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Abstract. The dissipation rates of the basic second-order moments are the key parameters playing a vital role
in turbulence modelling and controlling turbulence energetics and spectra and turbulent fluxes of momentum and
heat. In this paper, we use the results of direct numerical simulations (DNSs) to evaluate dissipation rates of the
basic second-order moments and revise the energy and flux budget (EFB) turbulence closure theory for stably
stratified turbulence. We delve into the theoretical implications of this approach and substantiate our closure
hypotheses through DNS data. We also show why the concept of down-gradient turbulent transport becomes
incomplete when applied to the vertical turbulent flux of potential temperature under stable stratification. We
reveal essential feedback between the turbulent kinetic energy (TKE), the vertical turbulent flux of buoyancy,
and the turbulent potential energy (TPE), which is responsible for maintaining shear-produced stably stratified
turbulence for any Richardson number.

1 Introduction

Turbulence and associated turbulent transport have been
studied theoretically, experimentally, observationally, and
numerically throughout several decades (see books by Batch-
elor, 1953; Monin and Yaglom, 1971, 2013; Tennekes and
Lumley, 1972; Frisch, 1995; Pope, 2000; Davidson, 2013;
Rogachevskii, 2021, and references therein), but some im-
portant questions remain. This is particularly true in ap-
plications to atmospheric physics and geophysics, where

Reynolds and Péclet numbers are extremely large, so the gov-
erning equations are strongly nonlinear. The classical Kol-
mogorov theory (Kolmogorov, 1941a, b, 1942, 1991) has
been formulated for neutrally stratified homogeneous and
isotropic turbulence.

In atmospheric boundary layers, temperature stratifica-
tion causes turbulence to become anisotropic and inhomoge-
neous, making some assumptions underlying Kolmogorov’s
theory questionable. Numerous alternative turbulence clo-
sure theories (see reviews by Weng and Taylor, 2003; Umlauf
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and Burchard, 2005; Mahrt, 2014) have been formulated us-
ing the budget equations for not only turbulent kinetic energy
(TKE), but also turbulent potential energy (TPE) (see, for
example, Holloway, 1986; Ostrovsky and Troitskaya, 1987;
Dalaudier and Sidi, 1987; Hunt et al., 1988; Canuto and
Minotti, 1993; Schumann and Gerz, 1995; Hanazaki and
Hunt, 1996; Keller and van Atta, 2000; Canuto et al., 2001;
Stretch et al., 2001; Cheng et al., 2002; Hanazaki and Hunt,
2004; Rehmann and Hwang, 2005; Umlauf, 2005). The bud-
get equations for all three energies, TKE, TPE, and total tur-
bulent energy (TTE), were considered by Canuto and Minotti
(1993), Elperin et al. (2002, 2006), Zilitinkevich et al. (2007),
and Canuto et al. (2008).

The energy and flux budget (EFB) turbulence closure the-
ory, which is based on the budget equations for the densities
of TKE, TPE, and turbulent fluxes of momentum and heat,
has been developed for the stably stratified atmospheric flows
(Zilitinkevich et al., 2007, 2008, 2009, 2013, 2019; Kleeorin
et al., 2019), surface layers in atmospheric convective tur-
bulence (Rogachevskii et al., 2022), and core of the convec-
tive boundary layer (Rogachevskii and Kleeorin, 2024), as
well as for passive scalar transport (Kleeorin et al., 2021).
The EFB closure theory has shown that strong atmospheric
stably stratified turbulence is maintained by large-scale shear
(mean wind) for any stratification, and the “critical” Richard-
son number, considered for many years to be a threshold
between the turbulent and laminar states of the flow, actu-
ally separates two turbulent regimes: the strong turbulence
typical of atmospheric boundary layers and the weak three-
dimensional turbulence typical of the free atmosphere and
characterised by a strong decrease in the turbulent heat trans-
fer in comparison to the momentum transfer.

Some other turbulent closure models (Mauritsen et al.,
2007; Canuto et al., 2008; Sukoriansky and Galperin, 2008;
Li et al., 2016) do not employ the concept of the criti-
cal Richardson number, so shear-generated turbulent mixing
may persist for any stratification. In particular, Mauritsen et
al. (2007) have developed a turbulent closure based on the
budget equation for TTE (instead of TKE) and different ob-
servational findings to take into account the mean flow sta-
bility. They used this turbulent closure model to study the
turbulent transfer of heat and momentum under very stable
stratification. In their model, although the turbulent heat flux
tends toward zero beyond a certain stability limit, the turbu-
lent stress stays finite. However, the model by Mauritsen et
al. (2007) does not use the budget equation for TPE and the
vertical turbulent heat flux.

