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Abstract. A one-dimensional climate energy balance model (1D EBM) is a simplified climate model for the
zonally averaged global temperature profile, based on the Earth’s energy budget. We examine a class of 1D EBMs
which emerges as the parabolic equation corresponding to the Euler–Lagrange equations of an associated vari-
ational problem, covering spatially inhomogeneous models such as with latitude-dependent albedo. Sufficient
conditions are provided for the existence of at least three steady-state solutions in the form of two local minima
and one saddle, that is, of coexisting “cold”, “warm” and unstable “intermediate” climates. We also give an
interpretation of minimizers as “typical” or “likely” solutions of time-dependent and stochastic 1D EBMs.

We then examine connections between the value function, which represents the minimum value (across all
temperature profiles) of the objective functional, regarded as a function of greenhouse gas concentration, and the
global mean temperature (also as a function of greenhouse gas concentration, i.e. the bifurcation diagram).

Specifically, the global mean temperature varies continuously as long as there is a unique minimizing temper-
ature profile, but coexisting minimizers must have different global mean temperatures. Furthermore, global mean
temperature is non-decreasing with respect to greenhouse gas concentration, and its jumps must necessarily be
upward.

Applicability of our findings to more general spatially heterogeneous reaction–diffusion models is also dis-
cussed, as are physical interpretations of our results.

1 Introduction

1.1 Low-dimensional energy balance models

Energy balance models are a fundamental tool used to un-
derstand the Earth’s climate system and its energy dynamics.
They represent the energy budget within the Earth’s atmo-
sphere, land, oceans and ice by quantifying the balance be-
tween incoming solar radiation and outgoing solar radiation.
Although highly simplified compared to general circulation
models, energy balance models (EBMs) are appreciated for
their interpretability, mathematical tractability and ability to

capture the essential dynamics of the Earth system (Budyko,
1969; Sellers, 1969; North, 1975; Ghil, 1976; Díaz, 1997;
Cannarsa et al., 2022). Two important feedback mechanisms
are typically present in such models: the ice-albedo feed-
back and the Stefan–Boltzmann law. The positive ice-albedo
feedback occurs when the melting of ice and snow reduces
the surface reflectivity (albedo), causing the planet to absorb
more solar radiation. According to the Stefan–Boltzmann
law, a warmer body emits more radiation, thereby providing a
negative feedback which stabilizes the planet’s temperature.
Depending on the precise configuration, these mechanisms
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may endow EBMs with bistability, suggesting the existence
of two stable climates commonly referred to as the snowball
climate and the warm climate. The snowball climate, sup-
ported by palaeoclimatic evidence from the Cryogenian pe-
riod around 650 million years ago, is characterized by the
absence of vegetation and the presence of ice caps extending
over the entire planet’s surface. In contrast, the warm climate
exhibits relatively low albedo, ice caps limited to the polar
regions, and the presence of oceans and vegetation. Addition-
ally, EBMs typically allow for a third possible climate, albeit
unstable. Transitions between stable climates in an EBM, as
well as in general multi-stable models, can occur in various
ways. But two important mechanisms are the following. The
first consists of changes in factors influencing the climate
system, such as variations in greenhouse gas concentrations
like carbon dioxide (CO2), altering the balance of incom-
ing and outgoing radiation and amplifying the greenhouse
effect. Mathematically, this mechanism can be described by
assuming that the model depends on one additional param-
eter, and changes in the parameter lead the model to un-
dergo a bifurcation (Ashwin et al., 2012); the second con-
sists of noise-induced transitions resulting from unresolved
processes in climate models or the representation of short-
timescale weather as stochastic forcing acting on slow vari-
ables, as observed in stochastic reduced models (Imkeller,
2001; Lucarini et al., 2022). These two types of transitions
correspond to mechanisms recognized to induce climate tip-
ping, that is, rapid non-linear changes in the climate system
with potentially irreversible and catastrophic consequences
(Lenton et al., 2008, 2012; Scheffer et al., 2009; Lucarini
and Bódai, 2019; Ghil and Lucarini, 2020).

A zero-dimensional (0D) EBM is the simplest version of
an EBM describing the evolution in time for the annual av-
eraged global mean temperature T , without any space de-
pendence (Berger, 1981; North, 1990; North and Kim, 2017;
Ghil and Lucarini, 2020). This model is given by an ordinary
differential equation (ODE) of the form

CT
dT
dt
=Q0β(T )+ q − σ0ε0T

4, t > 0,

T|t=0 = T0. (1)

In this equation, CT > 0 represents the heat capacity,Q0 > 0
is the globally averaged solar radiation and the co-albedo β
is modelled by a continuous function (overbars typically de-
note globally averaged quantities). Further, q > 0 is a posi-
tive parameter modelling the effect of the CO2 on the energy
budget (Bastiaansen et al., 2022). The term Re(T )= σ0ε0T

4

on the right-hand side of Eq. (1) accounts for the outgoing so-
lar radiation, following the Stefan–Boltzmann law (where σ0
denotes the Stefan–Boltzmann constant, and ε0 is the glob-
ally averaged emissivity). The fixed points of the model are
the solutions of the equation:

dT
dt
= 0,

corresponding to points in Fig. 1 where the absorbed radi-
ation Ra(T )=Q0β(T )+ q and the emitted radiation Re(T )
intersect. Figure 1a furthermore illustrates that this model is
generally characterized by bistability, with two stable fixed
points TS and TW. These points correspond to the snowball
and warm climate states mentioned earlier and are separated
by an unstable intermediate fixed point TM. Furthermore, as
highlighted by Fig. 1b, the stable points correspond to mini-
mum points of a primitive function F for the negative radia-
tion budget R. In other words, F is any regular function such
that

F
′
(T )= Re(T )−Ra(T )=−R(T ).

