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Abstract. Correlation does not necessarily imply causation, and this is why causal methods have been devel-
oped to try to disentangle true causal links from spurious relationships. In our study, we use two causal methods,
namely, the Liang–Kleeman information flow (LKIF) and the Peter and Clark momentary conditional indepen-
dence (PCMCI) algorithm, and we apply them to four different artificial models of increasing complexity and one
real-world case study based on climate indices in the Atlantic and Pacific regions. We show that both methods
are superior to the classical correlation analysis, especially in removing spurious links. LKIF and PCMCI dis-
play some strengths and weaknesses for the three simplest models, with LKIF performing better with a smaller
number of variables and with PCMCI being best with a larger number of variables. Detecting causal links from
the fourth model is more challenging as the system is nonlinear and chaotic. For the real-world case study with
climate indices, both methods present some similarities and differences at monthly timescale. One of the key
differences is that LKIF identifies the Arctic Oscillation (AO) as the largest driver, while the El Niño–Southern
Oscillation (ENSO) is the main influencing variable for PCMCI. More research is needed to confirm these links,
in particular including nonlinear causal methods.

1 Introduction

One of the most commonly used methodologies to identify
potential relationships between variables in climate research
is correlation, with or without a lag (or time delay). For
example, Bishop et al. (2017) used an approach based on
lead–lag correlations between sea-surface temperature (SST)
and turbulent heat flux to discriminate between atmospheric-
driven and ocean-led variability using both a stochastic en-
ergy balance model and satellite observations at monthly
timescale. In another study, Docquier et al. (2019) found a

systematic large anticorrelation between Arctic sea-ice area
and northward ocean heat transport in climate models at dif-
ferent resolutions, which confirmed previous observational
findings showing that the latter is a driver of the former
(Årthun et al., 2012). Another example is the modeling anal-
ysis from Small et al. (2020), who used a regression analy-
sis to quantify the dynamical and thermodynamical contribu-
tions to the ocean heat content tendency at the global scale.

However, such correlation (or linear regression) ap-
proaches, despite being useful for identifying potential re-
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lationships between variables, do not imply causation. A sig-
nificant correlation simply means that there is a relationship,
or synchronous behavior, between two variables without ex-
plicitly confirming a causal link between the two. Correla-
tion suffers from five key limitations. First, a significant cor-
relation between variables could appear by chance (that is
called “random coincidence”). Second, the correlation does
not allow us to identify the direction of the potential causal
link, so this approach supposes an a priori knowledge of pro-
cesses at play. The problem of directional dependence is of-
ten coped with by using lagged correlation or regression,
but this method is susceptible to overstate causal relation-
ships when one variable has significant memory (McGraw
and Barnes, 2018). Third, there could be an external (hid-
den) variable (sometimes referred to as a “confounding vari-
able”) that influences two correlated variables, as demon-
strated in Sugihara et al. (2012), and a simple correlation
analysis would not allow for disentangling these causal links.
Fourth, linear correlation cannot identify possible nonlinear
relationships. Lastly, the correlation is computed for pairs of
variables and does not consider multivariate frameworks.

Hence, causal methods prove to be very useful. Runge
et al. (2019a) provide a detailed review of selected causal
inference frameworks applied to Earth system sciences.
Some of these methods are briefly described hereafter.
Granger causality has been the first formalization of causal-
ity to time series and is based on autoregressive model-
ing (Granger, 1969). It has been used in a series of cli-
mate studies, including several analyses focusing on air–sea
interactions (Mosedale et al., 2006; Tirabassi et al., 2015;
Bach et al., 2019). Convergent cross mapping (CCM) at-
tempts to uncover causal relationships based on Takens’
theorem and nonlinear state-space reconstruction (Sugihara
et al., 2012). For example, CCM has been used for analyzing
the temperature–CO2 relationship over glacial–interglacial
timescales (van Nes et al., 2015), the causal dependencies
between different ocean basins (Vannitsem and Ekelmans,
2018), and the stratosphere–troposphere coupling (Huang
et al., 2020). Transfer entropy (Schreiber, 2000) and con-
ditional mutual information (CMI; Paluš et al., 2001; Paluš
and Vejmelka, 2007) are also two widely used causal meth-
ods. Silini et al. (2022) have used a computationally fast al-
ternative of transfer entropy, called pseudo-transfer entropy,
to quantify causal dependencies between 13 climate indices
representing large-scale climate patterns.

The Peter and Clark momentary conditional independence
(PCMCI) method is a causal discovery method based on the
Peter and Clark (PC) algorithm (Spirtes et al., 2001), com-
bined with the momentary conditional independence (MCI)
approach (Runge et al., 2019b). It is based on the system-
atic exploitation of partial correlations, conditional mutual
information, or any other conditional dependency measure.
PCMCI has been used, for example, to analyze Arctic drivers
of midlatitude winter circulation (Kretschmer et al., 2016),
relationships between Niño3.4 and extratropical air temper-

ature over British Columbia (Runge et al., 2019b), tropical
and midlatitude drivers of the Indian summer monsoon (Di
Capua et al., 2020a), predictors for seasonal Atlantic hur-
ricane activity (Pfleiderer et al., 2020), and interactions be-
tween tropical convection and midlatitude circulation (Di Ca-
pua et al., 2020b).

The Liang–Kleeman information flow (LKIF; Liang and
Kleeman, 2005) is based on the rate of information trans-
fer in dynamical systems and has been rigorously derived
from the propagation of information entropy between vari-
ables (Liang, 2016). This method has been applied to sev-
eral climate studies, including the El Niño–Indian Ocean
Dipole (IOD) link (Liang, 2014), the relationship between
carbon dioxide and air temperature (Jiang et al., 2019; Ha-
gan et al., 2022), dynamical dependencies between a set of
observables and the Antarctic surface mass balance (Vannit-
sem et al., 2019), identification of potential drivers of Arctic
sea-ice changes (Docquier et al., 2022), causal links between
climate indices in the North Pacific and Atlantic regions and
local Belgian time series (Vannitsem and Liang, 2022), and
ocean–atmosphere interactions (Docquier et al., 2023).

Commonly, each study focuses on only one causal method.
However, contradictory results might appear when using
different causal methods, and it is thus important to com-
pare them. Several studies have investigated differences be-
tween causal methods. One of the most comprehensive stud-
ies in this respect in the recent past is the intercomparison
of Krakovská et al. (2018), in which the authors compared
six causal methods, namely, Granger causality, two extended
versions of Granger causality, CMI, CCM, and predictabil-
ity improvement (Krakovská and Hanzely, 2016). They used
seven artificial datasets based on coupled systems. A key out-
come of their analysis is that there is no single best causal
method as results depend on the intrinsic characteristics of
the used dataset. Krakovská et al. (2018) found that for sim-
ple autoregressive models, Granger causality and its exten-
sions were the best tools to identify the right causal links,
while CCM and predictability improvement failed. On the
contrary, for more complex systems, Granger causality and
its extensions failed, while the remaining methods were more
successful, although they differed considerably in their abil-
ity to detect the presence and direction of coupling. Paluš
et al. (2018) showed that the Granger causality principle, that
the cause precedes the effect, was violated in coupled chaotic
dynamical systems using CMI, CCM, and predictability im-
provement. Coufal et al. (2017) used CMI and CCM and
showed that the detection of coupling delays in coupled non-
linear dynamical systems was challenging. Manshour et al.
(2021) compared CMI with LKIF and interventional causal-
ity (Baldovin et al., 2020), and they confirmed a robust influ-
ence of solar wind on geomagnetic indices using all causal
methods. An advantage of interventional causality compared
to other causal methods is the detection of indirect causal
links (i.e., if x influences y and y drives z, then the indirect
influence from x to z will be recovered).
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The main goal of this study is to provide a detailed com-
parison between two independent causal methods, namely,
LKIF and PCMCI, which have been widely used in the
context of the JPI-Climate/JPI-Oceans ROADMAP project
(Role of ocean dynamics and Ocean-Atmosphere inter-
actions in Driving cliMAte variations and future Projec-
tions of impact-relevant extreme events; https://jpi-climate.
eu/project/roadmap/, last access: 21 February 2024) and have
never been methodically compared together before. In this
analysis, we use these two methods in the same framework
to allow for a fair comparison. We also compute the corre-
lation coefficient to show the superiority of causal methods
compared to a classical correlation analysis. In particular, we
use four different artificial models with an increasing level of
complexity and one real-world case study based on climate
indices. These different datasets are described in Sect. 2, and
our two causal methods are presented in Sect. 3. Results of
our comparison are presented in Sect. 4, and a discussion is
provided in Sect. 5, before concluding in Sect. 6.