L’vov et al. (2008) performed detailed analyses of the
budget equations for the Reynolds stresses in the turbulent
boundary layer (relevant to the strong turbulence regime),
explicitly taking into consideration the dissipative effect in
the horizontal turbulent heat flux budget equation in contrast
to the EFB “effective dissipation approximation”, adopted
in the EFB turbulent closure model. However, the theory by
L’vov et al. (2008) still contains the critical gradient Richard-

son number for the existence of the shear-produced turbu-
lence.

Sukoriansky and Galperin (2008) apply a quasi-normal-
scale elimination theory that is similar to the renormalization
group analysis. Sukoriansky and Galperin (2008) do not use
the budget equations for TKE, TPE, and TTE in their analy-
sis. This theory correctly describes the dependence of the tur-
bulent Prandtl number versus the gradient Richardson num-
ber and does not employ the concept of the critical gradient
Richardson number for the existence of turbulence. However,
this approach does not have detailed Richardson number de-
pendences of the other non-dimensional parameters, such as
the ratio between TPE and TTE, dimensionless turbulent flux
of momentum, or dimensionless vertical turbulent flux of po-
tential temperature. Their background non-stratified shear-
produced turbulence is assumed to be isotropic and homo-
geneous. Canuto et al. (2008) have generalised their original
model (see Cheng et al., 2002), introducing the new param-
eterisation for the buoyancy timescale to accommodate the
existence of stably stratified shear-produced turbulence at ar-
bitrary Richardson numbers.

Li et al. (2016) have developed the co-spectral budget
(CSB) closure approach, which is formulated in the Fourier
space and integrated across all turbulent scales to obtain tur-
bulent characteristics in physical space. The CSB model al-
lows turbulence to exist at any gradient Richardson num-
ber. However, the CSB model yields different predictions for
the vertical anisotropy versus the Richardson number com-
pared to the EFB theory. All state-of-the-art turbulent clo-
sures follow the so-called Kolmogorov hypothesis: all dissi-
pation timescales of turbulent second-order moments are as-
sumed to be proportional to each other, which, at first glance,
looks reasonable but is, in fact, hypothetical for stably strati-
fied turbulence.

The present study aims to demonstrate the dependence
of dissipation timescales of basic second-order moments on
stability through direct numerical simulation (DNS) exper-
iments. The obtained numerical results allow us to modify
the EFB turbulence closure theory to account for that depen-
dency. It is worth noting that the DNSs presented here are
limited to bulk Richardson numbers (based on the wall ve-
locity and temperature differences and channel height) up
to Rib = 0.11 and Reynolds numbers (based on the wall
velocity difference and channel height; see Sect. 3) up to
Re= 120000.

This paper is organised as follows. In Sect. 2, we for-
mulate basic budget equations and main assumptions in the
framework of the EFB turbulence closure theory. Section 3
describes the setup for DNSs of stably stratified turbulent
plane Couette flow to determine the vertical profiles of the
dissipation timescales of turbulent second-order moments. In
Sect. 4, we formulate the modified EFB turbulence closure
theory while considering the dependencies of the dissipation
timescales of basic second-order moments on the gradient
Richardson number obtained from DNSs. There, we also per-
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form the validation of the modified EFB turbulence closure
model, which yields vertical profiles of the basic turbulence
parameters (including the turbulent Prandtl number, the ratio
of TPE to TKE, and the normalised turbulent heat flux) us-
ing the data from the DNS. Finally, in Sect. 5, we discuss the
obtained results and draw the conclusions.

2 Problem setting and basic equations

We consider plane-parallel, stably stratified dry-air flow and
employ the familiar budget equations underlying turbulence
closure theory (e.g. Kleeorin et al., 2021; Zilitinkevich et al.,
2013, 2019; Kaimal and Finnigan, 1994; Canuto et al., 2008)
for the Reynolds stress, τij = 〈uiuj 〉; the turbulent flux of po-
tential temperature, Fi = 〈θui〉; and the intensity of potential
temperature fluctuations, Eθ = 〈θ2

〉/2:

