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Abstract. Because optimal transport (OT) acts as displacement interpolation in physical space rather than as
interpolation in value space, it can avoid double-penalty errors generated by mislocations of geophysical fields.
As such, it provides a very attractive metric for non-negative, sharp field comparison — the Wasserstein distance
— which could further be used in data assimilation (DA) for the geosciences. However, the algorithmic and
numerical implementations of such a distance are not straightforward. Moreover, its theoretical formulation
within typical DA problems faces conceptual challenges, resulting in scarce contributions on the topic in the
literature.

We formulate the problem in a way that offers a unified view with respect to both classical DA and OT. The
resulting OTDA framework accounts for both the classical source of prior errors, background and observation,
and a Wasserstein barycentre in between states which are pre-images of the background state and observation
vector. We show that the hybrid OTDA analysis can be decomposed as a simpler OTDA problem involving a
single Wasserstein distance, followed by a Wasserstein barycentre problem that ignores the prior errors and can
be seen as a McCann interpolant. We also propose a less enlightening but straightforward solution to the full
OTDA problem, which includes the derivation of its analysis error covariance matrix. Thanks to these theoretical
developments, we are able to extend the classical 3D-Var/BLUE (best linear unbiased estimator) paradigm at the
core of most classical DA schemes. The resulting formalism is very flexible and can account for sparse, noisy
observations and non-Gaussian error statistics. It is illustrated by simple one- and two-dimensional examples

that show the richness of the new types of analysis offered by this unification.

1 Introduction

1.1 Data assimilation and the double-penalty issue

Geophysical data assimilation (DA) is a set of methods and
algorithms at the intersection of Earth sciences, mathemat-
ics, and computer science that are designed to enhance our
understanding and predictive capability with respect to the
complex systems that govern our planet (Carrassi et al.,
2018). For example, these systems encompass the atmo-
sphere, ocean, atmospheric chemistry and biogeochemistry,
land surfaces, glaciology, hydrology, and climate system as
a whole. DA is meant to optimally combine all sources of
quantitative information, typically past and present observa-
tions, and numerical and statistical models of the system un-

der consideration. DA is critical in forecasting chaotic ge-
ofluids by resetting the initial conditions of the flow, esti-
mating physical and statistical parameters of the models, and
providing a quantitative reanalysis of the past history of the
climate system over decades. Because classical DA is applied
to complex and high-dimensional dynamics, the DA algo-
rithms often result from a compromise between the sophis-
tication of the employed mathematical techniques and their
numerical scalability and efficiency (Kalnay, 2003; Asch
et al., 2016; Evensen et al., 2022). For instance, it is well-
known that most DA methods are built around or from an
update step — the analysis — where observations and back-
ground states are combined, an operation which often relies
on Gaussian statistical assumptions.
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Here, we would like to focus on one important issue that
impacts classical DA, known as the double-penalty error in
the geosciences. The double-penalty issue refers to the over-
penalisation of errors in both the model and observational
data (e.g. Amodei and Stein, 2009) and compromises the
balance required for effective DA. It often stems from the
mislocation of fields, which is caused by model error in ei-
ther the forecasting or observation operator. A typical exam-
ple is given by the slight mislocation of a plume of pollu-
tant resulting in high predicted concentration values at posi-
tions where no pollutant is observed, while the model misses
the observed concentration peaks (Farchi et al., 2016). This
mismatch is heavily penalised due to the use, over the same
discretised space, of the root-mean-square error (RMSE) for
a point-by-point comparison. Figure 1 shows an exemplar
of double-penalty error resulting in the inability to properly
evaluate a model and learn from an analysis increment. This
double-penalty error, a very common contribution to the rep-
resentation error (Janji¢ et al., 2018), is ubiquitous in the
geosciences, for example, in numerical weather prediction
(in particular for water vapour), in atmospheric chemistry
and air quality, in biogeochemistry, and in eddy-resolving
ocean forecasting. This especially applies to sharp fields,
whereas it may be of less relevance for smoother, larger-scale
fields such as temperature.

It has been recognised that, although it can handle am-
plitude and smoothness mismatch, the weighted Euclidean
(Mahalanobis) distance cannot cope with mislocation error;
thus, it cannot account for the full distortion between mis-
matched fields (Hoffman et al., 1995). In the field of precip-
itation verification, one would alternatively speak of ampli-
tude, structure, and location errors (e.g. Wernli et al., 2008).
Hence, even though tuning covariances of Gaussian error dis-
tributions as in classical DA, such as increasing the corre-
lation length, might help mitigate the double-penalty error,
it is insufficient. In Fig. 1, one might replace the Euclidean
norm with a weighted Euclidean one with a large correla-
tion length. This would yield similar norm values for both
cases. Unfortunately, it is not difficult to show that, in this
limit, this (almost singular) norm can only distinguish be-
tween the spatial mean of both fields: it became blunt with
no discriminating power. With respect to DA, Feyeux et al.
(2018, their Fig. 1) also illustrate why the Euclidean distance
cannot properly cope with mislocation error. Note that, if
Feyeux et al. (2018) had used a weighted Euclidean distance
instead, with the same covariance matrix for the two contri-
butions of the cost function, the resulting analysis state would
have been the same and, in particular, independent of the co-
variance matrix. A similar but two-dimensional illustration is
given by Vanderbecken et al. (2023, their Fig. 3).

1.2 Nonlocal verification metrics

The issue can be attributed to the use of a local verification
metric, meaning that it compares, through the RMSE, values
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at the same site, of the same grid cell. Thus, this issue goes
beyond DA and pertains to the use of local metrics.

To avoid being impacted by the double-penalty issue stem-
ming from the use of local verification metrics, smarter non-
local or multiscale metrics have been proposed. A typical
metric of this kind consists of the combination of a displace-
ment map followed by the use of classical norm such as the
RMSE (Hoffman et al., 1995; Keil and Craig, 2009). In this
vein, effective verification metrics can be based on opftical
flow-based warping or on deformed meshes, prior to using
classical norms (Gilleland et al., 2010a, b). These metrics
can also be designed as scale-dependent and possibly mul-
tiscale, based on an empirical separation of scales, such as
with fuzzy metrics (Ebert, 2008; Amodei and Stein, 2009) or
wavelets (Briggs and Levine, 1997). They can be designed
to grasp and quantify objects and features, such as lows and
highs (Davis et al., 20064, b; Lack et al., 2010). Metrics with
similar capabilities (but not necessarily based on a displace-
ment concept) have been introduced in computer vision, such
as the structural similarity index (Zhou et al., 2004), or in the
verification of precipitation (Wernli et al., 2008; Skok, 2023;
Necker et al., 2023).

One of the most elegant approaches is based on the the-
ory of optimal transport (OT) and the associated Wasserstein
distance, which sits on solid mathematical foundations and
significant developments; these are the main reasons why we
will focus on OT in the following. Examples of the applica-
tion of OT to the verification of tracer and greenhouse gases
models are given in Farchi et al. (2016) and Vanderbecken
et al. (2023).

1.3 Optimal transport and the Wasserstein distance

Before mentioning applications of the Wasserstein distance
in the field of geoscience, let us first give a very brief intro-
duction to the concept and mathematical formulation of OT.

The OT concept stems from an engineering, although
rather universal, problem. Gaspard Monge (Monge, 1781)
considered the earth mover problem, the goal of which is to
efficiently move rubble to an embankment of about the same
volume (see Fig. 2). Each displacement of a bit of earth has a
known cost, so that the goal is to find the cheapest determin-
istic map that completely moves the rubble to the embank-
ment. In mathematical terms, the goal is to find the map of
minimal cost that transports the origin measure p, to the tar-
get measure py; measure here means that both of them are
non-negative and are integrable of integral 1. Note that the
value 1 is arbitrary here and can be changed to m > 0, pro-
vided that this is the mass of both p, and p,. The cost is
defined by a non-negative function Cp, of two variables (one
for the origin space and the other for the target space). Let
us assume a quadratic cost, defined for any couple of points
(x, y) of a geometric domain €2:

Coolx, y) = Ilx — ylI3, (1
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Figure 1. These two panels schematise the computation of the RMSE of two analysis increments. These increments are the difference
between the truth (left mesh in between both pairs of the norm delimiters), concentrated here in the red grid cell, and the analysis, located in
the green grid cells (right mesh in between both pairs of the norm delimiters). The increment in panel (a) is the outcome of a better analysis
that is spatially closer to the truth, compared with that in panel (b); however, both increments yield the same RMSE. Hence, this verification
metric is impacted by the double-penalty error and does not help discriminate location errors.

rubble, p, cost Cho

embankment, py,

Figure 2. Illustration of the earth mover problem introduced by
Monge in 1781 (see bulk of paper).

where ||-]|, is the Euclidean norm. Let us define the set of all
admissible differentiable maps 7 that transport p, to pp:
Upo ={T :Q+—>Q, po=10xT|ppoT}, (2)
where |0, T'| is the absolute value of the determinant of the
Jacobian of T', a factor which accounts for the deformation of
the measure by the globally mass-conserving 7. The square
of the Wasserstein distance W, is then defined by the fol-
lowing:

We,, (Pos pr) = min f Coo (x. T () po(x)dax. (3)
bo
Q

Here, the purpose is to minimise the total transport cost be-
tween p, and pp, and the optimal map T is often referred
to as the Monge map. It can be shown that W, is indeed
a proper mathematical distance. The mathematical formula-
tion is deceptively simple, as it is elegant, concise, and easy
to grasp, but its theoretical and numerical solutions are far
from trivial.

