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Abstract. The effusive—explosive energy emission process in a volcano is a dynamic and complex physical phe-
nomenon. The importance of quantifying this complexity in terms of the physical and mathematical mechanisms
that govern these emissions should be a requirement for deciding to apply a possible forecasting strategy with
a sufficient degree of certainty. The complexity of this process is determined in this research by means of the
reconstruction theorem and statistical procedures applied to the effusive—explosive volcanic energy emissions
corresponding to the activity in the Volcan de Colima (western segment of the Trans-Mexican Volcanic Belt)
along the years 2013-2015. The analysis is focused on measuring the degree of persistence or randomness of
the series, the degree of predictability of energy emissions, and the quantification of the degree of complexity
and “memory loss” of the physical mechanism throughout an episode of volcanic emissions. The results indicate
that the analysed time series depict a high degree of persistence and low memory loss, making the mentioned

effusive—explosive volcanic emission structure a candidate for successfully applying a forecasting strategy.

1 Introduction

Right forecasting of dangerous long drought episodes, high-
magnitude earthquakes or great volcanic emissions should be
one of the main objectives of the scientific fields of climatol-
ogy, seismology or volcanology to prevent disasters which
could affect the environment and human life. Several exam-
ples of forecasting algorithms could be cited, among them the
nowecasting strategy (Rundle et al., 2016, 2017), the multi-
fractal analysis in seismology (Monterrubio-Velasco et al.,
2020), the ARIMA (auto-regressive integrated moving aver-
age based on a reconstruction theorem) process in climatic
research (Lana et al., 2021) and neural algorithms (Lipton
et al., 2015; Lei, 2021), which are also useful for predicting
monthly rainfall. These cited algorithms systematically fore-
cast the next episode, taking into account a certain number
of previously recorded data, this number being strongly as-

sociated with the characteristics of the physical mechanism.
These forecasting results should be validated by previously
analysing the degree of complexity and the “loss of mem-
ory” of the physical mechanisms along the evolution of the
physical process. In other words, how many previous data
would be necessary for right use of a forecasting algorithm,
and what could the range of uncertainties in the predictions
be?

The database, analysed in this research in Sect. 2, is the
time series of explosive volcanic events (Vulcanian explo-
sions) emitted by the Volcan de Colima (western segment
of the Trans-Mexican Volcanic Belt) during the years 2013—
2015. A Vulcanian explosion is an eruption where frag-
mented material is expelled into the atmosphere as a result
of overpressure into the conduit or lava dome (Ardmbula-
Mendoza et al., 2018). The event releases energy in several
ways based on elastic, seismic, acoustic and thermal pro-
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Figure 1. (a) Histogram of the volcanic emission energies and (b) logarithm of energies fulfilling the Gutenberg—Richter law.

cesses. The next explosion will occur when the overpressure
breaks the impermeable cap again. The Volcan de Colima has
emitted many Vulcanian explosions, some of them with gen-
eration of pyroclastic density currents (PDCs) until 5 km of
runout (Ardmbula-Mendoza et al., 2019). For these reasons,
strategies for right forecasting of the mentioned Vulcanian
explosions are important.

The reconstruction theorem (Sect. 3) is a mathematical
strategy that allows quantification of the degree of complex-
ity in a time series and its loss of memory, which are both
required to validate a possible forecasting strategy (Diks,
1999). Additionally, the nowcasting algorithm (Sect. 5), a
statistical process developed by Rundle et al. (2016, 2017)
to detect the risk of imminent high-magnitude earthquakes,
could also be applied to quantify the probability of an immi-
nent high-magnitude volcanic emission.

The main objective of this work is to detect the degree of
difficulty for a forecasting of volcanic emissions associated
with energies close to or exceeding 108 J. By means of the
reconstruction theory (Diks, 1999), the complexity is mea-
sured by means of some parameters such as the persistence
degree, the intensity of the chaotic behaviour of the system
and the loss of memory of the physical mechanism. More-
over, the statistical distributions of the effusive—explosive en-
ergy of these emissions and their return periods are also anal-
ysed. The just-mentioned nowcasting strategy is also taken
into account to confirm future extreme emissions of energy.
The results obtained after applying the reconstruction the-
orem and analysing the whole time series, six consecutive
segments and 21 moving window data are detailed in Sect. 4.