Dτij
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+
∂
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8
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Here, x1 = x and x2 = y are horizontal coordinates; x3 = z

is the vertical coordinate; t is the time; U= (U1,U2,U3)=
(U,V,W ) is the mean flow velocity; u= (u1,u2,u3)=
(u,v,w) is the velocity fluctuations; 2= T (P0/P )1−1/γ is
the mean potential temperature (expressed through abso-
lute temperature, T , and pressure, P ); T0, P0, and ρ0 are
reference values of temperature, pressure, and density, re-
spectively; γ = cp/cv = 1.41 is the ratio of specific heats;
θ and p are fluctuations of potential temperature and pres-
sure; D/Dt = ∂/∂t+Uk∂/∂xk is the advective derivative; an-
gle brackets denote the averaging; β = g/T0 is the buoyancy
parameter; g is the acceleration due to gravity; δij is the unit
tensor (δij = 1 for i = j and δij = 0 for i 6= j ); and 8(τ )

ij3,

8
(F )
i , and 8(θ ) are the third-order moments, which describe

turbulent transport of the second-order moments under con-
sideration.
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where Qij is the correlation between fluctuations of pres-
sure and strain-rate tensor, which controls the interactions
between the Reynolds stress components as follows:

Qij =
1
ρ0

〈
p

(
∂ui
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+
∂uj

∂xi

)〉
. (7)

Here, ε(τ )
ij , ε(F )

i , and εθ are the dissipation rates of the second-
order moments:

ε
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where ν is kinematic viscosity and κ is thermal conductivity.
The budget of TKE components, Ei =

〈
u2
i

〉
/2 (i = 1,2,3),

is determined by Eq. (1) for i = j , which yields the familiar
TKE budget equation:

DEK
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∂
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2
∂
〈
u2
i

〉
∂z

)

=−τ ·
∂U
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+βFz− εK , (11)

where EK =
∑
Ei is TKE and εK =

∑
ε

(τ )
ii /2 is the TKE

dissipation rate. The sum of the term Qii (the trace of the
tensor Qij ) is equal to zero because of the incompressibility,
constraint on the flow velocity field, ∂ui/∂xi = 0; that is,Qij

only redistributes energy between TKE components.
Likewise, εθ is the dissipation rate of the intensity of po-

tential temperature fluctuations, Eθ , and ε(F )
i are the dissi-

pation rates of the three components of the turbulent flux of
potential temperature, Fi .

Following Kolmogorov (1941b, 1942), the dissipation
rates, εK and εθ , are taken to be proportional to the dissi-
pating quantities divided by corresponding timescales:

εK =
EK

tK
, εθ =

Eθ

tθ
, (12)

where tK is the TKE dissipation timescale and tθ is the
dissipation timescale of Eθ . Here, the formulation of the
dissipation rates is not hypothetical: it merely expresses
one unknown (dissipation rate) through another (dissipation
timescale).

In this study, we consider the EFB theory in its simplest,
algebraic form, neglecting non-steady terms in all budget
equations and neglecting divergence of the fluxes of TKE and
TPE (determined by third-order moments). This approach is
reasonable because, for example, the characteristic times of
variations of the second moments are much larger than the
turbulent timescales for large Reynolds and Péclet numbers.
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Figure 1. Profiles of mean flow velocity and mean potential temperature in stably stratified turbulent plane Couette flow. Light-grey dots
belong to the viscous sublayer.

We also assume that the terms related to the divergence of
the fluxes of TKE and TPE for stably stratified turbulence
are much smaller than the rates of production and dissipa-
tion in budget Eqs. (3) and (11). In this case, the TKE budget
equation, Eq. (11), and the budget equation for Eθ , Eq. (3),
become

0=−τ
∂U

∂z
+βFz− εK , (13)

0=−Fz
∂2

∂z
− εθ . (14)

The intensity of the potential temperature fluctuations, Eθ ,
determines TPE as follows:

EP =
βEθ

∂2/∂z
, (15)

so that Eq. (14) becomes

0=−βFz− εP , (16)

where εP = EP /tθ is the TPE dissipation time.
The first term on the right-hand side of Eq. (13),
−τ∂U/∂z, is the rate of the TKE production, while the sec-
ond term, βFz, is the buoyancy, which, in stably stratified
flow, causes decay of TKE; that is, it results in the conver-
sion of TKE into TPE. The ratio of these terms is the flux
Richardson number:

Rif ≡−
βFz

τ∂U/∂z
, (17)

and this dimensionless parameter characterises the effect of
stratification on turbulence.

Taking into account Eq. (17), the steady-state versions of
TKE and TPE budget equations, Eqs. (13) and (14), can be
rewritten as

EK = τ
∂U

∂z
(1−Rif) tK , (18)

EP = τ
∂U

∂z
Riftθ . (19)

Thus, the ratio of TPE to TKE is

EP

EK
=

Rif
1−Rif

tθ

tK
. (20)

Zilitinkevich et al. (2013) suggested the following relation,
linking Rif with another stratification parameter, z/L:

Rif =
kz/L

1+ kR−1
∞ z/L

,
z

L
=
R∞

k

Rif
R∞−Rif

, (21)

where L=−τ 3/2/βFz is the Obukhov length scale, k = 0.4
is the von Kármán constant, and R∞ = 0.2 is the maximum
value of the flux Richardson number.

