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Introduction

We are providing additional supplementary material to accompany our manuscript.
Specifically, we present rigorous proofs for the results outlined in Section 3 of
the paper. This supplementary material is organized as follows. In Section S1,
we recall the definition of the functional associated with the elliptic problem
arising from the study of the stationary solutions of the EBM depending on an
additive positive parameter q representing the carbon dioxide concentration. In
Section S3, we rigorously prove the existence of a global minimiser for the func-
tional using the direct method from the calculus of variations. Furthermore,
we establish the regularity, non-negativity, and boundedness of the minimiser.
In Section S4, we characterize the uniqueness of the global minimiser in terms
of the value function, i.e., the minimum, depending on q, among the values of
the functional. Further, we show that the derivative of the value function is,
up to the sign, the global mean temperature of the minimiser of the variational
problem. Then, in Section S5 we prove that the value function is not only
semiconcave but also concave. In particular, this last property implies that the
global mean temperature of the variational problem minimiser is non-decreasing
with respect to q. Lastly, in Section S6 we provide sufficient conditions to prove
the existence of three steady-state solutions for the EBM. This relies on the
use of the Mountain Pass Theorem and the direct method from the calculus of
variations.

S1 Functional definition

The 1D-EBM we consider through the main paper has the form ([2]):

CT∂tu = ∂x (κ(x)ux) +Q0(x)β(u) + q − ε0σ0u
4, (t, x) ∈ [0, T ]× [−1, 1]

ux(t,−1) = ux(t, 1) = 0, t ≥ 0,

u(0, x) = ũ(x),

where ũ denotes the initial condition. The steady-state solutions to the previous
problem are associated with the functional ([3, 7]):

Fq(u) =

∫ 1

−1

ε0σ0
(u5)

5
−Q0(x)B(u)− qu dx+

1

2

∫ 1

−1

κ(x) [u′(x)]
2
dx.

In the main manuscript, we have illustrated some properties of the minimiser
of the variational problem

inf
{
Fq(u) | u ∈ H1, u ≥ 0

}
.

But we can prove more. Indeed, we will extend Fq to a functional defined on
H1, and then shows that there exists u0 ∈ H1 s.t. u0 ≥ 0 and

F̃q(u0) = inf
{
F̃q(u) | u ∈ H1

}
= inf

{
Fq(u) | u ∈ H1, u ≥ 0

}
.
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The necessity to extend Fq to take into account also negative values for u comes
from the fact that the natural space in which set the minimization problem is
the Sobolev space H1,2(−1, 1). But, due to the presence of the odd polynomial
term in Fq, we have

inf
{
Fq(u) | u ∈ H1

}
= −∞.

In fact, choosing the constant function uλ ≡ −λ, with λ > 0, we get lim
λ→+∞

Fq(uλ) =

−∞. This is not surprising, since the term u5 inside the functional Fq comes
from the Stefan-Boltzmann law, which has no sense for negative values of the
temperature. Further, in order to pick a primitive B of the co-albedo β, we
need to extend the definition of the co-albedo also for the negative values of the
Kelvin temperature. In any case, these extensions do not really affect the EBM,
since are referred to negative values of u, which have no physical sense.

Let’s turn to give details about the extensions of β and the Stefan-Boltzmann
law. Let β̃ : R → R be s.t. β̃ ∈ C∞ and

(i) β̃ is monotonically increasing

(ii) β̃(u) ≥ 0 ∀u ∈ R

(iii) β̃(u) = 0 for u ≤ −M , for some M > 0

(iv) β̃ extends β for u ≥ 0.

Denote by B(u) := B0+
∫ u

0
β̃(v)dv a primitive of β, with B0 s.t. B(u) ≥ 0 ∀u ∈

R. It will be useful in future to note that

0 ≤ B(u) ≤ |B0|+ |u| ∀u. (1)

In a similar way, we consider the extension of the Stefan-Boltzmann law given
by:

ψ(u) =

{
ε0σ0u

4, if u ≥ 0

0, if u < 0.

A primitive is given by Ψ(u) = ε0σ0
(u5)+

5 , where (x)+ = max(x, 0).
Lastly, since in our model we are assuming κ continuous and positive on

[−1, 1], we can also assume κ constant. Indeed, all the proofs, that in this
manuscript are carried with constant κ, extended immediately to the non-
constant case. In conclusion, the uniformly elliptic equation we are considering
is given by:

0 = κ∆u+Q0(x)β̃(u) + q − ψ(u),

u′(−1) = u′(1) = 0,
(2)

and the functional associated with its solution is

F̃q(u) =

∫ 1

−1

Ψ(u)−Q0(x)B(u)− qu dx+
κ

2

∫ 1

−1

[u′(x)]
2
dx.
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S2 Gibbs invariant measure and functional min-
imum point

In this section, we make rigorous the relation between Fq and the invariant
measure ν of the stochastic EBM. In particular, we prove a result giving infor-
mation about the concentration of ν around minimum points for F̃q. We start
by recalling the notation and some useful results.

First, we set

I(u) :=

∫ 1

−1

(
ε0σ0

(u5)+
5

−Q0(x)B(u)− qu

)
dx.

Consider H = L2(−1, 1) and E = C([−1, 1]). Then, following the theory of
stochastic partial differential equation (SPDE), the stochastic equation obtained
by adding a cylindrical Brownian motion is a gradient SPDE of the form

dXt = [AXt + f(x,Xt)] dt+ εdWt, X|t=0 = x0 (3)

where (Wt)t is a cylindrical Wiener process on H and A = κ∆ is the Neumann
Laplacian with constant viscosity κ > 0, i.e. A : D(A) ⊂ H → H,

D(A) =
{
u ∈ H2(−1, 1) | u′(−1) = u′(1) = 0

}
Au = κu′′,

(4)

and
f(x, u) = Q0(x)β̃(u) + q − ε0σ0(u

4)+

We refer to [5] for details about the properties of the previous SPDE. The mild
solutionXt of (3) is P−a.s valued in E. Further, applying the theory of invariant
measure developed in [8], we get the following property.

Proposition S1 The SPDE (3) has a unique Gibbs invariant measure ν. Fur-
ther, ν ≪ µ with explicit formula:

ν(du) =
1

Z
exp

(
− 2

ε2
I(u)

)
µ(du), u ∈ H (5)

where µ ∼ N
(
0,− ε2

2 A
−1
)
is a Gaussian measure on H.

Remark S2 The Neumann Laplacian ∆ is not invertible on H = L2(−1, 1)
and the invariant measure theory applies for a strictly negative definite operator
A on H. For this reason, we should consider the strictly negative operator

Ã := λId−A, λ > 0.

In this way, the functional takes the form:

Ĩ(u) = I(u)− λ∥u∥22,
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and the reaction term in the SPDE is given by:

f̃(x, u) = f(x, u)− λu.

In conclusion, the invariant measure for the SPDE

dX̃t =
[
ÃX̃t + f̃(x,Xt)

]
dt+ εdWt, X̃|t=0 = x̃0

is given by:

ν̃(du) =
1

Z
exp

(
− 2

ε2
Ĩ(u)

)
µ̃(du), u ∈ H,

where µ̃ ∼ N (0,− ε2

2 Ã
−1) is a Gaussian measure on H. Since this change only

complicates the notation in the proofs, we will keep writing A−1 but the reader
should interpret the Laplacian with the shift described above, in order to get the
rigorous meaning.