The most relevant results of the reconstruction theorem
and their effects on forecasting algorithms are discussed in
Sect. 6. Finally, Sect. 7 (“Conclusions”) summarises the most
relevant results with respect to the expected success in pre-

Nonlin. Processes Geophys., 30, 571-583, 2023

venting volcanic energy emissions based on forecasting and
nowcasting processes.

2 Database

A time series of volcanic explosions, named Vulcanian ex-
plosions (Clarke et al., 2015), emitted by the Volcan de Col-
ima (western segment of the Trans-Mexican Volcanic Belt,
years 2013-2015) (Arambula-Mendoza et al., 2018) is anal-
ysed. Figure 1a depicts the histogram of the logarithm of the
emitted energy. The dataset contains 6182 observations of the
emissions equalling or exceeding approximately 2 x 10°J,
fulfilling the Gutenberg—Richter law (Gutenberg and Richter,
1956), as shown in Fig. 1b.

Figure 2a describes the six segments to be analysed with
1000 samples and a seventh segment that is excluded from
the analysis due to a lack of data. The highest explo-
sions can be observed at the beginning of the first segment
[logio(Energy)= 8.2], third segment [logo(Energy)= 8.4]
and end of the series in the seventh segment [logio(Energy)=
8.9]. With the aim of analysing the whole set of volcanic
emissions fulfilling the Gutenberg—Richter law, Fig. 2b de-
picts two examples of moving window segments.

The statistical distribution of these emissions is anal-
ysed by means of the L-skewness or L-kurtosis formulation
(Hosking and Wallis, 1997). The statistical analysis of these
emissions shows that the complete series of emissions, in-
cluding those not fulfilling the Gutenberg—Richter law, are
well fitted to the generalised logistic, GL, function (Fig. 3a
and b). Additionally, three different empirical distributions of
extreme emissions, equalling or exceeding 90 %, 95 % and
99 % respectively of the data (Fig. 3b), can be associated
with the generalised extreme value, GEV, function. Figure 4
shows the evolution of these three expected extreme emis-
sions with the increasing return periods (given as the number
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Figure 2. (a) Evolution of the volcanic energy emission fulfilling
the Gutenberg—Richter law. Vertical dashed lines define the seg-
ments (intervals of 1000 data). (b) Two examples of a dataset de-
fined by moving windows of amplitude 2 1000 elements and shift-
ing 200 positions.

of events equalling or exceeding 90 %, 95 % and 99 % re-
spectively). For instance, the expected values of emissions
for the three percentage levels and return periods with up to
200 extreme emissions fit the theoretical evolution quite well,
with emissions close to 1.0 x 108, 2.0 x 10® and 8.0 x 10%J
for the 90 %, 95 % and 99 % extreme distributions. This first
approach to the possibility of very high explosions and the
corresponding expected return period (number of extreme
episodes before a very high extreme emission) would be
quite similar to a nowcasting analysis, a strategy proposed
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Figure 3. (a) Cumulated distribution function of the effusive vol-
canic energy emissions, well fitted to the GLO (generalised logistic
distribution). (b) The emissions equalling or exceeding 90 %, 95 %
and 99 % could be associated with the GEV (generalised extreme
value distribution), in agreement with the L-skewness or L-kurtosis
diagram. The theoretical cumulated distribution GLO of the vol-
canic emissions is also confirmed by means of the mentioned dia-
gram.

by Rundle et al. (2016, 2017) to detect the risk of imminent
high-magnitude earthquakes.
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Figure 4. Return period curves (90 %, 95 % and 99 %) of extreme emissions.

3 The reconstruction theorem

Prior to the reconstruction theorem (Diks, 1999) based
on monofractal theory, the degree of randomness, anti-
persistence or persistence of the analysed data is established
by taking into account the concept of the Hurst exponent
(Turcotte, 1997), which is defined as the exponent H of the
power law.