2 Data

In order to apply the two causal methods described below
(Sect. 3), we use three different stochastic models (includ-
ing two linear models and one nonlinear model), one deter-
ministic nonlinear model (Lorenz, 1963), and one real-world
case study using climate indices in the Atlantic and Pacific
regions. This allows us to test LKIF and PCMCI with an in-
creasing level of complexity (from a simple two-dimensional
model to a real-world case study).

2.1 Two-dimensional (2D) model

We first consider a two-dimensional (2D) stochastic linear
model (Eq. 12 in Liang, 2014):

dx1 = (−x1+ 0.5x2) dt + 0.1dw1,

dx2 =−x2 dt + 0.1 dw2, (1)

where x1 and x2 are the two variables, t is time, and w1 and
w2 represent standard Wiener processes in x1 and x2, respec-
tively (wk,t+1t −wk,t ∼

√
1t N (0,1), with N (0,1) being a

normal distribution with zero mean and unit variance). In this
simple system, x2 drives x1 but not vice versa (Fig. 1f).

We solve this system with the Euler–Maruyama method
using a time step 1t = 0.001 and 1000 unit times, which
brings 106 time steps. We initialize the system with x1(0)= 1
and x2(0)= 2. For our analysis, we discard the first 10 unit
times (first 104 time steps), which is considered to be our
spin-up period.

2.2 Six-dimensional (6D) model

Then, we investigate a six-dimensional (6D) stochastic linear
vector autoregressive (VAR) model with only one lag (Eq. 21

in Liang, 2021):

x1,t+1 = 0.1− 0.6x3,t + u1,t+1,

x2,t+1 = 0.7− 0.5x1,t + 0.8x6,t + u2,t+1,

x3,t+1 = 0.5+ 0.7x2,t + u3,t+1,

x4,t+1 = 0.2+ 0.7x4,t + 0.4x5,t + u4,t+1,

x5,t+1 = 0.8+ 0.2x4,t + 0.7x6,t + u5,t+1,

x6,t+1 = 0.3− 0.5x6,t + u6,t+1, (2)

where xk (k = 1, . . .,6) represents the six variables, and uk
represents normal random noises in these six variables (uk ∼
N (0,1)). By construction, we have two directed cycles, i.e.,
x1→ x2→ x3→ x1 and x4→ x5→ x4, and these cycles
are driven by a common cause, i.e., x6, which drives both
x2 and x5 (Fig. 2d).

We solve this system using 106 time steps (1t = 1). For
our analysis, we discard the first 104 time steps.

2.3 Nine-dimensional (9D) model

The next model is a nine-dimensional (9D) stochastic non-
linear VAR system with a maximum of four lags (Eq. 17 in
Subramaniyam et al., 2021):

x1,t = 3.4x1,t−1 (1− x2
1,t−1)e−x

2
1,t−1 + 2.5x2,t−4

+ 1.8x3,t−2+ 1.5x4,t−2+ 0.4u1,t ,

x2,t = 3.4x2,t−1 (1− x2
2,t−1)e−x

2
2,t−1 + 0.4u2,t ,

x3,t = 3.4x3,t−1 (1− x2
3,t−1)e−x

2
3,t−1 + 0.25x1,t−1

+ 0.4u3,t ,

x4,t = 3.4x4,t−1 (1− x2
4,t−1)e−x

2
4,t−1 + 1.5x5,t−3

+ 1.2x6,t−1+ 0.4u4,t ,

x5,t = 3.4x5,t−1 (1− x2
5,t−1)e−x

2
5,t−1 + 0.4u5,t ,

x6,t = 3.4x6,t−1 (1− x2
6,t−1)e−x

2
6,t−1 + 1.5x7,t−3

+ 0.4u6,t ,

x7,t = 3.4x7,t−1 (1− x2
7,t−1)e−x

2
7,t−1 + 0.4u7,t ,

x8,t = 3.4x8,t−1 (1− x2
8,t−1)e−x

2
8,t−1 + 0.8x7,t−1

+ 0.4u8,t ,

x9,t = 3.4x9,t−1 (1− x2
9,t−1)e−x

2
9,t−1 + 1.8x7,t−1

+ 0.4u9,t , (3)

where xk (k = 1, . . .,9) represents the nine variables, e is
the exponential function, and uk represents normal random
noises in these nine variables (uk ∼N (0,1)). This system
contains a directed chain x7→ x6→ x4→ x1→ x3 and a
fork, i.e., x7 driving x6, x8, and x9. There are also two collid-
ers, with x5 and x6 both affecting x4 on the one hand, and x2,
x3, and x4 driving x1 on the other hand (Fig. 4d). A particu-
larity of this system compared to the 6D model (Eq. 2) is the
presence of lags larger than one.
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We solve this system using 106 time steps (1t = 1). For
our analysis, we discard the first 104 time steps.

2.4 Lorenz (1963) model

We also use the three-dimensional (3D) Lorenz (1963)
model, which is deterministic, nonlinear, and non-periodic;
it is a simplified model representing atmospheric convection:

dx
dt
= 10 (y− x),

dy
dt
= 28x− y− x z,

dz
dt
= x y−

8
3
z, (4)

where x, y, and z are the three variables and are proportional
to the convection intensity, the horizontal temperature varia-
tion and the vertical temperature variation, respectively. We
use the standard parameters of the model.

We solve the Lorenz (1963) model using the fourth-order
Runge–Kutta scheme, a time step 1t = 0.01, and 1000 unit
times, which brings 105 time steps. We initialize the system
with x(0)= 0, y(0)= 1, and z(0)= 0. For our analysis, we
discard the first 100 unit times (first 104 time steps; the spin-
up period).

2.5 Climate indices

Finally, we use eight different regional climate indices affect-
ing the Atlantic and Pacific regions of especially the Northern
Hemisphere, following a similar approach as Vannitsem and
Liang (2022) and Silini et al. (2022). Four of these indices are
based on atmospheric variables and four of them are based
on oceanic ones. Time series of these indices were retrieved
from the Physical Sciences Laboratory (PSL) of the National
Oceanic and Atmospheric Administration (NOAA; https:
//psl.noaa.gov/data/climateindices/list/, last access: 20 Jan-
uary 2023). We use monthly values from January 1950 to De-
cember 2021 (864 months), and we remove the linear trend
in order to get approximately stationary time series, which is
a requirement for applying our causal methods.

The four atmospheric indices are computed from the Na-
tional Centers for Environmental Prediction/National Center
for Atmospheric Research (NCEP/NCAR) reanalysis:

– The Pacific–North American (PNA) index is obtained
by projecting the daily 500 hPa geopotential height
anomalies over the Northern Hemisphere (0–90° N)
onto the PNA loading pattern (second leading mode
of rotated empirical orthogonal function (EOF) anal-
ysis of monthly mean 500 hPa height anomalies dur-
ing the 1950–2000 period). A positive PNA features
above-average heights in the vicinity of Hawaii and over
the intermountain region of North America and below-
average heights south of the Aleutian Islands and over

the southeastern United States. A negative PNA reflects
an opposite pattern of height anomalies over these re-
gions.