Second, keeping in mind the previous remark, we adopt from now on the
notation:

Q = − ε2

2κ
∆−1, µ (du; v,Q) ∼ N (v,Q) .

The following statement is a classical result about the equivalence of Gaussian
measures. See [8] for more details.

Theorem S3 (Cameron-Martin) The Gaussian measures µ (du; 0,Q) and
µ (du; v,Q) on H are equivalent if and only if v ∈ Q1/2(H). In this case:

µ (du; 0,Q)

µ (du; v,Q)
= exp

(
−⟨Q−1/2u,Q−1/2v⟩+ 1

2

∥∥∥Q−1/2v
∥∥∥2
2

)
. (6)

In the following, we are going to recall the rigorous meaning for

⟨Q−1/2u,Q−1/2v⟩L2 .

Consider

Wz : Q1/2(H) ⊂ H → L2(H,µ), Wz(u) := ⟨u,Q−1/2z⟩L2 .

It can be shown that:

(i) Wz is an isometry,

(ii) Q1/2(H) is dense in H (here it is fundamental ker(Q) = {0}.)

In this way, Wz can be extended in a unique way to a map Wz : H → L2(H,µ).
So, it should be interpreted as:

⟨Q−1/2u,Q−1/2v⟩L2 =WQ−1/2v(u), u ∈ H.
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Remark S4 For our choice of the operator Q, we have that the Cameron-
Martin space is Q1/2(L2) = H1.

At this point, we move to prove the main result of this section. Given a
Banach space X, we denote by

BX(x0, ρ) = {x ∈ X | ∥x− x0∥X < ρ}

the open ball with center x0 ∈ X and radius ρ > 0.

Proposition S5 Let C > 0, r > 5 and v ∈ H2,2(−1, 1). Consider the set

BC(v, η) := BL2(v, η) ∩BLr (v, C).

Then,

(i) ν(BC(v, η))
C→+∞−−−−−→ ν(BL2(v, η))

(ii) µ(BC(0, η))
C→+∞−−−−−→ µ(BL2(0, η))

(iii) For each C > 0, it holds

ν(BC(v, η))

µ(BC(0, η))
=

1

Z
exp

(
− 2

ε2

(
F̃q(v) +O(ηθ)

))
,

where θ ∈ (0, 1) satisfies
1

5
=
θ

2
+

1− θ

r
.

Proof. Assume for simplicity κ = 1.
(i)-(ii) Observe that for v1 ∈ L2 ∩ Lr, we have:

BC1(v1, η) ⊂ BC2(v1, η), if C1 ≤ C2

and

BL2(v1, η) =

(⋃
C>0

BC(v1, η)

)
∪
{
u ∈ L2 | ∥u∥r = ∞

}
.

Denote by B =
{
u ∈ L2 | ∥u∥r = ∞

}
. If we are able to prove:

µ (B) = 0,

then we get (i) and (ii) thanks to the continuity of measures on an increasing

sequence of sets. Since µ ∼ N (0,− ε2

2 ∆
−1), then

µ =M

∞∑
n=1

Zn

n
en

where {Zn}n are i.i.d. N (0, 1) defined on the probability space (Ω,F ,P), {en}n
is an orthonormal basis ofH = L2(−1, 1) andM > 0 is a constant. The previous
series is convergent in L2((Ω,F ,P);Hs), for all s < 1/2; indeed

5



∥µ∥2Hs =

∥∥∥∥∥M∑
n

Zn

n
(−∆)sen

∥∥∥∥∥
2

2

=

∥∥∥∥∥M∑
n

Zn

n
nsen

∥∥∥∥∥
2

2

=M2
∑
n

M
Z2
n

n2
n2s =

∑
n

Z2
n

n2−2s
.

Taking the expected values, we get

E∥µ∥2Hs =M2
∑
n

1

n2−2s
<∞ ↔ s < 1/2.

The Sobolev embedding Hs(−1, 1) ↪→ Lp, holds for each p < ∞ if s is close to
1/2. This leads to µ(B) = 0.

(iii) We start by using the explicit formula (5) in order to get

ν(BC(v, η))

µ(BC(0, η)
=

1

Z

∫
BC(v,η)

exp
(
− 2

ε2 I(u)
)
µ(du; 0,Q)

µ(BC(0, η); 0,Q)
. (7)

Using the Cameron-Martin formula (6), we have

µ(du; 0,Q) = exp

(
−WQ−1/2v +

1

2

∥∥∥Q−1/2v
∥∥∥2
2

)
µ(du; v,Q)

for each v ∈ Q1/2(L2) = H1. Since

Q−1/2u =

√
2

ε
(−∆)

1/2
,

and for v ∈ H2

WQ−1/2v(u) = ⟨u,Q−1/2Q−1/2v⟩ = 2

ε2
⟨u, v′′⟩

we arrive to

µ(du; 0,Q) = exp

(
− 2

ε2
⟨u′, v′⟩+ 1

ε2
∥v′∥22

)
µ(du; v,Q).

Plugging the previous identity into (7), we deduce:

ν(BC(v, η))

µ(BC(0, η))
=

1

Z

∫
BC(v,η)

exp
[
− 2

ε2

(
I(u) + ⟨u′, v′⟩ − 1

2∥v
′∥22
)]
µ(du; v,Q)

µ(BC(0, η); 0,Q)

Assume for a moment that we are able to prove:

− 2

ε2

(
I(u) + ⟨u′, v′⟩ − 1

2
∥v′∥22

)
= − 2

ε2

(
F̃q(v) +O(ηθ)

)
, u ∈ BC(v, η), (8)

for θ ∈ (0, 1). Then,

ν(BC(v, η))

µ(BC(0, η))
=

1

Z
exp

(
− 2

ε2

(
F̃q(v) +O(ηθ)

)) µ(BC(v, η); v,Q)

µ(BC(0, η); 0,Q)

=
1

Z
exp

(
− 2

ε2

(
F̃q(v) +O(ηθ)

))
,
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where we have used

µ(BC(v, η); v,Q) = µ(BC(0, η); 0,Q).

This concludes the proof.
It remains to prove (8).

Lemma S6 If u ∈ BC(v, η) and v ∈ H2 then there exists θ ∈ (0, 1) s.t.

− 2

ε2

(
I(u) +WQ−1/2v(u)−

1

2
∥v′∥22

)
= − 2

ε2

(
F̃q(v) +O(ηθ)

)
.

Proof. Assume for simplicity κ = 1. We divide the proof into steps.
Step 1: WQ−1/2v(u) = ⟨v′, v′⟩+O(η), if u ∈ BC(v, η) and v ∈ H2.
Indeed, since v ∈ H2, we have WQ−1/2v(u) = −⟨u, v′′⟩ and

|−⟨u, v′′⟩ − ⟨v′, v′⟩| = |−⟨u, v′′⟩+ ⟨v, v′′⟩| = |⟨v − u, v′′⟩| ≤ ∥v − u∥2∥v∥H2 ≤ η∥v∥H2 .