To better capture the variability of global mean surface tem-
perature, it has been proposed to add a stochastic forcing,
such as white noise, to the radiation balance. This is inter-
preted as the effect of the fast components of the climate sys-
tem, i.e. the weather, over slow components (Hasselmann,
1976; North and Cahalan, 1981; Imkeller, 2001; Díaz et al.,
2009). For this reason, we are interested in considering the
stochastic differential equation (SDE) given by

dT = R(T )dt + εdWt , (2)

where ε > 0 is the noise intensity and (Wt )t≥0 is a Brown-
ian motion (Baldi, 2017). This SDE is of gradient type and
possesses a unique Gibbs invariant measure ν (Lelièvre and
Stoltz, 2016). An invariant measure is a probability distribu-
tion ν in the state space of Eq. (2) (i.e. the real numbers in
this case) with the property that if a solution T is distributed
according to ν at some time t , then it remains so for all later
times. It is given by

ν(dT )=
1
Z

exp
(
−

2
ε2F (T )

)
dT , (3)

where Z is a normalization constant, and dT denotes the
standard volume element on R (we note the technical detail
that to give meaning to Eqs. (2) and (3), the radiation bud-
get R should be extended to negative values for the Kelvin
temperature T in a way such that F →+∞ as T →−∞).
The key observation from the explicit formula (Eq. 3) is that
ν is concentrated around the minimum points of the func-
tion F . Indeed, if T0 is a strict minimum point and T1 6= T0
is a point close to T0 such that F (T1)> F (T0), then the
mass given by the measure ν in a small neighbourhood of
T1 is exponentially lower than the mass around T0; more
specifically, the ratio between the two masses is given by
exp

(
−

2
ε2

(
F (T1)−F (T0)

))
.

A one-dimensional (1D) EBM is given by a parabolic par-
tial differential equation where the space variable is one-
dimensional (Budyko, 1969; Sellers, 1969; North and Kim,
2017). Denoting the temperature averaged in the zonal di-
rection by u= u(t,x), it extends the 0D EBM by introduc-
ing the sine of the latitude x = sin(φ), where φ ∈ [−π2 ,

π
2 ]
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Figure 1. (a) Absorbed radiation Ra and emitted radiation Re for a 0D EBM. The graphs intersect in the three fixed points of the model
TS < TM < TW; TS and TW are stable, and TM is unstable. (b) Double-well potential F associated with the 0D EBM. The function F satisfies
F
′
= Re−Ra. The minimum points TS and TW of F correspond to stable fixed points.

denotes the latitude and t ≥ 0 represents time. We assume
that the non-linear radiation balance of the planet, denoted by
R(x,u;q), depends on the sine of the latitude and on an addi-
tive parameter q. This parameter models the effect of carbon
dioxide concentration on the radiation budget (Bastiaansen
et al., 2022). Atmospheric and ocean transport of heat be-
tween latitudes is modelled in a very simplified way by a dif-
fusion term. Assuming spatially homogeneous diffusion in
this introductory section and thus ignoring the dependence
of κ on latitude and temperature, we obtain a non-degenerate
reaction–diffusion equation:

∂tu= κ1u+R(x,u;q), t > 0, x ∈ (−1,1),

ux(t,−1)= ux(t,1)= 0, t ≥ 0
u(0,x)= ũ(x), x ∈ [−1,1], (4)

where 1= ∂xx denotes the Laplace operator in dimension
one, the Neumann boundary conditions impose no-heat flux
at the poles and ũ is an initial condition. The steady-state
solutions of this model, representing the asymptotic solu-
tions for the time-evolving dynamics, correspond to the non-
negative solutions u= u(x) of the following elliptic problem:

0= κu′′+R(x,u;q), x ∈ (−1,1),

u′(−1)= u′(1)= 0, (5)

where u= u(x) depends only on the space variable. This el-
liptic problem forms a necessary condition for u= u(x) to be
our extremal (in particular a local minimizer) for the poten-
tial functional

Fq (u)=

1∫
−1

R(x,u;q)dx+
κ

2
||u′||22, (6)

where ∂uR(x,u;q)=−R(x,u;q), and ||u′||22 =
∫ 1
−1

(
u′
)2dx

is the square of the norm of u′ in L2(−1,1). Calculus of vari-
ations is a widely employed technique for studying the ex-
istence of a solution to the previous problem (North, 1975;
North et al., 1979, 1981; Brezis, 2011). However, proving the
existence of a local (but not global) minimum point is gener-
ally challenging, and this technique focuses on studying the
existence of the global minimum point. The functional Fq
in Eq. (6) has another interpretation though which renders it
more important than being merely a characterization of so-
lutions to the elliptic problem. Indeed, consider the stochas-
tic partial differential equation (SPDE) on the Hilbert space
H = L2(−1,1), given by

du= (κ1u+R(x,u;q))dt + εdWt , (7)

obtained by adding a space–time white noise (Wt )t≥0 mod-
elled by a cylindrical Brownian motion on H = L2(−1,1) to
Eq. (7). R has a cutoff at negative temperature as in Sect. 3.1,
and ε > 0 is the noise intensity. We refer to Da Prato and
Zabczyk (2014) for more details about SPDEs. It can be
shown that this SPDE has a unique invariant Gibbs measure ν
(Da Prato, 2004), given (broadly speaking) by an expression
as in Eq. (3), with Fq replacing F (see Sects. 2.1 and 3.1).
Therefore, as in the zero-dimensional case, ν concentrates
on minimum points of the functional Fq . These minimiz-
ers satisfy the elliptic problem (Eq. 5), which therefore de-
scribes temperature profiles around which the solutions of
the stochastic problem (Eq. 7) tend to cluster.

1.2 Main results and structure of the paper

This paper focuses on the study of the properties and the in-
terpretation of the steady-state solutions of a 1D EBM de-
pending on a bifurcation parameter. Motivated by 0D EBMs,
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there is a wide consensus in the literature, supported mainly
by numerical simulations, regarding the existence of ei-
ther one or three “interesting” steady-state solutions for
1D EBMs. Firstly, in Theorem 1 we prove the existence of
a steady-state solution for the 1D EBM by solving the asso-
ciated variational problem

inf
{
Fq (u) | u ∈ X

}
,

i.e. showing the existence of a global minimum point for the
functional Fq over a suitable function space X. Secondly, in
Theorem 2 we provide sufficient conditions to have at least
three steady-state solutions. These consist of two local min-
ima and one saddle point. The conditions can be summarized
as follows:

i. the viscosity κ should be sufficiently large,

ii. the space-averaged global radiation balance R of the
1D EBM should present a double-well potential with
sufficiently deep minimum values attained at the two
minimum points.