– The North Atlantic Oscillation (NAO) index is based
on the difference in sea-level pressure between the sub-
tropical high (Azores) and the subpolar low (Iceland).
A positive NAO reflects above-normal pressure over the
central North Atlantic, the eastern United States, and
western Europe and below-normal pressure across high
latitudes of the North Atlantic. A negative NAO features
an opposite pattern of pressure anomalies over these re-
gions.

– The Arctic Oscillation (AO), or Northern Annular Mode
(NAM), index is constructed by projecting the 1000 hPa
geopotential height anomalies poleward of 20° N onto
the leading EOF (using monthly mean 1000 hPa height
anomalies from 1979 to 2000). When the AO is in its
positive phase, strong westerlies act to confine colder
air across polar regions. When the AO is negative, the
westerly jet weakens and can become more meandering.

– The Quasi-Biennial Oscillation (QBO) index is calcu-
lated from the zonal average of the 30 hPa zonal wind
at the Equator. It is the most predictable mode of at-
mospheric variability that is not linked to changing sea-
sons, with easterly and westerly winds alternating each
13 months.

Below are the four indices based on ocean conditions:

– The Atlantic Multidecadal Oscillation (AMO) index is
computed based on version 2 of the Kaplan et al. (1998)
extended SST gridded dataset (which uses UK Met Of-
fice SST data) averaged over the North Atlantic (0–
70° N; unsmoothed time series) and following the pro-
cedure described in Enfield et al. (2001). Cool and warm
phases of the AMO may alternate every 20–40 years.

– The Pacific Decadal Oscillation (PDO) index is ob-
tained by projecting the Pacific SST anomalies from
version 5 of the NOAA Extended Reconstructed SST
(ERSST) dataset onto the dominant EOF from 20 to
60° N. The PDO is positive when SST is anomalously
cold in the interior North Pacific and warm along the
eastern Pacific Ocean. The PDO is negative when the
climate anomaly patterns are reversed.

– The Tropical North Atlantic (TNA) index is computed
based on SST anomalies from the Hadley Centre Global
Sea Ice and Sea Surface Temperature (HadISST) and
NOAA Optimal Interpolation (OI) datasets averaged in
the Tropical North Atlantic (5.5–23.5° N; 57.5–15° W),
based on Enfield et al. (1999).

– The Niño3.4 index is based on standardized SST
anomalies (using ERSST v5) averaged over the eastern
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tropical Pacific (5° S–5° N; 170–120° W). The Niño3.4
index is in its warm phase when SST anomaly exceeds
0.5 °C, and it is in its cold phase when SST anomaly is
below −0.5 °C. For the remainder of the paper, we will
refer to this index as “ENSO” (El Niño–Southern Oscil-
lation), as it is closely associated with this oscillation.

3 Methods

In this section, we describe the two causal methods used
in this study, namely, the Liang–Kleeman information flow
(LKIF; Sect. 3.1) and the Peter and Clark momentary condi-
tional independence (PCMCI; Sect. 3.2) methods. We com-
pare our results to the more traditional Pearson correlation
coefficient, which is the covariance between two variables
divided by the product of their standard deviations. We also
explain below the main differences between the two methods
(Sect. 3.3) and provide details about the comparison diagnos-
tics used in our study (Sect. 3.4).

3.1 Liang–Kleeman information flow (LKIF)

The LKIF method has been developed by Liang and Klee-
man (2005). It has been first applied in bivariate cases (Liang
and Kleeman, 2005; Liang, 2014) and has subsequently been
extended to multivariate cases (Liang, 2016, 2021). In our
study, we use the multivariate formulation of LKIF. In this
framework, causal inference is based on information flow,
which has been recognized as a real physical notion, i.e., for-
mulated from first principles of information theory (Liang,
2016).

Under the assumption of a linear model with additive
noise, the maximum likelihood estimate of the information
flow reads as follows (Liang, 2021):

Tj→i =
1

detC
·

d∑
k=1

1jkCk,di ·
Cij

Cii
, (5)

where Tj→i is the absolute rate of information transfer from
variable xj to variable xi , C is the covariance matrix, d
is the number of variables, 1jk represents the cofactors of
C (1jk = (−1)j+kMjk , where Mjk represents the minors),
Ck,di is the sample covariance between all xk and the Euler
forward difference approximation of dxi/dt , Cij is the sam-
ple covariance between xi and xj , and Cii is the sample vari-
ance of xi . Note that a nonlinear version of LKIF has recently
been developed but will not be used in this study (Pires et al.,
2024).

To assess the importance of the different cause–effect rela-
tionships, we compute the relative rate of information trans-
fer τj→i from variable xj to variable xi following the nor-
malization procedure of Liang (2015, 2021):

τj→i =
Tj→i

Zi
, (6)

where Zi is the normalizer, computed as follows:

Zi =

d∑
k=1

|Tk→i | +

∣∣∣∣∣dH noise
i

dt

∣∣∣∣∣ , (7)

where the first term on the right-hand side represents the in-
formation flowing from all the xk to xi (including the influ-
ence of xi on itself), and the last term is the effect of noise
(taking stochastic effects into account), computed following
Liang (2015, 2021).

In the following, we will only use the relative rate of in-
formation transfer τ (expressed in %). When τj→i is sig-
nificantly different from 0, xj has an influence on xi ; when
τj→i = 0, there is no influence. The absolute value of τ in-
dicates the strength of the causal influence. A positive (nega-
tive) value is indicative of an increase (decrease) in variabil-
ity of the target variable xi due to the causal influence of the
source xj . However, we will mainly use the absolute value
of τ in this study and will only briefly discuss the sign in
the case of the Lorenz (1963) model (Fig. 7). Statistical sig-
nificance of τj→i is computed via bootstrap resampling with
replacement of all terms included in Eqs. (5)–(7) and using
a significance level α = 5%. The number of bootstrap real-
izations varies depending on the case study: 100 for the 2D
and Lorenz (1963) models, 300 for the 6D and 9D models,
and 1000 for the real-world case study. This number is cho-
sen sufficiently large to achieve convergence of results. The
relative rate of information transfer τ is computed for each
bootstrap realization, and the error in τ , which we refer to as
ετ , is calculated as the standard deviation across all τ boot-
strapped values. If the confidence interval τ ± 1.96ετ does
not contain the zero value, then τ is significant at the 5 %
level; otherwise, it is not significant.

3.2 Peter and Clark momentary conditional
independence (PCMCI)

The PCMCI method is a causal discovery method based on
the Peter and Clark (PC) algorithm (Spirtes et al., 2001),
combined with the momentary conditional independence
(MCI) approach (Runge et al., 2019b). Given a set of
univariate time series (called “actors”), PCMCI estimates
their causal graph representing the conditional dependen-
cies among the time-lagged actors. In its linear application,
PCMCI uses partial correlations to iteratively test conditional
dependencies in a set of actors, distinguishing between true
causal links and spurious links arising from autocorrelation
effects, indirect links, or common drivers.