Step 2 : I(u) = I(v) +O(ηθ), if u ∈ BC(v, η).
Observe that:

|I(u)− I(v)| ≤ ε0σ0
5

∫ 1

−1

∣∣(u5)+ − (v5)+
∣∣ dx+∫ 1

−1

Q0(x)|B(u)−B(v)|dx+q
∫ 1

−1

|u− v|dx

By the properties of B and Q0, we get that there exists M,M ′ > 0 s.t.∫ 1

−1

Q0(x)|B(u)−B(v)|dx+q
∫ 1

−1

|u− v|dx ≤M

∫ 1

−1

|u− v| dx ≤M ′∥u− v∥2 ≤M ′η.

By the mean value theorem, we get that if u, v ≥ 0 and p ≥ 1, then

|up − vp| ≤ pmax {|u|, |v|}p−1 |u− v| ≤ p (|u|+ |v|)p−1 |u− v|.

By this inequality, we get∫ 1

−1

|(up)+ − (vp)+| dx ≤ p

∫ 1

−1

(u+ + v+)
p−1 |u+ − v+| dx.

Let q1 s.t. 1
p + 1

q1
= 1. By Holder’s inequality, we deduce:∫ 1

−1

(u+ + v+)
p−1 |(u)+ − (v)+| dx ≤

[∫ 1

−1

(u+ + v+)
q1(p−1)

dx

]1/q1
∥u+ − v+∥p

≤ ∥u+ + v+∥p/q1p ∥u+ − v+∥p

≤
(
∥u∥p + ∥v∥p

)p/q1
∥u− v∥p.

Choosing p = 5, by interpolation inequality there exists θ ∈ (0, 1) s.t.

∥u− v∥p ≤ ∥u− v∥θ2∥u− v∥1−θ
r ≤ ηθC1−θ, u ∈ BC(v, η).

In this way, for u ∈ BC(v, η), we deduce∫ 1

−1

∣∣u5+ − v5+
∣∣dx ≤ p

(
∥u∥p + ∥v∥p

)p/q1
∥u− v∥p ≤ p

(
C + 2∥v∥p

)p/q1
ηθC1−θ = O(ηθ).
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S3 Variational problem - existence

Given a Banach space X and a sequence {un}n ⊆ X, we denote by un ⇀ u the
weak convergence, while we reserve the symbol un → u for strong convergence.
Further, H1 = H1,2(−1, 1) will denote the Sobolev Space on [−1, 1] with order
1 and exponent 2. The main result of this section is the following.

Proposition S7 Assume q > 0. Then, the variational problem

inf
{
F̃q(u) | u ∈ H1,2

}
(9)

admits a minimiser u0. Further, u0 ∈ C∞, u′0(−1) = u′0(1) = 0 and u0 ≥ 0.

Proof. Let assume for simplicity Q0(x) = 1 ∀x. This is not restrictive and the
proof can be carried on in a similar way since

Q0(x) > δ > 0.

We divide the proof into steps.
Step 1: compactness. We consider the notion of convergence on X given by:

un
X−→ u∞ if and only if un −→ u∞ uniformly in [−1, 1] and u′n ⇀ u′∞ in L2.

We want to verify the compactness of the sublevel sets of F̃q. Let {un}n ⊂ X
and M > 0 s.t M ≥ F̃q(un) ∀n. First, we observe

M ≥ F̃q(un) ≥
∫ 1

−1

ε0σ0
(u5n)+

5
−B(un)− qun dx

Lagrange Thm
= 2

[
ε0σ0

(u5n)+
5

(ξn)−B(un)(ξn)− qun(ξn)

]
≥ 2

[
ε0σ0

(u5n)+
5

(ξn)−B0 − |un(ξn)| − qun(ξn)

]
,

where ξn ∈ [−1, 1]. Since v 7→ ε0σ0(v
5)+/5−B(v)−qv explodes for v → ±∞, we

get the existence of C1 > 0 s.t. |un(ξn)| ≤ C1 ∀n. Second, we get ∀x ∈ [−1, 1]

|un(x)| ≤ |un(ξn)|+ |un(x)− un(ξn)| ≤ C1 + ∥u′n∥2|x− ξn|1/2, (10)

the second inequality follows from the fact that a function in H1 is Holder-
continuous. Third, since (1) holds, we have

M ≥ F̃q(un) ≥
∫ 1

−1

−B(un)− un dx+
1

2
∥u′n∥2 ≳ −∥un∥1 +

1

2
∥u′n∥2 ≳ −C1 − ∥u′n∥2 +

1

2
∥u′n∥

2
2,

where a ≳ b if and only if exists c > 0 s.t. a ≥ c ·b and the last inequality follows
from ∥un∥1 ≲ ∥un∥2 .The previous inequality of second order in the unknown
∥u′n∥2 is verified if and only if

∥u′n∥2 ≤ C2, (11)
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for some C2 > 0. Up to remaining the subsequence, we have u′n ⇀ v, for a
v ∈ H1. It remains to prove the uniform converge of un in [−1, 1]. Let’s do it
using the Ascoli-Arzelà theorem. We get equi-continuity from the properties of
the Sobolev space. Indeed

|un(x)− un(y)| ≤ ∥u′n∥L2 |x− y|1/2 ∀x, y ∈ [−1, 1]

and ∥u′n∥L2 is bounded thanks to weak convergence. Since (10) holds, we get
also equi-boundedness. Then (up to remaining) un −→ u∞ uniformly in [−1, 1].

It remains to prove u′∞ = v in weak sense. Let ϕ ∈ C∞
c ([−1, 1]). Then, by

weak derivative definition,∫ 1

−1

unϕ
′ dx = −

∫ 1

−1

u′nϕdx ∀n,

and taking the limit on both sides of the equality (we use uniform convergence
at LHS, and weak convergence at RHS)∫ 1

−1

u∞ϕ
′ dx = −

∫
vϕ dx

Step 2: lower semi-continuity of F̃q. Let {un} ⊂ X be s.t. un
X−→ u. Let

F1, F2 be s.t.

F̃q(u) = F1(u)+F2(u), F1(u) :=

∫ 1

−1

ε0σ0(u
5)+

5
−B(u)−qu dx, F2(u) :=

κ

2

∫ 1

−1

(u′)2 dx

By uniform convergence, we have limn→∞ F1(un) = F1(u); by lower semi-
continuity of the L2 norm w.r.t. weak convergence, we have lim infn→∞ F2(un) ≥
F2(u).

In conclusion, F̃q is lower semi-continuous and coercive. Then, ∃ u0 ∈ X
minimum point for F̃q in X.

Step 3: regularity for u0 The first variation of F̃q in the point u in direction
h is given by:

δF̃q(u, h) =

∫ 1

−1

(
ψ(u)− β̃(u)− q

)
h dx+ κ

∫ 1

−1

u′h′ dx.

Choosing h ∈ C∞
c ([−1, 1]) and setting ϕ(t) := Fq(u0 + th), it holds ϕ′(0) = 0.