In essence, the conditions require that steady-state solutions
of the spatially inhomogeneous 1D EBM (Eq. 5) are suffi-
ciently well approximated by steady-state solutions of the
spatially homogeneous model obtained from spatially aver-
aging the terms in Eq. (5). These assumptions give us the pos-
sibility to prove the existence of two minimum points for Fq ;
further, these minimum points are also close to the minimum
points of the space-averaged model. Then, the mountain pass
theorem, a classical result from the calculus of variations,
enables us to deduce the existence of a third steady-state so-
lution (Ghil and Childress, 1987; Jabri, 2003). Thirdly, we
investigate the uniqueness of the solution of the variational
problem in terms of the value function

V (q)= inf
{
Fq (u) | u ∈ X

}
,

which is the minimum value attained by Fq as a function of
q which relates to the greenhouse gas concentration.

i. In Theorem 3, we show that V is Lipschitz continuous,
thus differentiable except for a Lebesgue zero-measure
set;

ii. Furthermore, the value function fails to be differentiable
if and only if there are two or more co–existing global
minimizers for Fq . Moreover, V is concave and hence
its derivative V ′ is non-increasing.

iii. In Corollary 4, we demonstrate how the derivative of
V is, up to the sign, the global mean temperature of the
global minimum point u0 for Fq . This establishes a one-
to-one correspondence between the graph of V and the
branch of the bifurcation diagram corresponding to u0.

A byproduct of our analysis is that the global mean tempera-
ture is non-increasing with respect to greenhouse gas concen-
tration q. Moreover, it varies continuously with respect to q,
as long as there is a unique minimizing temperature profile.
However, for greenhouse gas concentration with coexisting
global minimizers, the global mean temperature may exhibit
as a discontinuous jump as coexisting minimizers cannot all
have the same global mean temperature. Furthermore, if a
jump occurs, it must necessarily be upward with increasing
greenhouse gas concentration.

Our results have a number of interesting physical interpre-
tations. The elliptic 1D EBM not only describes stationary
solutions of the time-dependent 1D EBM but moreover char-
acterizes “likely” climates around which the solutions of the
stochastic 1D EBM fluctuate. Global minimizers carry spe-
cial importance as they are exponentially more likely than
just local minimizers. Coexistence of global minimizers is
just of special interest as these represent equally likely cli-
mate scenarios, and intuitively it seems plausible that rapid
transitions between those climates are a dominant feature of
the dynamics, although this point is not investigated further
here. Furthermore coexistence of global minimizers implies a
discontinuous change of global mean temperature which will
jump upwards with increasing greenhouse gas concentration.

We expect that additional interesting physical conclusions
can be drawn through identifying Fq with the (negative) en-
tropy production rate (North and Kim, 2017, Sect. 7.4.2); this
will be subject to future work.

This paper is organized as follows. In Sect. 2, we describe
the methodology used throughout our work. Firstly, we re-
view the 1D EBM proposed in Bastiaansen et al. (2022). This
model serves as the reference for our paper, and it is charac-
terized by the presence of an additive parameter in the radia-
tion budget, which determines the number of steady-state so-
lutions. Secondly, we recall the properties of the steady-state
solutions of the 1D EBM that can be obtained from numer-
ical simulations. Finally, we rigorously define the stochastic
EBM by introducing space–time white noise. Specifically,
we review the invariant measure formula for the resulting
reaction–diffusion SPDE. In Sect. 3, we present our novel
findings. In Sect. 3.1, we discuss the existence of a solu-
tion for the variational problem and outline the properties of
the potential functional. Moreover, we explain why the in-
variant measure of the stochastic EBM concentrates around
the global minimum points of the potential functional. Fi-
nally, we provide sufficient conditions to demonstrate the ex-
istence of at least three steady-state solutions. In Sect. 3.2,
we characterize the uniqueness of the solution to the varia-
tional problem in terms of the value function. Additionally,
we demonstrate that the value function is Lipschitz concave
and that its derivative is non-increasing. In Sect. 3.3, we il-
lustrate how knowledge of the value function allows deriva-
tion of a portion of the bifurcation diagram and vice versa.
In Sect. 4, we offer a comprehensive summary of our work.
In Appendix A, we describe the finite difference method em-
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ployed to conduct the numerical simulations presented in this
study. Furthermore, the Supplement includes rigorous proofs
of our main results.

2 Background and methodology

2.1 A 1D energy balance model

The fundamental mechanism of 1D EBMs is that the tem-
perature u= u(t,x), averaged in the zonal direction, evolves
in time due to (i) the diffusion of energy between adjacent
regions, (ii) the energy absorbed by the planet and (iii) the
energy emitted by the planet. The 1D EBM we consider in
this paper is a Seller-type EBM where the absorbed radiation
depends on an additive parameter (Bastiaansen et al., 2022).
We only add a change in the diffusion term in order to get a
non-degenerate parabolic PDE. Given an initial condition ũ,
the non-linear, parabolic, reaction–diffusion PDE governing
the model is given by

CT
∂u

∂t
= ∂x [κ(x)∂xu]+Ra(x,u)−Re(u;q),

t > 0, x ∈ (−1,1),
κ(−1)ux(t,−1)= κ(1)ux(t,1)= 0, t ≥ 0
u(0,x)= ũ(x), x ∈ [−1,1], (8)

where Ra and Re represent the radiation absorbed and emit-
ted by the planet per unit area, respectively. CT is the heat
capacity, and the differential term parameterizes the merid-
ional heat transport. The boundary conditions impose no flux
at the poles. We now provide further details regarding the pa-
rameterization of these terms. The values of the constants of
the model can be found in Table 1.

Firstly, the absorbed radiation is assumed to have the fol-
lowing form:

Ra(x,u)=Q0(x)(1−α(u)),

where Q0 is the solar radiation per unit area, and α is the
albedo. The solar radiation is assumed to be

Q0(x)= Q̂0

(
c1− c2x

2
)
, ci > 0

where Q̂0 is the mean solar radiation, and ci represents con-
stants. The albedo, which is the proportion of the incident
light or radiation that is reflected by a surface, is parameter-
ized by a smooth monotonically decreasing function with a
peak derivative in a reference temperature uref close to the
melting point of ice. Specifically,

α(u)= α1+ (α2−α1)
[

1+ tanh(K(u− uref))
2

]
,

whereK > 0 is a rate parameter and α1 > α2 are respectively
the ice albedo and the water albedo.