Note that the term “causal” rests upon a set of assump-
tions, which are described in Runge (2018). In general, the
causal graph should represent a stationary (stable in time) set
of causal links, in which causality is determined with a lag l
of at least one time step, and it is only true among the specific
set of analyzed actors. The PCMCI algorithm is composed of
two steps: the PC step and the MCI step. Each step is briefly
described in this section.
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In the first step, or PC step, for each actor in the (example)
set of actors P , the algorithm identifies the initial set of par-
ents P 0 based only on the simple correlation between each
actor and all other actors up to a maximum lag lmax. Let us
assume that with lmax = 3, P = {A,B,C,D,E} and P 0

A =

{Al=−1,Bl=−1,Dl=−2,Cl=−2,El=−1}, where actors A to E
in the set of parents of A, P 0

A, are ordered based on the ab-
solute value of their correlation coefficient with Al=0. Then,
in the first iteration of the algorithm, the partial correlation
ρ between Al=0 and each actor in P 0

A is calculated by con-
ditioning on an additional actor taken from P 0

A. For exam-
ple, ρ (Al=0, Al=−1|Bl=−1) = ρ (Res(Al=0), Res(Al=−1)),
where Res(Al=0) and Res(Al=−1) are the residuals of Al=0
and Al=−1 after removing the linear influence of Bl=−1. The
partial correlation is computed for each actor in P 0

A by condi-
tioning (only once) on the strongest available actor. This pro-
cess is called “iterative conditioning”. At the end of this first
iteration, the set of parents of A is updated. Let us assume
that in our example P 1

A = {Al=−1,Bl=−1,Cl=−2,El=−1},
then in the second iteration the set of parents P 2

A will be iden-
tified by conditioning on the first two strongest actors, e.g.,
ρ (Al=0, Al=−1|Bl=−1, Cl=−2). The PC step ends when the
number of actors on which to condition equals the numbers
of actors contained in P nA. Then, the same computation is re-
peated for each actor contained in P , until each actor has its
own set of parents Pn.

In the second step, or MCI step, the partial correlation
between each possible pair of actors is calculated a second
time by regressing once on the combined set of parents.
If we assume that P 4

A = {Al=−1,Cl=−2,El=−1} and P 3
B =

{Bl=−1,Al=−2,Dl=−1}, then a causal link betweenAl=0 and
Bl=−1 is detected if their partial correlation conditioned on
their joint set of parents is significant for a certain threshold
α. In this example, ρ (Al=0, Bl=−1|Al=−1, Cl=−2, El=−1,
Bl=−2, Al=−3,Dl=−2) is given (note that the lag of P 3

B is in-
creased accordingly). At the end of the MCI step, each actor
will have its own set of causal parents, and the causal effect
of each link can be computed.

The strength of a causal link from variable xj at time t − l
to variable xi at time t , noted xj,t−l→ xi,t , is expressed in
terms of the path coefficient β, which measures the change
in the expectation of xi,t following an increase of xj,t−l by
1 standard deviation, keeping all other parents of xi,t con-
stant. The linear coefficients β are calculated as follows:

xi,t =

N∑
k=1

βkxj,k + ηxi , (8)

where xj,k ∈ P {xi} (k =1,...,N ) is the set of parents of xi,t
(N is the number of parents), and ηxi is the residual of xi,t .
Note that in order to allow for a meaningful comparison with
correlation and LKIF based on a linear model, we use here
the PCMCI algorithm along with a linear similarity measure
(partial correlation). In principle, PCMCI could also be com-
bined with other statistical association measures that allow

for conditioning on the effects of any third variable (like
CMI), the study of which is however beyond the scope of
the present work. The β coefficients are only calculated for
causal links that are significant at the 5 % level, where each
p value obtained from the MCI step is corrected using the
Benjamini–Hochberg false discovery rate correction method
(Benjamini and Hochberg, 1995).

3.3 Differences between the two methods

Before investigating results from the two causal methods, it
is important to highlight the main differences between the
two methods, which are summarized in Table 1. LKIF is di-
rectly derived from the propagation of information entropy
(Liang, 2016) and quantifies the rate of information transfer
from one variable to the other (Liang, 2014, 2021). PCMCI,
on the other hand, is a causal network algorithm starting with
a fully connected graph from which non-causal links are iter-
atively removed based on conditioning sets of growing car-
dinality (Spirtes et al., 2001; Runge et al., 2019b). The actual
underlying PCMCI measure for directional statistical depen-
dence is partial correlations, including the effect of possible
causal parents. LKIF does not systematically test the latter
but uses a different approach, in which the statistical depen-
dence is measured via the information flowing from one vari-
able to the other.

The metric used by LKIF is the rate of information transfer
from variable xj to variable xi and can be expressed either in
natural unit of information (nat) per unit time (for T ; Eq. 5)
or in percent (for τ ; Eq. 6). For PCMCI, the path coefficient
β (Eq. 8) measures the expected change in xi at time t (in
units of standard deviation) if xj is perturbed at time t− l by
1 standard deviation. While time lags must be incorporated
with PCMCI, LKIF has not been designed to work with such
lags by default, although they can be used in principle (Liang
et al., 2021). To this end, we can shift in time the time series
of the leading variable and recompute LKIF based on the
lagged time series.

While for both methods the strength of the metric, in abso-
lute value, indicates how strongly two variables are causally
linked (i.e., the larger |τ | and |β|, the larger the causal link),
the sign has a different meaning. For LKIF, a positive (neg-
ative) value of τj→i means that the variability of the source
xj increases (decreases) the variability of the target xi . For
PCMCI, the sign of βj→i is closely linked to the correlation
between xj and xi (i.e., a positive (negative) value means that
an increase in xj leads to an increase (a decrease) in xi in the
subsequent time step).

3.4 Comparison diagnostics

Since correct causal links are known for the three first artifi-
cial models (2D, 6D, and 9D models), we can check the per-
formance of the two causal methods, as well as the correla-
tion coefficient, in identifying the ground truth. The diagnos-
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Table 1. Main differences between the two causal methods used in this study.

LKIF PCMCI

Full name Liang–Kleeman information flow Peter and Clark momentary conditional independence

Type of method Information flow Causal discovery algorithm

Use of time lags Not by default Always

Use of iterative conditioning No Yes

Metric Rate of information transfer Path coefficient β
T (absolute) or τ (relative)

Unit T : nat per unit time; τ : % No unit

Sign meaning > 0 : xj variability→ xi variability ↑ > 0 : xj ↑→ xi ↑

< 0 : xj variability→ xi variability ↓ < 0 : xj ↑→ xi ↓

Key references Liang (2014, 2021) Spirtes et al. (2001); Runge et al. (2019b)

tics presented here are not computed for the Lorenz (1963)
model and the real-world case study, as no exact solution
exists for these two cases. We compute true-positive, true-
negative, false-positive, and false-negative rates. The true-
positive rate is the percentage of causal links correctly de-
tected by the method among the total number of ground truth
causal links. The true-negative rate is the percentage of non-
causal links correctly detected by the method among the total
number of ground truth non-causal links. The false-positive
rate represents the percentage of cases where the method in-
correctly detects a causal link among the total number of
ground truth non-causal links. The false-negative rate rep-
resents the percentage of cases where the method fails to find
an existing causal link among the total number of ground
truth causal links.

To summarize the results from the confusion matrix, we
also compute the φ coefficient based on true positives (de-
noted TP), true negatives (denoted TN), false positives (de-
noted FP), and false negatives (denoted FN):

φ =
TP×TN−FP×FN

√
(TP+FP)(TP+FN)(TN+FP)(TN+FN)

. (9)

The denominator is set to 1 if any of the four sums in the
denominator is equal to 0, in which case φ = 0. A value of
1 represents a perfect prediction of ground truth causal and
non-causal links by the method, while a value of 0 means that
the result is not better than a random prediction. These diag-
nostics are presented in Table 2 and discussed in Sect. 5.1.

4 Results

We provide results from the four artificial models and the
real-world case study hereafter. Table 2 provides a summary
of results for the three first models and will be discussed in
Sect. 5.1.

4.1 2D model

For the 2D model, the numerical value of the correlation be-
tween x1 and x2 is significantly positive (R = 0.23; Fig. 1a)
and is similar to the analytical value (Fig. 1d), but it does not
provide any indication on the direction of influence.

LKIF can accurately retrieve the correct causal link, i.e.,
from x2 to x1, as well as the absence of influence in the
reverse direction (Fig. 1b), as was already demonstrated in
Liang (2014). In addition, the numerical estimate of the rate
of information transfer (|τ2→1| = 5.72%; Fig. 1b) is very
close to the analytical solution (|τ2→1| = 5.56%; Fig. 1e),
which provides confidence in the LKIF results found for this
simple system.