On the right-hand side of Eq. (20), there is an unknown
ratio between two dissipation timescales, tθ/tK . The Kol-
mogorov hypothesis suggests that it is a universal constant.
We do not imply that this assumption applies but instead
investigate a possible stability dependency of dissipation
timescale ratios and improve the EFB turbulence closure
model accounting for it. To this end, we perform DNSs of
stably stratified turbulent plane Couette flow (see Sect. 3)
to measure the dissipation timescales of basic second-order
moments and validate the modified EFB turbulence closure
model (see Sect. 4).

3 Methods

For our study, we conducted a series of direct numerical sim-
ulations of stably stratified turbulent plane Couette flow. This
flow occurs between two parallel plates that move relative to
each other, producing shear and turbulence, with the plates
at different temperatures, thus creating stable stratification.
In Couette flow, the total (turbulent plus molecular) verti-
cal fluxes of momentum and potential temperature remain
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constant, independent of distance from the walls, which, in
particular, ensures a very certain fixed value of the Obukhov
length scale. Figure 1 illustrates the profiles of mean flow
velocity and mean potential temperature. We recall that all
our derivations are relevant to the well-developed turbulence
regime where molecular transports are negligible compared
to turbulent transports, so turbulent fluxes practically coin-
cide with total fluxes. This is the case in our DNS, except for
the narrow near-wall viscous turbulent-flow transition layers.
Data from these layers, obviously irrelevant to the turbulence
regime we consider, are shown by grey points in the figures
and are ignored in fitting procedures. In further analysis, we
primarily utilise z/L as a stratification parameter instead of
Ri or Rif because it offers a better dynamic range in our
experiments. While Ri remains practically constant in each
DNS run and Rif is limited in its growth, the parameter z/L
is determined by the distance from the walls, thus varying
significantly in every DNS run.

Numerical simulation of stably stratified turbulent Cou-
ette flow was performed using the unified DNS, LES, and
Reynolds-averaged Navier–Stokes equations (RANS) code
developed at the Moscow State University (MSU) and the
Institute of Numerical Mathematics (INM) of the Russian
Academy of Science (see Mortikov, 2016; Mortikov et al.,
2019; Bhattacharjee et al., 2022; Debolskiy et al., 2023;
Gladskikh et al., 2023; Zasko et al., 2023). The code is de-
signed for high-resolution simulations on modern-day high-
performance computing (HPC) systems. The DNS part of
the code solves the finite-difference approximation of the
incompressible Navier–Stokes system of equations under
the Boussinesq approximation. Conservative schemes on the
staggered grid (Morinishi et al., 1998; Vasilyev, 2000) of
fourth-order accuracy are used in the horizontal direction,
while, in the vertical direction, the spatial approximation is
restricted to second-order accuracy with near-wall grid reso-
lution refinement sufficient to resolve the near-wall viscous
region. The time step used in the simulations was deter-
mined by Courant–Friedrichs–Lewy (CFL) restrictions, with
CFL maintained at approximately 0.1 in all runs. This cor-
responds to a value of u2

∗1t/ν on the order of 0.01. The
projection method (Brown et al., 2001) is used for the time
advancement of momentum equations coupled with the in-
compressibility condition, while the multigrid method is ap-
plied to solve the Poisson equation to ensure that the velocity
is divergence-free at each time step. For the Couette flow,
periodic boundary conditions are used in the horizontal di-
rections, and no-slip and no-penetration conditions are set on
the channel walls for the velocity. The stable stratification is
maintained by prescribed Dirichlet boundary conditions on
the potential temperature. In all experiments, the value of
molecular Prandtl number (ratio of kinematic viscosity and
thermal diffusivity of the fluid) was fixed at 0.7 based on its
typical value for air (Monin and Yaglom, 1971). The sim-
ulations were performed for a wide range of the Reynolds
number, Re, defined by the wall velocity difference, chan-

nel height, and kinematic viscosity, that is from 40 000 up to
120 000 (see Table 1). All experiments were carried out using
the resources of MSU and Center for Scientific Computing
(CSC) HPC facilities. For the maximum Re values achieved,
the numerical grid consisted of more than 2× 108 cells and
the calculations used about 10 000 CPU cores.