In the 20th century, a breakthrough was made by Leonid
Kantorovich, who promoted the Monge problem to a proba-
bilistic formulation. From his point of view, a bit of earth can
be split and moved to many sites of the target measure sup-
port. Thus, the deterministic map 7 is replaced with a proba-
bilistic measure 7 defined over 2 x Q. Hereafter, such a 7 is
called a transference plan. An admissible transference plan
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is integrable and has p, and p, as one-variable marginals;
hence, the definition of the admissible set is as follows:

Voo =37 : QX Q+— Ry, po(x)=/ﬂ(x,y)dy,
Q

Po(y) = / w(x,y)dx ¢ . 4

Q

As opposed to the deterministic Monge maps, the transfer-
ence plans offer a symmetrical view of the origin and target
space and their measures. An illustration of a discrete trans-
ference plan is given in Fig. 3. From this view, the squared
Wasserstein distance can be reformulated as follows:

W, o) = min [ ooyt y)ddy, )
bo
QxQ

Equations (3) and (5) are the main continuous formulations
of OT. In the rest of the paper, we will deal instead with
discrete related formulations, which are more tangible and
amenable to algorithmic and numerical implementations.

The field has attracted a lot of attention from pure and ap-
plied mathematicians as well as computer scientists. A com-
plete introduction to the topic by experts can be found in
the stimulating text books by Vilani (2003, 2009) and Peyré
and Cuturi (2019). Peyré and Cuturi (2019) provide con-
crete examples, numerical methods, and a broad coverage
of the topic from the perspective of applied mathematicians
and computer scientists; hence, their work will be referred to
quite often in the rest of the paper.

1.4 Nonlocal, multiscale metrics and data assimilation

Let us now go back to DA and narrow our focus to the use of
advanced metrics in DA. Accounting for displacement error
in DA, and hence relying on nonlocal verification metrics,
has been advocated by Hoffman and Grassotti (1996), Rav-
elaet al. (2007), and Plu (2013). Metrics built on a multiscale
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Figure 3. A representation of a discrete transport plan between two
discrete origin (blue) and target (red) measures. The black dots rep-
resent the value of the transference plan. The radius of the dots is
proportional to the values of these measures. This transference plan
is checked to be admissible but is not necessarily optimal.

analysis of the fields to achieve a similar goal have been pro-
posed by Ying (2019) and Ying et al. (2023).

The Wasserstein distance and closely related formulations
have been advocated in the flow formulation of the analy-
sis (DA update) to seamlessly transport the prior to the pos-
terior (E1 Moselhy and Marzouk, 2012; Oliver, 2014; Mar-
zouk et al., 2017; Farchi and Bocquet, 2018; Tamang et al.,
2020). It can, for instance, be used to adjust the posterior dis-
crete probability density functions (pdfs) in the particle filter.
It has similarly been used to assist ensemble DA (Tamang
et al., 2021, 2022). Finally, it has also, very recently, been
used to compare forecast ensembles for sub-seasonal predic-
tion (Le Coz et al., 2023; Lledo et al., 2023) or precipitation
(Duc and Sawada, 2024).

In the context of this paper, it is critical to be aware that the
use of OT in practical DA has, thus far, focused on applying
OT independently to the pdf of each single scalar variable.
Quite often, OT is applied to the pdf of a single random vari-
able for the following two reasons:

— OT in one dimension (the space of the values taken by
this random variable), with a quadratic cost, has a very
simple solution that only relies on the cumulative distri-
bution functions of the origin and target measures (see
e.g. Remark 2.30 in Peyré and Cuturi, 2019), a tech-
nique known in statistics as quantile matching.

— Increasing the number of random variables is subject to
the curse of dimensionality, necessitating an exponen-
tial increase in computational resources when increas-
ing the resolution of the discretised fields.
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This is very different from our context and objective where
the objects dealt with by OT are (non-negative) physical field
states, not the pdf of one of their scalar variables.

1.5 Feyeux et al. (2016) proposal

The present paper stands more in the wake of the seminal
proposals of Ning et al. (2014), Feyeux (2016), and Feyeux
et al. (2018). Their idea is to replace the local metrics of clas-
sical variational DA, typically the square of the Euclidean
distance (hence related to the Ly norm), with the squared
Wasserstein distance. This is intuitively what we are after in
order to cope with mislocation errors mentioned in Sect. 1.1
in the context of DA. This should redefine the nature of the
DA update step. Let us formalise this idea (Feyeux, 2016).

We will seize this opportunity to introduce some of our
notation in the context of discrete DA, which is a widely
adopted standpoint in the geosciences. Let us focus on a clas-
sical DA 3D-Var cost function (Daley, 1991):

. (©6)

2
Galx) = |y° —x*| + [y — B

where ||-||, is the Euclidean norm, yb € RM is the first guess,
ye RMo is the vector of observations, and H is the observa-
tion operator.! x* € RN is the dummy variable of this op-
timisation problem whose optimal value corresponds to the
DA state analysis. Now, the substitution of the Euclidean
norm yields the new 3D-Var cost function:

Gw(x®) = W3(y°, x*) + W3 (y°, Hx?), 7)

where W, is some discretisation of the Wasserstein distance
based on the cost defined by the square of the Euclidean dis-
tance. Note that this 3D-Var case requires balancing two in-
stances of a Wasserstein-based metric. The analysis state is
known as a Wasserstein barycentre (abridged W-barycentre
in the following).

Feyeux (2016) and Feyeux et al. (2018) explored the op-
timisation aspects of this DA problem. However, Feyeux
(2016) ultimately pointed to a possible inconsistency in the
definition of the DA problem formulated in Eq. (7), where
the system is only partially observed (non-trivial H). In the
case where the system is fully observed, typically when H is
the identity operator, the outcome of the optimisation prob-
lem, i.e. the analysis, matches our expectations. However,
when the system is partially observed, inconsistencies are ob-
served. Let us see why.

Figure 4a considers the DA problem based on Eq. (7), as-
suming that only half of the domain is observed. We have

IThe notation y° and y© is at variance with the more familiar xP

and y notation of DA, respectively. However, this change will prove
very useful in the following; it follows the idea that the full informa-
tion vectoris y = [(yb)T, (yO)T]T, whose components may benefit
from homogeneous notation (Talagrand, 1997).

https://doi.org/10.5194/npg-31-335-2024
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solved the corresponding mathematical and numerical prob-
lem as raised by Feyeux (2016) and displayed its solution.
However, one observes that the mass of the solution concen-
trates on the observed subdomain and neglects the rest of the
domain where the prior mainly concentrates, an outcome sus-
pected by Feyeux (2016). Instead, we would have intuitively
preferred a solution close to the one offered by Fig. 4b, whose
formulation and numerical solution differ and follow the new
approach developed in the present paper (how we obtained
this solution will be described in Sect. 2).

The main caveat of Eq. (7) comes from the fact that the
system is only partially observed, as well as the requirement
that OT is balanced; i.e. the origin and target densities must
have the same mass. This mass balance applies to both OT
terms in Eq. (7), between y® and x® and between y° and
Hx?:

m (x*) = m(yb),

Here, the mass of a vector x € RY is defined by

m (Hx") =m(y°). 8)

N
mx)=1"x= Zx,-, 9
i=1

with 1 € RN hereafter defined as the vector of entries 1.
Now, if we further assume, for simplicity, that yb and y°
have the same mass (which is the case in Fig. 4), then

m (Hx*) =m (y°) :m(yb) =m(x"). (10)

As a result, we obtain m(Hx?#) = m(x?), which is an unde-
sired prior piece of information as to where to find the mass
of x2. Simply put, unless the system is fully observed, this
approach amounts to the streetlight effect. This is precisely
what happens in Fig. 4a with the undesired concentration of
the mass of x? close to the edge of the observed subdomain.

To overcome this caveat and find a proper alternative to
Eq. (7), we need (i) to renounce comparing the fields in ob-
servation space (in the observation discrepancy term of the
cost function) and (ii) to introduce unbalanced OT (i.e. we
need to be able to accommodate states of distinct masses). In
the computer science context of pure OT, the latter has been
discussed by Chizat et al. (2018). However, our solution dif-
fers formally and will be DA-centric.

1.6 Objective and outline

The objective of this paper is to lift the objection of Feyeux
(2016) and propose a DA framework based on the Wasser-
stein distance, thereby offering a consistent way to bridge
OT and classical DA. The new formalism will be referred to
as hybrid OTDA (hybrid optimal transport data assimilation)
in the rest of this paper (or OTDA for brevity). We will focus
on the definition of a 3D-Var DA problem and how to obtain
its analysis state and the associated analysis error covariance
matrix.

https://doi.org/10.5194/npg-31-335-2024

At least within the perimeter of this paper, some restric-
tions apply. Firstly, the physical fields considered in the DA
problem are non-negative (concentration of tracer, pollutants,
water vapour, hydrometeors, chemical and biogeochemical
species, etc.). However, as opposed to Feyeux (2016), the
methods of this paper do not require the (possibly noisy)
background state y° and observation y° to be non-negative.
We stress once again that the states of our DA problem are
physical fields onto which OT is applied and are not meant to
be a pdf of a random variable. Secondly, the observation op-
erator H is assumed to be linear. This is only meant for con-
venience and to obtain a rigorous correspondence between
the primal and dual cost functions of the 3D-Var case. Mak-
ing this assumption is very common in geophysical DA: H
can indeed be seen as the tangent linear of a nonlinear obser-
vation operator within the inner loop of a 3D-Var or a 4D-Var
case (see, for instance, Courtier, 1997).

The outline of the paper is as follows. After the present
introduction (Sect. 1), Sect. 2 discloses our main idea and
discusses two mathematical paths to solve the underlying op-
timisation problem; the first path is enlightening but not nec-
essarily practical, whereas the alternative path is direct and
robust but hides some of the concepts behind it. Section 3
provides one- and two-dimensional illustrations of a 3D-Var
analysis based on the new hybrid OTDA formalism. These
illustrations will show the possibilities and flexibility of the
new framework. Importantly, Sect. 3 will also depict clas-
sical DA as a limit case of the formalism. In Sect. 4, the
second-order analysis, i.e. the uncertainty quantification of
the OTDA 3D-Var case, is derived, discussed, and illustrated.
Conclusions and perspectives are given in Sect. 5.

