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Abstract. The magnetotelluric (MT) method is a passive geophysical technique based on using time variations
in the geoelectric and geomagnetic field to measure the electrical resistivity of the surface layer. It is one of the
most effective geophysical techniques to study the deep structure of the Earth’s crust, particularly in steep terrain
like the Garhwal Himalaya region. MT responses are distorted as a result of undulating/rugged terrain. Such
responses, if not corrected, can lead to the misinterpretation of MT data with respect to geoelectrical structures.
In this study, two different correction procedures were used to compute the topography distortion for a synthetic
model of the Garhwal Himalaya region from the Roorkee to the Gangotri section. A finite-difference algorithm
was used to compute the MT responses (apparent resistivity and phase) for irregular terrain. The accuracy of the
terrain correction procedures was checked using the results of different topography models for various periods
from the literature. The relative errors between two terrain correction procedures were calculated with respect
to the flat earth surface and were almost equal to zero for most of the sites along the Roorkee—Gangotri profile
except at the foothill, where the error was high for shorter periods. The similar topography procedures of two
terrain-corrected responses (TCR1 and TCR2) showed that there is no need for topography correction along the

Roorkee—Gangotri profile because the slope angle is less than 1°.

1 Introduction

Magnetotelluric (MT) methods were first explored by
Tikhonov (1950) and Cagniard (1953) and were used to anal-
yse the time-varying measured components of Earth’s natu-
ral time-varying electric and magnetic fields to determine the
shallow layers of the Earth. MT techniques have been suc-
cessfully employed to explore a variety of Earth’s resources,
including oil, gas, minerals, and geothermal energy (Zhang
et al., 2014; Patro, 2017; Mohan et al., 2017). These methods
are effective for analysing deep crystal structures in challeng-
ing undulating terrains, such as the Himalayan region, com-
pared with seismic methods (Tyagi, 2007; Israil et al., 2008,

2016; Kumar et al., 2014; Patro and Harinarayana, 2009; Ku-
mar et al., 2018, 2022; Xiong et al., 2020; Kumar et al., 2021;
Konda et al., 2023). Topography affects both the electric field
and magnetic field components due to undulating topograph-
ical features, like hills and valleys, that distort the current
lines (Wannamaker et al., 1986; Chouteau and Bouchard,
1988; Changhong, 2018; Kumar et al., 2018, 2022; Coggon,
1971). Therefore, the MT response functions of impedance
and apparent resistivity become distorted when the MT sites
are on or near the top of a hill or close to a valley.

Analytical and numerical techniques have been used to
measure the topography distortion effect from MT data. An-
alytical techniques based on conformal mapping were used
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by Thayer (1975) and Harinarayana and Sarma (1982). Two-
dimensional (2D) numerical techniques have been used for
different types of terrain geometries to remove topography
effects from the data. The analogue, analytical, and numeri-
cal solution methods were used to study the analogue model
(Wescott and Hessler, 1962; Faradzhev et al., 1972). Various
2D numerical techniques have been used for the numerical
treatment of topographic effects, such as networking anal-
ogy (Ku et al., 1973; Ngco, 1980) and Rayleigh scattering
numerical modelling techniques (Reddig and Jiracek, 1984;
Jiracek et al., 1989), the finite-element method (Wannamaker
et al., 1986; Franke et al., 2007), and the finite-difference
method (Pek and Verner, 1996; Sasaki, 2003; Tyagi, 2007).
The distortions in MT data due to topography and near-
surface inhomogeneities have been observed by many re-
searchers (Chouteau and Bouchard, 1988; Jiracek, 1990; Vo-
zoff, 1991; Rijo, 1977; Ward et al., 1973). The distortion
tensor stripping-off technique has been used to reduce the
topographic effect and to remove distortion due to the near-
surface heterogeneity (Larsen, 1977). The analogue, analyt-
ical, and numerical solution methods were used to study the
analogue model (Wescott and Hessler, 1962; Faradzhev et
al., 1972). Various 2D numerical techniques have been used
for the numerical treatment of the topographic effects, such
as networking analogy (Ku et al., 1973; Ngoc, 1980) and
Rayleigh scattering numerical modelling techniques (Jiracek
et al., 1989) and finite-element method (Wannamaker et al.,
1986; Franke et al., 2007). In 2D, the topography effect is
galvanic in transverse magnetic (TM) mode and inductive in
transverse electric (TE) mode; hence, there is more distor-
tion in the TM mode than in the TE mode (Gurer and Ilkisik,
1997; Kumar et al., 2014, 2018, 2022; Kunetz and DeGery,
1956).