For each Reynolds number, we conducted a series of ex-
periments. Beginning with neutral conditions (no imposed
gradient of the mean potential temperature), we incremen-
tally increased the bulk Richardson number, which charac-
terises the stable stratification, in each successive experi-
ment. By gradually increasing the stability in each experi-
ment, we were able to cover a wide range of Ri values, ex-
tending from neutral to stably stratified states. In each run,
the turbulent flow was allowed sufficient time to develop
and reach statistical steady-state conditions, which required
a spin-up period of at least 15 H/u∗ periods. This ensured
that parameters such as the total momentum flux remained
constant and that the TKE balance was in a steady state. The
fully developed steady state was used as the initial conditions
for the higher Ri or Re experiment setups. Additionally, all
terms in the second-order moment budget equations (Eqs. 1–
3) were evaluated consistently using the finite-difference ap-
proximation used, resulting in a negligible residual. This ap-
proach enabled us to comprehensively study the characteris-
tics of shear-produced stably stratified turbulence, explicitly
resolving all dissipation timescales of turbulent second-order
moments.

4 Modified EFB closure model for the steady-state
regime of turbulence

In the steady-state, Eq. (1) for the vertical component of the
turbulent flux of momentum, τ , becomes

0=−2Ez
∂U

∂z
− [ετ −βFx −Q13] . (22)

Following Zilitinkevich et al. (2007, 2013, 2019) we define
the sum of all terms in square brackets on the right-hand side
of Eq. (22) as the “effective dissipation”:

ε(eff)
τ = ετ −βFx −Q13 ≡

τ

tτ
. (23)

Thus, Eq. (22) becomes

0=−2Ez
∂U

∂z
−
τ

tτ
, (24)

yielding the well-known down-gradient formulation of the
vertical turbulent flux of momentum:

τ =−KM
∂U

∂z
, KM = 2AzEK tτ , (25)

where Az ≡ Ez/EK is the vertical share of TKE (the vertical
anisotropy parameter). By substituting Eq. (25) into Eq. (18),
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Table 1. Overview of DNS experiments and key parameters.

DNS run Re Rib Grid size Domain Reτ Viscous sublayer CPU runtime Averaging time
name (UH/ν) (β2/U2) (H ) (u∗H/ν) (z < 50ν/τ1/2) (s) (T u∗/H )

Re40Ri006 40 000 0.06 388× 260× 260 6× 4× 1 639.96 34.3 % 182 180 38.40
Re40Ri008 40 000 0.08 388× 260× 260 6× 4× 1 525.51 43.2 % 165 851 31.53
Re40Ri009 40 000 0.09 388× 260× 260 6× 4× 1 439.96 56.5 % 152 307 26.40
Y8Re40Ri006 40 000 0.06 388× 516× 260 6× 8× 1 639.30 34.3 % 316 204 38.36
Y8Re40Ri008 40 000 0.08 388× 516× 260 6× 8× 1 524.21 44.2 % 302 063 31.45
Re80Ri008 80 000 0.08 772× 516× 516 6× 4× 1 1001.11 21.2 % 891 598 30.03
Re80Ri009 80 000 0.09 772× 516× 516 6× 4× 1 912.07 23.5 % 946 772 27.36
Re80Ri010 80 000 0.10 772× 516× 516 6× 4× 1 816.91 26.7 % 936 989 24.51
Re80Ri011 80 000 0.11 772× 516× 516 6× 4× 1 684.19 32.8 % 961 394 20.53
Re120Ri008 120 000 0.08 772× 516× 516 6× 4× 1 1328.72 21.2 % 848 043 26.57

Figure 2. The ratio of the effective dissipation timescale of τ and the dissipation timescale of TKE tτ /tK versus z/L. The data used for the
calibration are obtained in DNS experiments employing the MSU–INM unified code. Only every sixth data point is presented to increase
visibility. For the full dataset, please see Kadantsev and Mortikov (2024). The near-surface layer, essentially affected by molecular viscosity
(0< z < 50ν/τ1/2), is excluded from the analysis. This sublayer is represented by the dotted light-grey lines. The solid black line shows
Eq. (27), with empirical constants CτK1 = 0.08, CτK2 = 0.4, and CτK3 = 2, obtained from the best fit of Eq. (27) to DNS data in the turbulent
layer, z > 50ν/τ1/2.

we obtain(
τ

EK

)2

=
2Az

1−Rif

tτ

tK
. (26)

In Eq. (26), all the variables are exactly resolved numerically
in DNSs, making a detailed investigation on tτ /tK possi-
ble. Figure 2 demonstrates that the dissipation timescale ra-
tio, tτ /tK , is a function of the stratification parameter z/L
rather than a constant. We propose to approximate this func-

tion with a ratio of two first-order polynomials:

tτ

tK
=
CτK1 z/L+CτK2

z/L+CτK3
. (27)