R@ xt?
S(1)

ey

R(7) is the range of the different chosen segments of length
T of a series and S(7) is the corresponding standard devi-
ation. H close to 0.5 implies a strong randomness of the
series. Conversely, H clearly lower than or exceeding 0.5
means anti-persistence or persistence, respectively. Conse-
quently, the Hurst exponent offers a first point of view of
the behaviour of the analysed series. It should also be re-
membered that the Hurst exponent has to be coincident with
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a specific value of the generalised Hurst exponent, obtained
by means of multi-fractal analysis (Kantelhardt et al., 2002)
applied to the same series.

The analysis of the monofractal structure of a series, by
means of the reconstruction theorem (Diks, 1999), permits
quantification of its complex forecasting by means of the fol-
lowing parameters.

— The necessary minimum number of non-linear equa-
tions governing the physical mechanism, usually ref-
erenced as a correlation dimension w(m), m being the
reconstruction space dimension

— The embedding dimension, dg, the asymptotic value of
the correlation dimension, with m theoretically tending
to 0o

— The Kolmogorov entropy, k, which quantifies the loss of

memory of the mechanism along the analysed physical
process

https://doi.org/10.5194/npg-30-571-2023
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The reconstruction theorem process is based on generating a
set of m-dimensional space vectors using the series {x (i)} of
data.

Z(1)=Xi,Xit1,-- s Xigm—-1,i=1,...,n—m+1 )

n is the length of the series, and the definition of the correla-
tion integral in terms of the Grassberger—Procaccia formula-
tion (Grassberger and Procaccia, 1983a, b) is

R i
Clm,ry= s D7 HIr =)=z (DIl 3)
i,j=1

r is a Euclidean distance in the m-dimensional space and
H{.} is a Heaviside function. The correlation integral can be
rewritten as

C(m,r)= Aye "kprm, )
log{C (m,r)} =log(A;) —mk+ pu(m)log(r). 5

K is the Kolmogorov entropy exponent, and A,, and pu(m)
are the correlation amplitude and the mentioned correlation
dimension for every reconstruction dimension m. A confi-
dent quantification of p(m) for every reconstruction dimen-
sion has to be carefully computed, avoiding a very flat evolu-
tion of C(m, r) for small values of r caused by the lacunarity
(Turcotte, 1997) and the saturation of C(m,r) for the high-
est values of r. With respect to the quantification of the Kol-
mogorov entropy, K, by using Eq. (5), naming w(m) the term
log{C(m, r)} — u(m)log(r) and after obtaining a(m), Eq. (5)
becomes

a(m)=log(Ay) —mK. (©6)

Equation (6) is characterised by an almost constant value
of log(A,,) for high reconstruction dimensions m. Conse-
quently, a very accurate value of the Kolmogorov coefficient
K could be obtained by a linear regression in terms of Eq. (6),
but only for the mentioned set of the highest reconstruction
dimensions m. The same set of m-dimensional space vec-
tors permits the computation of the Lyapunov exponents A;
(i =1,...m) (Eckmann et al., 1986; Stoop and Meier, 1988;
Wiggins and Zeidler, 1991), which quantify the intensity of
the chaotic behaviour of a system, especially the first A1 ex-
ponent when the results, forthcoming volcanic emissions in
the present case, are estimated by means of some forecasting
algorithm. Additionally, the Kaplan—Yorke dimension, Dxy
(Kaplan and Yorke, 1979), is

> (7)

j=1

Dxy =1y +

AMO+1

with /g the maximum number of Lyapunov exponents in de-
creasing order fulfilling

AMAA+ . 42y >0, ®)
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This quantifies the fractal dimension of the nucleus around
which the consecutive m-dimensional vectors describe the
corresponding orbital trajectories. In short, the higher the
value of Dy is, the more complex it will be to establish
the forthcoming value of the analysed physical problem.