2 The main proposal

2.1 Notation and conventions

Non-negative vectors x of size N are called discrete mea-

sures; they lie in the orthant O}, 2 Rﬁ . Although most math-
ematical OT theories work on normalised discrete measures,
yielding probability vectors, this assumption will not be
needed in this paper. The open subset of O;\L, of all the posi-

tive discrete measures will be denoted as O;\;’* 2 Rﬁ’*.

We will distinguish the observations y® € RNo and y° €
RNo from the observable states x € O;b and x° € O;QO. yb,
which corresponds to the first guess of conventional DA, and
y°, which corresponds to the traditional observation vector,
are known before solving the 3D-Var problem. These vec-
tors embody all of the information processed in the analysis.
By contrast, the observables x® and x°, which are related to
y® and y°, respectively, through an observation operator (the
identity for y° and xP), are not known a priori. They will be
estimated along with the analysis state x? € O;ﬂ. Note that
these vectors may well lie in distinct vector spaces of differ-
ent dimensions; hence, the introduction of as many dimen-
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Figure 4. The panels illustrate the analysis of a 3D-Var case that relies on the Wasserstein distance rather than a local metric. The red dots
represent the observations, while the dashed blue curve represents the background state. The observations are only focused on the left half
of the domain. The solution of the optimisation problem in Eq. (7) is displayed as a solid green curve in panel (a). The solution of the
optimisation problem that we will propose in this paper is displayed as a solid green curve in panel (b). The support of the observation is
suggested using a wavy grey segment. These states are typically one-dimensional puff pollutant concentrations. They should not be confused

with pdfs of a single random variable.

sions Ny, No, Np, and Ny. x can be seen as the value taken
by x* atsite r}, forx =b,0,andaand i € [1, N,]|. Mind that
the distinction between y° and x° and the introduction of x°
are novelties of OTDA compared with classical DA.

Like in classical DA, the vectors y® and y° are subject to
(prior) errors whose statistics are specified by the likelihoods
p(¥°1xP) and p(y°|x°), respectively. Up to constants that do
not depend on xP, x°, yb, and y°, we assume the existence of
&b and &, such that

In p(p°1x®) 2 —g(y* — x) + cst, (11a)
In p(y°]x°) 2 —£,(y° — Hx®) + cst. (11b)

Thus, various error statistics can be considered. These errors
are hypothesised to be mutually independent. The observa-
tion operator H : O+ +—> RMo used in the definition of Lo
is assumed to be hnear This qualification is for convenience
and could be lifted if necessary. It is further assumed that ¢,
and ¢, are strictly convex functions. This is, for instance, the
case if we choose Gaussian error statistics yielding

1 2 1 2
to(en) = Sllenllp-1. Lo(€o) = Sl€ollg-1- 12)

Here, |le]|, = Ve Ae. B is the positive definite background
error covariance matrix and R is the positive definite obser-
vation error covariance matrix. Finally, in the following, the
m (%) operator will act not only on vectors but also, more gen-
erally, on any tensor, and it will return the sum of all of its
entries.

2.2 Formalism of discrete optimal transport

To discretise and solve the continuous Kantorovich optimi-
sation problem introduced in Sect. 1.3, we will need two el-
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ementary pieces of information about OT. These are not the
only techniques that we will leverage, but both represent cor-
nerstones towards a numerical solution to our proposal and,
hence, require a proper introduction.

2.2.1 The primal cost function

Let us consider two discrete measures x? € O;b and x° €

O;CO with the same mass:
A b _ o
m—m(x>—m(x). (13)

For convenience, O;‘ o Will be used as an alias for the set

o5, Npx N, - A cost matrix Cy, € (’); o is given. The optimisation
problem will be formulated using discrete Kantorovich trans-
ference plans P™ ¢ (’)+ b.o- The optimal discrete transference
plan is given by the minimiser of the following optimisation
problem:

We®.x)2  min Tr (CJOP"O) . (14a)

PbO el (x?,x°)
Here, the trace sums up the costs attached to each path, and
the set of admissible transference plans is defined by

L{bo_{PeO . P1,=x PT1b=x°}, (14b)

which selects the discrete transference plans with the proper

marginals. W¢, could be viewed as a discrete equivalent to

the square of the Wasserstein distance Wéb introduced in
0

Eq. (5).
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2.2.2 Entropic regularisation

The optimisation problem in Eq. (14) is a linear program that
is convex (Peyré and Cuturi, 2019, and references therein).
However, it is not generally strictly convex and, hence, does
not necessarily exhibit a single minimum. Adding to the dif-
ficulty, its cost function (Eq. 14a) is constrained. Entropic
regularisation addresses these issues and is used here to lift
the constraints and to render the problem strictly convex. In
particular, it will force any state vector that is a solution of
the problem to be positive. A comprehensive justification is
given by Peyré and Cuturi (2019). More precisely, we will
use a Kullback—Leibler divergence (KL) regularisation term
that is inserted in Eq. (14a),

Tr (C P ) — Tr (CLPY) + e |v™), (15)

which incorporates some prior transference plan v®° and does
not require m (Pbo) =1, whereas Peyré and Cuturi (2019)
opted for a basic entropy term. The KL term (Boyd and Van-
denberghe, 2004) is defined by

A Pi
Kplg)=) pi lnq—f — pi +4i- (16)
i 1

It can be checked that the Hessian of the regularised cost
function (Eq. 15) is a diagonal matrix of coefficients &/ Pil}o >

€ because 0 < Pl.t}o < 1, making the problem e-strongly con-

vex. We choose, for example, pbo — xb(xO)T/m and ¢ > 0,
the latter of which is the regularisation scalar parameter. Note
that this particular »®° is an admissible transference plan,
i.e. it belongs to U, and can be interpreted as a complete
statistical decoupling of the transference plan with respect to
the origin and target discrete measures. In the limit £ — 0T
of vanishing regularisation, the solution should not depend
on the choice of vP°. However, the convergence to the solu-
tion at finite ¢ may depend on this choice. The primal cost
function augmented with such an entropic regularisation is
usually solved numerically with the iterative Sinkhorn algo-
rithm (Sinkhorn, 1964). However, this is not the path fol-
lowed in this paper, although we have used it as well.

Finally note that the technique to convexify such an op-
timisation problem with a KL term has been introduced in
DA by Bocquet (2009) and Bocquet et al. (2011) following
principles of statistical physics.

2.3 From classical data assimilation to hybrid optimal
transport data assimilation

Figure 5 is a schematic representation of the flow of infor-
mation in a classical DA update (and in particular 3D-Var),
using the notation introduced above. In this case, the observ-
ables xP and x° and the analysis state x® are the same by
construction; hence, x° and x° are not needed. This diagram,
which could also be seen as a Bayesian network, corresponds

https://doi.org/10.5194/npg-31-335-2024

Cb

Figure 5. A diagrammatic representation of the classical 3D-Var
update, with the observations yb (the first guess) and y° (the ob-
servation vector), the analysis state x?, and the observed analysis
Hx?. A double-line arrow represents a deterministic map, whereas
a single-line arrow represents a statistical binding between the ori-
gin and the target.

to the cost function
La(x™) = &p(y° — x*) + £o(y° — Hx?) (17)

to be minimised over x?. Now let us make use of the observ-
ables x® and x° as new degrees of freedom but bind them by
OTs to x?, using the cost matrices Cyp, and C,,, respectively.

This yields the diagram in Fig. 6, which corresponds to the
cost function

Ly(x) = min  {z(y° —x) + ¢ (y° — Hx®)
xbeO;\r,b x"eO;\r,O
+ Wi, (6, %) + W, (x°, )} (18)

It must be minimised over x?, yielding an analysis state x?;
this analysis state can also be seen as the W-barycentre be-
tween xP and x°. Note that x® and x° are discrete measures
of unknown mass. For the optimisation problem, they lie in
O]“\L,b and O}\",O, respectively.

Moving from Eq. (17) to Eq. (18) following the princi-
ples and guidance of the introductory Sect. 1.4 is empiri-
cal, although no more than in Ning et al. (2014) and Feyeux
(2016). Showing the merits of this move from Eq. (17) to
Eq. (18) is the goal of the present paper. As opposed to
Feyeux et al. (2018), it can deal with sparse and noisy ob-
servations, i.e. non-trivial H. We will show that classical DA
is embedded in this generalisation. Moreover, the merits of
the new cost function will be a posteriori qualitatively sup-
ported by the outcome of the numerical experiments (to the
expert’s eyes), which improve over previous formalism’s out-
comes. We would like to point out that we have also devel-
oped a consistent probabilistic and Bayesian formalism fully
supporting the introduction of Eq. (18). However, we felt that
the derivation was too long and technical for this paper and
would not be helpful in the exploration of the direct conse-
quences of Eq. (18).
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Co
Cb | Hx° I
H

Figure 6. A diagrammatic representation of the hybrid OTDA 3D-
Var update, with the observations yb (the first guess) and y° (the
observation vector); the observables xP and x°; and x?, which is
the W-barycentre. A double-line arrow represents a deterministic
map, a single-line arrow represents a statistical binding between the
origin and the target, and a wavy line represents the weaker bindings
of x with x? and x° with x? through OTs. This diagram can be
seen as an unfolding of that in Fig. 5.

We call Eq. (18) a high-level primal cost function because
the metrics Wc,, and Wc,, have not yet been replaced by
their transference plan expression, as opposed to, for exam-
ple, Eq. (14a). Passing to a lower-level primal cost function
would require expanding Eq. (18) using Eq. (14a) twice.

In the subsequent two subsections, we will investigate two
pathways to solve the optimisation problem in Eq. (18). The
first path (Sect. 2.4) unveils some of the key concepts be-
hind its solution and partially disentangles the classical DA
part from the W-barycentre part of the full analysis. This
approach is enlightening but not necessarily practical. The
second path is an alternative which is direct and robust but
hides some of the fundamental principles underlying the
solution. The busy reader could skip directly to the latter
(i.e. Sect. 2.5).