In this study, a modified 2D forward algorithm and an in-
version modelling code (EM2INV) (Rastogi, 1997) based on
the finite-difference method were used to compute MT for-
ward modelling responses over flat earth and topographic
surfaces. Two different terrain correction procedures have
been used in this study to compute the topography distor-
tion for a synthetic model of the Garhwal Himalayan region
(Roorkee—Gangotri section): the first correction procedure
was adopted from Chouteau and Bouchard (1988) and the
second was adopted from Nam et al. (2008). The results of
both terrain correction procedures have been compared with
the model used by Chouteau and Bouchard (1988).

2 Methodology

As stated above, topography correction was applied to MT
data using two different techniques. The first technique was
introduced by Chouteau and Bouchard (1988) to estimate
the distortion tensor and the correction of MT data before
data inversion. In the second approach, the distortion tensor
stripping-off technique was used to remove distortion from
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MT data (Larsen, 1977; Nam et al., 2008). Thus, two correc-
tion procedures, the first adopted by Chouteau and Bouchard
(1988) and the second by Nam et al. (2008), were used to
correct the MT data.

2.1 Terrain correction procedure 1 (TCP1)

The computational algorithm for 2D forward modelling has
been used to account for irregular terrain. The distortion ten-
sor for the topographic effect was calculated using the tech-
nique adopted by Chouteau and Bouchard (1988). This cal-
culation is based on the assumption that the topography-
distorted subsurface field can be approximated by multiply-
ing the distortion tensor by the subsurface field for a flat
earth, as follows:

Ep = DEx, 6]

where Ef) and E\I are the distorted and normal electric field
matrices with elements E(f,r)p and E(f,r)y respectively.
D is the distortion tensor with elements D (f,r), where f
is frequency and r is the measuring site position. For a 2D
problem in TM mode with an x axis in the strike direction,
Eq. (1) can be written as follows:

Exp(f,r)=Dxx(f,r)Exn(f,7). ()

The impedance tensor can be calculated by dividing Eq. (2)
by the magnetic field Hy.

Zp(f,.x)=D(f,x)Zn(f, %), 3)

where Zn(f,x) and Zp(f,x) are the normal (flat-earth)
impedance and distortion impedance respectively. The com-
plex coefficients D(f,x) are distortion coefficients that
should just reflect the topography effect. The distortion
coefficients are calculated by normalizing the impedances
Z:(f,x) computed over the topographic model above a ho-
mogeneous medium with the half-space impedance. Thus,
the corrected impedance over flat earth can be calculated
by taking the following ratio of the observed impedances,
Zp (f, x), over irregular topography to the distortion coeffi-
cients D (f, x):

Zc(f.x)=Zp(f.x)/D(f. x), “4)

where Zc (f, x) is terrain-corrected impedance.

2.2 Terrain correction procedure 2 (TCP2)

In this correction procedure, the MT data were corrected
using the technique adopted by Nam et al. (2008). Larsen
(1977) introduced the distortion tensor stripping-off tech-
nique, in which the undistorted impedance tensor can be cal-
culated using a linear relationship between the distorted and
undistorted impedance tensor, and the topography-distorted
MT data can be corrected by computing the distortion tensor.
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The undistorted impedance tensor is linearly related to the
distorted impedance tensor as follows:

z°=p?%. 7Y, &)

where ZP is the distortion impedance tensor, DZ is the dis-
tortion tensor, and ZU is the undistorted impedance tensor.
The distortion tensor can be calculated from the relation be-
tween the impedance tensor for a homogeneous medium with
earth surface topography (Z') and that with a flat-earth sur-
face (Zh), as follows:

Z'= D% .z". (6)
For 2D, Z! = 7% =(0,0) and Z" # —Z" , the inhomo-

geneous earth distortion tensor, Eqgs. (5) and (6) can be
rewritten in matrix form as

T 0 Z}?y‘_[ 0 DXZYH 0 z}gy} o
|z, 0 ][ DE 0O z%, 0

and

ER B P
|z, 0 | DZ 0 zho 0

Thus,

ER AN ER A ER SR

D% 0 VAR zho 0 ’

o H (2,)(24)

0
. (10)
o (-7)/(zk) }
Substituting Eq. (10) in Eq. (7),

[ 0z ]{ (2,)/(2) 0 | }

z 0 (-7.)/ (7

yx yx
o zY
. [ e ] (a1

The undistorted or corrected impedance tensor component
can be obtained as follows:

7% =(7,28) /(7). (12)

Zy= (Zifo'y’x) / (Z;x) : (13)

3 Testing the correction procedures

In this study, we replicated the model of Chouteau and
Bouchard (1988). A 2D topographic homogeneous model of
500 2 m half-space with a resistive block of 10k2m and a
thickness of 1 km was embedded in the model from surface
relief (Fig. 1). The MT responses for the model were com-
puted with and without topography. The terrain correction
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Figure 1. Topographic model of a 500 2m half-space with a re-
sistive body of 10kQ2m that was embedded from the surface relief
(Chouteau and Bouchard, 1988).
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Figure 2. Comparison of the TM component of the flat-earth re-
sponse (FER), topographic response (TR), and two terrain correc-
tion responses (TCR1 and TCR2) at 0.1 s.

procedures (TCP1 and TCP2) were applied to the model re-
sponses at a particular period of 0.1 s and validated over the
inhomogeneous model of Chouteau and Bouchard (1988).
The two topography-corrected responses were analysed at
nine different sites (denoted by A, B, C, D, E, F, G, H, and
I), as shown in Fig. 1, for six distinct time periods (0.001,
0.01, 0.1, 1, 10, and 100s). In 2D, the topography effect is
galvanic in TM mode and inductive in TE mode. Therefore,
a comparison of the TM component of flat-earth response
(FER), topographic response (TR), and two terrain correc-
tion responses (TCR1 and TCR?2) is shown in Fig. 2. It is
concluded from Fig. 2 that TCR1 and TCR2 are very similar
to the FER at a particular period of 0.1 s but not similar to the
TR, which shows good agreement with the published results
of Chouteau and Bouchard (1988).
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Figure 3. Comparison of the TM component of the flat-earth response (FER), topographic response (TR), and two correction procedures
(TCR1 and TCR2) for the model in Fig. 1 for six different periods (0.001, 0.01, 0.1, 1, 10, and 100 ).

Figure 3 shows that the topography distortions are large for
a longer period in the apparent resistivity component only,
which presents the galvanic nature of the topography dis-
tortions. The terrain-corrected responses (TCR1 and TCR2)
in Fig. 3 are almost similar to FERs for six respective peri-
ods (0.001, 0.01, 0.1, 1, 10, and 100s). Relative errors were
also calculated to check the accuracy of the terrain correc-
tion responses (TCR1 and TCR?2) against FERs for these pe-
riods. The relative error between the FERs and TCR1 and
TCR2 were very small for all periods except at site D only
for shorter periods (because of the 10 k2 m resistive body),
as shown in Fig. 4. This shows the accuracy of the correction
procedures.

4 Modelling of the Roorkee—Gangotri section

A theoretical analysis of the effect of topography on MT re-
sponses was also taken into account in the Himalayan topog-
raphy model. A theoretical model of the Roorkee—Gangotri
profile was generated to simulate the MT response. To com-
pute the MT forward modelling responses over a rugged to-
pographic surface in the Roorkee—Gangotri section, the input
model was prepared from a 2D inverted geoelectrical resis-
tivity model (Tyagi, 2007). The topography model, with an
elevation of 2.75 km, consists of a 180 km long profile drawn
from Roorkee to Gangotri (Tyagi, 2007; Suman et al., 2023).
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In this model, two conductive blocks with a respective resis-
tivity of 30 and 10 2m were embedded in a homogeneous
half-space of 100 2m resistivity. The first block of 30 2m
resistivity with a width of 80 km and a thickness of 6 km was
embedded just near the Earth’s surface relief and the sec-
ond block of width 40km and a thickness 25 km was em-
bedded at 6 km depth from the surface. The MT responses
were computed by considering three models: (1) one with
a half-space of 100 2m resistivity (Fig. 5a), (2) one with
a half-space of 500 2m resistivity, and (3) one with an ad-
ditional resistive body of 8000 2m embedded from Earth’s
surface relief with a thickness of about 6 km and a half-space
of 100 2 m resistivity, as shown in Fig. 5b. The TR, FER,
and two topography-corrected responses (TCR1 and TCR2)
were analysed for nine sites (A, B, C, D, E, F, G, H, and 1),
as shown in Fig. 5, for six distinct periods (0.0013, 0.0102,
0.1063, 1.1110, 11.6078, and 121.2813s).