Here, the dimensionless empirical constants are obtained
from the best fit of Eq. (27) to DNS bin-averaged data:
CτK1 = 0.08, CτK2 = 0.4, and CτK3 = 2. The fitting is done
using the rational regression model of Curve Fitting Tool-
box version 3.5.13 (R2021a) (2022). The ratio of two first-
order polynomials is chosen as a simpler fitting function
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that could provide monotonicity, reasonable smoothness, and
clear asymptotes. The only three adjustable parameters of
this approximation correspond to the function value at z/L=
0, the z/L→∞ limit, and the transition between them.

Proceeding to the vertical flux of potential temperature,
Fz, we derive its steady-state budget equation from Eq. (2):

∂

∂z
8(F )
z = β

〈
θ2
〉
−

1
ρ0

〈
θ
∂p

∂z

〉
− 2Ez

∂2

∂z
− εF . (28)

DNS modelling has shown that ∂
∂z
8

(F )
z term is of the same

order of magnitude as εF and of the same sign, so we intro-
duce the “effective dissipation rate”, ε(eff)

F :

ε
(eff)
F = εF +

∂

∂z
8(F )
z ≡

Fz

tF
. (29)

Consequently, Eq. (28) reduces to

0= β
〈
θ2
〉
−

1
ρ0

〈
θ
∂p

∂z

〉
− 2Ez

∂2

∂z
−
Fz

tF
. (30)

Traditionally, the pressure term was either assumed to be
negligible or declared to be proportional to the β

〈
θ2〉 term

(see Zilitinkevich et al., 2007, 2013). However, our DNS data
have shown that it is neither negligible nor proportional to
any other term in the budget equation, Eq. (30). Instead, we
found that it is well approximated by a linear combination of
the production and transport terms of Eq. (30) (see Fig. 3):

1
ρ0

〈
θ
∂p

∂z

〉
= Cθβ

〈
θ2
〉
+C∇2Ez

∂2

∂z
. (31)

The dimensionless constants Cθ = 0.82 and C∇ =−0.80 are
obtained from the best fit of Eq. (31) to DNS data.

By substituting Eq. (31) into Eq. (30), we rewrite the bud-
get equation as

0= (1−Cθ )β
〈
θ2
〉
− (1+C∇ )2Ez

∂2

∂z
−
Fz

tF
. (32)

Substituting Eq. (15) for
〈
θ2〉 into Eq. (32) allows us to ex-

press Fz by a familiar temperature gradient expression:

Fz =−KH
∂2

∂z

KH =

[
(1+C∇ )− (1−Cθ )

EP

AzEK

]
2AzEK tF . (33)

Substituting Eq. (33) into Eq. (14) gives

F 2
z

EθEK
= 2

[
(1+C∇ )Az− (1−Cθ )

EP

EK

]
tF

tθ
. (34)

Next, the turbulent Prandtl number, defined as PrT =
KM/KH , is given by

PrT =
tτ

tF
/

[
(1+C∇ )− (1−Cθ )

EP

AzEK

]
. (35)

Equations (34) and (35) provide us with two constrains on
the function in the square brackets. First, the left-hand side of
Eq. (34) is non-negative by definition, implying that the same
requirement applies for the right-hand side of the equation.
Second, the turbulent Prandtl number grows with the increase
of the gradient Richardson number – that is, PrT |(z/L→∞)→

Ri/R∞ – requiring the function in the square brackets to ap-
proach zero under extreme stratification. This leads us to the
following approximation (see Fig. 4):

1−Cθ
1+C∇

EP

AzEK
= 1− e−CPrz/L. (36)

This function monotonically decreases from 1 to 0< z/L <
∞, satisfying our requirements with CPr = 0.65. The ob-
served spread of data points might be explained by the simu-
lation time being insufficient to reach a fully statistical steady
state for this specific ratio. Although the fully developed
steady state was achieved (verified using the standard cri-
terion of stabilised TKE, which showed no significant fluc-
tuations over time), the parameter involving ratios of tem-
perature fluctuations, θ , might require additional time to sta-
bilise. We believe that increasing the experiment time would
decrease the spread, but we leave the validation of this hy-
pothesis for future studies.

