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Abstract. Recently, concerns have been growing about the intensification and increase in extreme weather
events, including torrential rainfall and typhoons. For mitigating the damage caused by weather-induced dis-
asters, recent studies have started developing weather control technologies to lead the weather to a desirable
direction with feasible manipulations. This study proposes introducing the model predictive control (MPC), an
advanced control method explored in control engineering, into the framework of the control simulation experi-
ment (CSE). In contrast to previous CSE studies, the proposed method explicitly considers physical constraints,
such as the maximum allowable manipulations, within the cost function of the MPC. As the first step toward
applying the MPC to real weather control, this study performed a series of MPC experiments with the Lorenz
63 model. Our results showed that the Lorenz 63 system can be led to the positive regime with control inputs
determined by the MPC. Furthermore, the MPC significantly reduced necessary forecast length compared to
earlier CSE studies. It was beneficial to select a member that showed a larger regime shift for the initial state
when dealing with uncertainty in initial states.

1 Introduction

In recent years, concerns have been raised regarding the in-
tensification and increase in extreme weather events such
as torrential rainfall and typhoons. To mitigate the damage
caused by weather-induced disasters, efforts have been made
to improve the forecasting accuracy of stationary heavy rain-
fall and develop disaster prevention infrastructures, including
dams and embankments. Recently, Japan’s Moonshot pro-
gram started exploring alternative countermeasures for mit-
igating weather-induced disasters. Specifically, the program
aims at developing weather control technologies to lead the
weather to a desirable regime with feasible manipulations.
Under the program, researchers are exploring various engi-
neering techniques such as cloud seeding and atmospheric

heating. However, the possible magnitude of humans’ manip-
ulations of the atmosphere is limited. Therefore, simulation
studies using numerical weather prediction (NWP) models
are needed in addition to the engineering studies to develop
effective control approaches with feasible manipulations.

To date, a few simulation studies with NWP models have
been conducted for mitigating extreme events. For exam-
ple, Henderson et al. (2005) conducted numerical experi-
ments using a modified version of the Fifth-Generation Penn
State/NCAR Mesoscale Model (MM5) 4D-Var to identify
the temperature increments required for minimizing wind-
related damage caused by Hurricane Andrew in 1992. How-
ever, the results may not be sufficiently realistic due to
various experimental limitations (Henderson et al., 2005).
The Typhoon Science and Technology Research Center of

Published by Copernicus Publications on behalf of the European Geosciences Union & the American Geophysical Union.



320 F. Kawasaki and S. Kotsuki: Leading the Lorenz 63 system toward the prescribed regime

Yokohama National University proposed using sailing ships
and artificial upwelling to reduce the intensity of tropi-
cal cyclones. Their simulations demonstrated that the drag
enhancement caused by the sailing ships and sea surface
temperature decrease by the artificial upwelling success-
fully weakened tropical cyclones (Hironori Fudeyasu; per-
sonal communication, 2023). Previous studies, however, ex-
amined impacts of the manipulations on specific extreme
events through control experiments that simply compared
simulations with and without manipulations. Here, a re-
search framework is necessary to develop effective control
approaches with feasible manipulations.

Miyoshi and Sun (2022; hereafter MS22) proposed a con-
trol simulation experiment (CSE), an experimental frame-
work for systematically evaluating and exploring control ap-
proaches with unknown true values by expanding the observ-
ing systems simulation experiment (OSSE). They conducted
CSEs with the three-variable Lorenz 63 model (Lorenz,
1963) and succeeded in leading the system to the positive
regime with small control inputs. Sun et al. (2023; hereafter
SMR23) also applied to CSEs for the 40-variable Lorenz 96
model (Lorenz, 1996), showing that their CSEs succeeded
in reducing the number of extreme events of the Lorenz 96
model. Furthermore, Ouyang et al. (2023; hereafter OTK23)
successfully reduced the total magnitude of control inputs
with the Lorenz 63 model by approximately 20 % compared
to MS22’s approach by regulating the amplitude of con-
trol inputs based on the maximum growth rate of the sin-
gular vector. The previous CSE studies (MS22, SMR23, and
OTK23) generated control inputs as differences between en-
semble members that stay within and those that deviate from
the desired regime. However, physical constraints, generally
needed for real-world applications, cannot be explicitly con-
sidered in previous CSE studies. Therefore, it is worthwhile
to explore other methodologies to determine control inputs.

In this study, we propose introducing the model predictive
control (MPC) within the framework of CSE. The MPC is
an advanced control method that repeats prediction and opti-
mization with explicit consideration of constraints. While the
MPC has been widely used in practical fields such as the pro-
cess industry and power electronics (Schwenzer et al., 2021),
there has been no study yet that used the MPC for mitigating
weather-induced disasters to the best of our knowledge. As
the first step toward applying the MPC to the real weather
control, this study performs a series of MPC experiments
with the Lorenz 63 model. Here we explore the way to im-
plement the MPC within CSE and aim to reveal important
issues to extend the MPC to high-dimensional NWP models.

The remaining sections of this paper are arranged as fol-
lows. Section 2 introduces the theory of the MPC and de-
scribes the experimental setting. In Sect. 3, we employ a se-
ries of MPC experiments with the Lorenz 63 model and dis-
cuss properties of the MPC applied to the chaotic dynamical
systems. Finally, Sect. 4 provides a summary.

2 Method and experiments

2.1 Model predictive control

2.1.1 Definition and procedure

This study explores using the MPC for controlling a chaotic
dynamical system. Here, the MPC is a feedback control
method that identifies control inputs to minimize the cost
function under constraints at each time. In other words, the
MPC is a control method that solves an optimal control prob-
lem (OCP) for a finite horizon at each time. Strictly speaking,
the MPC considered in this study is nonlinear model pre-
dictive control (Chen and Shaw, 1982; Keerthi and Gilbert,
1988; Mayne and Michalska, 1990; Mayne et al., 2000).