4 Results

4.1 The Hurst exponent

The results of the Hurst exponent for the whole series and the
six data segments are described in Fig. 5a and b, obtaining
a clear sign of persistence for the complete series of Vulca-
nian explosions, with H exceeding a value of 0.7; a moderate
persistence for the first, second, fourth and fifth segments; a
smooth increase in H from the fifth to sixth segments; and a
clear persistence (H > 0.70) for the third segment. This third
clear persistence is detected for a data segment including the
second-highest energy emission (Fig. 2a and b). Conversely,
the lowest Hurst exponents for the first, second, fourth and
fifth segments are characterised by more moderate emissions
of energy. Finally, the increase in H for the sixth segment
could be caused by the imminence of the highest energy, an
emission immediately after this data segment. A more de-
tailed evolution of the Hurst exponent is described by the
21 moving windows (Fig. 6a and b), detecting that the in-
crease in the persistence for the first six moving windows
is stabilised for the other 15 windows with notable signs of
persistence, with H varying from 0.72 to 0.76. In short, the
factor of persistence from the point of view of the Hurst ex-
ponent suggests a certain facility of forecasting algorithms. It
is remarkable that, after the first 1000 emissions (beginning
of the five moving windows), the highest persistency with
some fluctuations is achieved and the highest emissions are
included in these windows.

4.2 Embedding dimension

With respect to the embedding dimension, Fig. 7 illustrates
five examples of the first segment of 1000 recorded emis-
sions, where the slope, u(m), of logjo{C(r)} with respect to
log1o{r} monotonically increases for an interval of r, which
then describes the asymptotic evolution of these slopes to-
wards the definitive embedding dimension dg. The embed-
ding dimensions for the 21 moving windows and the six seg-
ments are respectively summarised in Tables 1 and 2. By re-
membering that this dimension defines the minimum num-
ber of non-linear differential equations associated with the
physical process, the most complex segments from a math-
ematical point of view would be the first, second, third and
sixth ones, which are not as complex as the fourth and fifth
ones. Nevertheless, the discrepancies when comparing the
different segments are not excessive, given that 9 or 10 dif-
ferential equations would be sufficient to analyse every one
of the six segments. A quite different evolution of dg is ob-

Nonlin. Processes Geophys., 30, 571-583, 2023
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law and (b) the same series fragmented on six trams of an equal number of records. In agreement with the definition of Eq. (1), R/S has no
units and t represents the different lengths (number of data) of the segments considered.

Table 1. Embedding dimension and Kolmogorov coefficient for the 21 moving windows.

MW 1 2 3 4 5 6 7 8 9 10 11
dg 9356  9.309 9.195 9.037 9.287 9237 9.246 9.044 9361 9.456 8.898
K 0362 0363 0355 0357 0354 0362 0383 0373 0391 0410 0.397
MW 12 13 14 15 16 17 18 19 20 21

dg 7.188 6910 7.277 7270 7372 7385 7495 7550 7.467 7.495

K 0297 0.266 0279 0.286 0281 0.284 0295 0.297 0291 0.287

tained for the 21 moving windows (Table 1), with dimen-
sions approximately varying from 9.5 to 6.9. Between the
11th and 13th moving windows, dg diminishes (a more sim-
plified mathematical structure should be assumed for these
volcanic emissions), and for the remaining windows (14th—

Nonlin. Processes Geophys., 30, 571-583, 2023

21th), their mathematical structures’ complexities return to
moderate values (7.3-7.6).

4.3 The Kolmogorov entropy

The obtained values of the Kolmogorov entropy exponent,
based on Eq. (6) and summarised in Tables 1 and 2, are also

https://doi.org/10.5194/npg-30-571-2023
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Table 2. Embedding dimension and Kolmogorov coefficient for the
six segments of volcanic emissions.

Segment 1 2 3 4 5 6
dg 9.155 8.932 8727 7952 8.101 9.340
K 0359 0.338 0377 0.375 0258 0.398

illustrated with some examples (Fig. 8). In these four ex-
amples, the loss of memory of the physical mechanism is
quite similar for the 6th segment and the 10th moving win-
dow, with values of K which could complicate the forecast-
ing processes a bit more in comparison with the previous 5th
segment and the 13th moving window. In spite of these dis-
crepancies with respect to the loss of memory for the differ-
ent segments and moving windows, they are quite similar in
many cases, and there are only two remarkable examples of

https://doi.org/10.5194/npg-30-571-2023

an extreme minimum (fifth segment, K = 0.258) and an ex-
treme maximum (10th moving window, K = 0.410). Conse-
quently, the loss of memory, making the forecasting process
complex, would not affect all the volcanic explosive emis-
sions in the same way.