PCMCI only captures the self-influences of x1 and x2 but
is not able to capture any significant causal influence be-
tween x1 and x2 with the original time step (i.e.,1t = 0.001)
(Fig. 1c). This missed detection is partly due to the fact that
PCMCI responds better for discrete maps with finite time
steps. Indeed, the time step for discretization is too small,
and if we recompute causal links with PCMCI taking every
100 time steps (1t = 0.1), we can recover the influence from
x2 to x1, although the value of β is relatively small (Fig. 1c).

This example shows that LKIF performs well for such
a very simple 2D system, while PCMCI struggles with the
original time step. In particular, the serial dependency in this
particular model might overcast the mutual dependency for
a “typical” maximum lag considered by PCMCI, which has
not been designed for such conditions.

4.2 6D model

For the 6D model, the correlations are significant for all 30
pairs of variables (excluding autocorrelations), despite rela-
tively small values for many of them (Fig. 2a). This shows
that a simple correlation analysis fails to only identify the
seven causal links that should be identified in this system
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Figure 1. Numerical results from the 2D model: (a) correlation coefficient, (b) rate of information transfer (LKIF, absolute value), and
(c) maximum path coefficient (PCMCI) when using three lags (zero to two time steps). Analytical values of (d) correlation coefficient and
(e) rate of information transfer (LKIF). (f) Correct causal links from Eq. (1). For numerical results, only significant values at the α = 5%
level are shown, and correct causal links are highlighted by black or blue contours. The dashed contour in panel (c) indicates a significant
value with a larger time step (1t = 0.1), while it is not significant with the original time step (1t = 0.001).

(Fig. 2d). The largest correlation of all pairs is between x2
and x5 (R = 0.37), but no causal link should exist between
the two variables (i.e., this is a false positive). This large cor-
relation probably appears because x6 influences both x2 and
x5 by construction (Fig. 2d) and is thus a confounding vari-
able. Correlations larger than 0.3 in absolute value appear for
the two pairs x6–x2 and x6–x5 (Fig. 2a), which confirms the
role of x6 as a confounding variable, but these correlations
do not indicate the direction of influences.

Both LKIF (Fig. 2b; no lag is used) and PCMCI (Fig. 2c;
use of four time lags) can capture the seven correct causal
links (Fig. 2d), i.e., the directed cycle x1→ x2→ x3→ x1,
the two-way causal link between x4 and x5, and the influence
of x6 on both x2 and x5. Results from PCMCI in terms of self-
influences are more accurate based on Eq. (2), as it provides
two significant self-influences, i.e., x4 and x6, while LKIF
identifies all six self-influences as significant. The latter re-
sult indicates that the LKIF method may fail at representing
the correct self-influences, while PCMCI does not.

This example shows the strength of causal methods, which
can capture the correct causal influences, while the correla-

tion is not able to provide such information and cannot iden-
tify confounding variables and the direction of causality.

4.3 9D model

For the 9D model, the correlation does a poor job at iden-
tifying correct causal influences (Fig. 3a). In particular, the
largest correlation is between x8 and x9, which is not a cor-
rect causal link by construction (Eq. 3). As for the 6D model,
this is due to the fact that x7 should influence both variables
(Fig. 4d). x7 is indeed significantly correlated to both x8 and
x9, but the causal direction is not identified by the correlation
analysis.

Using LKIF without any lag shows that the method can
detect all correct links, except x5→ x4, although only four
causal influences have a rate of information transfer |τ | larger
than 1 % (Fig. 3b). These four influences are the ones that
should appear at lag −1 (Fig. 4d, i.e., x1→ x3, x6→ x4,
x7→ x8, and x7→ x9. The method also wrongly identifies
13 causal influences, even if values of information transfer
remain small.
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Figure 2. Results from the 6D model: (a) correlation coefficient, (b) rate of information transfer (LKIF, absolute value), and (c) maximum
path coefficient (PCMCI) when using four lags (zero to three time steps). (d) Correct causal links from Eq. (2). Only significant values at the
α = 5% level are shown, and correct causal links are highlighted by black or blue contours.

The use of time lags up to l = 3 time steps with LKIF (we
use 9 variables × 4 lags = 36 variables in total) allows us
to improve results (Fig. 4b, where the maximum value of
all lags is plotted). In particular, all nine correct causal links
can now be identified with |τ |> 3%, except the influence of
x3 on x1, which is significant but has a much smaller value
(|τ | = 0.68%). Five additional causal influences are wrongly
identified by the method with lags up to 3 time steps, but with
relatively small values (|τ |< 0.4%).

Using PCMCI with lags up to l = 4 time steps also al-
lows us to correctly reproduce all causal links, except that it
wrongly identifies four additional causal influences but with

very small values (Fig. 4c). All self-influences are also cor-
rectly identified by the two methods.

This example also demonstrates the power of causal meth-
ods compared to a correlation analysis when using an appro-
priate number of lags: all expected links are correctly iden-
tified. Although some wrong causal links are identified by
both methods, the strength of the relationship remains small
for these wrong influences.

4.4 Lorenz (1963) model

The only large correlation (excluding autocorrelation) in this
system is between x and y, with R = 0.88 (Fig. 5a). The
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Figure 3. Results from the 9D model without lags: (a) correlation coefficient and (b) rate of information transfer (LKIF, absolute value).
Only significant values at the α = 5% level are shown, and correct causal links are highlighted by black or blue contours.

other correlations are very small (R =−0.01) but significant,
probably due to the length of the time series.

According to LKIF, a two-way causal link appears be-
tween x and y (Fig. 5b). This causal link is also identified
by PCMCI with lags up to l = 3 time steps (Fig. 5c). PCMCI
also identifies a significant two-way causal link between y
and z, but the value is very close to 0.

Then, we investigate whether there is a lag dependence
on the results. For the correlation and LKIF, we repeat the
computation by shifting the three variables one by one with
a lag from 0 to 1 unit time (100 time steps) with 0.1 unit time
increment (i.e., every 10 time steps). For example, we take
xt−l at lag l = 0.1 unit time and keep yt and zt at lag 0, and
we recompute the correlation and relative rate of information
transfer. Then, we take xt−l at lag l = 0.2 unit time, keeping
yt and zt at lag 0 and so on until lag l = 1 unit time. We
do the same when y leads x and z and when z drives x and
y. For PCMCI, all lags from 0 to 1 unit time with 0.01 unit
time increment (i.e., every time step) are included in the same
computation as the method is designed to work with multiple
lags by default. Results are presented in Fig. 6.

The correlation coefficient between x and y decreases ex-
ponentially with increasing lag when x leads y (Fig. 6a), and
it first increases from l = 0 to l = 0.1 unit time before de-
creasing exponentially when y leads x (Fig. 6b). No correla-
tion appears between z and any of the two other variables at
any lag (Fig. 6a–c).

The LKIF rates of information transfer from x to y and
from y to x also decrease with increasing lag between 0
and 1 unit time, but starting with a plateau of |τ | ∼ 50%

(Fig. 6d–e). This plateau lasts from l = 0 to l = 0.2 unit time
for τxt−l→yt (Fig. 6d) and from l = 0 to l = 0.4 unit time for
τyt−l→xt (Fig. 6e). No information transfer exists between z
and the two other variables at any lag (Fig. 6d–f), in agree-
ment with the absence of correlation (Fig. 6a–c).

The PCMCI path coefficients between x and y also gen-
erally decrease (in the two directions) with increasing lag,
although the decrease presents more variability than the cor-
relation and LKIF, with β = 0 at lag 0, the largest β value
when l = 0.1 unit time, and then an oscillatory behavior until
l = 1 unit time (Fig. 6g–h). As for the correlation and LKIF,
no causal influence is found between z and the two other vari-
ables at any lag (Fig. 6g–i).