First, we define the terminology and symbols. As shown
in Fig. 1, the two key processes of the MPC are model-based
prediction and optimization of control inputs in the OCP. For
these processes, the prediction horizon, Tp, and the control
horizon, Tc, are defined independently, where subscripts p
and c denote prediction and control. Here, Tp (0< Tp) is the
length of state prediction and Tc (0< Tc ≤ Tp) is the length
of the control inputs to be optimized. A new axis, τ , is the
time axis for variables under the optimization and set to be
different from the time axis, t . Therefore, τ = 0 denotes the
initial times of the horizons. Furthermore, variables in both
horizons are marked with a superscript ∗; for example, a state
x at τ = τi on the horizon at t = ti is denoted by x∗ (τi; ti).

Next, we describe the procedure of the MPC. First, the
MPC requires the suitable design of a numerical model,
f (x∗, u∗); a cost function, J (x∗, u∗); a set of constraints,
c (x∗, u∗); and a first guess of control inputs, u∗ (τ ; ti), from
τ = 0 to τ = Tc for the desirable control. Now, we consider
the process of obtaining the control input, u, at t = ti based
on the MPC.

1. The present state x (ti) is used as the initial state
x∗ (0; ti) for an OCP (i.e., x∗ (0; ti)= x (ti)).

2. The predicted state, x∗ (τ ; ti), from τ = 0 to τ = Tp is
obtained by the numerical model, f (x∗, u∗).

3. Based on x∗ (τ ; ti), the solution u∗ (τ ; ti) is up-
dated from τ = 0 to τ = Tc through optimization (see
Sect. 2.1.2).

4. Prediction (step 2) and optimization (step 3) are iter-
ated with updated u∗ (τ ; ti) and x∗ (0; ti) until u∗ (τ ; ti)
is sufficiently converged (see Sect. 2.1.2).

5. The control input, u (t), taken from finally updated
u∗ (τ ; ti) from τ = 0 to τ = k·dt (0< k·dt < Tc), is used
for the manipulation from t = ti to t = ti + k · dt .

6. The process returns to step 1 and repeats these steps at
t = ti + k · dt .

Nonlin. Processes Geophys., 31, 319–333, 2024 https://doi.org/10.5194/npg-31-319-2024



F. Kawasaki and S. Kotsuki: Leading the Lorenz 63 system toward the prescribed regime 321

Figure 1. Conceptual image of the model predictive control (MPC; the gray block). A numerical model, f
(
x∗, u∗

)
; a cost function,

J
(
x∗, u∗

)
; a set of constraints, c

(
x∗, u∗

)
; and a first guess of control inputs, u∗ (τ ; ti ), are given to the optimal control problem (OCP;

the yellow block). The initial state, x (ti ), is also given by the model time integration with manipulations. The OCP is solved by iterating
prediction and optimization until the solution u (ti ) is sufficiently converged. Finally, the manipulation is performed by applying the u(ti ) to
x (ti ). The same process is repeated at the next time (t = ti + k · dt).

2.1.2 Optimal control problem

As previously noted, the MPC identifies control inputs that
allow the system to achieve a desirable state for a finite hori-
zon by solving the OCP at each time. Here, we explain that
the OCP can be regarded as a variational problem with con-
straints. We consider a basic OCP with control and prediction
horizons being T = Tc = Tp for ease of comprehension. The
general equations of state for a nonlinear model and the ini-
tial state are given by

ẋ∗ (τ ; t)= f
(
x∗ (τ ; t) ,u∗ (τ ; t)

)
, (1)

x∗ (0; t)= x (t) , (2)

where their dimensions are x∗ (τ ; t) ∈ Rn and u∗ (τ ; t) ∈ Rl ,
respectively. The scalars n and l represent the number of
model variables and manipulation variables, respectively.
The general cost function of the OCP is given by

J
(
x∗, u∗

)
= ϕ

(
x∗ (T ; t)

)
+

T∫
0

L
(
x∗ (τ ; t) ,u∗ (τ ; t)

)
dτ, (3)

where ϕ (x∗ (T ; t)) is the terminal cost and
L (x∗ (τ ; t) ,u∗ (τ ; t)) is the stage cost. Both are scalar
functions, and various control objectives can be consid-
ered by a suitable design of these functions. The general
constraints of the problem are given by

c
(
x∗ (τ ; t) ,u∗ (τ ; t)

)
=

 c1 (x∗ (τ ; t) ,u∗ (τ ; t))
...

cj (x∗ (τ ; t) ,u∗ (τ ; t))

= 0, (4)

where c (x∗ (τ ; t) ,u∗ (τ ; t)) ∈ Rj is a vector whose elements
are equality constraints restricted to zero. The scalar j is the
number of constraints. When inequality constraints are im-
posed, the constrained problem can be addressed by methods
such as the penalty method or the slack variable technique.
This study uses the penalty method, which adds large penal-
ties to the cost function when the constraints are not satisfied
(see Eq. 26). On the other hand, the slack variable technique
converts inequality constraints to equality constraints by in-
troducing dummy variables. The addition of the dummy vari-
ables, however, makes the OCP more complicated. There-
fore, we did not use the slack variable technique in this study.
In summary, the OCP is regarded as the following variational
problem that optimizes the cost function, subject to the equa-
tion of state and constraints:

minimizeJ
(
x∗, u∗

)
= ϕ

(
x∗ (T ; t)

)
+

T∫
0

L
(
x∗ (τ ; t) ,u∗ (τ ; t)

)
dτ , (5)

subject to

 f (x∗ (τ ; t) ,u∗ (τ ; t))− ẋ∗ (τ ; t) = 0,
x∗ (0; t)= x (t) ,
c (x∗ (τ ; t) ,u∗ (τ ; t))= 0.

. (6)

We note that the equation of state (Eq. 1) is also regarded as
an equality constraint (the first equation in Eq. 6) by trans-
posing ẋ∗ (τ ; t) of Eq. (1) to the right-hand side.

