 7 describes the evolution of the two
dτ (q)/dq values for MWs number 9 to 19, where quite an ev-
ident diminishing value of dτ (q)/dq for q > 0 is noticeable
up to MW16, including the moving window MW15 with the
highest emission. Consequently, these results of dτ (q)/dq
for q > 0 also contribute to detecting the proximity to the
extreme volcanic emission by means of multifractal analy-
ses.

The good results obtained for the multifractal structure of
volcanic emissions of Colima (Mexico) based on the fourth-
order polynomials used, for instance, on cited seismology or
climatology research in this document are also confirmed,
bearing in mind the empirical multifractal data well fitted to
the theoretical multifractal scaling exponent, τ (q), and the
theoretical singularity spectrum, f (α).

4.2 Evolution of the Gutenberg–Richter b value for
volcanic emissions

The results obtained by means of multifractal theory are
complemented by the analysis the evolution of the b value

Figure 7. Evolution of dτ/dQ for the moving windows 9–19, with
the four last MW values including the highest emission of energy
of Fig. 1.

of the Gutenberg–Richter law adapted to the volcanic emis-
sion of energy (Eq. 3), with the aim of detecting changes on
this parameter along the 27 MWs.

The methodology we follow to measure the evolution of
the b value in the analyzed series is as follows:

1. Determination of the magnitude of completeness (Mc).
In this case, we calculate an analog of the magnitude
of completeness using the entire log10E series of vol-
canic emissions. Mc is determined by fitting the data to
Eq. (1) and calculating the coefficient of determination,
ρ. The magnitude at which the coefficient of determi-
nation begins to decrease indicates the Mc. In our case,
the minimum acceptable value, log10(E)= 6.3, for ev-
ery MW is also assumed to be the same for the whole
series of volcanic emissions (Fig. 1).

2. Data collection. We gather 1000 consecutive energy
emissions for each MW to ensure sufficient data for ac-
curate analysis.

3. Calculation of the b value. Using Eq. (3), we compute
the b value for each MW, considering Mc is computed
in the first step. This involves considering the 1000 el-
ements of each MW, measuring the frequency distribu-
tion of log10E, and fitting the data to Eq. (3).

4. Analysis of trends and abrupt changes. By examining
b-value evolution over time, we identify any significant
deviations or abrupt changes in the series, which may
indicate there are underlying shifts in the energy emis-
sions.

https://doi.org/10.5194/npg-31-449-2024 Nonlin. Processes Geophys., 31, 449–461, 2024
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Figure 8. Statistical values per each moving window, MW: (a) b value; (b) standard deviation; and (c) skewness of emission energy, E. The
red lines represent the linear trends that correspond to MWs close to the extreme emission. The dashed lines show MW= 15, which is the
window preceding the highest emission.

The evolution of the b value, together with the standard
deviation and skewness of log10E for the different MWs, is
represented in Fig. 8a–c. Firstly, the decreasing trend of ap-
proximately 0.27 units of b for every MW from MW11 to
MW16 is notable. Additionally, it is relevant that the b values
for the entire series (b = 3.8; ρ = 0.95), as shown in Fig. 1,
and for MW16, the first moving window that includes the
highest emission (b = 4.2; ρ = 0.96), are relatively similar.
Additionally, the standard deviation of log10E corresponds
to MW16 (0.27) is also remarkable and similar to that of
the whole series (0.28), and a clear increment of log10E dis-
persion (standard deviation) is observed for the consecutive
MWs approaching the extreme emission. Something similar
is detected for the skewness, with a value of 1.4 (the whole
series) and of 1.3 (MW16), as well as a clear increment of the
skewness approaching the first MW, including the extreme
volcanic energy emission. In summary, considering the b-

value evolution and two basic statistical measures (standard
deviation and skewness), these three factors could together
further confirm the progression toward a volcanic emission
of extreme energy.

Despite the practicality offered by the multifractal param-
eters, the Gutenberg–Richter law, and the standard deviation
and skewness to detect possible forthcoming extreme emis-
sions, the step-by-step forecasting of every emission (con-
sidering an appropriate algorithm and the results of recon-
struction theory) should also be relevant to complement the
control of these emissions. On the one hand, the results from
this research illustrate that the evolution of various parame-
ters clearly signals the occurrence of an extreme emission.
On the other hand, a suitable forecasting algorithm could de-
termine step by step, albeit with some level of uncertainty, the
imminence of consecutive emissions. For example, an emis-
sion of log10(E)= 7.52, relatively close to the extreme one,
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is approximately recorded 17 d before. The other three high
emissions (log10(E)= 7.84, 7.71, and 7.65) are detected just
a day or a few hours before the cited extreme emission. Re-
membering the foreshock concept in seismology, these four
high emissions could be the “foreshocks” of the expected
extreme emission. Nevertheless, whereas the first cited high
emission, log10(E)= 7.52, could be a warning 17 d before
the extreme emission, the other three high emissions are de-
tected only a few hours before the extreme episode. Con-
versely, the warning parameters proposed in this study detect
signs of a forthcoming extreme energy emission a notable
number of days before. A good example is the evolution of
the complexity index, CI, which clearly increases from MW6
to MW11 (interval close to 100 d) and oscillates from MW12
to MW15 (close to 90 d before the extreme emission).

5 Conclusions

The analysis of the complexity and possible forecasting of
potentially damaging volcanic emissions of energy, previ-
ously conducted from the point of view of the reconstruction
theorem, have now been conducted in this study by means
of the multifractal theory, with additional proxies based on
the evolution of the b value, and two basic statistical mea-
sures (standard deviation and skewness). The obtained re-
sults enable a deeper comprehension of the intricate physi-
cal mechanisms that govern these geophysical phenomena.
It is essential not to overlook the significance of the nowcast-
ing, rooted in statistics; forecasting algorithms, which rely on
predictive models; and reconstruction theorem. It is crucial
to recall that the primary aim of this research is not to pro-
vide precise forecasts for every volcanic energy emission. It
rather focuses on identifying the most indicative parameters
that exhibit trends suggestive of a potential onset of extreme
energy emissions. In summary, the integration of the multi-
fractal structure theory, basic statistical parameters, and the
Gutenberg–Richter law across a series of moving windows,
together with the basis given by the reconstruction theorem,
holds promise for significantly enhancing the predictability
of high volcanic energy emissions over extended time inter-
vals. Such advancements can help in preventively mitigating
the effects of these volcanic emissions.
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