5 Result and discussion

5.1 Model with a half-space of 100 Qm resistivity

The TR and FER were computed for the topography model
with a conductive body of 30 2m resistivity in a half-space
of 100 2m resistivity (Fig. 5a), and the topography correc-
tions procedures were applied to the MT data. Figure 6 shows
the TM mode of TR, FER, and two topography correction re-
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Figure 4. Relative error between terrain-corrected responses (TCR1 and TCR2) with respect to flat-earth responses (apparent resistivity and
phase) for six different periods with a homogeneous half-space of 500 2 m resistivity.
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Figure 5. (a) A synthetic model of the Garhwal Himalaya region along the Roorkee—Gangotri profile in a half-space of 100 2 m resistivity

(b) with a resistive block of 8000 €2 m resistivity.

sponses (TCR1 and TCR?2) for six different periods (0.0013,
0.0102, 0.1063, 1.1110, 11.6078, and 121.2813s). The to-
pography effect depends upon the ramp/slope angle of the
hill and is significant when the slope angle is greater than 7.5°
(Kumar et al., 2018). It is clear from Fig. 6 that the TCR1 and
TCR2 are almost similar to the TR, as the slope angle is less
than 1°. The TCR1 and TCR2 were not similar to the FER
for the sites from A to D for the shorter periods of 0.0013,
0.0102, 0.1063, and 1.1110s, due to the exposure of the con-

https://doi.org/10.5194/npg-31-175-2024

ductive body with 30 2 m resistivity to the surface (from A to
D) and its galvanic effect. The relative errors were also cal-
culated between the FER with TCR1 and TCR2: they were
high for the sites A, B, and C for shorter periods (0.0013,
0.0102, and 0.1063 s), due to the presence of the conductive
body underneath these sites, and very small for all other sites
(D, E, F, G, H, and I) for all periods, as shown in Fig. 7.
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5.2 Model with a half-space of 500 Q m resistivity

Now consider the case in which model half-space resistiv-
ity was replaced with 500 Q2m in Fig. 5a. The TR and FER
were computed for the topography model with a half-space
of 500 2 m resistivity (Fig. 5a), and the topography correc-
tion procedures were applied to the MT data. Figure 8 shows
the TM component of TR, FER, and topography-corrected
responses (TCR1 and TCR 2) for six different periods. The
results were almost similar to the response of the model with
a half-space of 100 Q2m resistivity. The relative errors were
also calculated in this case between the FER with TCR1 and
TCR2, and the results were similar to the model with a half-
space of 100 Qm resistivity for all periods (0.0013, 0.0102,
0.1063,1.1110, 11.6078, and 121.2813 s), as shown in Fig. 9.

5.3 Model with a resistive block of 8000 Q m resistivity
in a half-space of 100 Qm resistivity

The TR and FER were also computed for the topography
model with a resistive block of 8000 €2 m resistivity in a half-
space of 100 2m resistivity (Fig. 5b), and the topography
corrections were applied to the MT data. Figure 10 shows the
TM component of TR, FER, and two topography correction
responses (TCR1 and TCR2) for six different periods. The
TCR1 and TCR2 were not similar to the flat-earth model for
the sites from A to F, due to the exposure of the conductive
body with a 30 Qm resistivity to the surface (from A to D)
and its galvanic effect as well as the presence of a 8000 2 m
resistive body (from D to F). The relative errors were also
calculated between the FER with TCR1 and TCR2 and were
high for the sites A, B, and C for shorter periods (0.0013,
0.0102, and 0.1063 s), due to the presence of the conductive
body underneath these sites, and for longer periods (1.1110,
11.6078, and 121.2813 s), due to the presence of an 8000 Q2 m
resistive body from D to F, as shown in Fig. 11.

6 Conclusions

The study shows the effect of topography in the MT data
along a synthetic model of the Roorkee—Gangotri profile.
Two correction procedures were used to remove the topog-
raphy distortion from MT data. The similar FER, TCR1, and
TCR?2 in Fig. 3 show that both correction procedures are ca-
pable of removing the topography effect and, thus, confirms
the accuracy of the two correction procedures. The similar
TR, TCR1, and TCR2 responses (Figs. 6, 8, 10) concluded
that there is no need for topography correction along the
Roorkee—Gangotri profile, as the slope angle is less than 1°.
The relative error between the FER and TCR1 and TCR2
also showed the accuracy of the two correction procedures
(TCR1 and TCR2) in this study. The presence of near-surface
heterogeneity/surface exposure of conductive/resistive body
also distorts the MT responses in this model (the FER is not
similar to TR, TCR1, and TCR2).
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