The following necessary conditions for optimal control in-
puts are obtained by converting the constrained problem to an
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unconstrained problem using the method of Lagrange multi-
pliers (see Appendix A):

ẋ∗ (τ ; t)= f
(
x∗ (τ ; t) ,u∗ (τ ; t)

)
, (7)

x∗ (0; t)= x (t) , (8)

λ̇∗ (τ ; t)=−
∂H

(
x∗,u∗,λ∗,ρ∗

)
∂x

, (9)

λ∗ (T ; t)=
∂ϕ (x∗ (T ; t))

∂x
, (10)

∂H
(
x∗,u∗,λ∗,ρ∗

)
∂u

= 0, (11)

c
(
x∗ (τ ; t) ,u∗ (τ ; t)

)
= 0, (12)

where λ∗ (τ ; t) ∈ Rn is the Lagrange multiplier for the equa-
tion of state, ρ∗ (τ ; t) ∈ Rj is the Lagrange multiplier for
the constraints, andH

(
x∗,u∗,λ∗,ρ∗

)
is the Hamiltonian de-

fined as

H
(
x∗,u∗,λ∗,ρ∗

)
:= L

(
x∗,u∗

)
+
(
λ∗
)T
f
(
x∗,u∗

)
+
(
ρ∗
)T
c
(
x∗,u∗

)
. (13)

The derivation of the necessary conditions of the optimal
control inputs is detailed in Appendix A. For nonlinear mod-
els, it is generally impossible to solve these equations ana-
lytically. Therefore, this study solves them using a numer-
ical approach. Given the first guess of the control input,
u∗ (τ ; t), temporal forward computations (Eqs. 7 and 8) are
performed to obtain x∗ (τ ; t) from τ = 0 to τ = T . In this
study, zero vectors are selected as the first guess of the con-
trol input, u∗ (τ ; t), because the minimization of the con-
trol input is also included in the cost function, J (x∗,u∗), as
seen later (Eq. 26). Furthermore, λ∗ (τ ; t) is obtained by tem-
poral backward computations from τ = T to τ = 0 (Eqs. 9
and 10). Consequently, u∗ (τ ; t) and ρ∗ (τ ; t) from τ = 0 to
τ = T can be obtained by applying an optimization algo-
rithm to the nonlinear equations (Eqs. 11 and 12). Therefore,
the OCP can be solved by iterating the prediction (Eq. 7) and
optimization (Eqs. 11 and 12) until the solutions are suffi-
ciently converged. In this study, the equations (Eqs. 7–12)
are discretized with the fourth-order Runge–Kutta scheme.
In addition, we used the Levenberg–Marquardt algorithm,
which is the optimization algorithm for solving the nonlin-
ear equations (Eqs. 11 and 12). In our preliminary experi-
ments, the Levenberg-Marquardt algorithm solved the non-
linear equations stably compared to other optimization meth-
ods in SciPy libraries.

When the control horizon is shorter than the prediction
horizon (Tc < Tp), the necessary conditions for optimal con-
trol inputs (Eqs. 7–12) are replaced by

ẋ∗ (τ ; t)=
{
fc (x∗ (τ ; t) ,u∗ (τ ; t)) (0≤ τ < Tc) ,
fp (x∗ (τ ; t))

(
Tc ≤ τ < Tp

)
,

(14)

x∗ (0; t)= x (t) , (15)

λ̇∗ (τ ; t)=

{
−
∂Hc(x∗,u∗,λ∗,ρ∗)

∂x
(0≤ τ < Tc) ,

−
∂Hp(x∗,λ∗,ρ∗)

∂x

(
Tc ≤ τ < Tp

)
,

(16)

λ∗
(
Tp; t

)
=
∂ϕ
(
x∗
(
Tp; t

))
∂x

, (17)

∂Hc(x∗,u∗,λ∗,ρ∗)
∂u

= 0 (0≤ τ < Tc) , (18){
cc (x∗ (τ ; t) ,u∗ (τ ; t))= 0 (0≤ τ < Tc) ,
cp (x∗ (τ ; t))= 0

(
Tc ≤ τ < Tp

)
,

(19)

where the subscript c denotes a function up to Tc with the
control input, u∗ (τ ; t), and the subscript p denotes the func-
tion from Tc to Tp without the control input.

2.2 Model predictive control for the Lorenz 63 model

2.2.1 The Lorenz 63 model

This study uses the Lorenz 63 model for MPC experiments.
The Lorenz 63 model is a three-variable nonlinear differen-
tial equation expressed as follows:

ẋ =−σx+ σy, (20)
ẏ =−xz+ rx− y, (21)
ż= xy− bz. (22)

The model is known to behave in a chaotic manner under
certain parameter values. In this study, σ = 10, r = 28, and
b = 8/3 are selected to form a butterfly pattern with two pos-
itive and negative regimes, following previous studies (MS22
and OTK23). Moreover, the model is discretized and in-
tegrated using the fourth-order Runge–Kutta scheme. One
time step of integration is defined as dt = 0.01 units of time
throughout this study. With the Lorenz 63 model, the state
vector becomes x =

[
x,y,z

]T and the number of model vari-
able is n= 3.

2.2.2 The optimal control problem with the Lorenz 63
model

This study considers a control problem, namely keeping the
Lorenz 63 system in the positive regime (x ≥ 0) follow-
ing previous studies (MS22 and OTK23). Note that our ap-
proach includes minimization of the control inputs owing to
Eq. (26). The equations of state (Eq. 14) are given by

fc
(
x∗,u∗

)
=

 −σx∗+ σy∗+ u∗x
−x∗z∗+ rx∗− y∗+ u∗y

x∗y∗− bz∗+ u∗z

 , (23)

fp
(
x∗
)
=

 −σx∗+ σy∗

−x∗z∗+ rx∗− y∗

x∗y∗− bz∗

 , (24)

where x∗ =
[
x∗,y∗,z∗

]T and u∗ =
[
u∗x,u

∗
y,u
∗
z

]T
. As previ-

ously noted, one of the control objectives in this problem is
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leading the Lorenz 63 system to the positive regime. There-
fore, the inequality constraint, x∗ (τ ; t)≥ 0, is imposed from
τ = 0 to τ = Tp. In this study, the penalty method is intro-
duced to treat the inequality constraint and the penalty func-
tion for x∗ (τ ; t)≥ 0 is defined as follows:

Px∗≥0
(
x∗
)
:=

1
2

{
max

(
−x∗,0

)}2
. (25)

The inequality constraint can be considered in the cost func-
tion as follows. Including the minimization of the control in-
puts, the cost function is given by

J =

Tc∫
0

{
1
2

(
u∗
)T
u∗+αx∗≥0 ·Px∗≥0

(
x∗
)}

dτ

+

Tp∫
Tc

αx∗≥0 ·Px∗≥0
(
x∗
)

dτ

+αx∗≥0 ·Px∗≥0
(
x∗
(
Tp; t

))
, (26)

where αx∗≥0 > 0 is the tunable penalty parameter that bal-
ances weights of magnitude of the control input ( 1

2 (u∗)T u∗)
and the inequality constraint (x∗ (τ ; t)≥ 0) in the cost func-
tion. The third term of Eq. (26) corresponds to the terminal
cost (see Eq. 3) and is necessary for considering explicitly
the terminal state of x∗ (τ ; t) within the prediction horizon.
This study employs αx∗≥0 = 104 from our preliminary in-
vestigations. Consequently, the necessary conditions for the
optimal control inputs (Eqs. 14–19) are formulated using the
following equations for the control problem of the Lorenz 63
model:

ẋ∗ (τ ; t)=


fc (x∗,u∗)=

[
−σx∗ + σy∗ + u∗x

−x∗z∗ + rx∗ − y∗ + u∗y
x∗y∗ − bz∗ + u∗z

]
(0≤ τ < Tc) ,

fp (x∗)=

[
−σx∗ + σy∗

−x∗z∗ + rx∗ − y∗

x∗y∗ − bz∗

] (
Tc ≤ τ < Tp

)
,

(27)
x∗ (0; t)= x (t) , (28)

λ̇∗ (τ ; t)= −

 −λ∗xσ + λ∗y (−z∗ + r)+ λ∗zy
∗
−αx∗≥0 ·max(−x∗,0)

λ∗xσ − λ
∗
y + λ

∗
zx
∗

−λ∗yx
∗
− λ∗zb

 (
0≤ τ < Tp

)
,

(29)

λ∗
(
Tp; t

)
=

 −αx∗≥0 ·max
(
−x∗

(
Tp; t

)
,0
)

0
0

 , (30)

∂Hc
(
x∗,u∗,λ∗,ρ∗

)
∂u

=

[
u∗x + λ

∗
x

u∗y + λ
∗
y

u∗z + λ
∗
z

]
= 0 (0≤ τ < Tc) , (31)

where λ∗ =
[
λ∗x,λ

∗
y,λ
∗
z

]T
. As discussed later, this control

problem can be extended to other experimental settings,
such as manipulating only one-variable control input (see
Sect. 3.3) and adding a constraint for the L2 norm of con-
trol inputs (see Sect. 3.4).

2.3 Control simulation experiment with model predictive
control

The CSE is an experimental framework that controls the na-
ture run (NR), extended from OSSE. The key concept of CSE
is that the true state of the NR is unknown, but manipulations
can be added to the NR, assuming a realistic atmosphere.

Based on previous studies (Kalnay et al., 2007; Yang et
al., 2012; MS22; OTK23), the experimental setting of our
CSE is determined as follows. We first employ a free run
with the Lorenz 63 model for 2 009 000 steps without any
manipulations. The initial values of the free run are gener-
ated by random numbers N (0.0, 2.0) for x, y, and z inde-
pendently. Observations are generated at every To = 8 steps
by adding uncorrelated Gaussian noise ε ∼N (0.0, 2.0) into
the free run, where the subscript o denotes the observation.
The DA cycles are performed by assimilating the generated
observations for the last 2 008 000 steps by the ensemble
Kalman filter (EnKF) (Evensen, 1994). This study employs
the perturbed observation method (Burgers et al., 1998) as
the EnKF to obtain a stable analysis ensemble under the non-
linear system (Lawson and Hansen, 2004). We discarded the
first 8000 steps of the 2 008 000-step DA cycles for CSE. The
root-mean-square errors (RMSEs) and multiplicative infla-
tion parameters of 2 000 000-step DA cycles are shown in
Table 1. In this study, 1000 independent CSEs for 2000 steps
are performed from different starting points to evaluate the
CSEs statistically. OTK23 noted that starting points around
the large x are generally difficult for leading the system to
the positive regime for the Lorenz 63 model. Therefore, the
1000 different starting points are sampled sequentially from
the points satisfying 0≤ x < 15 in the 2 000 000-step DA cy-
cles.

We employ three indicators to evaluate CSEs. The first in-
dex is the success rate (SR), which denotes the percentage of
cases that satisfy x ≥ 0 for entire experimental period (i.e.,
2000 steps) among the 1000 CSEs. The mean total failure
(MTF) and mean total control inputs (MTCIs) are defined as
the mean of

∑
x<0
x · dt and

∑
‖u‖ · dt of the 1000 CSEs, re-

spectively.
The procedure of the CSE with MPC is designed as fol-

lows:

1. At a certain time t = ti , the observation yo (ti) is simu-
lated from the NR.

2. DA is employed to obtain an analysis ensemble, Xa (ti).

3. The ensemble forecast, Xb (t), from t = ti to t = ti +Tp
is computed from the analysis ensemble, Xa (ti).

4. If at least one member indicates a regime shift (RS) dur-
ing the ensemble forecast, the process continues to step
5. Otherwise, the NR evolves until t = ti + To and re-
turns to step 1.

https://doi.org/10.5194/npg-31-319-2024 Nonlin. Processes Geophys., 31, 319–333, 2024
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5. The OCP is solved to obtain control input u (t) from t =

ti to t = ti + To from the control input after iterations,
u∗ (τ ; ti), from τ = 0 to τ = To.

6. The NR is evolved from t = ti to t = ti+To by applying
the obtained control input u (t). In addition, the Xb (t)
from t = ti to t = ti + To is computed by applying the
same control input to the analysis ensemble, Xa (ti), for
DA at the next time. Notably, the control inputs are ap-
plied to ẋ (t) through the numerical model f (x,u) (see
Eq. 1) rather than direct addition to x (t).