So:
0 = ϕ′(0) = δF̃q(u0, h),

from which it follows∫ 1

−1

(
ψ(u0)− β̃(u0)− q

)
h dx = −κ

∫ 1

−1

u′0h
′ dx. (12)

Then
κu′′0 = ψ(u0)− β̃(u0)− q (13)
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in the weak sense. The RHS is C0 because u0 ∈ H1. Then u′0 ∈ C1 and u0 ∈ C2.
Repeating the bootstrap argument, we get u0 ∈ C∞.

Step 4: Neumann boundary conditions. Let h ∈ C∞. Following the same
arguments above, we get to (12). Integrating by parts the RHS, we have:∫ 1

−1

(
ψ(u0)− β̃(u0)− q − u′′0

)
h dx = −κ (h(1)u′0(1)− h(−1)u′0(−1))

But the LHS of the previous equation is null thanks to (13). Choosing h s.t.
h(1) = 0 and h(−1) ̸= 0, it follows u′0(−1) = 0. In a similar way, we can get
u′0(1) = 0.

Step 5: u0 ≥ 0. This can be proved by the following truncation argument.
Assume there exists x0 ∈ [−1, 1] s.t. u0(x0) < 0. Consider the following points

τ1 := sup {x < x0 | u0(x) = 0} , τ2 := inf {x > x0 | u0(x) = 0} .

Let ũ0 be the truncation to 0 of u0 in [τ1, τ2], i.e.

ũ0(x) :=

{
u0(x) if x ∈ [τ1, τ2]

c,

0 if x ∈ [τ1, τ2].
(14)

Then

F̃q(u0)− F̃q(ũ0) =

∫ τ2

τ1

ε0σ0
(u50)+
5

−Q0(x)B(u0)− qu0(x) dx+
κ

2

∫ τ2

τ1

[u′0]
2
dx+

∫ τ2

τ1

Q0(x)B(0) dx

≥
∫ τ2

τ1

Q0(x) (B(0)−B(u0))− qu0(x) dx > 0

where the last inequality follows from the fact that B(0) ≥ −B(u0(x)) and
q > 0. This is a contradiction and thus u0(x) ≥ 0 ∀x ∈ [−1, 1].

Repeating again a truncation argument similar to the one used in the last
part of the previous proof, we can prove that the minimiser is bounded from
above.

Lemma S8 Assume q ∈ (0, b). Then, there exists M > 0 s.t. if u0 = u0(q) is
the minimiser for F̃q, then u0 ≤M .

Proof. Indeed, set R(x, u) := ε0σ0
(u5)+

5 − Q0(x)B(u) − qu. Note that the
following inequalities hold

R(x, u) ≥ ε0σ0
u5

5
− ∥Q0∥∞B(u)− bu, u ≥ 0,

R(x, v) ≤ ε0σ0
v5

5
, v ≥ 0.

So, if we set G(x, u, v) := R(x, u)−R(x, v), we have, uniformly in x

G(x, u, v) ≥ ε0σ0

(
u5

5
− v5

5

)
− ∥Q0∥∞B(u)− bu.

10



Note that for each v ≥ 0 fixed the term on the right-hand side diverges to +∞
for u → +∞. So, given v ≥ 0, there exists M = M(v) s.t if u ≥ M(v), then
G(x, u, v) ≥ 1 ∀x ∈ [−1, 1].

Let us pick v = 1. We want to prove that u0(x) ≤M ∀x ∈ [−1, 1]. Assume
by contradiction that u0(x0) > M for some x0 ∈ [−1, 1]. Set

τ1 := sup {x < x0 | u0(x) =M} , τ2 := inf {x > x0 | u0(x) =M} ,

and consider the truncated minimiser

ũ0(x) :=

{
u0(x) if x ∈ [τ1, τ2]

c,

M if x ∈ [τ1, τ2].
(15)

Then

F̃q(u0)− F̃q(ũ0) ≥
∫ τ2

τ1

R(x, u∗(x))−R(x,M)dx =

∫ τ2

τ1

G(x, u∗(x),M)dx.

Since by construction u0(x) ≥M ∀x ∈ [τ1, τ2], then we conclude

F̃q(u0)− F̃q(ũ0) > 0.

This concludes the proof.

S4 Variational problem - uniqueness

In this section we are going to characterize the uniqueness for the solution of
the variational problem in terms of the value function, i.e. the minimum value
attained by F̃q on H1.

The value function V is defined as follows:

V (q) = inf
{
F̃q(u) : u ∈ H1

}
.

First of all, from the last result in Section S3 follows the Lipschitz property for
V .

Lemma S9 Assume q ∈ (0, b). Then, the value function q 7→ V (q) is Lipschitz
continuous.

Proof. First of all, observe that thanks to the non-negativity of the minimiser
and Lemma S8 there exists M > 0 s.t.

V (q) = inf
{
F̃q(u) | 0 ≤ u ≤M, u ∈ H1

}
.

Second, given a family {fi}i∈I of Li-Lipschitz function fi, we know that the
infimum inf

i∈I
fi is Lipschitz as long as we can bound uniformly the constants Li.

In our case this is true. Indeed, given u ∈ H1, 0 ≤ u ≤M , we have:∣∣∣F̃q1(u)− F̃q2(u)
∣∣∣ = |q2 − q1|

∫ 1

1

|u(x)|dx ≤ 2M |q2 − q1|.

11



This concludes the proof.
The main result of this section is the following. We immediately give its

proof and postpone to the remaining part of the section the proof of auxiliary
results.

Proposition S10 Assume q ∈ (0, b). Then, V is differentiable in µ if and only
if there exists an unique minimiser for F̃µ in H1. Further, if V is differentiable,
then

V ′(µ) = −
∫ 1

−1

u∗dx,

with u∗ ∈ argmin
{
F̃µ(u) : u ∈ H1

}
.

Proof. ⇒) Let’s consider the auxiliary function

W : R× (H1 ∩ {u ≥ 0}) → R

given by:
W (q, u) := F̃q(u)− V (q).

As preliminary remarks, note thatW (q, u) ≥ 0 and, if ũ ∈ argmin
{
F̃q(u) : u ∈ H1

}
,

then W (q, ũ) = 0. The existence of minimiser has been proved in Proposition
S7. To prove uniqueness, assume that u1, u2 are two minimisers. Since (i) F̃q

is differentiable for each q, (ii) V is differentiable in µ by hypothesis and (iii)
W (µ, ui) = 0, i = 1, 2, then

0 = ∂qW (µ, ui) = −
∫ 1

−1

ui(x)dx− V ′(µ).

Thus

−
∫ 1

−1

u1(x)dx = −
∫ 1

−1

u2(x)dx = V ′(µ).

Using Lemma S10, we know that also u1 ∧ u2 is a minimiser. With the same
reasoning above, it holds

−
∫ 1

−1

u1(x)dx = −
∫ 1

−1

u2(x)dx = −
∫ 1

−1

u1 ∧ u2(x)dx

Since ui ≥ u1 ∧ u2 ≥ 0, the previous identities can hold only if u1 = u2.
⇐) Assume that, given µ, ∃! u∗ minimiser for F̃µ. Let {hn}n be a sequence

s.t. hn → 0. Let’s denote by uq a minimiser for F̃q, i.e.

uq ∈ argmin{F̃q(u) : u ∈ H1},

Then, set un := uµ+hn
. We are going to show that V ′(µ) = −

∫ 1

−1
u∗dx, i.e.

lim
n→∞

V (µ+ hn)− V (µ)

hn
= −

∫ 1

−1

u∗dx.