Second, the emitted radiation is modelled using the
Stefan–Boltzmann law, in other words assuming that the
Earth radiates as a black body. Under this assumption, the
energy radiated is proportional to the fourth power of its tem-
perature and it is given by

Re(u;q)= ε0σ0u
4
− q,

where ε0 and σ0 are respectively the emissivity and Boltz-
mann’s constant. The additive parameter q describes, in a
simplified way, the radiative forcing by CO2, i.e. the effect
of atmospheric CO2 on the energy budget (IPCC, 2014). It
is worth explaining (i) the additive structure of q and (ii) its
independence on the spatial variable x. About the first point,
denote by C the global CO2 concentration in part per million
(ppm) and assume, just for explanation purposes, a depen-
dence of the outgoing radiation both on u and C. To avoid
confusion, we denote this by R̂e = R̂e(u,C), the outgoing ra-
diation depending on temperature and CO2 concentration. If
we linearize R̂e with respect to temperature, we get

R̂e(u,C)≈ A(C)+B(u− û),

where û is a reference temperature. In Myhre et al. (1998),
three radiative transfer models are used in order to get that the
dependence of the outgoing radiation with respect to changes
in CO2 is given by

A(C)= A1−A2 · ln
(
C

C0

)
,

where C0 is a reference CO2 concentration, and A1,A2 > 0
are explicit constants. In conclusion,

R̂e ≈ A1+B(u− û)− q, q = A2 · ln
(
C

C0

)
,

and thus the radiative forcing of CO2 has an additive struc-
ture. About point (ii), we adopt the well-mixed hypothesis
for CO2. In other words, we assume that atmospheric CO2
is globally homogeneous, thereby inducing a radiative forc-
ing q independent of latitude (IPCC, 2001). This assumption
overlooks the spatial pattern of CO2 concentration, which af-
fects many aspects of the climate system, such as the pole-
ward heat transport (Huang et al., 2017). It was the state-of-
the-art assumption 2 decades ago, although today it is com-
mon to keep in consideration the spatial distribution of radia-
tive forcing (IPCC, 2001; Byrne and Goldblatt, 2014; Zhang
et al., 2019).

The third component of the model is the term ∂x (κ(x)ux).
It parameterizes the meridional heat transport, that is, the
phenomenon resulting from the poleward transportation of
heat by the Earth–atmosphere system due to the surplus of
net radiation heating in the tropics and the deficit in the pole-
ward regions. Usually, the diffusion function κ(x) is assumed
null at the poles, i.e. with a form such as κ(x)=D(1− x2),
where D is a diffusion constant. This choice is based on the
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paradigm of mimicking the conduction of heat on a sphere;
see North and Kim (2017) for a derivation. On the other hand,
it leads to mathematical difficulties in the treatment of the
singular PDE arising, in particular in the study of the corre-
sponding variational problem, from which all our results fol-
low. To avoid these difficulties, which at the moment remain
an open problem to solve, we add as a simplifying assump-
tion that κ is non-degenerate and given by

κ(x)=D(1− x2)+ δ, D,δ > 0.

We choose δ = 0.003, but its value is not important for the
results of this work, and different choices can be made.

For the parabolic problem (Eq. 8), the global existence
and uniqueness of the solution can be demonstrated, given a
regular initial condition (Temam, 1997). Furthermore, if the
initial condition is non-negative, the solution remains non-
negative for any time t > 0. This can be shown proving that
[0,+∞) is an invariant region for Eq. (8), exploiting the fact
that there exist C1,C2 > 0 such that R(x,u;q)> C1 > 0 for
all x ∈ [−1,1] and u ∈ [0,C2] (Smoller, 2012).

We recall the formulation of stochastic EBMs using the
theory of SPDEs (Da Prato and Zabczyk, 2014). Denote by
1 the Laplace operator with Neumann boundary conditions.
Given an initial condition ũ ∈H , we consider the following
SPDE:

∂tu= κ1u+Q0(x)β(u)−Re(u;q)+ εdWt

u|t=0 = ũ, (9)

where ε > 0, and (Wt )t≥0 is a cylindrical Brownian motion
on H . Under the minor cutoff modifications introduced in
Sect. 3.1, it can be proved that the H -valued stochastic pro-
cess (ut )t which solves in a mild sense (9) is unique and has
continuous trajectories (Da Prato and Zabczyk, 2014). In ad-
dition to this there exists a unique Gibbs invariant measure

ν(du)=
1
Z

exp

− 2
ε2

1∫
−1

R(x,u;q)dx

µ(du), (10)

where R is as in Eq. (6), and µ∼N (0,− ε2

2κ1
−1) is a

symmetric Gaussian measure on H with covariance Q=
−
ε2

2κ1
−1 (Da Prato, 2004, 2006). The covariance oper-

ator Q :H →H is the unique linear operator such that∫
H
〈h1,φ〉〈h2,φ〉µ(dφ) for each h1,h2 ∈H , where 〈·, ·〉 de-

notes the scalar product in H . Further, it can be shown
that Q is symmetric and positive-definite, and its eigenval-
ues (λk)k∈Z satisfy

∑
k∈Zλk <∞. In the following lines,

given a symmetric, positive-definite operator Q such that∑
k∈Zλk <+∞, we are going to explain how to construct an

H -valued random variableX with law N (0,Q). Indeed, con-
sider a sequence (Rk)k∈Z of independent and identically dis-
tributed R-N (0,1) random variables defined on a probability
space (�,F ,P). We can assume without loss of generality

that the eigenvectors (ek)k∈Z associated with the eigenvalues
(λk)k∈Z form an orthonormal basis ofH . Then, theH -valued
random variable

X =
∑
k∈Z

√
λkRkek

is well defined, i.e. the series defining X converges in
L2(�,F ,P;H ) and has law N (0,Q) (Da Prato, 2006,
Proposition 2.18). Further, the convergence also holds P al-
most surely in H (Da Prato, 2006, Proposition 2.13).

As mentioned in the introduction, this measure is concen-
trated on minimum points of the functional Fq . A heuristic
explanation of this fact can be found in Sect. 3.1.

The stationary problem associated with the 1D EBM is
given by the elliptic equation for u= u(x):(
κ(x)u′

)′
+Q0(x)β(u)+ q − ε0σ0u

4
= 0,

x ∈ (−1,1),u′(−1)= u′(1)= 0, u(x)≥ 0. (11)

These solutions can be either stable or unstable, depend-
ing on the long-term behaviour of their infinitesimal per-
turbations. As pointed out in Bastiaansen et al. (2022), if
the reaction–diffusion equation for u= u(t,x) was space-
homogeneous, i.e. of the form

∂tu= κ1u+R(u), (12)

then the stable steady-state solutions would correspond to
functions that are constant in space and time, with values
given as the roots of

R(y)= 0.