7. The process returns to step 1 and repeats these steps at
t = ti + To.

Here, X ∈ Rn×m is an ensemble of state and m is the en-
semble size. Superscripts a and b denote analysis and back-
ground, respectively.

This procedure is illustrated in Fig. 2. For simplicity, the
flow diagrams of the CSE are divided into two cases: without
a RS in Fig. 2a and with a RS in Fig. 2b. The procedure of
the CSE for forecasts without a RS in Fig. 2a is identical to
the OSSE. In contrast, the procedure of the CSE for forecasts
with a RS in Fig. 2b has additional processes for identifying
and applying control inputs. The upper illustration in Fig. 2c
shows a conceptual image of identifying control inputs, and
the lower illustration shows an application of control inputs
to the NR through the Lorenz 63 model. Importantly, the NR
cannot be used as the initial state of the OCP because it is
always unknown. Therefore, an analysis ensemble is used as
the initial state. As discussed later (Sect. 3.5), the initial state
for the OCP substantially affects the control results, and the
member with the smallest state x (i.e., the largest RS) in the
ensemble forecast (step 3) is selected as the initial state in this
study unless otherwise specified. In addition, Tc = 8 steps is
selected throughout this study from our preliminary investi-
gations.

3 Results and discussion

3.1 Impacts on the nature run

First, CSE is conducted with the Lorenz 63 model to verify
the impacts of the MPC on the NR. The control objective
is leading the system to the positive regime under the mini-
mization of the three-variable control inputs. Here, Tp = 20
steps and m= 50 are selected, as discussed later in Sect. 3.2.

The NR and the L2 norm of control inputs, ‖u‖, are shown
in Figs. 3 and 4. The butterfly pattern appears in Fig. 3a be-
cause no control input is applied. In contrast, the NR suc-
cessfully keeps the positive regime with consideration of the
inequality constraint x∗ ≥ 0 by the MPC in Figs. 3b and 4a.
This result indicates that the NR can be controlled by the
short forecast (i.e., Tp = 20 steps). Importantly, the value of
‖u‖ identified by the MPC is applied to the time derivative of
states (i.e., ẋ). Therefore, the magnitude of the control inputs

added to x during dt = 0.01 is ‖u‖ · dt . As demonstrated in
Fig. 4b, the maximum value of the control inputs added to x
during dt is approximately 40 · 0.01= 0.4, which is smaller
than the maximum value of states.

Figure 5 shows the prediction of the state and optimization
of the control inputs in each horizon at an arbitrary selected
step (the 232nd step of the CSE of Fig. 4). Since the forecast
(dashed blue line) from the initial state shows a RS, the con-
trol is activated to solve the OCP. As demonstrated in Fig. 5a,
the trajectory of the controlled prediction gradually shifts to
satisfy x∗ ≥ 0 by iterative computations; finally, x∗ ≥ 0 is
satisfied (solid red line). The uncontrolled NR shows a RS
(dashed gray line); in contrast, the controlled NR can avoid
the RS (solid black line) through the addition of control in-
puts (Fig. 5b, c, and d) after iterations. Note that the final
prediction in the OCP and the controlled NR are not iden-
tical because the prediction in the OCP used an initial state
from the member with the largest RS rather than the NR.

3.2 Sensitivity to the prediction horizon and the
ensemble size

Here, we investigate the sensitivity to Tp andm for MPC per-
formance. For that purpose, we conducted 1000 independent
CSEs and summarized their SR, MTF, and MTCIs in Fig. 6.
The darker color in Fig. 6 indicates better controllability.
Higher values of m generally yield better results, increasing
the SR and reducing MTF and MTCIs. However, improve-
ments owing to the increased ensemble size, m, converge for
m≥ 50 in many cases. The reasons for the improved results
with larger ensemble size, m, are discussed in Sect. 3.5. In
addition, the results with shorter Tp, such as Tp = 10 steps,
tend to be worse; the MTCIs in particular would increase be-
cause the control would be difficult by delaying the timing
of control activation. On the other hand, longer Tp would not
necessarily improve the results. In particular, it considerably
worsens at Tp = 50 steps, presumably because of discrete ap-
proximation errors involving state evolution in Tp.

It should be noted that a higher SR does not necessarily
indicate lower MTF. For example, focusing on m= 30, the
SR of Tp = 10 steps (SR= 0.487) is much lower than the
SR of Tp = 40 steps (SR= 0.921). However, the MTF of
Tp = 10 steps (MTF=−7.9× 10−3) is lower than the MTF
of Tp = 40 steps (MTF=−2.7× 10−2). Therefore, control
would fail more frequently, but not significantly, with Tp =

10 steps than with Tp = 40 steps.
Hereafter, the experiment with Tp = 20 steps and m= 50

is considered to be a standard experimental setting in this
study because the parameters yielded one of the best perfor-
mances. The SR, MTF, and MTCIs in several experimental
settings with Tp = 20 steps andm= 50, including the experi-
ments discussed later (see Sect. 3.3 and 3.4), are summarized
in Table 2.
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Table 1. The RMSEs and the multiplicative inflation parameters used in this study for each ensemble size, m. The multiplicative inflation is
applied to background ensemble perturbations. The inflation parameters were manually tuned so that analysis RMSEs are minimized over
the 2 000 000-step OSSEs.

Ensemble size, m 10 20 30 40 50 100

RMSE 0.393 0.300 0.282 0.277 0.273 0.271
Inflation 1.50 1.18 1.08 1.06 1.04 1.02

Figure 2. Flow diagram and conceptual image of the CSE with MPC. (a) Flow diagram of CSE for forecasts without a RS, which is identical
to OSSE. (b) Flow diagram of the CSE with MPC for forecasts with a RS, which has additional processes for identifying and applying
control inputs. (c) Conceptual image of the CSE with MPC. The upper illustration shows an image of identifying control inputs, and the
lower illustration shows an application of control inputs to the NR.