4.4 The Lyapunov exponents

Right computation of the Lyapunov exponents needs an itera-
tive process, with the aim of minimising the final uncertainty
on every exponent. In the present computations, 975 itera-
tions have been good enough to obtain the first 15 exponents
with very small oscillations at the end of the iterative pro-
cess. An example of this process is shown in Fig. 9, which
describes the evolution of the exponents for the third seg-
ment of emissions up to Ais. A higher number of exponents
is not necessary for two reasons. First, the possible errors or
uncertainties in forecasting processes could be especially as-

Nonlin. Processes Geophys., 30, 571-583, 2023



578

M. Monterrubio-Velasco et al.: Complexities of Volcan de Colima emissions based on a reconstruction theorem

3 1 3J
0.1 - 0.1 73
= , ,
O ] ]
0.01 0.01
| m=2 | m=4
0.001 —rrr——rrrr——rrr] | 0.001 ==
0.01 0.1 1 10 0.01 0.1 1 10
r r
1 3 1 3 1 Bl
0.1 5 0.1 3 0.1
I ] :
O | ] ]
0.01 E 0.01 3 0.01 3
1 m=8 1 m=12 1 m=16
0.001 ——rrrm==f——rrrrr v 0.00 L s | 0,00 1oy e
0.01 0.1 1 10 0.01 0.1 1 10 0.01 0.1 1 10
r r r

Figure 7. An example of the evolution of embedding dimensions (first segment of 1000 elements) for reconstruction dimensions m =2, 4,
8, 12, and 16. The straight red line represents the interval of r values that can be determined for every one of the embedding dimensions.

Table 3. Mean and standard deviation for the first 10 Lyapunov exponents after 975 iterations.

Segment Al A2 A3 A4 AS 16 AT A8 A9 A10
<Xi> 0.156 0.105 0.074 0.053 0.032 0.015 -0.001 —-0.018 —0.039 —0.062
o (M) 0.011 0.004 0.005 0.004 0.003 0.003 0.004 0.005 0.003 0.004

sociated with the first Lyapunov exponents. Second, observ-
ing the evolution at the end of iterations of the exponents of
Fig. 9, the Kaplan—Yorke dimension can be computed with-
out the necessity for Lyapunov exponents exceeding dimen-
sion 15.

The results are summarised in Table 3, which shows the
mean and standard deviation for every one of the first 10 Lya-
punov exponents obtained for the 21 moving windows and
the six data segments after 975 iterations of the correspond-
ing computational algorithm to obtain accurate and confident
values. First, in agreement with the results shown in the men-
tioned table, every one of the A; exponents is quite similar for
both the segments and moving windows, bearing in mind the
very similar average values and small standard deviations.
Second, the first small negative Lyapunov values are always
detected for A7 or Ag. Consequently, the information offered
by the Lyapunov exponents concerning the possible errors in
forecasting should be very similar all along the emissions.

Nonlin. Processes Geophys., 30, 571-583, 2023

There are no detected differences between the data segments
and the moving windows. Finally, the Kaplan—Yorke dimen-
sion manifests a notable similarity for both the segments and
moving windows.

While for the six trams, Dy varies from 12.51 to 12.75,
the range is quite similar for the 21 moving windows, varying
from 12.70 to 13.04. Consequently, the fractal dimension of
the nucleus around which the consecutive m-dimensional re-
constructed vectors describe the corresponding trajectories is
complex (a fractal dimension exceeding 12.0). Nevertheless,
this complexity becomes confined within a short interval and
is quite similar for all the segments and moving windows.

5 Some examples of nowcasting
The nowcasting process (Rundle et al., 2016, 2017) is

based on the computation of the “natural time” or, in other
words, the number of consecutive earthquakes (seismic cycle

https://doi.org/10.5194/npg-30-571-2023
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Figure 8. (a) Two examples of Kolmogorov entropy exponents, K, for two segments of 1000 elements and (b) for two examples of moving
windows. The vertical dashed lines define the parameter m interval used to determine the Kolmogorov entropy for every data segment or

moving window.

length) with magnitudes within a determined interval. In this
way, the empirical cumulative distribution function, CDF,
of these natural times is established by the high-magnitude
earthquakes interrupting these seismic cycle lengths. Conse-
quently, the nowcasting process does not exactly predict a
forthcoming high magnitude but quantifies the probability of
an imminent high earthquake magnitude based on the empir-
ical CDF curves.