A rigorous result in this direction has been shown in Gaspar
and Guaraco (2018). Indeed, for a fixed double-well symmet-
ric potential, it has been proved that (i) if κ is large enough,
the only steady-state solutions of Eq. (12) are the constants
where the potential is critical, and (ii) the number of un-
stable steady-state solutions to Eq. (12) can be made arbi-
trarily large as κ→ 0. Introducing a spatial dependence in
R = R(x,u) leads to a space-heterogeneous model. Depend-
ing on the space heterogeneity, it can exhibit any number of
both stable and unstable steady-state solutions (Bastiaansen
et al., 2022). The variational approach to the study of steady-
state solutions provides a tool for characterizing the stable
ones, which are the local minimum points of a functional.

In the following paragraph, we describe the properties
of the solutions of Eq. (11). As the parameter q changes,
numerical simulations for Eq. (11) suggest the existence
of either one or three steady-state solutions. That is, there
exists q1 < q2 s.t. Eq. (8) has one steady-state solution if
q < q1 or q > q2, and the steady-state solutions are three if
q1 ≤ q ≤ q2. In the latter case, we denote the solutions by
uS ≤ uM ≤ uW, corresponding respectively to the snowball
climate, a middle (or intermediate) climate and the warm cli-
mate. As an analogy, we denote by uS the unique steady-state
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solution for q < q1 and by uW the unique one for q > q2.
Figure 2a shows the bifurcation diagram of the model in the
(q,u) plane, where u=

∫ 1
−1u(x) dx denotes the average tem-

perature. Figure 2b depicts the three steady-state solutions
for q = 25 ∈ (q1,q2).

A stability analysis can be conducted to determine the sta-
bility of the steady-state solutions. The results show that uS
and uW are stable, while the middle climate, uM, is unstable.
Furthermore, it is worth noting that special values q = q1,q2
correspond to bifurcation points of saddle-node type, where
the unstable solution uM collides with either uW (for q = q1)
or uS (for q = q2) and then disappears. These numerical find-
ings regarding the number and stability of the steady-state
solutions will be supported and validated using rigorous ar-
guments, as in the next section.

3 Results

3.1 Potential functional and its minimizer

In this section, we (i) provide an intuitive motivation for why
the invariant measure for the stochastic EBM concentrates on
minimum points of the functional Fq , (ii) prove the existence
of global minimum points for Fq using the direct method,
and (iii) present sufficient conditions on the viscosity κ and
the space-averaged potential R(u)= 1

2

∫ 1
−1R(x,u)dx, with

∂uR=−R = Re−Ra, to ensure that the 1D EBM has at least
three steady-state solutions.

Firstly, consider the stochastic EBM (9). Assume that for a
negative value of u, where the model has no physical mean-
ing, the Stefan–Boltzmann law is extended as

Re(u)=

{
ε0σ0u

4 if u≥ 0,

0 if u < 0.

And β is smoothly extended to β̃ by setting it to zero outside
the physically relevant range, as described in the Supplement.
Then, Eq. (9) possesses a unique Gibbs invariant probability
measure given by

ν(du)∝ exp

− 2
ε2

1∫
−1

ε0σ0

(
u5)
+

5
−Q0(x)B(u)− qudx


µ(du), µ∼N

(
0,−

ε2

2κ
1−1

)
, (13)

where (u)+ =max{u,0} is the positive part, N (0,− ε
2

2 1
−1)

denotes a symmetric Gaussian measure with covariance op-
erator Q=− ε2

2κ1
−1 over the Hilbert space H = L2(−1,1)

and Z is the normalization constant. See Da Prato (2004) for
a rigorous derivation of the invariant measure for a reaction–
diffusion model with a polynomial homogeneous reaction
term. We move to explain in what sense ν is concentrated
around minimum points of Fq . In fact, for u ∈H the Gaus-
sian measure µ is formally given by

µ(du)=
1
Z1

exp
(
−

1
2
〈Q−1u,u〉

)
du,

where Q−1
=−

2κ
ε2 1. Here, Z1 is a normalization constant,

〈·, ·〉 denotes the scalar product in H and du is a formal no-
tation for the Lebesgue measure on H . If we perform an in-
tegration by parts, we get

µ(du)=
1
Z1

exp
( κ
ε2 〈u

′′,u〉
)

du=
1
Z1

exp
(
−
κ

ε2 ||u
′
||

2
2

)
du.

Plugging the previous identity into Eq. (10), we obtain

ν(du)∝ exp

− 2
ε2

 1∫
−1

ε0σ0

(
u5)
+

5
−Q0(x)B(u)

−qudx+
κ

2
||u′||22

))
du

∝ exp
(
−

2
ε2Fq (u)

)
du.

From this heuristic formula, we see that points u such that
Fq (u) is not a global minimum have exponentially smaller
density than the minimum points. Indeed, if u1 is a global
minimum point and u 6= u1, then the mass given by ν in a
small neighbourhood around u is exponentially smaller than
the mass given to a neighbourhood of the same size around
u1; in particular, the ratio between the two masses is given
by exp

(
−

2
ε2

(
Fq (u)−Fq (u1)

))
. The previous derivation is

formal, because the Lebesgue measure cannot be defined on
an infinite-dimensional Hilbert space. For a more rigorous
explanation, see Sect. S2 in the Supplement.