If we replace x by x2 to take nonlinearities into account
and look at the triplet (x2, y, z), a strong positive correla-
tion now appears between x2 and z (R = 0.65; Fig. 5d). In
addition, a strong two-way causal link now appears between
x2 and z with both LKIF (|τ | ∼ 50% in the two directions;
Fig. 5e) and PCMCI (|β| = 1.7 in the two directions; Fig. 5f).
This shows that the linear versions of LKIF and PCMCI can
detect causal links between nonlinear transformed variables
in nonlinear models. In this case, the correlation between x
and y, combined with the nonlinear forcing product xy in
the third equation of the Lorenz (1963) model (z equation;
Eq. 4), results in a linear correlation between z and the non-
linear non-invertible variable change x2.

The correlation between x2
t+l and zt oscillates between

R ∼−0.7 (l = 0.2 unit time) and R ∼ 0.9 (l =−0.1 unit
time) with a period of ∼ 0.7 unit time (Fig. 7a). The rates
of information transfer from x2

t+l to zt and from zt to x2
t+l
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Figure 4. Results from the 9D model with lags: (a) maximum correlation coefficient when using four lags (zero to three time steps),
(b) maximum rate of information transfer (LKIF, absolute value) when using four lags (zero to three time steps), and (c) maximum path
coefficient (PCMCI) using five lags (zero to four time steps). (d) Correct causal links from Eq. (3). Only significant values at the α = 5%
level are shown, and correct causal links are highlighted by black or blue contours.

also show an oscillatory behavior with a period of ∼ 0.35
unit time (Fig. 7b), i.e., half of the correlation oscillation.
PCMCI does not exhibit such an oscillatory behavior but
rather a quickly decreasing β value for small lags (Fig. 7c).

4.5 Climate indices

The real-world case study with climate indices shows that
54 % of the pairs of variables (excluding autocorrelations)

are related by significant correlations when considering no
lag (Fig. 8a). However, it is obvious that a large number of
these pairs are correlated but not causally linked. The use
of causal methods allows us to remove such spurious links,
as demonstrated by the application of LKIF without any lag
(Fig. 8b) and PCMCI with lags up to l = 2 months (Fig. 8c).

Results from the two causal methods present several sim-
ilarities, including the AO influence on both PDO and TNA
(Fig. 8b–c). Another similarity is the two-way causal link
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Figure 5. Results from the Lorenz (1963) model when using (x, y, z): (a) correlation coefficient, (b) rate of information transfer (LKIF,
absolute value), and (c) maximum path coefficient (PCMCI) when using four lags (zero to three time steps). Results from the Lorenz (1963)
model when using (x2, y, z): (d) correlation coefficient, (e) rate of information transfer (LKIF, absolute value), and (c) maximum path
coefficient (PCMCI) when using four lags (zero to three time steps). Only significant values at the α = 5% level are shown.

between AMO and TNA, in agreement with Vannitsem and
Liang (2022) and Silini et al. (2022). The AMO–TNA influ-
ence is not surprising as both indices are computed from SST
anomalies in the North Atlantic, with AMO spanning the ma-
jority of the North Atlantic and TNA focusing on the tropical
region. Values of the AMO–TNA influence in the two direc-
tions are relatively strong for LKIF (|τAMO→TNA| = 22%
and |τTNA→AMO| = 38%) compared to other pairs of influ-
ence (Fig. 8b). In addition, ENSO influences PDO according
to both methods (Fig. 8b–c), and the positive sign of the cor-
relation means that a warm Niño3.4 phase results in a pos-
itive PDO (Fig. 8a). The ENSO influence on PDO was re-
cently reported by Vannitsem and Liang (2022), also using
LKIF, and Silini et al. (2022), based on the pseudo-transfer
entropy. Spatial patterns of ENSO and PDO are very simi-
lar, and PDO is often being viewed as an ENSO-like inter-
decadal climate variability, with PDO occurring at decadal
timescales, while ENSO is predominantly an interannual
phenomenon (Mantua et al., 1997; Zhang et al., 1997).

In terms of differences between the two causal methods,
LKIF identifies additional causal influences of AO on PNA,
NAO, and AMO, while PCMCI does not identify these causal
links (Fig. 8b–c). It is well known that there is a clear rela-
tionship between AO and NAO (Deser, 2000) and that NAO
is often referred to as the local manifestation of the AO
(Hamouda et al., 2021). Also, according to LKIF, there are
two-way causal influences between ENSO and PNA and be-
tween ENSO and TNA, which do not appear with PCMCI
with lags up to l = 2 months (Fig. 8b–c). It is well known
that ENSO has a major influence on the extratropical North-
ern Hemisphere climate variability, in particular on PNA
(Horel and Wallace, 1981). However, the influence of ENSO
on PNA is complicated by the fact that other mechanisms
can affect this relationship, such as the position of the Pa-
cific jet stream (Soulard et al., 2019). Our results with LKIF
suggest that PNA has a stronger influence on ENSO than the
reverse, which would go in favor of more complex mecha-
nisms in action. Finally, the influence of ENSO on TNA has
also been reported in the literature, and different mechanisms
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Figure 6. Results from the Lorenz (1963) model when using (x, y, z): (a–c) correlation coefficient, (d–f) rate of information transfer (LKIF,
absolute value), and (g–i) path coefficient (PCMCI) as a function of the lag l when (a, d, g) x leads; (b, e, h) y leads; and (c, f, i) z leads.

have been proposed (García-Serrano et al., 2017). It is inter-
esting to find that the influence of TNA on ENSO is stronger
than the reverse influence with LKIF (Fig. 8b).

The use of 12 time lags (0 to 11 months) with both meth-
ods (bringing 8 variables×12 lags= 96 variables in total for
LKIF) provides additional insights (Figs. 9–10). PNA influ-
ences ENSO with a 1-month lag with LKIF (Fig. 9a) and with
a 4-month lag with PCMCI (Fig. 10a). Additionally, PNA in-
fluences PDO with a 4-month lag and AMO with a 11-month
lag using LKIF (Fig. 9a). However, all PNA influences ap-
pear relatively weak in intensity (|τ |< 1% with LKIF and
|β|< 0.1).

NAO influences PDO with both methods but with very dif-
ferent lags depending on the method, i.e., 11 months with
LKIF (Fig. 9b) and 1 month with PCMCI (Fig. 10b). It also
influences TNA with LKIF with a 1-month lag. As for PNA,
all significant NAO influences remain limited in intensity
(|τ |< 1% with LKIF and |β|< 0.1).

AO is by far the climate index that influences most vari-
ables with LKIF (Fig. 9c), in agreement with Vannitsem and
Liang (2022). When considering no lag, AO influences all

other indices, except QBO and ENSO (Fig. 9c). The largest
value of rate of information transfer is from AO to NAO with
|τ | = 4%, in agreement with the value considering no lag
(Fig. 8b). AO also influences TNA and AMO at larger lags
with LKIF (l = 1, 2, and 4 months for TNA and l = 2, 5,
and 11 months for AMO). With PCMCI, AO only influences
TNA at lags l = 1 to 4 months, PDO at lag l = 1 month,
and QBO at lag l = 4 months (Fig. 10c). It is intriguing to
notice that no AO influence on NAO appears with PCMCI.

QBO does not have any influence on any other climate
indices with any of the methods (Figs. 9d and 10d).

The AMO–TNA two-way causal influence already iden-
tified in Fig. 8 also appears in the lagged plots but with
contrasting behaviors depending on the causal method. With
LKIF, AMO only influences TNA at lag 0 (Fig. 9e) and TNA
influences AMO at lags l = 0 and 11 months (Fig. 9g).
With PCMCI, the AMO influence on TNA increases with
increasing lag from l = 0 to 6 months, then decreases and
stays relatively constant until l = 11 months (Fig. 10e),
and TNA influences AMO at lags l = 2, 4–6, 8, and 10–
11 months (Fig. 10g). TNA has additional influences with
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Figure 7. Results from the Lorenz (1963) model when using (x2, y, z): (a) correlation coefficient, (b) rate of information transfer (LKIF),
and (c) path coefficient (PCMCI) as a function of the lag l in x.