3.3 MPC experiments with one-variable control input

For realistic control scenarios, it is important to consider
control problems in which limited control inputs relative to
model dimensions are available. Here, this section investi-
gates the CSE with one-variable control input.

Figure 7a, b, and c show the NRs controlled only by
ux , uy , or uz, respectively. While the NR controlled by ux
(Fig. 7a) shows a pattern fluctuating around x = 0, the NR
controlled by uy (Fig. 7b) exhibits a pattern similar to the
case of three-variable control inputs (Fig. 3b). Intriguingly,

the NR controlled by uz demonstrates an unstable pattern
that does not significantly deviate from x ≥ 0. In addition,
the SR, MTF, and MTCIs for the 1000 CSEs are listed in
Table 2b. Compared with the case of three-variable control
inputs presented in Table 2a, the case with only uy is slightly
inferior yet comparable; the controllability of the case with
ux is more difficult, and the difficulty escalates further when
employing uz. In particular, the MTCIs are larger for the case
with only uy , ux , and uz, in that order. Therefore, the NR
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Figure 3. The NR and controlled NR of the Lorenz 63 model for 2000 steps. Each starting point is selected from the 24th step of 2 000 000-
step DA cycles. Panel (a) shows the uncontrolled NR without the MPC. Panel (b) shows the controlled NR by the MPC with Tp = 20 steps,
Tc = 8 steps, and m= 50.

Figure 4. The controlled NR and the L2 norm of control inputs with Tp = 20 steps, Tc = 8 steps, and m= 50. The starting point is the 24th
step of 2 000 000-step DA cycles. Panel (a) shows the time series of state x. Panel (b) shows the L2 norm of control inputs, ‖u‖.

controlled by ux slightly fluctuates in the x direction, and the
NR controlled by uz significantly fluctuates in the z direction.

3.4 MPC experiments constrained by magnitudes of
control inputs

Here, we show that the MPC can consider constraints for
control inputs in addition to the constraint for state (i.e.,
x∗ ≥ 0). Therefore, we consider MPC experiments with ad-
ditional inequality constraints: the L2 norm of the control
inputs ‖u∗‖ ≤ U (U = 20, 30, 40). Namely, this section dis-
cusses MPC experiments constrained by the magnitude of
control inputs. For that purpose, this study also treats ‖u∗‖ ≤

U with the penalty method whose function is given by

P‖u∗‖≤U
(∥∥u∗∥∥) := 1

2

{
max

(∥∥u∗∥∥−U,0)}2
. (32)

In this study, α‖u∗‖≤U = 103 is selected as the penalty pa-
rameter for ‖u∗‖ ≤ U from our preliminary experiments.

Figure 8 shows the NRs and the L2 norm of the con-
trol inputs with additional ‖u∗‖ ≤ U . In all cases of U , the
NRs (Fig. 8a, c, and e) indicate patterns similar to the case
without ‖u∗‖ ≤ U (Fig. 3b). The L2 norm of the control in-
puts, ‖u∗‖, satisfies the constraint for each U (Fig. 8b, d,
and f), especially for a larger U . However, with a smaller
U (i.e., U = 20), the L2 norm of control inputs occasion-
ally exceeds the prescribed upper limit significantly. This
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Figure 5. The prediction of the state and optimization of the control inputs in the horizon at an arbitrary selected step (the 232nd step of
the CSE of Fig. 4). Iterative computations were performed 356 times for solving the OCP in this case. (a) The predictions, NRs, forecast,
analysis, and observation in Tp. Panels (b), (c), and (d) show the control inputs u∗x , u∗y , and u∗z during optimization in Tc.

Figure 6. Sensitivity to the prediction horizon, Tp, and the ensemble size,m, with three evaluation indicators: (a) success rate (SR), (b) mean
total failure (MTF), and (c) mean total control inputs (MTCIs). Darker colors in (a), (b), and (c) indicate better controllability.
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Table 2. Summary of the success rate (SR), mean total failure (MTF), and mean total control inputs (MTCIs) for results in each experimental
setting, with Tp = 20 steps andm= 50 in 1000 CSEs. Row (a) shows the results of the standard MPC experiment. Row (b) shows the results
of MPC experiments with only one-variable control input, and row (c) shows the results of MPC experiments with an additional constraint
for the L2 norm of control inputs.

Manipulation Constraints Success Mean total Mean total control Section
variable rate (SR) failure (MTF) inputs (MTCIs)

(a) u∗x ,u
∗
y ,u
∗
z x∗ ≥ 0 0.990 −1.34× 10−4 94.7 Sect. 3.2

(b)
u∗x x∗ ≥ 0 0.789 −4.85× 10−3 358.2

Sect. 3.3u∗y x∗ ≥ 0 0.956 −1.17× 10−4 132.3
u∗z x∗ ≥ 0 0.020 −3.40 1402.4

(c) u∗x ,u
∗
y ,u
∗
z

x∗ ≥ 0,
∥∥u∗∥∥≤ 20 0.932 −9.19× 10−4 111.2

Sect. 3.4x∗ ≥ 0,
∥∥u∗∥∥≤ 30 0.959 −5.15× 10−4 126.6

x∗ ≥ 0,
∥∥u∗∥∥≤ 40 0.980 −2.22× 10−4 131.9

Figure 7. The NRs controlled by one-variable control input: (a) controlled by ux , (b) controlled by uy , and (c) controlled by uz. Each
starting point is identical to Fig. 3 (i.e., the 24th step of 2 000 000-step DA cycles).

is because the penalty method adds a penalty weighted by
α‖u∗‖≤U to the cost function and does not guarantee satisfy-
ing the constraint every time. Therefore, different results can
be obtained by adjusting α‖u∗‖. For example, by increasing
α‖u∗‖, ‖u∗‖ ≤ U can be more strictly satisfied instead of de-
creasing the weight for x∗ ≥ 0. The SR, MTF, and MTCIs
for the 1000 CSEs are presented in Table 2c. Compared with
the result in the absence of ‖u∗‖ ≤ U listed in Table 2a, the
result with ‖u∗‖ ≤ U is worse overall because the constraint
imposes more difficulty on the control problem. In addition,
the MTCIs decrease for a smaller U , but the SR and MTF do
worsen accordingly.