Next, we discuss the properties of the functional Fq :
H 1,2(−1,1)∩ {u≥ 0} → R given by

Fq (u)=

1∫
−1

u5

5
ε0σ0−Q0(x)B(u)− qudx

+
1
2

1∫
−1

κ(x)(u′(x))2 dx,

where B is a primitive of the co-albedo β(u)= 1−α(u),
and H 1

=H 1,2(−1,1) denotes the Sobolev space of order
1 and exponent 2, i.e. the function space where a function
u and its derivative u′ (in a weak sense) are both square
integrable over [−1,1]. See Brezis (2011) for more details
about Sobolev spaces. The functional Fq , depending on the
parameter q, is known in the literature as a potential func-
tional or Lyapunov function (North et al., 1979; North and
Kim, 2017). The study of the functional Fq gives useful in-
formation thanks to its links with the invariant measure for
the stochastic 1D EBM, as we have seen, and the stable

https://doi.org/10.5194/npg-31-137-2024 Nonlin. Processes Geophys., 31, 137–150, 2024



144 G. Del Sarto et al.: Variational Techniques for a 1D Energy Balance Model

Figure 2. (a) Bifurcation diagram of the steady-state solutions in the (q,u) plane, with u=
∫ 1
−1u(x)dx. Solid lines denote stable solutions uS

and uW, while dashed lines denote the unstable solution uM. (b) Steady-state solutions of the EBM for q = 25. In every point x of the space
domain, the three steady-state solutions satisfy uS(x)< uM(x)< uW(x), with maximum temperature attained at the Equator and minimum
temperature attained at the poles.

Table 1. Parameters and constants appearing in the Seller EBM (8).

Symbol Meaning Value

D Diffusivity constant 0.3
δ Perturbation constant – meridional heat transport parameterization 0.003
Q̂0 Mean solar radiation 341.3Wm−2

ε0 Emissivity 0.61
σ0 Boltzmann’s constant 5.67× 10−8 Wm−2 K−1

α1 Ice albedo 0.7
α2 Water albedo 0.289
K Constant rate – albedo parameterization 0.1
uref Reference temperature – albedo parameterization 275K
CT Heat capacity 5× 108 Jm−2 K−1

steady-state solutions for the deterministic 1D EBM which
emerge as necessary conditions for the stationarity of Fq . Go-
ing deeper with the former point, the first variation of Fq in
the point u in direction h is given by

δFq (u,h)=
d
ds
Fq (u+ sh)|s=0 =

1∫
−1

(
u4ε0σ0−Q0(x)β(u)− q

)

hdx+

1∫
−1

κ(x)u′(x)h′(x)dx

=

1∫
−1

[
u4ε0σ0−Q0(x)β(u)− q − (κ(x)u′(x))′

]
hdx

where in the last identity we have used integration by parts.
Since h is arbitrary, u is a stationary point for the functional
Fq if and only if it is a steady-state solution for the EBM.

In particular, local extremum points for Fq correspond to
steady-state solutions of the EBM. Any local minimizer of
Fq represents a locally attractive solution of the deterministic
1D EBM. In view of our interpretation of Fq in terms of the
invariant measure, however, global minimizers play a spe-
cial role since if present and unique they are exponentially
more likely than any other state (including minimizers that
are just local). The following result establishes the existence
of a global minimum point for Fq .

Theorem 1. If q > 0, then there exists a global regular non-
negative minimizer for Fq . In other words, if we consider the
variational problem

inf
{
Fq (u) | u ∈H 1, u≥ 0

}
, (14)

then there exists u0 ∈ C
∞ such that u0 is a solution of the

EBM and

Fq (u0)= inf
{
Fq (u) | u ∈H 1, u≥ 0

}
.
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In addition to this, if q belongs to a bounded interval, then u
can be bounded uniformly with respect to q:

∃M > 0 s.t. u0(x)≤M, ∀x ∈ [−1,1]. (15)

A rigorous proof of the previous result can be found in
Sect. S3. The proof relies on standard arguments from the di-
rect method of calculus of variation, exploiting the fact that
the outgoing radiation in the EBM model prevents the tem-
perature from being too high.

Concerning the existence of two local minimum points,
let us describe a sufficient condition. Consider the potential
function R : R→ R coming from the space-averaged model

R(u)=
1
2

1∫
−1

R(x,u)dx.

If the viscosity κ > 0 is sufficiently large and the function R
has a double-well shape with sufficiently deep minimum val-
ues attained at the minimum points, then we are able to prove
the existence of two minimum points for Fq . Further, it is
possible to prove that the functional Fq satisfies a compact-
ness condition known as the Palais–Smale condition. This
property and the mountain pass theorem give the possibility
to deduce the existence of a third steady-state solution. Next,
we characterize a situation in which there are three steady-
state solutions, two of which are local minimizers (Jabri,
2003). This is summarized in the following result.

Theorem 2. Denote by BH 1 (v,ρ)= {u ∈H 1
|

||u− v||H 1 < ρ} the open ball in H 1 with centre v and
radius ρ > 0. Assume R has two non-negative minimum
points u1 6= u2, with Fq (u1)≥ Fq (u2). Then, there exist
ω > 0 and f,g ∈O(ε−1) as ε→ 0+ such that if ε > 0
satisfies

i. R′′(ui)> f (ε), for i = 1,2;

ii. κ > g(ε);

iii. ε ≤ ω;

then F̃q has two local minimum points, ũ1, ũ2, such that

a. BH 1 (u1,ε)∩BH 1 (u2,ε)=∅;

b. ũi ∈ BH 1 (ui,ε), for i = 1,2.

c. If ||u− u1||H 1 = ε, then Fq (u)≥ Fq (u1)+ δ, with δ =
δ(ε)> 0.

Note how the previous result can be also interpreted as
giving sufficient conditions for the convergence of the sta-
ble solutions of a space-inhomogeneous EBM to the stable
solution of the corresponding space-averaged model, as the
diffusion becomes large.

Figure 3. Potential functional Fq evaluated in the three steady-state
solutions uS,uM and uW. For q < q3, uS is the global minimum
point, while uW is a local minimum point. On the other hand, for
q > q3 the opposite happens. Solid lines correspond to values of the
functional attained on stable solutions; dashed lines are for values
corresponding to unstable ones.

3.2 Value function and uniqueness for the functional
minimizer

The key element of this section is the value function, which
is given by

V (q)= inf
{
Fq (u) | u ∈H 1, u≥ 0

}
.

From Sect. 3.1, we know that the previous infimum is in-
deed a minimum, and so V (q) can be interpreted as the mini-
mum possible value attained by the potential functional over
the possible temperature profiles u. Since a minimum point
for Fq is also a stationary point for the functional, the value
function can be evaluated numerically by computing the min-
imum of the three steady-state solutions uS,uM and uW. Fol-
lowing this strategy, Fig. 3 shows q 7−→ Fq (u∗), with u∗ ∈
{uS,uM,uW}. Particularly, there exists a point q3 such that
uS is the global minimum point of Fq for q < q3, while uW
is the global minimum point for q > q3. Further, for q = q3
the function Fq has two different global minimum points uS
and uW, and q = q3 corresponds a non-differentiability point
for V . In addition to this, the value function appears to be
concave, thus with a decreasing derivative, where it exists.