2.4 Decomposition of the optimisation problem and
effective cost metric

In this section, key ideas behind the minimisation of Eq. (18)
are sketched and discussed. The level of mathematical rigour
of this section is that of casual methodological DA in the
geoscience literature. However, we stress that all of the al-
gorithms discussed here have been successfully numerically
tested on various configurations. The solution of Eq. (18)
presented in this section is not necessarily robust, but it is
enlightening and, hence, worth discussing.

Repeated contravariant indices — meaning the same ten-
sor index is present as the upper and lower index — in tensor
expressions will be understood as summed over, following
Einstein’s convention.

Nonlin. Processes Geophys., 31, 335-357, 2024

2.4.1 Dual formulation of the primal problem

One way, although not the only one, to write the explicit
primal problem associated with Eq. (18) is through the use

of a gluing transference plan P*? ¢ O; o.a> Where (’);

RY>Y™ (see pp. 11-12 of Vilani, 2009). P** € Of |
b

3-tensor whose marginals are x°, x°, and x? and that glues
the transference plans PP* between x® and x? and P°? be-
tween x° and x?:

o,a

isa

L= min Ly(x?) (19a)
x2eOF
= omin 60" =)+ 600 — Hx)
xPeOf x0eOf x2eOf
+ min {Pi,kcl’;’;+P,-,kC({f}]. (19b)
Peltyoa ’ ’

Here, the admissible set of (glued) transference plans, the set
of all 3-tensors of non-negative entries whose marginals are

x°, x°, and x?, is defined by

Upoy 2 {Pe oF

. . p . 1J1k_ b
boa - Vi, Pijrloly =x7,

Vi, Purlglh =0, vk Pt =xt). (190

Due to the hardly scalable dimensionality of the primal prob-
lem, based on either a 3-tensor or a couple of 2-tensors, we
wish to derive a dual problem equivalent to the primal one,
using Lagrange multipliers to lift the constraints with (as will
be checked later) a significantly smaller dimensionality.

This leads to a series of transformations of the problem L,
from a Lagrangian to a dual cost function, which is reported
in Appendix A for the mathematically inclined reader. The
outcome is a dual problem which reads

T,b T,0
= max fo ¥+ oy
(fbaf(y)eu;(,((:bascnasH){ b ©

— & (fo) =& (f o)},

where the x symbol refers to dual and where the polyhedron
Uy (Coa, Coa, H) is defined by

£*

(20a)

ugo(cbaacoay H) é {fb € RM, fo € RN" :

Viojko it fiH] < it el (20b)
In Eq. (20), the maps ¢ and ¢ are the Legendre-Fenchel
transforms of the maps ¢, and ¢, respectively. Let us recall
that the Legendre-Fenchel transform f +—— {*(f) of the
map e —> ¢(e) is defined by ¢*(f)=sup, {fTe—1¢(e)}.
For instance, in the case of Gaussian error statistics (as in
Eq. 12), these transforms are given by

1 1
GUo=315ls  @GI=51F @

Note that, in this section, we do not add the entropic regular-
isation to the cost functions for the sake of conciseness and
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because it does not play a role in the key ideas developed in
this section; however, it would likely be added and employed
in numerical applications.

2.4.2 Decomposition of the dual problem

These transformations allow us to trade the primal for the
dual problem. Due to the fact that there are N, constraints in-
dexed by k € [[1, N,]l for each f and f, pairin 4, and that
the tightest of these constraints can account for the others, the
problem in Eq. (20) should be equivalent to

* max

T (for fo) U (Coo H)

[£oy+ 10y = (-6 (f0) (222)
where the polyhedron Z/{];"O(Cbo, H) is defined by
A
Uy (Coo ) 2 [ i e RV, £, e RN
Vi, fi+far) = cl (22b)

and the effective cost metric Cy, is given (in the absence of
entropic regularisation) by

[Cholij = min {[Cralix + [Coal e} (220)
According to Eq. (22c), this effective cost is given by the
cost of the cheapest path(s), which is intuitive. The optimal
transference glued plan, P, can be connected to the optimal
transference plan P between xP and x° with the cost Cpq
in Eq. (22¢), by marginalising on the intermediate density,
i.e. the W-barycentre,

P = Pij1}. (23)
The solution for the analysis state x* is given by
x,i‘ = Pijklél(j;, (24)

by the definition of the marginals of the gluing transference
plan P (Eq. 19¢). However, we do not have direct access to
the optimal gluing P from the dual problem (Eq. 22). This
will be made simpler later on when adding the entropic reg-
ularisation to the problem.

For now, let us find an alternative solution bypassing the
need for the gluing P and define the map

<% 1, Mol X [[1, NoTl —> P(I[1, NaT)

ij

(i, j) — k?° = argmin (C{;’; + C(J).f) , (25)
k

where P(S) is defined as the set of all subsets of S. The set
K}}O lists all of the indices k that are relays to the transport in
between the sites corresponding to index i and index j. That
is why the W-barycentre can be obtained from P°:

X = Pplil) = ZPiI;OSkeK}’j"' (26)
ij
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In the next section, we will show how to estimate Pb° using
entropic regularisation and, hence, leverage Eq. (26) to com-
pute x2. kP is reminiscent of the so-called McCann inter-
polant in OT theory, as it is only related to the OT between x°
and x°, bypassing x? and, hence, the transference plan P,
Please refer to Remark 7.1 by Peyré and Cuturi (2019) and to
Gangbo and McCann (1996) for a description of the McCann
interpolant, even when there is no Monge map. This suggests
that the analysis x? is not an interpolation of x® and x° in the
space of values, as for classical DA, but along a geodesic in a
Riemannian space built on a metric derived from the Wasser-
stein distance.

Nonetheless, the above derivation shows that we can trade
a W-barycentre problem characterised by a couple of OT
problems for a single OT problem defined by an effective
metric Cpo. This principle is schematically illustrated in
Fig. 7.

This suggests a simpler two-step algorithm, where the
steps consist of the following: (i) solving a hybrid OTDA
problem but with a single OT problem under an effective cost
metric, which yields the analysed observables x% and x°, and
(ii) computing the W-barycentre of x° and x°. To avoid mak-
ing an overly large detour, the derivation of this algorithm is
presented in Appendix B.

2.4.3 Classical data assimilation as a particular case

The primal problem (Eq. 17) of classical DA reads as fol-
lows:

La= min {a,°—x")+ 50" —Hx")]. @)
x”eO;{,a

Let us see how the OTDA formalism in Eq. (22) can account
for classical DA. In the context of classical DA, the observ-
able spaces for x°, x°, and x? are assumed to be the same by
construction. Let us then define the cost matrices

A A 0 if i=j
CHII I I e o8)

i.e. it is assumed that the cost of moving masses is as large
as it can be. Looking back at Eq. (19) but with these costs,
it is clear that, in order to avoid the primal cost function be-
ing 400, the transference plan P;j; must always be O un-
less i = j = k. However, this implies, from the definition of
Upoa, that the observables coincide, x? = x° = x2, and that
their mass is given by m(P). In this limit where the specific
cost matrices are equal to Cp: and Cg;, the OTDA primal
problem become mathematically equivalent to classical DA.
Hence, classical DA is a limit case of OTDA. Note that, from
its definition (Eq. 22c¢), the effective cost Cy, obtained from

. . A
o] o0 00 2 (o0 _ (00
Cp; and Cg; coincides with Cip = Cr = Cgy.

2.5 A direct algorithmic solution

The two-step approach of Sect. 2.4 has merit in that it con-
nects to the traditional W-barycentre problem, by first esti-
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Figure 7. Trading a full hybrid OTDA problem, characterised by a W-barycentre defined by the cost metrics Cp, and Cop,, with a simplified
hybrid OTDA problem, characterised by a single OT problem defined by an effective cost metric Cy.

mating x° and x°, and later computes the W-barycentre in
between both states. It also suggests the existence of the ef-
fective cost metric of the problem. However, going through
its consecutive steps may not be necessary for pure compu-
tational purposes. Here, we describe a direct approach that
yields the analysis of the OTDA problem. It is less enlight-
ening, but it is practical and will be used in the subsequent
illustrations of the present paper.

An alternative formulation to the primal problem in
Eq. (19) relies on two transference plans P*® and P°* cor-
responding to the two transports of the underlying W-
barycentre problem, instead of the gluing one. Moreover,
entropic regularisation is now enforced via C(PP?|v"®) and
K(P°?|v°?). The corresponding optimisation problem reads
as follows:

L= min
xbeOf x0eOF x2eOF

[myb —x%) 4 £o(y° — Hx°)

min [eIC(Pba|vba) T k(PO |pOR)
Pbaclfy,, POAclly,

+ PC+ °acé;’f}], (292)

where the admissible sets of the respective transference plans
P2 and P°? are defined by

Z/{baé{Pe(’);a: P1, = xP, Plezxa}, (29b)

ané{PeO;fa: P1, = x°, Plezxa}. (29¢)

Following the same type of derivation as reported in the pre-
vious sections and Appendix B, the corresponding dual prob-
lem to be minimised is obtained as follows:

\78*_ min (fba fov fa)

(30a)
FoeRM f eRNo f cRNa

Here, discarding the constant —em (vba) —em(v°?), the as-
sociated regularised Lagrangian is

TE(for For f2) = Z2(fo. F)+EZ2(f o fo)

FEED)HEEf ) — foy® = £ ¥°. (30b)
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with a partition function associated with each transport:

Z 23" ph, (30c)
ik

7223 po, (30d)
ik

where

PR = vprelfs i —Cu)/e, (30¢)

( éHl"'—fak—Cef;()/S. (30f)

It turns out that the optimal f, can be obtained analytically as
a function of f and f,, which we checked makes the opti-
misation numerically more efficient and robust. Indeed, let us
introduce vy 2 ¢fi/e. We could optimise JF(fy, fo. fa=
elny)on ¢:

0 =0y, J;'(f, for fa) (31a)

oa
P]k =V ke

; 1 Ly _ ik
=D el fmciie - L s (1-Ch)e (3
Vi F
yielding the solution
ZOa
k
yp ==k (32a)
Z5%
A fLH —clf) /e
zgakzzu]k (sanf —cax)re (32b)
gk—vaae i) (320)

Up to irrelevant constants, the resulting effective cost func-
tion using the optimal y is

T (foo fo) =26\ ZE 2% + &5 (f) + 85 (f o)
k
— foy° = £l (33)

Now, the optimal W-barycentre x* is given by either x} =
P}f‘l{) or xp = Poalj ie.