PCMCI at lags l ≥ 2 months (on NAO, QBO, PDO, and
ENSO; Fig. 10g) and with LKIF at lags l ≥ 9 months (on
PDO and ENSO). The TNA influences on PDO and ENSO,
appearing for both causal methods, remain limited to large
lags (Figs. 9g–10g).

PDO has an influence on PNA with LKIF at lag l =

6 months (Fig. 9f), which is consistent with Simon et al.
(2022) using sensitivity experiments with a coupled model.
According to PCMCI, PDO influences ENSO at lags l ≥
3 months (Fig. 10f).

Finally, ENSO influences PDO at lags l = 0,2 and
6 months, and influences TNA at lags l = 2 and 6 months
with LKIF (Fig. 9h). With PCMCI, ENSO is the climate in-
dex that influences most variables (all but NAO), especially
PDO from l = 2 to 10 months, TNA from l = 3 to 11 months,
and AMO from l = 4 to 11 months (Fig. 10h). The large role
of ENSO was also reported using pseudo-transfer entropy us-
ing lags l = 1 to 9 months (Silini et al., 2022).

5 Discussion

Correlation is often used by the climate community to iden-
tify potential relationships between variables, but a statisti-
cally significant correlation does not necessarily imply cau-
sation. In our study, we used two causal methods, LKIF and
PCMCI, to disentangle true causal links from spurious corre-

lations, and we applied them to four artificial models and one
real-world case study based on climate indices. Below we
discuss our results compared to previous literature (Sect. 5.1
for the artificial models and Sect. 5.2 for the real-world case
study).

5.1 Artificial models

For the simplest (2D) model used here, we show that LKIF
can accurately reproduce the correct causal link, with rel-
atively high accuracy compared to the analytical solution,
while PCMCI fails to reproduce this link when using the
original time step (Sect. 4.1 and Fig. 1). PCMCI provides
the correct influence for the 2D model when taking every
100 time steps (although the β value is small), which shows
that PCMCI responds better for discrete maps with finite time
steps. For the 6D model, both LKIF and PCMCI can de-
tect the correct causal links (Sect. 4.2 and Fig. 2). For the
9D nonlinear model, PCMCI allows us to retrieve the cor-
rect causal relationships, while some care with the number
of lags is needed with LKIF to achieve appropriate results
(Sect. 4.3 and Figs. 3–4). This shows that LKIF performs bet-
ter for simpler systems and presents a few more difficulties
with more complex models with several lags. On the other
hand, PCMCI does not work well in the presence of very
strong autocorrelations but may be preferential over LKIF as
the number of variables increases. Results from the Lorenz
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Figure 8. Results from the real-world case study: (a) correlation coefficient, (b) rate of information transfer (LKIF, absolute value), and
(c) maximum path coefficient (PCMCI) when using three lags (0 to 2 months). Only significant values at the α = 5% level are shown.

(1963) model are more complicated to interpret as the sys-
tem is highly nonlinear and chaotic. Both methods detect the
same causal links (Sect. 4.4 and Fig. 5), although some dif-
ferences appear in the dependence of the causal influence on
the time lag (Figs. 6–7). Moreover, the combination of model
nonlinearities and nonlinear variable changes can result in
linear causal links detectable by LKIF and PCMCI (Fig. 5).

The above results are not entirely comparable to findings
from Krakovská et al. (2018) from a methodological perspec-
tive, as the latter used other causal methods and different
coupled systems. However, a similarity is the fact that some
methods (Granger causality and its extensions) better per-
form with the simplest models, while other methods (CCM

and predictability improvement) are better suited for more
complex systems (Krakovská et al., 2018). This goes in hand
with LKIF being better with the specific time-continuous 2D
model studied here, while PCMCI is well suited for the time-
discrete 9D model of our analysis. Thus, the key finding from
Krakovská et al. (2018), that “it is important to choose the
right method for a particular type of data”, is also valid for
our study.

The main novelties compared to Krakovská et al. (2018)
are that (1) we use two causal methods that have not been
compared yet, (2) we compare our causal methods to the
classical correlation coefficient, (3) we assess causality be-
tween nonlinear variable changes, and (4) we apply the two
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Figure 9. Results from the real-world case study with LKIF (rate of information transfer; absolute value) as a function of the lag: (a) PNA
influence on the other variables; (b) NAO influence; (c) AO influence; (d) QBO influence; (e) AMO influence; (f) PDO influence; (g) TNA
influence; (h) ENSO influence. Only significant influences at the α = 5% level are shown as filled dots.

methods to a real-world case study. Regarding (1), no definite
conclusion can be provided as to which method is the best:
it depends on the system used. For certain very simple mod-
els, LKIF appears to be preferential over PCMCI, although
PCMCI has not been designed for the particular 2D model
used here (Sect. 4.1). For a more complex model involving

more variables and several lags, like the 9D model, PCMCI
may be better suited. In any case, we recommend to use as
many methods as possible for a specific problem to increase
the robustness of results. Regarding (2), we show that both
LKIF and PCMCI are superior to correlation, as they allow
us to remove spurious links. Regarding (3), we show that the
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Figure 10. Results from the real-world case study with PCMCI (path coefficient; absolute value) as a function of the lag: (a) PNA influence
on the other variables; (b) NAO influence; (c) AO influence; (d) QBO influence; (e) AMO influence; (f) PDO influence; (g) TNA influence;
(h) ENSO influence. Only significant influences at the α = 5% level are shown as filled dots.

combination of model nonlinearities with nonlinear variable
changes can result in linear causal links, detectable by both
LKIF or PCMCI. Point (4) is discussed in Sect. 5.2.

Table 2 provides true-positive, true-negative, false-
positive, and false-negative rates, as well as the φ coeffi-
cient, for the correlation and the two causal methods used

in this study and for the three first artificial models (2D, 6D,
and 9D models). For the 9D model, a distinction is made
between the case where lags are not considered (PCMCI is
not used in this case) and the case where lags are consid-
ered. Results show that the correlation has a large chance of
detecting false positives (i.e., incorrect detection of causal
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Table 2. True-positive, true-negative, false-positive, and false-negative rates (in %), as well as φ coefficient, for the correlation and the two
causal methods (LKIF and PCMCI) for the first three artificial models (2D, 6D, and 9D models, the latter without and with lags), excluding
self-influences. The number of ground truth correct (incorrect) links (without considering if the exact time lags are reproduced or not) is
indicated in parentheses after “True positives” (“True negatives”) for each model. For the 2D model and PCMCI, numbers are also provided
in parentheses for the case with larger sampling time step (1t = 0.1).