Summarizing, the numerical evaluations of V (q) suggest
the following result, a rigorous proof of which is included in
the Supplement.

Theorem 3. Assume q belongs to a bounded interval. Then

i. V is Lipschitz continuous.

ii. q is a non-differentiable point for V if and only if there
is more than one minimizer for Fq .
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iii. V is concave and V ′ is non-increasing.

We also see numerically that uM is actually never a global
minimizer for the specific functional Fq considered here, but
we do no have rigorous proof of this fact. Let us briefly dis-
cuss the proofs of the previous points. The proof of (i) fol-
lows from the facts that the sup norm of the minimizer u0 can
be bounded uniformly in q and that, given a family {gi}i∈I of
Li Lipschitz functions gi , the inf

i∈I
gi is Lipschitz continuous

if the constants Li can be bounded uniformly. In our case,
given u ∈H 1 is non-negative, we have

|Fµ1 (u)−Fµ2 (u)| ≤ |µ1−µ2|

1∫
−1

|u(x)|dx ≤ 2M|µ1−µ2|

where M > 0 is the constant appearing in Eq. (15). On the
other hand, the proof of point (ii) is less straightforward,
although being very similar to the one for the existence of
a solution for the variational problem. The proof of point
(iii) makes use of the concept of semiconcavity, a general-
ization of that of concavity, which is fundamental in opti-
mal control (Cannarsa and Sinestrari, 2004). The main rea-
son for the concavity of V though is that V is an infimum
over functions that are affine in q. Hence, the fact that q is
additive is essential for this result. More details can be found
in Sects. S4 and S5 in the Supplement.

3.3 Value function graph and bifurcation diagram

An additional property of the value function can be observed
when comparing the bifurcation diagram (Fig. 4a) and the
graph of the value function (Fig. 3).

Corollary 4. If V is differentiable, then V ′(q)=
−
∫ 1
−1u0(x)dx, where u0 is the only minimizer for Fq .

In other words, the part of the bifurcation diagram that
corresponds to the global minimizer, represented by the
subgraph (q,

∫ 1
−1u0(x),dx), can be determined based on the

knowledge of V ′, and vice versa. Figure 4 compares Figs. 2a
and 3, highlighting in magenta the corresponding parts of
the two graphs. From the mathematical point of view, the
previous result is a consequence of the proof of Theorem 3.

It is worth pointing out that by combining Theorem 3 and
Corollary 4, a valuable property emerges, i.e. the global mean
temperature of the functional minimizer is non-decreasing
with respect to q. In other words, as the concentration of
CO2 rises, the global mean temperature increases. Addition-
ally, through this monotonicity and Froda’s theorem (Rudin,
1976, Theorem 4.30), we also establish that the global mean
temperature is continuous, except for, at most, a countable
number of upward jumps.

In the second part of this section, we demonstrate the ap-
plicability of Corollary 4 to other reaction–diffusion equa-

tions. We use as an example a spatially heterogeneous Allen–
Cahn equation (ACE), already considered in Bastiaansen
et al. (2022). For an initial condition ũ, this model is given
by

∂tu=
1

100
1u+ u(1− u2)+ q +

1
2

cos(πx),

x ∈ (−1,1), t > 0,
ux(t,−1)= ux(t,1)= 0, t ≥ 0,

u|t=0 = ũ. (16)

The associated elliptic problem for u= u(x) is

0=
1

100
u′′+ u(1− u2)+ q +

1
2

cos(πx),

x ∈ (−1,1),
u′(−1)= u′(1)= 0. (17)

In this case, the potential functional takes the form

Jq (u)=

1∫
−1

u4(x)
4
−
u2(x)

2
− u(x)(q +

1
2

cos(πx)) dx,

and all the properties discussed in Sect. 3.1 and 3.2 can be
extended to this equation. Specifically, Theorems 1, 2 and 3
hold. But in this case, the structure of the bifurcation diagram
is more complex, even if symmetric with respect to q = 0.
Indeed, through numerical experiments, it is possible to de-
duce the existence of 0< q4 < q5 such that (a) for |q|> q5
or |q|< q4, there exists a single steady-state solution, which
is stable, (b) for q4 < |q|< q5 there are three steady-state so-
lutions, two of which are stable while the third is unstable.
Further, q = q4,q5 are bifurcation points of the saddle-node
type. We denote by u1 the steady-state solution for q <−q5,
by u2 and u3 the steady-state solutions appearing at the bi-
furcation point q =−q5 and existing for −q5 < q <−q4 in
addition to u1, and by u4 and u5 the steady-state solutions
appearing at q = q4 and existing for q4 < q < q5 in addition
to u3. Regarding the potential functional Jq , in this case there
exists q6 ∈ (q4,q5) such that u1 is the global minimum point
for the functional for q <−q6, and u3 is the global minimum
point for −q6 < q < q6, while u5 becomes the global mini-
mum point for q > q6. A picture for the bifurcation diagram
just described and the value function is shown in Fig. 5. Note
that q =±q6 represents the only values of the parameter q
for which the value function is not differentiable and also the
only points in which the global minimizer of the variational
problem is not unique.

4 Conclusions

In this paper, we have considered a one-dimensional energy
balance model depending on a bifurcation parameter q, de-
scribing the effect of CO2 concentration in the atmosphere
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Figure 4. Comparison between the value function graph (left) and bifurcation diagram (right) for the 1D EBM. The magenta-shaded area
highlights the parts of the plots which are in one-to-one correspondence. (a) Functional Fq evaluated on steady-state solutions, as in Fig. 3.
(b) Bifurcation diagram, as in Fig. 2a.