=Wz = Ze ko (34)

Yk
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from which we can infer the v -free expression

xp=\/Z%Z%,. 35)

It is also useful to retrieve the optimal value of f, and obtain

P Z%
fﬁ:eln%:—ln( = ) (36)
2 Zs,ak

so that we can compute the other two analysed observables,
x® and x°, using

b_ pbajk _ ba (fi—Cik)/e
x; =Pyl = Zl/fkvike(fb ba)/
k

—eht /szvgge(ff —Cig)/e | (37a)
k
1 T
k foH] —Cqxq ) /e
xJO. = P/(')l?la = Z@v%e< ! )
k
1 pyJ _ pk_ ik
_ (e V}?}‘ie( fi-ck)le (37b)
3

Note that most of these expressions can be assessed in a ro-
bust way in the log domain. For instance, in practice, we use,
equivalently to Egs. (35) and (37),

elnxp :% In Zv}’,fe(féfcﬂﬁ)/g
;

1 i ik
+§lnzuj?2e(‘f"H’ Coa)/s, (38a)
J
Elnxlb :fg +¢eln Zv}’,fe(ff_céﬁ)/g, (38b)
3
. _ rk_ ok
elnx} =flH/ +£ln2v;’2€( fs C"“)/g. (38¢)
k

3 Numerical illustrations

In this section, we showcase a selection of OTDA 3D-Var
analyses. These are meant to stress the versatility of the for-
malism and the diverse solutions it offers, with significantly
more degrees of freedom than in classical DA. The OTDA
state analysis is carried out using the process in Sect. 2.5
and its formulas. Unless specifically discussed, entropic reg-
ularisation is used with ¢ = 1073, The dual cost function in
Eq. (33) is minimised using the quasi-Newton method L-
BFGS-B (Liu and Nocedal, 1989), which yields the optimal
f, and f. Then, Eq. (38) is employed to compute x°, x°,
and x?.

3.1 One-dimensional examples

Considering the case in which the physical space of the fields
is one-dimensional, we build bell-shaped observations yb

https://doi.org/10.5194/npg-31-335-2024

and y°, related to an observable space of size Np = N, =
N, = 10? shared by xP, x°, and x2. As y® is a fully observed
instance of x, we have A}, = Ny = 102, while N, may dif-
fer from N, depending on the definition of the observation
operator H. We choose (Gaussian statistics)

1 2 1 2
Sv(en) = —llevll”, Sv(eo) = s—lleoll”. (39)
20y, 20¢

Here, op, =0, = 10~2. The states are discretised over the in-
terval [0, 1] at sites/grid cells r* = (i — %)/N* fori e [[1, N.]],
with * = b, 0, and a. Unless otherwise specified, the cost met-
ric has a quadratic dependence on the distance between sites,
ie. [Cpalix = |r}3 — r;(‘|2 and [Coa] jx = |r;.’ - r,'j|2. This is our
reference set-up. The observation operator and the mass of
the observations y® and y° will be specified for each experi-
ment.

We consider four experiments in which we choose to vary
key parameters in the OTDA set-up.

3.1.1  Varying the imbalance of the observation states

In the first experiment, the system is fully observed with
H =1. We choose m(yb) =1 and the mass of y° to be in
the set m(y°) € {0.5, 1, 1.5}, with all the other parameters be-
ing fixed to the reference. The results are displayed in Fig. 8.
Figure 8a corresponds to the case m(y°) = 0.5. The resulting
mass of the analysed observables is then m(x?) = m (xb) =
m(x°) = 0.79. The adjustment of x® compared with y® and
the adjustment of x° compared with y°, which are required
to balance x® and x°, are patent. Figure 8b corresponds to the
case m(y°) = 1. The resulting mass of the analysed observ-
ables is then m(x?) = m(xb) =m(x°) = 1. No adjustment
is required here because m(y°) = m (y), and x° and y° as
well as x® and y® coincide. Finally, the mass of y° is set
to m(y°®) = 1.5 in Fig. 8c. The resulting mass of the anal-
ysed observables is then m(x?) = rn(xb) =m(x°) = 1.34.
The adjustment of x® compared with y° and the adjustment
of x° compared with y°, which are required to balance xP
and x°, are visually obvious, but the balancing goes in the
opposite direction compared with Fig. 8a, as expected.

3.1.2 Varying the sparseness of the observation
operator

In this second experiment, with all of the other parameters
being fixed to their reference value, only a fraction of the
domain is observed, over [O, }1], [0, %], and [0, %], where

He Oy with No = No/4, No/2, 3No/4, and H} =8
forl €1, N, and j € [[1, No]l.

The masses of the states that are built to generate y° and
y°, before applying any observation operator, are set to 1
and 1.5, respectively. As a result, we have m(yb) =1, but
m(y®) may depart from 1.5 depending on H. The fully ob-
served case corresponds to Fig. 8c. The results are displayed
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Figure 8. A hybrid OTDA 3D-Var analysis with one-dimensional physical states, where only the mass of y© is varied. Its mass is m ( y°) =

0.5 in panel (a), m ( y°) = 1 in panel (b), and m ( yo) = 1.5 in panel (c). The dashed blue curve corresponds to the first guess yP: the red dots

correspond to the observations y°; the analysis state x2 is the solid green curve; and the analysed observables x® and x© are blue and red
dotted curves, respectively. The support of the observation is underlined by a wavy grey segment. The corresponding classical analysis is
also plotted with a dot-dash orange curve. The x axis corresponds to the position in space; the y axis corresponds to the concentration value

of the fields.

in Fig. 9. It shows how smooth the OTDA solution can be
compared with that of classical DA. However, as in Fig. 9a,
OTDA can also handle obviously diverging sources of infor-

mation, as is the case when the support of H is [O, %] and

when y° and y® can be seen to be barely consistent. In that
case, the OTDA solution is smooth but bimodal.

3.1.3 Changing the nature of the cost metric

In this third experiment, we choose the cost metric to be of
the form [Chalix = [r? —r2|% and [Coal jx = |9 —r{|®. Only

half of the domain is observed over [O, %], as in the case of

Fig. 9b. As the mass of the state used to produce y° is 1.5,
we have a slightly different m (y°) = 1.49, with the rest of the
mass being located in the unobserved part of the domain. All
of the other parameters follow the reference set-up. The re-
sults are displayed in Fig. 10. For Fig. 10a, « is set to 0.5. For
Fig. 10b, « is set to 1. For Fig. 10c, the cost metric is piece-
wise; it is quadratic, i.e. o =2, for pairs of sites separated
by less than 107!, i.e. |rl!3 —ri= |r;? —r} < 10~!, whereas
the costs are chosen to be infinite for pairs of sites beyond
this range. Hence, transport is prohibited beyond a distance
of 107!, The case of a pure quadratic cost corresponds to
Fig. 9b. The impact on the shape of the OTDA analysis is
very significant and suggests that one could easily tailor their
own cost to suit their specific DA problem.

3.1.4 Classical data assimilation as a sub-case of the
hybrid optimal transport data assimilation

In the fourth experiment, we would like to numerically check
the theoretical prediction of Sect. 2.4.3. Consider again the
reference configuration; however, only half of the domain,

Nonlin. Processes Geophys., 31, 335-357, 2024

over [0, %], is observed, H € O/J(/OxNO with Ay = N,/2 and

H} =8, for 1 €[[1,No]l and j €[[1, No]l. Most impor-
tantly, the cost metric has a quadratic dependence on the dis-
tance between sites, i.e. [Cpalix = A|rl!3 — r,i‘|2 and [Coal jk =
A|r7 —r|2. The case A = 1 corresponds to Fig. 9b. Figure 11
shows the results corresponding to A = 10 for panel (a),
» = 10* for panel (b), and A = 10° for panel (c). When A
is increased, the OTDA analysis should tend to the classical
DA solution. This is indeed corroborated by Fig. 11 and sup-
ports the claim of Sect. 2.4.3. Note that, as opposed to the
three earlier experiments, we had to tune ¢ here, as the wide
range of A has a significant impact on the balance of the key
terms of the cost function (transport cost, discrepancy errors,
and regularisation).

3.2 Two-dimensional examples

Considering the case in which the physical space of the fields
is two-dimensional, we perform a couple of 3D-Var analy-
ses on concentration fields (puffs of a pollutant). The states
are discretised in the domain [0, 1]? at sites/grid cells rlf, i=

((i — LyNE G - %)/Nf) for (i, j) € [[1, N*T x [, N. T,
with x=b,0, and a. We choose N =N, = N} = N3 =
N} = N3 =107, such that N, = N, = N, = 10*. Hence, the
number of control variables is 3 x 10*. The observation vec-
tors are y® and y°. As y® is a fully observed instance of xP,
we have N, = Ny, while N, may differ from N, depending
on the definition of the observation operator H. Moreover,
we choose (Gaussian statistics)

1
Zolen) = — llepll?, ;b(eo>=20—2||eo||2. (40)

2
20y
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Figure 9. A hybrid OTDA 3D-Var analysis with one-dimensional physical states, where the observation operator is increasingly sparse. The
support of H is [O, %] for panel (a), [O, %] for panel (b), and [O, %] for panel (c). See Fig. 8 for a description of the legend.
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Figure 10. A hybrid OTDA 3D-Var analysis with one-dimensional physical states, where the cost metrics are changed. See the bulk of the
text for a definition of the three cost metrics. See Fig. 8 for a description of the legend.