3.5 Sensitivity to the initial state

For controlling NRs, it would be preferable to use the NR as
the initial state for identifying control inputs. However, the
state estimated by DA must be used because the true value
is always unknown. Therefore, there is uncertainty in MPC-
derived control inputs based on the states estimated by DA.
This uncertainty may not cause serious problems for some

systems without strong nonlinearity. Chaotic dynamical sys-
tems, however, require careful explorations of options for
stable control because small uncertainties can cause large
differences. Here, we discuss the initial state that would be
valid for leading a chaotic dynamical system to a prescribed
regime.

We performed 1000 independent CSEs and computed the
SR, MTF, and MTCIs for five kinds of initial states: random
(all mem.), mean (all mem.), random (RS mem.), mean (RS
mem.), and largest (RS mem.), respectively. The (all mem.)
label denotes selection among all members in the analysis
ensemble, and the (RS mem.) label denotes selection among
the members of the analysis ensemble showing RSs. The ran-
dom label denotes a randomly sampled member, the mean
label denotes the mean of the members, and the largest label
denotes the member showing the largest RS. For example,
mean (all mem.) indicates the mean analysis ensemble. The
results are shown in Fig. 9. The experiment with the largest
(RS mem.) state yielded the best results, showing the highest
SR and the smallest MTF and MTCIs. Furthermore, Fig. 9
shows that it is better to use a member selected from the (RS
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Figure 8. MPC experiments with inequality constraints for control inputs with
∥∥u∗∥∥≤ U : (a, b) U = 20, (c, d) U = 30, and (e, f) U = 40.

Panels (a), (c), and (e) show the NRs, and panels (b), (d), and (f) show the L2 norm of control inputs. The dashed lines in panels (b), (d), and
(f) show the prescribed upper limits of the control inputs (i.e., U = 20, 30, and 40). Each starting point is identical to Fig. 3 (i.e., the 24th
step of 2 000 000-step DA cycles).

mem.) group rather than (all mem.) as the initial state. We
presume that it is safer to select a member showing a larger
RS for the initial state when uncertainty exists in initial state.
Therefore, the improvement with a larger ensemble size, m,
in Sect. 3.2 is attributed to the fact that a larger ensemble size,
m, can provide a member with a larger RS. Consequently,
obtaining a member with a larger RS would be important for
successfully leading chaotic dynamical systems to the pre-
scribed regime by the MPC.

4 Conclusions

In this study, we propose introducing the MPC within the
framework of CSE. The advantage of using the MPC is that
control objectives and constraints can be explicitly consid-
ered. Therefore, we expect that this approach will be use-
ful for realistic weather control by designing a suitable cost
function and constraints.

We conducted MPC experiments with the Lorenz 63
model and successfully led the system to the positive regime.

The previous CSE studies (MS22 and OTK23) required
longer forecasts (about 300 steps) for successful controls
with the Lorenz 63 model, whereas our approach required
much shorter forecasts, such as with 20 steps. We also con-
firmed that controllability would be difficult with limited
variables of control inputs or with additional constraints. In
our discussion, we suggest that it is safer to select a member
showing a larger RS for the initial state when dealing with
uncertainty in initial states.

This study is an investigation of the first phase of the
MPC for weather control. In the future, this approach will be
investigated with more realistic NWP models. In addition,
several improvements remain for the MPC to be applied to
weather control. Our present approach requires many itera-
tions to solve the OCP, and temporal forward and backward
computations are required for each iteration. This means
that it is computationally difficult to apply the present ap-
proach to high-dimensional NWP models as it is. There-
fore, further studies are needed to explore faster approaches
to solve OCPs for high-dimensional models. For this chal-

https://doi.org/10.5194/npg-31-319-2024 Nonlin. Processes Geophys., 31, 319–333, 2024



330 F. Kawasaki and S. Kotsuki: Leading the Lorenz 63 system toward the prescribed regime

Figure 9. Sensitivity to the initial state, with Tp = 20 steps and m= 50. Three evaluation indicators are shown for (a) success rate (SR),
(b) mean total failure (MTF), and (c) mean total control inputs (MTCIs), respectively. The (all mem.) label denotes selection from among all
members in the analysis ensemble, and the (RS mem.) label denotes selection from among the members of the analysis ensemble showing
RSs. The Random label denotes a randomly sampled member, the Mean label denotes the mean of the members, and the Largest label denotes
the member showing the largest RS.

lenge, we expect the continuation/generalized minimal resid-
ual (C/GMRES) method (Ohtsuka, 2004) and quantum an-
nealing (Inoue and Yoshida, 2020) to be fast solvers for the
MPC. Furthermore, we need to consider a variety of uncer-
tainties such as model errors and weather shifts during iden-
tifying control inputs. Therefore, uncertainty quantification
is also an important research topic prior to real-world field
experiments.

Finally, we emphasize caution in weather control research.
The achievement of control for extreme events would be an
innovative way to mitigate weather-induced disasters. How-
ever, the side effects of weather control must be carefully ex-
amined from an ethical, legal, and social issues (ELSI) per-
spective. In particular, we need to discuss not only the de-
structive side effects caused by control failures, but also the
impact on biodiversity and many industries (e.g., electricity
production). Our research program also addresses such so-
cial issues with legal and ethical researchers. Further ELSI
research will also be conducted to satisfy responsible and in-
novative research for weather control studies.

Appendix A: Derivation of the necessary conditions
for the optimal control input

Here, we derive the necessary conditions for optimal control
inputs. For simplicity, we consider the following problem:

minimizeJ
(
x∗,u∗

)
= ϕ

(
x∗ (T ; t)

)
+

T∫
0

L
(
x∗ (τ ; t) ,u∗ (τ ; t)

)
dτ, (A1)

subject to

 f (x∗ (τ ; t) ,u∗ (τ ; t))− ẋ∗ (τ ; t) = 0,
x∗ (0; t)= x (t) ,
c (x∗ (τ ; t) ,u∗ (τ ; t))= 0.