A first illustrative example of the nowcasting algorithm,
from the point of view of the seismic activity, is depicted
in Fig. 10a. It corresponds to the recorded seismic activity
in Waitaha/Canterbury (National Earthquake Information
Database, https://www.gns.cri.nz, last access: 26 Novem-
ber 2023, years 1990-2020). In spite of the fact that the min-
imum seismic magnitude fulfilling the Gutenberg—Richter
law (Wiemer and Wyss, 2000) should be 3.5 (Fig. 10b), max-
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imum magnitudes of 4.5, 5.0 and 5.5 as well as a minimum
magnitude of 2.5 have been considered necessary to obtain a
more detailed evolution of the corresponding cycle lengths.

The probability of forthcoming extreme magnitudes (7.2
and 7.8) interrupting a cycle length exceeds 80 %. Conse-
quently, the probability of an earthquake of a similar ex-
treme magnitude should be more or less imminent if the real
cycling length ranges between approximately 100 and 1000
natural times, depending on the chosen maximum magnitude
M max .

Two examples of nowcasting corresponding to volcanic
energy explosions are shown in Fig. 10b. The first one corre-
sponds to the volcanic activity of the third segment (Fig. 2a)
and the second one includes the whole series of volcanic
emissions. In both cases, the cycle lengths are obtained by
considering the minimum and maximum levels of volcanic

Nonlin. Processes Geophys., 30, 571-583, 2023
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Figure 9. Fifteen Lyapunov exponents for the third segment of the
effusive—explosive volcanic emissions.

emissions of 102 and 10*° J respectively. Conversely to the
example of seismic activity, the few extreme levels exceeding
logio(Energy) = 8.0 are not associated with high CDF val-
ues. Consequently, the nowcasting algorithm could be con-
sidered less effective in comparison with the seismic activity
results, probably due to the mechanism of the volcanic emis-
sions, which do not include structures such as background
activity, swarms, forecasting, mainshocks and aftershocks.
Nevertheless, a notable number of high log;o(Energy) emis-
sions are slightly smaller than 8.0, and some of them are very
close to the highest emissions associated with values of CDFs
close to 0.6 and even exceeding 0.8. An example of this fact
could be the third segment of emissions, where some of them
are not independent but are associated with the highest emis-
sion close to 8.5. In short, the nowcasting process could also
be assumed to be an algorithm contributing to the predictabil-
ity of volcanic explosions but perhaps is not as obvious as for
the case of seismic activities.

6 Discussion of the results

The results obtained by the reconstruction theorem and the
possible relationships between the fractal reconstruction ex-
ponents (H, K, I and dg) and changes in the volcanic emis-
sions are summarised in Fig. 11a and b. First of all, rele-
vant changes in parameters such as the mean, standard de-
viation, skewness and kurtosis (Table 4) are not detected for
the different segments of volcanic emissions. Additionally,
the Kolmogorov—Smirnov test (95 % and 99 % of probabil-
ity) discards the possible Gaussian distribution of these emis-
sions, in agreement with Fig. 3a and b, where the GLO is
assumed from the L-skewness and L-kurtosis formulation.

Nonlin. Processes Geophys., 30, 571-583, 2023

The Hurst exponent (Fig. 11a) is characterised by a con-
tinuous increase, finally achieving oscillations close to 0.7
with an evident structure of persistence from the 7th to 21th
moving windows, all of them including two high emissions,
logio(Energy) = 8.372 and 7.937. Consequently, the Hurst
values would manifest persistence (convenient for appropri-
ate forecasting) when a high emission is included in the mov-
ing window. Conversely, the loss of memory (Kolmogorov
exponent) of the physical mechanism (not convenient for
good forecasting) increases up to the 10th window and no-
tably decreases for the rest of the windows. In this case, the
influence of a high emission would appear outdated in com-
parison with the results of the Hurst exponent. With respect
to the Lyapunov exponent, /1, its changes along the moving
windows are small (Fig. 11a), with not very remarkable dis-
crepancies with an average value of 0.169 and a standard de-
viation of 0.013 (Table 3). Consequently, the different fore-
casting errors in energy emissions could not be different, at
least from the point of view of /1. These errors could also
be a consequence of the degree of complexity of the non-
linear differential equation system quantified by the embed-
ding dimension dg. Figure 11b depicts the clear reduction in
this complexity after the 10th moving window, with a fast
decrease up to the 13th window and values close to 7.5 af-
ter this last cited window. Similar to the evolution of the
Kolmogorov entropy, close to the 10th window, an evident
decrease in both fractal parameters is detected. Reinforc-
ing this similarity, the stabilised values of these two fractal
parameters for the 13th and 14th windows are also notice-
able. It is also convenient to observe that, in agreement with
the very similar obtained Kaplan—Yorke dimensions (ranging
from 12.5 to 13.0) for the segments and moving windows,
the data vectors of the high dimension m used for the re-
construction theorem depict a very similar structure. In other
words, the trajectories of these reconstructed vectors around
the fractal nucleus are quite similar.