Here, oy, = 0, = 1072, The entropic regularisation parameter
is setto & = 1073,

The first analysis is displayed in Fig. 12. The observa-
tion operator H is the identity, but its support is restricted
to the subdomain [0,0.6]>. The plumes of pollutants y®
and y° are generated from states formed as combinations
of bell-like puffs. The system is unbalanced with m (y®) =
1.35 and m(y°) =0.73. The cost metric has a quadratic
dependence on the distance between sites, i.e. [Cpalix =
|r$’ —r ||§ and [Coal jx = ‘ z The OTDA analysis
is clearly smoother than the classical solution. The classi-
cal solution does not cope very well with the seemingly dis-
agreeing sources of information y® and y°, generating sharp
transitions in the classical analysis. If y® and y° were consis-
tently obtained from a truth perturbed with errors with short-
range correlation, i.e. if they were drawn from the true prior
distribution and in the absence of mislocation errors, then the
classical analysis would be as good as it can be, whereas the
OTDA solution may be too safe, i.e. too smooth. However,
if one believes that structural errors and, in particular, loca-

[) a
rj—rk
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tion errors can impact y® and y°, then the classical solution
is improper and the OTDA analysis preferable.

The second analysis is displayed in Fig. 13. The support
of the observation operator H is again contained within the
subdomain [0, 0.6]2, but only one of four grid cells is ac-
tually observed in this area. The observation states y® and
y° are generated from the same states as for Fig. 12. The
system is unbalanced with m (y°) = 1.35 and m(y°) = 0.18.
The cost metric is defined to be the same as in Fig. 12. The
OTDA analysis is even smoother in this case compared with
the classical DA analysis. It is much less impacted by the
sparseness of the observation operator. The classical solution
has to account for the staggered observations in the top left
corner of the domain because the first guess in that region is
very uncertain. By contrast, the OTDA solution assumes that
location errors are possible; hence, it moves around the mass
corresponding to these observations so that the structure of
the observation operator is not as impactful on the analysis.
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Figure 11. Scaling up the cost metrics LCyp, and ACoy with increasing X, the OTDA analysis converges to the classical DA analysis. Panels
(a), (b), and (c) correspond to the scaling values A = 103,104, and 10°, respectively. See Fig. 8 for a description of the legend.

0.0 0.16 0.32 0.48 0.65 0.81 0.970.0 0.16 0.32 0.48
L L L L L

0.81 0.970.0 0.16 0.32 0.48 0.65 0.81 0.97
L L L L

0.0

0.16

0.32

- - - 1.00
X (b)

0.80

- 0.60

- 0.40

- 0.20

—-0.00

Figure 12. Two-dimensional concentration maps (plumes) of a hybrid OTDA analysis for the first configuration. The observations yP and
y°; the analysed observables xP and x2, i.e. the state analysis; x°; and the corresponding classical DA analysis xgl are displayed. All fields
are rescaled so that their joint maximum is 1. All concentration maps use the same scale. The colour bar represents a unified contrast scale

for the diverse field concentrations.

4 Uncertainty quantification

In this section, we compute the posterior error covariance
matrix P? associated with the state analysis x?, in order to
complete the OTDA 3D-Var analysis description. There are
many ways to proceed depending on the chosen regularisa-
tion and on the targeted degree of generality. Here, for the
sake of consistency, we report on the way to derive P? fol-
lowing the computation of the analysis state x* proposed in
Sect. 2.5.

4.1 Mathematical results

Let us denote the compounded vectors of the observations,
of the Lagrange multipliers, and of the observables as well

Nonlin. Processes Geophys., 31, 335-357, 2024

as the compounded observation operator by

N NS
2] 2 )
] el w

of size No +No, Np +No. Ny + No, and (Np +No) x (No +
N,), respectively. Similarly, we define the sum of the er-

ror statistics by ¢(f) 2 &(fy) + ¢o(f ), whose Legendre—
Fenchel transform is ¢*(f) = &5 (fp) + &5 (f o). Using this
notation, we can recapitulate the key results of Sect. 2.5: the
effective dual cost function is
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Figure 13. Two-dimensional concentrations maps of a hybrid OTDA analysis for the second configuration. The observations yb and y°; the
analysed observables xP and x2, i.e. the state analysis; x°; and the corresponding classical DA analysis are displayed. Compared to Fig. 12,
only H has changed. The level sets in panels (¢) and (f) are omitted because they are driven by the staggered observation operator.

JEP) 2 eZo( )+ ) — [Ty,
Zo(f) 22 JZB(fDZE (S o)
k

(42a)
(42b)

Here, the analysis state reads

) = ZB D ZES o), (43)

where the dependence of the analysis state and the partition
functions on f, fy, and f, is now emphasised and made
explicit.

Any prior source of error in the system stems from the in-
formation vector y and hence drives the posterior error in the
analysis x?. That is why we are interested in the sensitivity
of x* with respect to y, i.e. 6x* = dyx?Sy. Denoting the ex-
pectation operator by E, the error covariance matrix is then
defined by

P =E[ox(6x) |, (44a)
= (3yx")E 3587 | (3,x) ", (44b)
= (8yx") 032)(3yx") . (44c)

from which a matrix factor X* of P?, i.e. which satisfies P? =
X2(X*)" and whose expressions are usually much shorter
than those of P?, can be extracted, up to the multiplication
by an orthogonal matrix on the right:

X* = 9,x%(830")2. (45)
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To compute the sensitivity matrix dyx?, we leverage the sta-
tionarity of the dual cost function at the minimum:

I JX(f (). ) =0. (46)
We resort to the implicit function theorem:
0=dydpJ(f(y),y) =073y f +050yJ7, (47)
which yields

-1 —1
dyf = —[3}1;] 970yt = [a}J:] , 48)

as d5dyJy = —Ip,, where Ip, is the identity matrix in the
compounded observation space RNo+No | The sensitivity
dyx? can now be computed using the Leibniz chain rule and
Eq. (48):

ax*  ox"af
dy — df dy
Let us now compute the Jacobian and Hessian in the right-

hand side of Eq. (49). To that end and in order to externalise
the observation operator, we introduce Z, and Xx,, such that

Z=H"HEZ(f). F@=H HEXS). (50)

and the related Jacobian and Hessians,

= afxa[a}J;‘]_l. (49)

A A
52bo,a = anxa’ (51a)
A A
Rbo.bo = 0, Ze, (51b)
A
Abobo = 070*. (51¢)

28 and X, can be shown to exist; they can be read off from
the explicit expressions of Z, and x? as functions of f.
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These Jacobian and Hessians depend on the choice of the
regularisation operator and need to be computed analytically,
which is simple but tedious; this is not reported here, as it
is a regularisation-dependent calculation. The Hessian of the
dual cost function Eq. (42a) can then be written as the sum

3)20 Ji = Abo,bo + 7'Ifﬂbo,bo”'[r, (52)
while the sensitivity matrix now reads
dpxt =R H'. (53)

Note that €y, po can be interpreted as the covariance ma-
trix of x, the compounded observable vector as defined in
Eq. (41) (although seen as a random vector), under the as-
sumption that x° and x° are connected via the W-barycentre
x?® and the optimal transference plans PP* and P° (all seen
as random vectors). Combining Egs. (52) and (53) with
Eq. (45), we finally obtain the expression for a factor X? of
|

a_ ol T T -1 %
X _Slbo,aH Abo,bo"‘?‘tﬂbo,bo?‘t Abo,bo‘ (54)

Alternatively, we can use the Sherman—Morrison—Woodbury
transformation, under the assumption that p, 1, is invert-
ible:

. )
T ol ~1 T Al TA2
X = sZbo,aszbo,bo [Szbo,bo +H Abo.,bo/H:I H Ab(fb()' (35)

These formulas are similar to the normal equations of clas-
sical DA. However, it should be noted that, in Eqgs. (54)
and (55), all of the prior error statistics are encapsulated in
Avo,bo, Whereas the impact of OT is encoded in 2y, bo. To be
concrete, note that, when using Gaussian statistics (Eq. 12),
Apo,bo Would simply read

| A O | B 0
Abo,bo—|: 0 A ]—|: 0 R i| (56)

4.2 Interpretation

Further, we can perform a block decomposition of €2 onto the
spaces of x? and x°:

A |: Qop  Lpo ]

Szb(),b[) = QJO SZOQ (57)

It can be shown that 2y, is proportional to the optimal trans-
ference plan of the effective transport between x° and x® and
that the blocks of the diagonal are themselves diagonal and
depend on the observable states:

1

Qo = —P, (58a)
I
1

Qp, = —diag(x?), (58b)
I
1

Qo0 = —diag(x®). (58¢)
I

For instance, this could be shown by the explicit computation
of po.bo = Eagzg.
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Let us now examine the impact of OT on the analysis error
covariance matrix. We first define

_1 1
A= Abo?boﬂszlgo,bo’ (59)

whose thin singular value decomposition is UZVT, where U
is an orthogonal matrix of size (N +Np) x (N +Np), X is
a rectangular and diagonal matrix of size (M +Np) X (Np +
Ny), and V is an orthogonal matrix of size (Np+ No) X (Np+
N,). Then, we standardise Eq. (54) following, for example,
Sect. 2.4.1 in Rodgers (2000):

-1 1
Xt =@ H [ Avovo + HRopoH | Ay (602)
= ol H A,
x [I,,,, + Abo%boﬂszbo,bOHTAbO%bo} _1, (60b)
—of e AT (Lo + AAT]_l, (60c)
_ szgoyaszgjbovf[lbo +327| U7 (60d)

Defining o = (E ZT)%, which is a square diagonal of size
(M +No) x (Np +Ny), we obtain, up to a multiplication by
an irrelevant orthogonal matrix on the right, an equivalent
factor for P

_1 o
X=Q! @2 V_——
bo,a"“bo,bo Ib0+0'2

The diagonal values of o, denoted o; > 0, represent the inde-
pendent degrees of freedom (dof) values of information that
can be extracted from the observations, which, in our case, is
the first guess y® and the traditional observations y°, in con-
trast to Rodgers (2000), who only considers the dof values
from y°. The higher the o;, the more information attached
to the dof of index i and the more squeezed the correspond-
ing direction in X* and P?. From Eq. (59) and, in particular,

(60e)

1 1
. T _ o2 TA 2
its transppse, A = szbo,pr Abo,bp’ we cap trace the flow
of any piece of information. Such information stems from
the observation vectors; hence, its flow starts in AT from
1

Al;fbo, the square root of the precision matrix Al:o{bo. It is
then transferred from the observation spaces to the observ-
able spaces through . It is finally optimally transported
across the space of xP and x° by 2po,bo, Whose off-diagonal
block is proportional to the transference plan P*°. Hence, OT
is not a primary source of uncertainty, as y® and y° can be,
but moves information in between the observable spaces.