Figure 5. Comparison between the value function and the bifurcation diagram for the non-homogeneous ACE. The magenta-shaded area
highlights the parts of the plots which are in one-to-one correspondence. (a) Potential functional evaluated on the steady-state solutions: u1 is
the global minimum point for q <−q6, u3 is the global minimum point for −q6 < q < q6, u5 is the global minimum point for q > q6. Note
that q =±q6 are the non-differentiability point for the value function, corresponding to non-uniqueness of the minimizer. (b) Bifurcation
diagram.

and affecting the energy absorbed by the planet. Numerical
simulations show that this model can exhibit either one or
three asymptotic solutions, depending on the values of q. We
began our analysis by introducing the potential functional Fq
associated with the steady-state solutions. The functional Fq
has significant implications, as it is closely linked to both
the stability of steady-state solutions of the EBM and the
invariant measure for the stochastic EBM obtained by per-
turbing the model with an additive Gaussian white noise. In
particular, the invariant measure of the system concentrates
on global minimizers of Fq , giving them exponentially larger
weight than local minimizers. By analysing the first varia-

tion of Fq and applying standard arguments from the direct
method of calculus of variations, we established that Fq pos-
sesses a global regular minimizer for all values of the pa-
rameter q. Furthermore, we provide sufficient conditions to
prove the existence of at least three steady-state solutions for
the 1D EBM.

We then introduced the value function V (q), which rep-
resents the minimum value attained by the potential func-
tional among all possible temperature profiles. By evaluat-
ing V (q) numerically using the steady-state solutions uS,uM
and uW, we observed that the function exhibits Lipschitz
continuity and concavity. Furthermore, non-differentiability
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points of V (q) coincide with points where multiple global
minimizers exist for Fq . Lastly, when V is differentiable, its
derivative is non-increasing and equal to the negative global
mean temperature, i.e. V ′(q)=−

∫ 1
−1u0(x) dx, where u0 is

the minimizer for Fq . Moreover, as a consequence of the ex-
plicit expression for V ′, the global mean temperature is non-
decreasing with respect to q, and it is continuous, except for a
Lebesgue zero-measure set of upwards jumps. These are the
non-differentiability points of V , corresponding to the case
where two or more global minimizers, hence multiple cli-
mates equally probable, exist for the stochastic EBM. These
findings, which we are able to prove rigorously, allow us to
establish a correspondence between the bifurcation diagram
and the graph of the value function. Additionally, we applied
our results to a spatially inhomogeneous Allen–Cahn equa-
tion to show how our results still hold for more general space-
inhomogeneous reaction–diffusion equations.

The diffusion function κ = κ(x) that we have examined
is non-degenerate at the boundary of the spatial domain. As
noted in Sect. 2.1, this is an assumption to simplify the study
of the variation problem. At present, there remains a prob-
lem with how to extend our results to the case where κ is
degenerate at the boundary.

Regarding the impact of our work on current climate
change, we have characterized climate as an invariant mea-
sure within a stochastic equation that describes temperature.
The emission of CO2 is considered a parameter influencing
the shape of this invariant measure, particularly in relation to
the points around which the measure is concentrated. From
our perspective, the climate we are currently witnessing re-
flects changes in the invariant measure, representing a real-
ization of a random variable with that invariant measure as its
distribution. Moreover, we have demonstrated the monotonic
relationship between global mean temperature and CO2. Fi-
nally, we have outlined simple conditions, adaptable to other
multi-stable reaction–diffusion models, to establish the exis-
tence of three asymptotic climate states.

Concerning future development of this work, one interest-
ing aspect we are working on is to understand how the invari-
ant measure for the stochastic EBM changes close to bifur-
cation points. This points in the direction of using statistical
indicators to detect the approach of tipping points, which in
our model correspond to points of discontinuity of the global
mean temperature with respect to the parameter q.

Appendix A: Numerical methods

In this section, we describe the numerical method adopted to
approximate the solutions of the elliptic problem (11) numer-
ically. We used a classical finite difference scheme, which we
are going to illustrate (Quarteroni and Valli, 2008; Thomas,
2013). To simplify the notation, let’s define

f (x,u)= Re(x,u)−Ra(u)

as the non-linear reaction term. We consider a uniform mesh
for [−1,1] made of n+ 1 points

x0 =−1< x1 < · · ·< xn = 1, xi =−1+ i1x,

i = 0, . . .,n, 1x =
2
n
.

Then, the solution to the problem can be approximated by
considering the following system:

ui−1κi− 1
2
− ui(κi− 1

2
+ κ

i+ 1
2
)+ ui+1κi+ 1

2

1x2 + f (xi,ui)= 0,

i = 0, . . .,n,
u1− u−1

21x
=
un+1− un−1

21x
= 0,

where u−1and un+1 are ghost points, and

ui = u(xi), κi± 1
2
= κ(x

i± 1
2
), x

i± 1
2
:= xi ±1x/2.

The system of equations can be written in vector form as

1
1x2


−1x/2 0 1x/2
κ−1/2 −(κ−1/2+κ1/2) κ1/2

. . .
. . .

. . .
κn−1/2 −(κn−1/2+κn+1/2) κn+1/2
−1x/2 0 1x/2



u+


0
f0
...
fn

= 0,

with u=
[
u−1, · · ·un+1

]T and fi = f (xi,u(xi)). At this
point, multiplying the first equation by 2 κ1/2

1x
, subtracting the

second one and dividing by 2, we get

−
κ−1/2+ κ1/2

2
u−1+

κ−1/2+ κ1/2

2
u0−

f0

2
= 0.

In a symmetric way, multiplying the last equation by
−2 κn−1/2

1x
, subtracting the second last equation and dividing

by 2, we get

κn−1/2+ κn+1/2

2
un−

κn−1/2+ κn+1/2

2
un+1−

fn

2
= 0.

In this way, the Neumann version of the elliptic problem has
the following form:

1
1x2


−

κ−1/2+ κ1/2

2
κ−1/2+κ1/2

2

κ−1/2 −(κ−1/2+κ1/2) κ1/2

. . .
. . .

. . .
κn−1/2 −(κn−1/2+κn+1/2) κn+1/2

κn−1/2+κn+1/2
2 −

κn−1/2+κn+1/2
2



u+


−f0/2
f0
...
fn
−fn/2

= 0
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and consists of a set of (n+ 3) non-linear equations, whose
solution u can be approximated using the Newton–Raphson
method (NRM). The initial guess used to start the iteration
in NRM is obtained via a shooting method, thus reducing the
boundary value problem given by the elliptic PDE in Eq. (11)
to an initial value problem (IVP). A linear search is applied
to find the shooting parameter, i.e. the initial condition of the
IVP. Lastly, the solution of the IVP is approximated using the
classical Euler’s method for ODEs.
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