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Begin with equations (2) and (3), written in the form
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Let £ = (t —t,)/e represent a fast time variable, and consider the particle position and velocity
to be functions of t and £, which are formally treated as separate variables. Thus d/dt is replaced
by e719/0t + d/dt, where it is understood that both 0/dt and d/dt are to be interpreted as
particle-following derivatives (and not derivatives with position held constant). Note that the
background flow does not depend on 7,and thus the substantial derivative Du/Dt is with
respect to t alone. However, dependence on ¢ is introduced when the derivative is evaluated at

the position x (%, t).

Expanding both variables in a power series in ¢ leads to
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Substitution into Eqgs. (S1a,b) leads to
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and
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where again, the derivatives of u are evaluated at x(®. To lowest order, we have
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Thus x©@ = x(©(¢), and since the right-hand side of Eq. (S3b) is then independent of , it

follows that
@ =h4(xO(t),t) + cO(t)e . (S4)

If a particle is initiated with a velocity that is differs from the local fluid velocity by more than
O(¢), then the drag on the particle brings it O(&) close to the fluid velocity over a time scale of
O(¢%). This behavior is consistent with the requirement in Fenichel theory that the background

flow is a normally attracting manifold.
At the next order of approximation [O(0) in Eq. (S2a)], we have
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After decay of the final term, the remaining terms on the right-hand side depend only on t and

therefore lead to secular growth in 7 of xi(l). To prevent this growth we must set these terms to
zero:
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Which indicates simply that following the decay from the initial velocity, the particle follows the

flow at leading order. Solving the remaining equation for x(*) then gives
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Proceeding to O(¢) in (S2b) then gives
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Using Eq. (S4) to substitute for vl.(o) on the right-hand side, and keeping in mind that ai

represents not a local time derivative but a time derivative with £ held constant, we have
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Using this expression as well as Eq. (S6) to substitute for and xj(l) leads to, after some

regrouping of terms, to
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The solution to (S7) is
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We can now write down an expression for the particle velocity on the slow manifold, obtained

by taking the limit £ — oo in Egs. (S4) and (S8):
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or, noting that ¥ = @ + 2 (¢) + 0(e2) on the slow manifold:
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