This leads us to a similar approximation of tτ /tF (see
Fig. 5):

tτ

tF
= PrT (1+C∇ )

[
1−

1−Cθ
1+C∇

EP

AzEK

]
= CτF1 e−C

τF
2 z/L. (37)

Now, to complete the closure, we need to determine one
more dimensionless ratio, tθ/tK . It is explicitly required for
the ratio of turbulent energies, EP /EK , and consequently for
Az through Eqs. (20) and (36). We approximate it once again
with the ratio of two first-order polynomials:

tθ

tK
=
CθK1 z/L+CθK2

z/L+CθK3
. (38)

With Eq. (38), our turbulence closure is now complete,
allowing us to proceed with the verification process using
quantities not utilised in the fitting procedures. Figure 7 pro-
vides empirical evidence that supports the stability depen-
dencies given by Eqs. (20), (26), (27), and (34)–(38). Ta-
ble 2 summarises the proposed approximations and provides
a summary of the resulting turbulent closure.

For practical reasons, most operational numerical weather
prediction and climate models parameterise these dimension-
less ratios as functions of the gradient Richardson number
rather than z/L. This preference arises from the fact that
the gradient Richardson number is defined solely by mean
quantities – namely, buoyancy and shear productions – which
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Figure 3. Comparison of two terms, β
〈
θ2
〉
/ 1
ρ0

〈
θ
∂p
∂z

〉
and 2Ez ∂2∂z /

1
ρ0

〈
θ
∂p
∂z

〉
, after the same DNS for stably stratified Couette flow. The solid

black line represents the linear dependency of the latter on the former, which turns into Eq. (31) after multiplication by 1
ρ0

〈
θ
∂p
∂z

〉
and simple

recombination. The fitting coefficients are Cθ = 0.82 and C∇ =−0.80.

Figure 4. The ratio of two terms from the square brackets of Eq. (34) versus z/L. The data are the same as in Fig. 2. The solid black line
shows Eq. (36) with the empirical constant CPr = 0.65 obtained from the best fit of Eq. (34) to DNS data in the turbulent layer, z > 50ν/τ1/2.
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Figure 5. The ratio of the effective dissipation timescales of τ and Fz, tτ /tF versus z/L. The data are the same as in Fig. 2. The solid black
line shows Eq. (37) with empirical constants CτF1 = 0.17 and CτF2 = 0.62 obtained from the best fit of Eq. (37) to DNS data in the turbulent
layer, z > 50ν/τ1/2.

Figure 6. The ratio of the dissipation timescale of
〈
θ2
〉

and the dissipation timescale of TKE, tθ/tK versus z/L. The data are the same as in

Fig. 2. The solid black line shows Eq. (38) with empirical constants CθK1 = 40, CθK1 = 480, and CθK1 = 900 obtained from the best fit of
Eq. (38) to DNS data in the turbulent layer, z > 50ν/τ1/2.
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Figure 7. Validating the closure with quantities not utilised in the fitting procedures. Panel (a) shows the TPE-to-TKE ratio, EP /EK ;
panel (b) shows the vertical share of TKE, Az; panel (c) demonstrates the ratio of dissipation timescales of

〈
θ2
〉

and Fz; panel (d) shows

the turbulent Prandtl number, PrT ; panel (e) shows the squared dimensionless turbulent flux of momentum, (τ/EK )2; and panel (f) shows
the squared dimensionless turbulent flux of potential temperature, F 2

z /EθEK . All quantities are plotted against z/L. The solid black lines
correspond to theoretical predictions demonstrating acceptable to great agreement with the DNS data in the turbulent layer, z > 50ν/τ1/2 .
Empirical data are from the same sources as in Fig. 2. No fitting has been performed for this figure.
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Table 2. Proposed approximations and resulting revised turbulent parameters of EFB closure.

Variable Approximation/theoretical derivation Empirical constants R2 RMSE Equation number

tτ
tK

CτK1 z/L+CτK2
z/L+CτK3

CτK1 = 0.08, CτK2 = 0.4, CτK3 = 2 0.97 0.0021 (27)

1
ρ0

〈
θ
∂p
∂z

〉
Cθβ

〈
θ2
〉
+C∇2Ez ∂2∂z Cθ = 0.82, C∇ =−0.80 0.999 3.92 (31)

1−Cθ
1+C∇

EP
AzEK

1− e−CPrz/L CPr = 0.65 0.73 0.074 (36)

tτ
tF

CτF1 e−C
τF
2 z/L CτF1 = 0.17, CτF2 = 0.62 0.998 0.001 (37)

tθ
tK

CθK1 z/L+CθK2
z/L+CθK3

CθK1 = 40, CθK2 = 480, CθK3 = 900 0.79 0.021 (38)