12



First, observe that by definition of the value function, we have

V (µ+ hn)− V (µ)

hn
=
F̃µ+hn(un)− F̃µ(u∗)

hn
≤ F̃µ+hn(u∗)− F̃µ(u∗)

hn
= −

∫ 1

−1

u∗dx.

Hence

lim
n→∞

V (µ+ hn)− V (µ)

hn
≤ −

∫ 1

−1

u∗dx.

On the other hand,

V (µ+ hn)− V (µ)

hn
=
F̃µ+hn

(un)− F̃µ(u∗)

hn
≥ F̃µ+hn

(un)− F̃µ(un)

hn

= −
∫ 1

−1

undx.

It follows that:

V (µ+ hn)− V (µ)

hn
≥ −

∫ 1

−1

u∗dx+

∫ 1

−1

(u∗ − un) dx

But the second integral on the right-hand side converges to zero as n → +∞
thanks to Lemma S12. This concludes the proof.

In order to complete the proof of the previous result, we need to verify some
auxiliaries lemmas. First, let’s prove that the infimum of two minimisers for F̃q

is still a minimiser.

Lemma S11 If u1, u2 are minimisers for F̃q in H
1, then also u1∨u2 and u1∧u2

are minimisers.

Proof. For simplicity of notation, set R(x, u) := ε0σ0
u5

5 − Q0(x)β(u) − qu.
Further, we divide the proof into steps.

Step 1: F̃q(u1 ∧ u2) ≥ F̃q(u1 ∨ u2).
We start observing that:

F̃q(u1 ∧ u2) =
κ

2

∫
u1≥u2

(u′2)
2dx+

∫
u1≥u2

R(x, u2)dx+
κ

2

∫
u1<u2

(u′1)
2dx+

∫
u1<u2

R(x, u1)dx

≥ F̃q(u1) =
κ

2

∫
u1≥u2

(u′1)
2dx+

∫
u1≥u2

R(x, u1)dx+
κ

2

∫
u1<u2

(u′1)
2dx+

∫
u1<u2

R(x, u1)dx

where the inequality holds since u1 is a minimiser. So, we deduce

κ

2

∫
u1≥u2

(u′2)
2dx+

∫
u1≥u2

R(x, u2)dx ≥ κ

2

∫
u1≥u2

(u′1)
2dx+

∫
u1≥u2

R(x, u1)dx.

(16)
In a similar way, we get

κ

2

∫
u1<u2

(u′1)
2dx+

∫
u1<u2

R(x, u1)dx ≥ κ

2

∫
u1<u2

(u′2)
2dx+

∫
u1<u2

R(x, u2)dx.

(17)

13



Indeed, the previous inequality follows bounding from below F̃q(u1 ∧ u2) with

F̃q(u2) and comparing the terms on both sides of the inequality. Now, adding to-
gether equation (16) and equation (17), we obtain the claimed relation between
F̃q(u1 ∧ u2) and F̃q(u1 ∨ u2):

F̃q(u1 ∧ u2) =
κ

2

∫
u1≥u2

(u′2)
2dx+

∫
u1≥u2

R(x, u2)dx+
κ

2

∫
u1<u2

(u′1)
2dx+

∫
u1<u2

R(x, u1)dx

≥ κ

2

∫
u1≥u2

(u′1)
2dx+

∫
u1≥u2

R(x, u1)dx+
κ

2

∫
u1<u2

(u′2)
2dx+

∫
u1<u2

R(x, u2)dx

= F̃q(u1 ∨ u2).

Step 2: F̃q(u1 ∨ u2) ≥ F̃q(u1 ∧ u2).
This inequality can be obtained by repeating the step above starting with

F̃q(u1 ∨ u2) instead of F̃q(u1 ∧ u2).
Step 3: F̃q(u1) = F̃q(u1 ∧ u2) = F̃q(u1 ∨ u2).
The last identity follows from Step 1 and Step 2. To get the first identity,

let’s observe that in our case

F̃q(u1) + F̃q(u2) = F̃q(u1 ∧ u2) + F̃q(u1 ∨ u2). (18)

The previous identity can be verified by writing

F̃q(v) =
κ

2

∫
u1≥u2

(v′)2dx+
κ

2

∫
u1<u2

(v′)2dx+

∫
u1≥u2

R(x, v)dx+

∫
u1<u2

R(x, v)dx,

for v = u1, u2, u1 ∧ u2, u1 ∨ u2. Then, it just consists in checking that equation
(18) holds. At this point, since F̃q(u1) = F̃q(u2) (because u1, u2 are minimisers)

and F̃q(u1 ∧ u2) = F̃q(u1 ∨ v2) (thanks to Step 1 and Step 2), equation (18) can
be rewritten as:

2F̃q(u1) = 2F̃q(u1 ∧ u2).

Second, we need to verify that the space integral of a sequence of minimisers
behaves in a continuous way as the parameter q approaches a point where the
uniqueness hold for the variational problem.

Lemma S12 Assume q ∈ (0, b) and that there exists an unique minimiser u∗
for F̃µ in H1. Consider a sequence qn s.t. qn → µ. Then,∫ 1

−1

undx→
∫ 1

−1

u∗dx,

with un ∈ argmin
{
F̃qn : u ∈ H1

}
.

Proof. We divide the proof into several steps. Some of them will involve repeat-
ing part of the direct method used to solve the variational problem considered
in Proposition S7.

14



Step 1: there exists u∞ ∈ H1 and a subsequence (nk)k s.t. unk
→ u∞

uniformly in [−1, 1] and u′nk
⇀ u′∞ weakly in L2.

Indeed, since V is continuous thanks to Lemma S9, we have:

F̃qn(un) = V (qn) → V (µ) = F̃µ(u∗).

In this way, we infer the existence of M > 0 s.t. F̃qn(un) ≤ M ∀n. At this
point, we are in the same hypothesis of the proof for Proposition S7 - Step 1.
Following that reasoning, we get the claimed statement.

Step 2: F̃µ(un) → F̃µ(u∗).

Since u∗ is a minimiser for F̃µ, we have:

F̃µ(un) ≥ F̃µ(u∗) ∀n.

To get the thesis, we fix ε > 0 and we will verify that for n large enough it holds

F̃µ(un) ≤ F̃µ(u∗) + ε.

Indeed ∣∣∣F̃µ(un)− F̃µ(u∗)
∣∣∣ ≤ ∣∣∣F̃µ(un)− F̃qn(un)

∣∣∣+ ∣∣∣F̃qn(un)− F̃µ(u∗)
∣∣∣

≤ |µ− qn|∥un∥1 + |V (qn)− V (µ)|.

Thanks to Lemma S8, the term ∥un∥1 is bounded uniformly in n. Further,
by the continuity of V we conclude that the right-hand side converges to 0 for
n→ ∞.

Step 3: u∞ = u∗.
By proof of Proposition S7 - Step 2, we know that if unk

→ u∞ uniformly
in [−1, 1] and u′nk

⇀ u′∞ weakly in L2, then

lim inf
k

F̃µ(unk
) ≥ F̃µ(u∞).