Correlation LKIF PCMCI

2D model True positives (1) [%] 100 100 0 (100)
True negatives (1) [%] 0 100 100 (100)
False positives [%] 100 0 0 (0)
False negatives [%] 0 0 100 (0)
φ coefficient 0 1 0 (1)

6D model True positives (7) [%] 100 100 100
True negatives (23) [%] 0 100 100
False positives [%] 100 0 0
False negatives [%] 0 0 0
φ coefficient 0 1 1

9D model without lag True positives (9) [%] 100 89 –
True negatives (63) [%] 60 79 –
False positives [%] 40 21 –
False negatives [%] 0 11 –
φ coefficient 0.40 0.50 –

9D model with lags True positives (9) [%] 100 100 100
True negatives (63) [%] 27 92 94
False positives [%] 73 8 6
False negatives [%] 0 0 0
φ coefficient 0.21 0.77 0.81

influences) for all models; thus, the correlation largely over-
estimates causal links. LKIF and PCMCI allow us to sub-
stantially reduce false positives, with 0 % for the 2D and 6D
models with both methods, 21 % for the 9D model without
lag with LKIF, and < 10% for the 9D model with lags with
both methods. For the 2D model, LKIF perfectly reproduces
the right causal links (φ = 1), while the correlation coeffi-
cient and PCMCI (with the original time step) do not make
better than a random prediction (φ = 0). Only when using
a larger sampling time step can PCMCI reproduce the cor-
rect causal links. For the 6D model, both LKIF and PCMCI
accurately reproduce the ground truth (φ = 1), while the cor-
relation coefficient again does not make better than a random
prediction and identifies all relationships as causal (φ = 0
and false-positive rate = 100%). For the 9D model without
lag (PCMCI not included), the correlation does a better job
at identifying a certain amount of true negatives (60 %) com-
pared to the 2D and 6D models, but LKIF provides overall
better results (φ = 0.5 for LKIF vs. φ = 0.4 for correlation),
despite the identification of one false negative with LKIF
(Fig. 3b). For the 9D model with lags, the performance of
the two causal methods is clearly better than the correlation
(φ = 0.21), with PCMCI (φ = 0.81) performing slightly bet-
ter than LKIF (φ = 0.77).

5.2 Climate indices

In our study, we extend previous analyses from Vannitsem
and Liang (2022) and Silini et al. (2022) by using monthly
time series of climate indices in the Atlantic and Pacific re-
gions. We use the same seven climate indices as Vannitsem
and Liang (2022); add QBO to the list to have four indices
characterizing both the atmosphere and ocean; and do not use
local air temperature, precipitation, or insolation. Vannitsem
and Liang (2022) also computed LKIF based on these indices
but focused on the dependence of the rate of information
transfer on the timescale (using a time-moving window) and
did not compare LKIF to another method. Silini et al. (2022)
also used NAO, QBO, AMO, PDO, and ENSO (Niño3.4);
they used a slightly different index for TNA, and they in-
corporated seven additional indices. The causal method used
by Silini et al. (2022) is the pseudo-transfer entropy method
(Silini and Masoller, 2021).

Due to the small methodological differences in our anal-
ysis compared to Vannitsem and Liang (2022) (see above),
some small differences appear, but key results with LKIF
remain similar. In particular, we find that AO is the largest
driver of all variables as it influences all other indices, except
QBO and ENSO (Sect. 4.5 and Fig. 8b). We show that the
AO influence mainly occurs at lag l = 0 (Fig. 9c). This is in
agreement with Vannitsem and Liang (2022), who find that
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AO plays a key role at short timescale. PCMCI only identi-
fies two AO influences with lags shorter than 2 months, i.e.,
to PDO and TNA (Fig. 10c). It is particularly intriguing to
see that PCMCI does not detect the AO influence on NAO
(Fig. 8c), while LKIF does (Fig. 8b), as NAO is often re-
ferred to as the local manifestation of AO (Hamouda et al.,
2021). This discrepancy might hide seasonal differences, as
for example winter and summer NAO have different spatial
patterns (Folland et al., 2009).

ENSO has a relatively large influence on other climate
indices, especially on PDO for both LKIF and PCMCI
(Fig. 8b–c). The pivotal role of ENSO was already identi-
fied by Silini et al. (2022) and is not surprising due to its im-
portance on the global climate (Timmermann et al., 2018).
ENSO has a clear influence on PDO at lags 2 to 10 months
for PCMCI (Fig. 10h), while it only appears at lags 0, 2 and
6 months for LKIF (Fig. 9h). This ENSO–PDO influence
was detected from lags 1 to 7 with pseudo-transfer entropy
(Silini et al., 2022), thus somewhere in between PCMCI and
LKIF. The other clear ENSO influence according to PCMCI,
LKIF and pseudo-transfer entropy is on TNA, at lags 2 and
6 months with LKIF (Fig. 9h), at lags 3–11 months with
PCMCI (Fig. 10h), and at lags 1–9 months with pseudo-
transfer entropy (Silini et al., 2022). According to PCMCI
and pseudo-transfer entropy, ENSO also largely influences
other climate indices than PDO and TNA at different lags,
which is not the case for LKIF. More research would be
needed to further investigate this difference between causal
methods.

6 Conclusions

In this study, we compare two independent causal methods,
namely, the Liang–Kleeman information flow (LKIF) and
the Peter and Clark momentary conditional independence
(PCMCI), and the Pearson correlation coefficient. We use
five different datasets with an increasing level of complexity,
including three stochastic models, one nonlinear determinis-
tic model, and one real-world case study.

We show that both causal methods are superior to the cor-
relation, which suffers from five key limitations: random co-
incidence, no identification of the direction of causality, ex-
ternal drivers not distinguished from direct drivers, no iden-
tification of potential nonlinear influences, and application to
bivariate cases only. For most models and the real-world case
study, the number of significant correlations is much larger
than the number of significant causal links, which is incor-
rect from a causal perspective for the three first models. By
extension, we assume that the correlation also suffers from
this overestimation in the real-world case study, and causal
methods allow us to improve results.

When comparing both causal methods together, LKIF can
accurately reproduce the correct causal link in the 2D model,
while PCMCI cannot with the original time step and needs to

be computed with a larger sampling time step to provide cor-
rect causal links, although the influence remains small. For
the 6D model, both methods can capture the seven correct
causal links. For the 9D model, PCMCI correctly reproduces
all causal links, and LKIF without any time lag is not totally
accurate. When used with time lags, LKIF can identify the
correct causal links.

For the Lorenz (1963) model, results are more complicated
to interpret as the system is time-continuous, nonlinear, and
chaotic. Both causal methods show a strong two-way causal
link between x and y, while no causal link appears between z
and the two other variables. However, when we replace x by
x2 to take nonlinearities into account, x2 and z are causally
linked (in the two directions) with both methods. We also
show that both LKIF and PCMCI display a decrease in the
two-way causal influence between x and y with increasing
time lag, although the shape of this decrease is different be-
tween methods. Additionally, the oscillatory behavior in cor-
relation coefficient and LKIF for the x2–z pair as a function
of lag is not displayed by PCMCI.

Finally, the real-world case study with climate indices pro-
vides some similarities but also important differences be-
tween the two methods. In terms of similarities, AO influ-
ences both PDO and TNA, there is a two-way causal link
between AMO and TNA, and ENSO influences PDO. In
terms of differences, LKIF identifies additional influences of
AO on PNA, NAO, and AMO, as well as two-way causal
links between ENSO and PNA and between ENSO and TNA.
When using 12 time lags, the number of influences detected
by PCMCI becomes larger compared to LKIF, e.g., ENSO
has a large influence on all other variables except NAO,
while AO remains the largest influencer (at smaller lags) with
LKIF. More detailed analysis of the physical processes would
be needed to identify correct causal links between these cli-
mate indices.

In summary, this analysis shows that both causal methods
should be preferred to correlation when it comes to identify
causal links. Additionally, as both LKIF and PCMCI display
strengths and weaknesses when used with relatively simple
models in which correct causal links can be detected by con-
struction, we do not recommend one or the other method but
rather encourage the climate community to use several meth-
ods whenever possible. We highlight that both methods, as
used here, assume linearity, so results need to be taken with
caution for nonlinear problems, such as the Lorenz (1963)
system and the real-world case study. The use of extensions
of the methods for which fully nonlinear terms are taken
into account are necessary to complement the current results
(e.g., Pires et al., 2024). Also, both LKIF and PCMCI deal
with direct causal links, while other methods, such as inter-
ventional causality (Baldovin et al., 2020), can detect indi-
rect influences. Further analysis would be needed to explore
this aspect. Lastly, we could test the robustness of the meth-
ods to noise and their performance in the context of high-
dimensional systems.
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