Let us now check the OTDA analysis error covariance
matrix P? in the classical DA limit. To that end, we study
Eq. (54) in the classical limit. Similarly to 2y, and R, in
Eq. (58a), ,, is defined as the covariance matrix of x® when
only accounting for both OTs, and it can be shown that it
reads

1 .
Q.. = —diag(x?). (61)
€
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When the cost tends to Cpo, following the same argu-
ments as in Sect. 2.4.3, xP, x°, and x® must merge and,
consequently, 2y, = R34 = @pp = R40. Hence, in this limit,
Roobo = 1R4a1; and Rpoa = 1oRyq, with L =[1 1]7.
Then, substituting these expressions of 2y, bo and 2y, 5 into
Eq. (54), we get

X" = Rua 1] HT [ Avopo + H1oRual] HT]_I AL, (62a)
=QuJH' [Ib,, + A;o{boﬂlzszaalzTHT]_l Ayl (62b)
= Qu[L+ 12THTA,;O{bOH125zaa]_1 UHTAL,,  (620)
=[ea +1] HTA;O{bomz]_l UHTAL,. (62d)

Here, I, is the identity matrix of size N,. From Eq. (62b)
to Eq. (62c), we relied on the shift matrix lemma (e.g. Asch
et al., 2016). For SZ,_al in Eq. (62d) to exist, it must be as-
sumed that x? € Of,;*; i.e. all the entries of x? are posi-
tive. This is verified when using entropic regularisation with
& > 0, no matter how small the entries of x? are. Moreover,
if x? has zero entries, x? can be represented as the limit of a
sequence of positive discrete measures.
Now, as we have

1A — — —
AT HTAL HL = Ay +HTAH, (63)

we conclude, from Eq. (62d), that the classical limit of the
analysis error covariance matrix is

Pt =X4(X%) " (642)

-1 T N =i ot 117!
- [szaa +A ] A [szaa +A ] . (64b)
If the limit of x* when £ — 0" is in O3, then €' =
e?diag(xa)’1 must vanish. In this case,

. -1
P — A= (a}b oo+ HTa}O;OH) , (65)
which, assuming Gaussian errors, would read P?=
(B~ + HTR_lH)_l, as expected from classical DA. How-
ever, if some of the entries of x? vanish in the limit ¢ — 07,
we suspect that the limit of P? will be the classical analy-
sis error covariance matrix A but with the columns and rows
associated with the vanishing entries of x? tapered to 0.

4.3 Numerical illustration

We consider the one-dimensional example where half of the
domain is observed, over [0, %] Here, H € OX/()X N with
Ny = No/2 and H/ =8 ; for I € [1,N,]] and j € [[1, N, ]l.
Further, the observations are unbalanced, m ( yb) =1 and
m(y°) = 1.49; they have been generated through H by dis-
crete measures of mass 1 and 1.5, respectively. Moreover, the
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cost metric has a quadratic dependence on the distance be-
tween sites, i.e. [Cpalix = )L|rl.b — r,?|2 and [Coaljk = )»|r;’ -
r,f|2, where A = 103. We use the results of Sect. 4.1 to com-
pute the analysis error covariance matrix P2, the transference
plan P and the Jacobian 2b0,a- The numerical results are
displayed in Fig. 14. The OTDA analysis state is bimodal,
with some mass being left over to the right of the domain to
account for the long tail of the first guess, which is far from
the observation support. Hence, there is a vanishing field re-
gion, roughly [0.6, 0.7], which separates the two components
of the analysis state. As expected from OT theory, PP° seems
to converge towards a (non-trivial and barely differentiable)
Monge map which, in this discrete context, has two branches,
separated by the gap created by the vanishing field region.
The analysis error covariance matrix P? seems to converge to
a diagonal matrix, with the exception of the vanishing field
region. Indeed, there seems to be an uncertainty with respect
to how much mass should be transferred from the first guess
tail [0.7, 1] to the main region [0, 0.6]. This is given away
by variance peaks near the edges of the gap and by negative
covariances between the two edge points of the gap.

5 Conclusions

In this paper, we have introduced a theoretical framework for
integrating nonlocal optimal transport (OT) metrics into data
assimilation (DA), which we refer to as hybrid OTDA. This
framework addresses the inconsistencies initially identified
by Feyeux et al. (2016) when local metrics in classical DA
are replaced with nonlocal ones based on OT.

Our focus has been on defining a 3D-Var approach for hy-
brid OTDA and deriving the first- and second-order moments
of its analysis. The hybrid OTDA 3D-Var method blends
classical DA and its background and observation error statis-
tics with a Wasserstein barycentre problem involving the ob-
servables associated with the first guess and the observation
vector. Importantly, our work demonstrates that classical DA
is encompassed within this theoretical framework.

We have shown that this optimisation problem can be de-
composed and simplified into a hybrid OTDA problem with a
single OT problem based on an effective cost. This first prob-
lem yields the estimated x® and x°, followed by a pure W-
barycentre problem involving these states, whose solution is
known as the McCann interpolant. This W-barycentre com-
putation serves as the final analysis step.

Our proposed method can be applied to sparsely and nois-
ily observed systems, as expected from a robust DA method.
It can also accommodate non-trivial error statistics typical
of a 3D-Var approach. Furthermore, we have illustrated the
method’s flexibility in defining cost metrics through various
one- and two-dimensional numerical examples. We have em-
pirically checked how the OTDA analysis shifts towards the
classical DA analysis, within the OTDA framework.
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Figure 14. Illustration of the second-order analysis of an OTDA 3D-Var. Panel (a) shows the same plot as Fig. 11a but with the addition of
shaded regions delineated by plus and minus the standard deviations about the estimates for x2, xgl, xP, and x°. These standard deviations

are computed from the diagonal of the diagnosed posterior error covariance matrices associated with x2, xgl, xP, and x°. Panel (b) displays

the analysis error covariance matrix P2, Panel (¢) shows the optimal transference plan PY°. Panel (d) shows the a, b block part of the Jacobian

matrix 2p, 5, Which is denoted p,.

Note that, for now, some limitations apply; mainly, the
framework is presently meant for non-negative fields.

While we have looked into several other promising devel-
opments regarding our methodology, we have chosen not to
report them in this paper. These developments will be the
subject of a future publication and include the following:

— the derivation of a Bayesian and probabilistic standpoint
on OTDA;

— a generalised formalism enforcing physical regularisa-
tion, such as smoothness of the field, on the analysis
state;

— a stochastic matrix formalism, which is a substitute to
using transference plans but could offer more robustness
in the presence of entropic regularisation;

— employing cost matrices defined across several spaces,
which is useful for realistic application where x® and x°
lie in very distinct spaces, such as the space of emission
of a pollutant and the space of the pollutant concentra-
tions, respectively.

Nonlin. Processes Geophys., 31, 335-357, 2024

While our primary focus in this paper was on the deriva-
tion and understanding of key cost functions within the hy-
brid OTDA framework, we did not delve much into the nu-
merical challenges, algorithmic complexity, or computing
acceleration. For this aspect of the developments, we would
rather rely on developments from OT experts, who are con-
tinuously improving the efficiency of numerical OT (e.g. Fla-
mary et al., 2021).

In addition to strengthening the developments mentioned
above, our future research will explore the application of the
hybrid OTDA formalism in a sequential DA framework, as
this paper concentrated solely on static analysis. We are also
interested in investigating the role played by error statistics
and cost metrics {¢p, o, Cha, Coa} and their balancing in the
hybrid OTDA analysis as well as in developing their objec-
tive tuning.

Appendix A: From the primal to the dual cost
function for the full problem

This appendix is dedicated to the derivation of the transfor-
mation from a Lagrangian variant of the primal problem to
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the dual cost function (Eq. 20). It takes the form of the fol-
lowing series of transformations of the problem (from a La-
grangian to a dual cost function):

L = min [max {(yb x> f,— C{,k(fb)}
xbxoxal fy
Fmax {0 —H) £, =60/
+ min {Pz‘jkC{;l; + PijrCly

PeO,

b,0,a

+h§1}11a)} {h? (x}’ — Pijklélﬁ>

+ h(j)» (x;’ - Pijklf;lI;)

+ £ (xt = P1j1d) }”

= min |:max {(yb —xb)be

xaxbxo| fu.fo

(Ala)

— & (fy)+(O°—Hx)T £,

— C:(fo)] 4+ max min Pijkcli]zi + Pl-jkC({f
hy ho f PO}

b,0,a

P (P = Pyt d1E) S (9 = Ptf1)

+ 12 (xk = Pt 1d) ”

= max min
ho ho fax? xb x©
fb fo PO

b,0,a

[(yb —xOT fo— g (o)

(A1b)

, "
+(° —Hx")" fo— X (fo) + PijkCik + PijCly

1P (P = Pye1d1) S (x0 = Ph1)
+ £ (x - ,-,-kliglé)}, (Alc)

—mn {fJ P FI () — £3(fo)

bJo
+ min
hb ho fa
x2xP x° PcOF

b,0,a

[(hb — f) X0+ (ho —H" f)Tx° + f1x?