Further, since the sequence F̃µ(un) is convergent to F̃µ(u∗), we get

F̃µ(u∗) = lim
n
F̃µ(un) = lim inf

k
F̃µ(unk

) ≥ F̃µ(u∞).

Thus, by the uniqueness of the minimiser for F̃µ, we conclude u∗ = u∞.

Step 4: un → u∗ unif. in [−1, 1]. In particular, lim
n→∞

∫ 1

−1
undx =

∫ 1

−1
u∗dx.

Take a subsequence unk
of un. We can use the same reasoning of Step 1

and get that there exists a subsubsequence unkh
s.t. unkh

→ u∞ uniformly in
[−1, 1]. But with the same reasoning in Step 3, it follows u∞ = u∗. Since the
limit does not depend on nkh

, we get the claimed statement.

Remark S13 Note that the previous result is equivalent to say that V ′ is con-
tinuous, where it is defined.
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S5 Value function - semiconcavity, concavity and
non-increasing derivative

In the previous section, we introduced the value function V as a tool for charac-
terizing the uniqueness of the variational problem through its differentiability. In
this section, our objective is to establish the semiconcavity of V . Subsequently,
we will demonstrate that V is also concave. This, in turn, implies that its deriva-
tive is non-increasing wherever it is defined. The explicit expression for V ′ pro-
vided in Proposition S10 allows us to say that this last property is equivalent to

state that the map q 7→
∫ 1

−1
u∗(x)dx, where u∗ ∈ argmin

{
F̃q(u) | u ∈ H1

}
, is

non-decreasing on the set where V ′ is well-defined. This set is the complement
of a countable set.

First, we start by recalling the definition and the basic properties of semi-
concave functions. More details can be found in [4].

Definition S14 Let A ⊆ R. A function g : A → R is semiconcave if there
exists a non-decreasing upper semicontinuous function ω : R+ → R+ such that
lim

ρ→0+
ω(ρ) = 0 and

λg(q1) + (1− λ)g(q2)− g(λq1 + (1− λ)q2) ≤ λ(1− λ)|q1 − q2|ω(|q1 − q2|),

for any pair q1, q2 ∈ A, such that the segment [q1, q2] is contained in A and for
any λ ∈ [0, 1]. We call ω a modulus of semicontinuity for g in A.

As in the case of Lipschitz functions, taking the infimum of a family of semi-
concave functions, the semiconcavity is preserved, provided that the functions
have the same modulus.

Lemma S15 [4, Proposition 2.1.5] Let {gi}i∈I be a family of functions defined
on A and semiconcave with the same modulus ω. Then the function g := infi∈I gi
is also semiconcave in A with the same modulus of ω, provided g > −∞.

If a semiconcave function has a modulus satisfying a limiting property, we re-
trieve the classical notion of concavity.

Lemma S16 [4, Proposition 2.1.9] Let g : A→ R be semiconcave with A open
and with a modulus ω such that

lim
ρ→0+

ω(ρ)

ρ
= 0.

Then g is concave on all convex subsets of A.

Second, we recall some elementary properties from convex analysis. More
details can be found in [9]. Given g : A → R, whith A ⊂ R convex, we denote
by:

g′−(q) = lim
h→0−

g(q + h)− g(q)

h
, g′+(q) = lim

h→0+

g(q + h)− g(q)

h
,

respectively the left and right derivative of g in q. The following lemma sum-
marizes some basic results for a concave function.
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Lemma S17 Let g : A → R be a concave function. Then the following state-
ments hold.

(i) g is differentiable at all but at most countably many points.

(ii) g′− and g′+ are well defined and, respectively, left and right continuous.

(iii) For each q1 < q2 ∈ Int(A), we have:

g′+(q2) ≤ g′−(q2) ≤ g′+(q1) ≤ g′−(q1).

Lastly, we are able to present the main result of the section.

Proposition S18 Let b > 0 and consider the value function V : (0, b) → R.
The following statements hold.

(i) Let ω be a non-decreasing upper semicontinuous function ω : R+ → R+

such that lim
ρ→0+

ω(ρ) = 0. Then the value function is semiconcave with

modulus ω.

(ii) The value function is concave.

(iii) There exists a countable set S ⊆ (0, b) such that V is differentiable on
Sc ∩ (0, b) and its derivative V ′ is non-increasing on Sc ∩ (0, b).

Proof. (a) Since V (q) = infu∈H1 F̃q(u), thanks to Lemma S15 it is sufficient

to prove that, given u ∈ H1, the map q 7→ F̃q(u) = F̃ (q) is semiconcave. This

is true since F̃q is an affine function which respect to q and thus its modulus is
also independent of u.
(b) It is a direct application of Lemma S16.
(c) Since V is concave, it is sufficient to recall the properties expressed in Lemma
S17 and remember that V is differentiable in q if and only if V ′

−(q) = V ′
+(q),

and in that case the derivative is equal to the side derivatives.
We conclude the section highlighting how the properties of the value func-

tion’s derivative reflect on the global mean temperature of the variational prob-
lem’s minimiser.

Remark S19 By Froda’s theorem, a monotone function can have only jump
discontinuities and further they can be at most countable. Since V ′

−, V
′
+ are

monotone thanks to Lemma S17 and

V ′(q) = −
∫ 1

−1

u∗(x) dx,

where u∗ ∈ argmin
{
F̃q(u) | u ∈ H1

}
, we get that the global mean temperature,

depending on q, is monotone increasing and continuous, except for at most a
countable number of jumps. Further, the jumps coincide with the points in the
set S from Proposition S18 where the value function V is not differentiable.
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S6 Mountain Pass Theorem and existence of at
least three steady-state solutions

In this section, we are going to use the Mountain pass theorem (MPT) from
the calculus of variation to show the existence of at least three solutions to the
elliptic problem (2). First, we start by checking that the functional F̃q satisfies
the compactness condition (Palais-Smale) needed in the hypothesis of the MPT.
Second, we are going to show how numerical simulations suggest the existence
of two (local) minimum points for F̃q corresponding to uS and uW ; thus, the
MPT gives us the existence of a third critical point, that corresponds to uM
thanks to numerical simulations. Third, we are giving sufficient hypotheses in
order to prove the existence of the two local minimum points mentioned before;
the existence of these two local minimum points is again obtained using the
direct method.

Let (X, ∥·∥) be a reflexive Banach space, Φ ∈ C1(X,R) be a functional and
Φ′ denote the first variation of Φ.

Definition S20 The functional Φ satisfies the Palais-Smale condition ((PS)-
condition) if any sequence {un}n ⊂ X s.t.

Φ(un) is bounded and Φ′(un) → 0,

admits a convergent subsequence.

The previous one is a compactness condition needed in order to use the Mountain
pass theorem, which loosely speaking affirms the existence of a mountain pass
between two valleys. See [6] for more details.

Theorem S21 (Mountain pass) If Φ satisfies the (PS)-condition, Φ(0) = 0
and

∃ρ, α > 0 s.t. Φ(x) ≥ α ∀x with ∥x∥ = ρ,

∃x1 s.t. ∥x1∥ > ρ and Φ(x1) ≤ 0

then, ∃x2 s.t. Φ(x2) = c ≥ α and x2 is a stationary point for Φ. Further,

c = inf
γ∈Γ

max
u∈γ([0,1])

Φ(u)

where:
Γ = {γ ∈ C([0, 1], X) : γ(0) = 0, γ(1) = x2} .