EP
EK

Rif
1−Rif

tθ
tK

no additional fitting 0.90 0.006 (20)

Az
1−Cθ
1+C∇

EP
EK

1
1−e−CPr z/L

no additional fitting 0.17 0.024 derived from
Eq. (36)

tθ
tF

tτ
tF

tθ
tK
/
tτ
tK

no additional fitting 0.89 0.27 derived from
Eqs. (27), (37), and
(38)

PrT
tτ
tF

1
(1+C∇ )−(1−Cθ ) EP

AzEK

no additional fitting 0.76 0.017 (35)

(
τ
EK

)2 2Az
1−Rif

tτ
tK

no additional fitting 0.61 0.008 (26)

F 2
z

EθEK
2
[
(1+C∇ )Az− (1−Cθ ) EP

EK

]
tF
tθ

no additional fitting 0.77 0.014 (34)

Ri Rif
CτF1

1+C∇
e−
(
CPr−C

τF
2
)
z/L no additional fitting 0.90 0.005 (39)

in practice imposes fewer computational restrictions on the
model’s time step. Since Ri= PrT Rif and both PrT and Rif
are defined as functions of z/L by Eqs. (35) and (21), respec-
tively, we can derive an expression for the gradient Richard-
son number, Ri, as the function of z/L, as shown in Fig. 8:

Ri= Rif
CτF1

1+C∇
e−

(
CPr−C

τF
2
)
z/L. (39)

5 Concluding remarks

For many years, our understanding of dissipation rates for
turbulent second-order moments has been hindered by a lack
of direct observations in fully controlled conditions, particu-
larly in a strongly stable stratification. To address this limita-
tion, we conducted topical DNS experiments of stably strat-
ified Couette flows. The main finding of this study is that,
contrary to the traditional assumption of them being propor-
tional to a single universal dissipation timescale, the ratios of
the dissipation timescales of the basic second-order moments
depend on the temperature stratification (e.g. characterised
by the gradient Richardson number).

This finding laid the foundation for empirically approxi-
mating these ratios with simple universal functions of stabil-
ity parameters, valid for a wide range of stratifications. Con-
sequently, this allowed us to refine the EFB turbulent clo-
sure by accounting for dissipation timescales that are intrin-
sic to the basic second-order moments. As a result, the re-
vised formulations for eddy viscosity and eddy conductivity
reveal greater physical consistency in stratified conditions,
thereby enhancing the representation of turbulence in numer-
ical weather prediction and climate modelling.

We have also observed that the dimensionless parameters
involving θ fluctuations demonstrate a wider spread of values
within and across the DNS experiments, making it more chal-
lenging to approximate them with stability functions. This
suggests that the stabilisation time for these parameters may
be significantly longer than for TKE components.

It is important to note that our DNS experiments were lim-
ited to gradient Richardson numbers up to Ri= 0.17. Any
data reliably indicating different asymptotic values of the
timescale dimensionless ratios or demonstrating their differ-
ent dependency on the temperature stratification would im-
pose the need to readjust the proposed parameterisation.

We deliberately avoided discussing intermittency issues;
for that, one needs to determine higher-order two-point (or
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Figure 8. The resulting approximation of the gradient Richardson number, Ri, after Eq. (39) compared to the exact solution (a) and the
relative error of this approximation as a function of gradient Richardson number, Ri (b). The solid black line corresponds to theoretical
derivation that shows good agreement with the DNS data in the turbulent layer, z > 50ν/τ1/2. Empirical data are from the same sources as
in Fig. 2. No fitting has been performed for this figure.

multi-point) moments. Intermittency is important for small-
scale effects, and intermittency implies that higher-order mo-
ments of velocity and temperature fields have non-Gaussian
statistics. In this study, we focused on larger scales, de-
termining one-point second-order correlation functions that
barely touch one-point third-order correlation functions only
when it is necessary. However, addressing this topic would be
crucial for advancing numerical simulations towards higher
stratifications and warrants detailed investigation.

With these considerations in mind, we believe that the
most challenging step will be to explicitly explore the transi-
tional region between traditional weakly stratified turbulence
and extremely stable stratification, where the behaviour of
the turbulent Prandtl number shifts from nearly constant to a
linear function with respect to the gradient Richardson num-
ber. Investigating this phenomenon would require unprece-
dented computational resources for DNS or specialised in
situ or laboratory experiments.

Code and data availability. The DNS code is available on
GitLab at http://tesla.parallel.ru/emortikov/nse-couette-dns
(Mortikov et al., 2024). The access can be granted by
Evgeny Mortikov (mortikov@srcc.msu.ru). The datasets gen-
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