+ Piji (c{,’;+c§§ —hP1J1E — ho1f 1k — fak1{)1{;)“, (Ald)
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— max [ FIS4 FTy0 — 2 (fo) = (o)
fb fo

+_min Pi,k(c{;’;Jngf—f;11;1’;—H/f;1;;1’;)]. (Ale)

Peob,o.a

In Eq. (Ala), the maps ¢ and ¢; are the Legendre—
Fenchel transforms of the maps ¢y and ¢, respectively. From
Eq. (A1d) to Eq. (Ale), taking the minimum over the observ-
ables x?, x°, and x? implies enforcing hy, = So. o= HTfO,
and f, =0. Hence, we obtain the dual problem which only
depends on the Lagrange multipliers:

[,* — max nyb + nyo
(fb,fo>eu,;‘0<cba,coa,ﬂ>{ b °

— & (fo) =& (f)}s (A2a)
where the * symbol refers to dual and where the polyhedron
Uy (Cpa, Coa, H) is defined by

A
ugo(cbaa Coa, H) = {fb S ijb, fO € RNO :
Vij.k  fi+flH < c;;§+cg§}. (A2b)

The inequality constraints of the polyhedron 4 stem from
the positivity constraint P;j; > 0 in Eq. (Ale). Very impor-
tantly, we have the coincidence of the minimum of the pri-
mal problem with the maximum of the dual problem £ = L*,
a property called strong duality (see Sect. 5.2 in Boyd and
Vandenberghe, 2004). Strong duality can, for instance, be
achieved if both the primal and dual cost functions are con-
vex, which is the case here.

Appendix B: Derivation of the two-step hybrid
optimal transport data assimilation algorithm

Here, we derive the two-step algorithm elaborated in
Sect. 2.4.2. Moreover, entropic regularisation is added to the
problem.

B1 First step: simplified hybrid optimal transport data
assimilation problem

The first step of the full OTDA algorithm is a simplified
OTDA problem based on a single OT problem driven by the
cost Cpo. The corresponding high-level primal cost function
is

L= min
xPeO; x0eOF

{0 =2+ Loy — Hx®)
+ We, (%, x%). (B1)
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The associated (lower-level) primal cost function, adding en-
tropic regularisation (¢ > 0), is then

Le=  min [;bub —x%)+ Lo(y° — Hx)
xPeO x0eOF
+ min (le(P|v) + P C{;{)) . (B2a)
Pelty,

In this optimisation problem, the admissible set of transfer-
ence plans, i.e. the set of all 2-tensors of non-negative entries
whose marginals are x° and x°, is defined by

A
Uno 2 {P ceOf.: Ply=x" P'1,= x"} . (B2b)
As xP and x° are not predetermined, the prior transference
plan v cannot be selected from U, a priori. Hence, the sim-
plest choice, which we decided to implement, is to set v;; to a
constant, which assumes some statistical prior independence
of x and x°. A derivation of the dual problem equivalent to
L can be obtained in the exact same way as in the previous
subsection, although it is now less cluttered because there is
only one OT to account for, instead of two. The associated
Lagrangian is

Le= max
foeRMo £ eRNo

P”
+ min <82{Pijln—u_— ij—i-v,-j}

+ — Vi
Pe(’)bgo ij i

[be YA oy =G (f) =L fo)

+P,~,~[c;;{,—fgu;—H/fgl{,})]. (B3)

Again, the maps ¢ and ¢ are the Legendre—Fenchel trans-
forms of the maps ¢, and ¢,, respectively. The variables f
and f, are Lagrange vectors; they are used to enforce the
marginals of the transference plan associated with W, . The
unconstrained minimisation over P, i.e. the inner minimisa-
tion problem in Eq. (B3), is obtained by cancelling the gra-
dient with respect to P, which yields

Py = vyyel I =C)re (B4)
Substituting this solution into minus the Lagrangian —L,
gives the regularised dual problem

T = fbeR/\I/ili;loeRNo T (fos f o), (B5a)
with the associated Lagrangian
JE(fos fo) =6 (Ze —m) + &5 (fy) + 55 (f o)
—fe = fo ", (BSb)
which relies on the partition function
(B5c¢)

Ze :ZP,']'.
ij
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The notation J;* and J, rather than £} and L}, signifies
that we work on the opposite of £ and L} so as to obtain a
dual problem to be minimised rather than maximised. Most
importantly, we have, under conditions that will be satisfied
in the following, the coincidence of the two minima J =
—L,, i.e. strong duality. Assuming one can obtain a proper
correspondence between the optimal f, and f of the dual
problem and x° and x° of the primal problem, this implies,
once again, that the primal problem can be traded for the dual
problem.

Even though the regularised optimisation problem is
slightly different from the unregularised one, a difference
which is controlled by the value of ¢, the new dual optimisa-
tion problem is free, i.e. without constraints. It can be solved
as it is, using, for instance, the L-BFGS-B minimiser (Liu
and Nocedal, 1989). The advantage of the regularised dual
formulation is twofold: (1) the dual cost function is uncon-
strained (free optimisation), and (2) we will trade a minimisa-
tion over Ny X N, variables for a minimisation over Ny + N,
variables. This dual formulation can be viewed as a gener-
alised physical-space statistical analysis system (PSAS) for-
malism (Courtier, 1997), an approach in which classical DA
algebra is mostly carried out in observation space.

Once the optimal values for f, and f, are obtained,
the optimal discrete Kantorovich transference plan P can be
computed using Eq. (B4). As a result, as marginals of this
transference plan, the solutions for the observables are

d=R=Y R, g=R=Yr.  ®0
j i

B2 Second step: Wasserstein barycentre

Now that we have obtained the observables x® and x° via
Eq. (B6), we would like to compute their W-barycentre. The
joint mass m of these observables can be computed as fol-
lows:

m=m (xb> =m (xo) . (B7)

The high-level primal cost function of this W-barycentre
problem is

Jy= min [cha(xb,xa)—i-Wcoa(xo,xa)}. (BS)

2+
x EONa

We have found and practised several ways to solve this prob-
lem. One way is to compute the McCann interpolant. This is
theoretically elegant, but Eq. (26) did not leverage regular-
isation of the W-barycentre problem. Instead, the approach
reported here is to use the dual optimisation problem, in con-
junction with entropic regularisation at finite ¢ > 0. We lever-
age our knowledge of the mass m resulting from the first step
of the algorithm by enforcing the mass in the cost function,
m(P) = m. This seems redundant, but it actually yields, by
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construction and very naturally, a numerically efficient algo-
rithm comparable to the ad hoc log-domain scheme proposed
in Sect. 4.4 of Peyré and Cuturi (2019).

Again, one way (although not the only way) to write the
primal problem is to use a gluing transference plan, a 3-
tensor whose marginals are x%, x°, and x*:

L, = min {P~Cboa+elC(P|v)

x‘ﬂ‘eO;a Peldyoq (x?)

+ fox®+ flx°}, (B9a)

where [Cpoalijx = C{;’; + Céz]f , the binary operator - denotes
the contraction of tensors, and

v P11k — b
oat Yio Pjldlf =xP,

Unoa(x®) = [P e OF

Vi Pulhli=x Yk Padili=at].  B9b)
The 3-tensor v is chosen to be v;jx = x}’x;?/(mNa), which is
uniform in k& and for which m(v) = m. The resulting dual
problem is

J* = min J*fo: o) (B10a)
beRNb foERNO ° °
where the associated Lagrangian is
* Ze
J*(fv, fo) =¢ mln; +m—m(v)
— fux— flxe, (B10b)
with the partition function
iy flpd ik odk
A S e (B10c)

ijk
This partition function is elegant but impractical because,
with high dimensionality, a 3-tensor might be too large to

store and compute with. However the partition function in
Eq. (B10c) can be simplified by noticing that

iy el gl i
2o = Y gl rsti=cu)le (B11)
ij
where we introduced the effective cost metric
s ik ok
[Crol;j = —¢In Zﬂe (citrca)re , (B12)
K Vi

which is the regularised cost — known in statistics and ma-
chine learning as a soft-plus transform — of Eq. (22c). The 2-
tensor v;; plays the same role as that of the first step of the al-
gorithm; we choose it as v;; = x}’x}’ /m, for whichm(v) = m.
The dual problem now only involves 2-tensors and becomes
numerically more efficient. Given the optimal f, and f, the
(glued) optimal transference plan P*°? is formally given by

L. i ol g _ ik _oJk
pboa %e(Afb‘i‘foHl —Cba—Coa)/S' (B13)

&
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The W-barycentre x? is then given as a marginal of PP°2:

X =Pyl (Bl4a)
i lygJ ik jk
Zvijke(f"Jrf"H/ ~Cla=Caa )/8.

ij

1
=7 (B14b)
Because of the normalisation of the transference plan to m,
the entropic regularisation exhibits a em In Z, instead of ¢ Z.
This systematically enforces normalisation in the computa-
tions of the gradients, as well as in the course of the numer-
ical optimisation of the dual cost function, de facto working
in the log domain. We experienced more stable computations
and the ability to reach smaller ¢, compared with the case
without normalisation. This completes the solution through
the two-step OTDA algorithm.

Code availability. The products of this paper are exclusively op-
timisation problems and methods to solve them; their implementa-
tion (code) used in the illustrative sections relies on freely available
software to solve the optimisation problems, mainly L-BFGS-B and
its implementation in SciPy (https://github.com/scipy/scipy, SciPy,
2024) and the Python Optimal Transport library and its implemen-
tation (https://github.com/PythonOT, Optimal Transport, 2024).
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