At this point, we already know from Proposition S7 the existence of a global
minimiser for F̃q. On the other hand, numerical simulations suggest the ex-

istence of a second local minimiser. Indeed, the second variation δ2F̃q of the

functional F̃q in the point u in direction h is given by:

δ2F̃q(u, h) =

∫ 1

−1

[
4u3h−Q0(x)β

′(u)h− κh′′
]
h dx.
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We denote by:
λ1(u) ≤ λ2(u) ≤ · · · ,

the eigenvalues of the second variation

h 7→ 4u3h−Q0(x)β
′(u)h− ∂x (κ(x)h

′) .

We numerically evaluate the eigenvalues of the second variations in the three
steady-state points uS ≤ uM ≤ uW . The results, which are shown in Figure
S1, tell us that uS and uW are strict local minimum points, except at the
bifurcations points. This is because the smallest eigenvalues λ1 for uS and uW
is positive, hence the second variation in uS and uW is positive definite. From
this, we get numerical evidence for the existence of a second minimiser. At this
point, the Mountain pass theorem guarantees the existence of a third steady-
state point, that from our numerical simulations corresponds to uM , if we are
able to prove the (PS)-property for F̃q. This is what we are going to check in
the following.

Figure S1: Smallest eigenvalues λ1 for the second variation in uS , uM , uW .

Let X be a reflexive Banach space and X∗ its dual space. Given xn, x ∈ X,
denote by xn ⇀ x the weak convergence in X.

Definition S22 A : X → X∗ is of type (S)+ if any {xn}n ⊂ X s.t. xn ⇀ x
and lim sup

n→+∞
⟨A(xn), xn − x⟩ ≤ 0 imply xn → x in X.

Let X =W 1,2
n =W 1,2

n (−1, 1), i.e. the Banach space

W 1,2
n (−1, 1) =

{
u ∈W 1,2(−1, 1) : u = lim

n→∞
un in W 1,2, un ∈ C∞([−1, 1]), u′n(−1) = u′n(1) = 0

}
.

Further, let A : X → X∗ be the operator given by:

⟨A(u), v⟩ =
∫ 1

−1

u′v′ dx,
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where ⟨·, ·⟩ = X∗⟨·, ·⟩X denotes the duality pairing. We need to recall the fol-
lowing property of the operator A.

Proposition S23 ([1]) The operator A is of type (S)+.

At this point, we are able to check the Palais-Smale condition for the functional
F̃q.

Proposition S24 The functional F̃q : W
1,2
n → R satisfies the (PS)-condition.

Proof. Consider {un}n ⊆ W 1,2
n and assume there exist M > 0 and a sequence

{εn}n s.t. ∣∣∣F̃q(un)
∣∣∣ ≤M,

∥∥∥F̃ ′
q(un)

∥∥∥
(W 1,2

n )
∗ ≤ εn, (19)

where εn > 0, εn → 0 and

⟨F̃ ′
q(u), v⟩ =

∫ 1

−1

(
ψ(u)ε0σ0 − q − β̃(u)

)
v dx−⟨A(u), v⟩ :=

∫ 1

−1

f(x, u)v dx−⟨A(u), v⟩.

The proof is divided in two steps.
Step 1: un is bounded in W 1,2

n .
This first step is a corollary of the proof of Proposition S7. Indeed, in that
proof, we assume F̃q(un) ≤M and we prove the boundedness of ∥un∥∞ thanks
to (10) and the boundedness of ∥u′n∥2 thanks to (11).

Step 2: ∃ nk s.t. unk
→ u in W 1,2

n .
Up to subsequence, by the previous point we get un ⇀ u for some u ∈ W 1,2

n .
Since the embedding W 1,2

n ↪→ L2 is compact, we deduce, again up to a subse-
quence, that un → u in L2. By (19), we have:

|⟨A(un), v⟩ − ⟨f, v⟩L2 | ≤ εn ∀v ∈W 1,2
n .

So, we can choose v = un − u ∈W 1,2
n and get

|⟨A(un), u− un⟩| ≤
∣∣∣⟨F̃ ′

q(un), u− un⟩
∣∣∣+ |⟨f, u− un⟩L2 | ≤ εn + ∥f∥2∥un − u∥2.

Taking the limits on both sides of the previous inequality we get:

lim
n→∞

⟨A(un), u− un⟩ = 0.

Since the operator A is of type (S)+, we conclude un → u in W 1,2
n .

We conclude the section by giving sufficient conditions in order to have at
least three solutions for the elliptic PDE (2). We introduce

R̄ : R → R, R̄(u) =
1

2

∫ 1

−1

R(x, u)dx.

where we recall that R is such that:

F̃q(u) =
k

2
∥u′∥22 +

∫ 1

−1

R(x, u(x)) dx.
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The assumptions we need in order to get our results are basically three: (1)
the space averaged EBM with potential R̄ has (at least) two stable steady-state
solutions, (2) the viscosity κ > 0 of the 1D-EBM is sufficiently large, (3) the two
wells in the potential functional R̄ corresponding to the two minimum points
are sufficiently deep.

Theorem S25 Assume R̄ has two minimum points u1 ̸= u2, with F̃q(u1) ≥
F̃q(u2). There exist ω > 0 and f, g ∈ O(ε−1) as ε→ 0+ s.t. if ε̄ > 0 satisfies:

(i) R̄′′(ui) > f(ε̄) for i = 1, 2,

(ii) κ > g(ε̄),

(iii) ε̄ ≤ ω,

then F̃q has two local minimum points ũ1, ũ2 such that:

(a) BH1(u1, ε̄) ∩BH1(u2, ε̄) = ∅.

(b) ũi ∈ BH1(ui, ε̄), for i = 1, 2,

(c) If ∥u− u1∥H1 = ε̄, then F̃q(u) ≥ F̃q(u1) + δ, with δ = δ(ε̄) > 0.

Proof. The proof consists in repeating the direct method used to prove Propo-
sition S7 and applying it to the set H1 ∩BH1(ui, ε̄). Indeed, thanks to Lemma
S26, we can find ε̄ > 0 s.t. BH1(u1, ε̄) ∩BH1(u2, ε̄) = ∅, ũi ∈ BH1(ui, ε̄) and

∥u− ui∥H1 = ε̄ =⇒ F̃q(u)− F̃q(ui) ≥ δ > 0, δ = δ(ε̄). (20)

Now, we consider the set

Xi = H1 ∩BH1(ui, ε̄),

where we stress the fact that BH1(ui, ε̄) denotes the closed ball in H1. Con-
sidering a sequence {un,i}n, we want to show that the sublevel sets of F̃q are
compact in Xi under the following notion of convergence:

un,i
Xi−→ u∞ if and only if un,i −→ u∞ uniformly in [−1, 1] and u′n,i ⇀ u′∞ in L2.