(A2)

A Lagrangian function is introduced to convert the con-
strained problem to an unconstrained problem. The La-

grangian is defined as

J̃
(
x∗, ẋ∗,u∗,λ∗,ρ∗

)
:= J

(
x∗,u∗

)
+

T∫
0

{(
λ∗
)T {

f
(
x∗,u∗

)
− ẋ∗

}
+
(
ρ∗
)T
c
(
x∗,u∗

)}
dτ. (A3)

In addition, a Hamiltonian is defined as follows:

H
(
x∗,u∗,λ∗,ρ∗

)
:= L

(
x∗,u∗

)
+
(
λ∗
)T
f
(
x∗,u∗

)
+
(
ρ∗
)T
c
(
x∗,u∗

)
. (A4)

J̃ is then represented usingH ; it is divided into ẋ∗ terms and
other terms in the integral as follows:

J̃
(
x∗, ẋ∗,u∗,λ∗,ρ∗

)
= ϕ

(
x∗ (T ; t)

)
+

T∫
0

{
H
(
x∗,u∗,λ∗,ρ∗

)
−
(
λ∗
)T
ẋ∗
}

dτ. (A5)

The stationary condition of J̃ , which does not have con-
straints explicitly, is equal to the stationary condition of
the original constrained problem. Namely, the original con-
strained problem was converted to an unconstrained problem.
We note that this is not valid for special cases in which the
linear independence constraint qualification is not satisfied.
The stationary condition of J̃ is that its variation, δJ̃ (i.e.,
infinitesimal change), is zero. After applying the Taylor ex-
pansion and disregarding higher-than-second-order terms of
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δx∗ and δu∗, δJ̃ is given by

δJ̃ = J̃
(
x∗+ δx∗, ẋ∗+ δẋ∗,u∗+ δu∗,λ∗,ρ∗

)
− J̃

(
x∗, ẋ∗,u∗,λ∗,ρ∗

)
=

(
∂ϕ (x∗ (T ; t))

∂x

)T
δx∗ (T ; t)

+

T∫
0


(
∂H

(
x∗,u∗,λ∗,ρ∗

)
∂x

)T
δx∗

+

(
∂H

(
x∗,u∗,λ∗,ρ∗

)
∂u

)T
δu∗−

(
λ∗
)T
δẋ∗

dτ

=

{(
∂ϕ (x∗ (T ; t))

∂x

)T
−
(
λ∗ (T ; t)

)T}
· δx∗ (T ; t)+

(
λ∗ (0; t)

)T
δx∗ (0; t)

+

T∫
0


(∂H (x∗,u∗,λ∗,ρ∗)

∂x

)T

+
(
λ̇∗
)T )

δx∗+

(
∂H

(
x∗,u∗,λ∗,ρ∗

)
∂u

)T
δu∗

dτ. (A6)

Importantly, δx∗ (0; t)= 0 because x∗ (0; t) is fixed by
x (t). In addition, δλ∗ and δρ∗ are disregarded because
consideration of these variations only yields already ob-
tained conditions (i.e., f (x∗ (τ ; t) ,u∗ (τ ; t))− ẋ∗ (τ ; t)= 0
and c (x∗ (τ ; t) ,u∗ (τ ; t))= 0). According to Eq. (A6), the
condition for δJ̃ to be zero is that the coefficients of δx∗ and
δu∗ are zero. By summarizing the conditions from Eq. (A6),
the equation of state, and the other constraints, the necessary
conditions for optimal control inputs can be derived as fol-
lows:

ẋ∗ (τ ; t)= f
(
x∗ (τ ; t) ,u∗ (τ ; t)

)
, (A7)

x∗ (0; t)= x (t) , (A8)

λ̇∗ (τ ; t)=−
∂H

(
x∗,u∗,λ∗,ρ∗

)
∂x

, (A9)

λ∗ (T ; t)=
∂ϕ (x∗ (T ; t))

∂x
, (A10)

∂H
(
x∗,u∗,λ∗,ρ∗

)
∂u

= 0, (A11)

c
(
x∗ (τ ; t) ,u∗ (τ ; t)

)
= 0. (A12)
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Appendix B: MPC experiments with starting points
around the large x

The Lorenz 63 system is known to increase the amplitude of
x before RSs (e.g., Fig. 2 of MS22 and OTK23). Therefore,
it is more difficult to prevent RSs for CSEs starting from a
larger x. OTK23 investigated the influence of starting points
in the previous CSE approach. Their result showed that the
number of successes for preventing the initial RS is almost
zero when the CSEs start from x ≥ 15. Here, we investigate
CSEs starting from x ≥ 15 with our approach. The exper-
iment setting in this appendix is the same as in Sect. 3.2,
except for the starting points.

Table B1 compares the SR, MTF, and MTCIs of 1000 in-
dependent CSEs for two starting point settings (i.e., 0≤ x <
15 and x ≥ 15). This result shows that the controllability of
the case for x ≥ 15 (Table B1 b) is almost equivalent to the
case for 0≤ x < 15 (Table B1a). This is because the pro-
posed method requires short forecasts with, e.g., 20 steps to
lead the system to the positive regime, in contrast to the pre-
vious CSE approach (MS22 and OTK23) that requires longer
forecasts with, e.g., about 300 steps. This is a promising re-
sult, showing improved controllability compared to the pre-
vious CSE approach.

Table B1. Comparison of the success rate (SR), mean total failure (MTF), and mean total control inputs (MTCIs) for two starting point
settings, with Tp = 20 steps and m= 50 in 1000 CSEs. Row (a) shows the results of the MPC experiment whose starting points are 0≤ x <
15. Row (b) shows the results of the MPC experiment whose starting points are x ≥ 15.

Starting Success Mean total Mean total control Section
points rate (SR) failure (MTF) inputs (MTCIs)

(a) 0≤ x < 15 0.990 −1.34× 10−4 94.7 Sect. 3.2
(b) x ≥ 15 0.994 −1.37× 10−5 99.5 Appendix B
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