Repeating the argument in the proof of Proposition S7, we get the existence of

u∞,i ∈ H1 s.t. un,i
Xi−→ u∞,i. Thanks to the uniform convergence, we have

∥u∞,i − ui∥2H1 = ∥u∞,i − ui∥22 +
∥∥u′∞,i

∥∥2
2
= lim

n
∥un,i − ui∥22 +

∥∥u′∞,i

∥∥2
2
.

Second, for each n it holds

ε̄2 ≥ ∥un,i − ui∥2H1 = ∥un,i − ui∥22 +
∥∥u′n,i∥∥22.
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Then, using the inferior lower-semi-continuity of the norm, we get:

ε̄2 ≥ lim inf
n

(
∥un,i − ui∥22 +

∥∥u′n,i∥∥22) = ∥u∞,i − ui∥22 + lim inf
n

∥∥u′n,i∥∥22
≥ ∥u∞,i − ui∥22

∥∥u′∞,i

∥∥2
2
= ∥u∞,i − ui∥2H1 .

Hence u∞,i ∈ BH1(ui, ε̄). Since F̃q is lower semi-continuous, we get the existence

of ũi minimum point for F̃q in Xi. But thanks to the property (20), we deduce

∥ũi − ui∥H1 < ε̄. Hence ũi are local minimum points for F̃q in H1.

Lemma S26 Assume R̄ as a minimum point u0. Then, there exists ω > 0 and
f, g ∈ O(ϵ−1) as ϵ→ 0+ s.t. if ε > 0 satisfies:

(i) R̄′′(u0) > f(ε),

(ii) κ > g(ε),

(iii) ε = ∥u− u0∥H1 ≤ ω,

then F̃q(u) ≥ F̃q(u0) + δ, with δ = δ(ε) > 0.

Proof. Let u ∈ H1 s.t. ∥u− u0∥H1 = ε. Since ε2 = ∥u− u0∥22 + ∥u′∥22, we
divide the proof in two cases according to the magnitude of ∥u− u0∥22 and ∥u′∥22.

Case 1: ∥u′∥22 ≥ ε2/2 and ∥u− u0∥22 ≤ ε2/2.
Since R(x, v) is locally Lipschitz in v uniformly in x, there exists L =

L(R, u0) > 0 and ω = ω(R, u0) > 0 s.t.

|R(x, v)−R(x, u0| ≤ L|v − u0|, |u− u0| ≤ ω, x ∈ [−1, 1].

Thus, if ∥u− u0∥∞ ≤ ∥u− u0∥H1 = ε ≤ ω, it holds∫ 1

−1

|R(x, u(x)−R(x, u0)|dx ≤ L∥u− u0∥1 ≤
√
2L∥u− u0∥2 ≤ Lε

Using the previous inequality and the bound on ∥u′∥22, we have

F̃q(u)− F̃q(u0) ≥ −
∣∣∣∣∫ 1

−1

R(x, u(x))−R(x, u0) dx

∣∣∣∣+ k

2
∥u′∥22 ≥ −Lε+ κ

ε2

4
,

and thus g(ε) := 4L
ε .

Case 2: ∥u′∥22 ≤ ε2/2 and ∥u− u0∥22 ≥ ε2/2.

Let’s consider ū = 1
2

∫ 1

−1
u(x)dx. We start by pointing out two useful in-

equalities. First

|ū− u0| =
∣∣∣∣12
∫ 1

−1

u(x)dx− u0

∣∣∣∣ = ∣∣∣∣12
∫ 1

−1

u(x)− u0dx

∣∣∣∣ ≤ ∥u− u0∥∞ (21)
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Second, for each x ∈ [−1, 1], it holds:

|u(x)− ū| =
∣∣∣∣12
∫ 1

−1

(u(x)− u(y)) dx

∣∣∣∣ ≤ 1

2
∥u′∥2 ·

∫ 1

−1

|x− y|1/2dy ≤
√
2∥u′∥2,

(22)
where the first inequality follows from the Holder properties of the Sobolev space
H1. At this point, the estimate on the value of the functional at u can be done
considering

F̃q(u)− F̃q(u0) ≥
∫ 1

−1

R(x, u(x))−R(x, u0)dx

and using a Taylor expansion for R. Indeed,

R(x, u(x)) = R(x, u0)+Ru(x, u0)(u(x)−u0)+Ruu(x, u0)
(u(x)− u0)

2

2
+O(∥u− u0∥3∞).

Performing the decomposition

u(x)− u0 = (u(x)− ū) + (ū− u0) ,

we observe that:∫ 1

−1

Ru(x, u0)(ū− u0)dx = (ū− u0)

∫ 1

−1

Ru(x, u0)dx = (ū− u0)2R̄′(u0) = 0

and thus∫ 1

−1

R(x, u(x))−R(x, u0)dx =

∫ 1

−1

Ru(x, u0)(u(x)− ū)dx

+

∫ 1

−1

Ruu(x, u0)
(u(x)− u0)

2

2
dx+O(∥u− u0∥3∞)

(23)

The absolute value of the first term on the right-hand side can be bounded
thanks to (22) and Holder’s inequality. Indeed∣∣∣∣∫ 1

−1

Ru(x, u0)(u(x)− ū)dx

∣∣∣∣ ≤ ∥Ru(·, u0)∥∞∥u− ū∥1 ≤ 2
√
2∥Ru(·, u0)∥∞∥u′∥2

≤ 2∥Ru(·, u0)∥∞ε.

Now, need to estimate the second term on the RHS of (23). Adding and sub-
tracting R̄′′(u0), we have:∫ 1

−1

Ruu(x, u0)
(u(x)− u0)

2

2
dx =

1

2

∫ 1

−1

R̄′′(u0)(u− u0)
2dx

+
1

2

∫ 1

−1

(
Ruu(x, u0)− R̄′′(u0)

)
(u− u0)

2dx.

(24)
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The first term on the RHS is large thanks to the central assumption of Case 2.
In fact

1

2

∫ 1

−1

R̄′′(u0)(u− u0)
2dx =

R̄′′(u0)

2
∥u− u0∥22 ≥ R̄′′(u0)

ε2

4
.

The absolute value of the second term on the RHS of (24) can be bounded using
Holder’s inequality as follows:∣∣∣∣12
∫ 1

−1

(
Ruu(x, u0)− R̄′′(u0)

)
(u− u0)

2dx

∣∣∣∣ ≤ 1

2

∥∥R̄′′(u0)−Ruu(·, u0)
∥∥
∞∥u− u0∥22

≤
∥∥R̄′′(u0)−Ruu(·, u0)

∥∥
∞
ε2

2
.

Summing up, we have shown

F̃q(u)− F̃q(u0) ≥ −2ε∥Ru(·, u0)∥∞ +
ε2

4
R̄′′(u0)−

ε2

2

∥∥∥∥R̄′′(u0)−
ε2

2
Ruu(·, u0)

∥∥∥∥
∞

+O(ε3),

=
ε2

2
R̄′′(u0) + f1(ε) =: δ(ε)

with f1 ∈ O(ε), f1 negative for small ε and

f(ε) := − 2

ε2
f1(ε) ∈ O(ε−1).

In conclusion, applying the MPT we get the following result.

Corollary S27 If the hypothesis of Theorem S25 are satisfied, then the elliptic
problem (2) has at least three solutions.
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