With respect to the results of the nowcasting, the return
period curves (90 %, 95 % and 99 % of extreme emissions)
could be, as cited before, a relatively similar strategy. Nev-
ertheless, the nowcasting process permits us to decide on the
minimum and maximum emissions of energy levels to define
the best empirical distributions of cycle lengths of natural
waiting times, detecting in this way the probability, in per-
centage, of a probable imminent volcanic emission of high
energy. In spite of the nowcasting method not determining a
concrete next volcanic emission, given that it is not a fore-
casting process, it takes into account that future high emis-
sions will be expected with similar natural waiting times. Al-
though some emissions (Fig. 10b) exceeding log;o(Energy)
=7.5 have probabilities close to 50 %—60 %, probabilities
close to or exceeding 80 % are also obtained. In short, the
nowcasting process seems to be more effective with seismic
activity than volcanic emissions. Nevertheless, their results
could also be compatible with and complementary to algo-
rithms forecasting the high emission of volcanic energy.
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Table 4. Basic characteristics of the energy emissions (logarithm of energy) for the whole database, the six segments of 1000 elements and
the last segment of 182 elements. The empirical results of the Kolmogorov—Smirnov, K-S, test are compared with the significance levels of
95 % and 99 %, KS_0.05 and KS_0.01, corresponding to the Gaussian distribution.

Segment 0001-6182  0001-1000  1001-2000 2001-3000 30014000 4001-5000 5001-6000 6001-6182

Maximum 8.903 8.187 7.574 8.372 7.937 7.650 7.667 8.903
Mean 6.610 6.578 6.563 6.641 6.663 6.558 6.633 6.730
SD 0.283 0.233 0.225 0.313 0.310 0.242 0.292 0.470
Skewness 1.394 1.252 0.931 1.267 1.035 1.144 0.834 2.085
Kurtosis 3.462 3.695 0.780 2.033 1.016 1.328 0.110 5.394
K-S test 0.102 0.081 0.083 0.106 0.091 0.102 0.095 0.154
K-S_0.05 0.017 0.043 0.043 0.043 0.043 0.043 0.043 0.100
K-S_0.01 0.021 0.051 0.051 0.051 0.051 0.051 0.051 0.120
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Figure 10. A comparison of nowcasting results for (a) the seismic activity of Waitaha/Canterbury (New Zealand), years 1990-2021, and
(b) the corresponding Gutenberg—Richter plot and (c) energy of the volcanic emissions of the Volcan de Colima (Mexico), years 2013-2015,
bearing in mind Segment 03 of volcanic emissions and (d) the whole volcanic record. The three extreme volcanic records designated by an
asterisk (Fig. 10b) are the same as detected in Fig. 10c.
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bedding dimension dg for the 21 moving windows.

7 Conclusions

The fractal parameters, obtained by means of the reconstruc-
tion theorem of six segments and 21 moving windows of the
analysed volcanic explosions in the Volcdn de Colima (Mex-
ico) as well as the nowcasting strategy, are the first steps in
the application of different forecasting processes.

The results suggest that different strategies for future fore-
casting emissions can be applied, especially for high-energy
emissions. These forecasting strategies can be based on dif-
ferent algorithms (Box and Jenkins, 1976; Lipton et al.,
2015; Rundel et al., 2017; Lei, 2021) and multi-fractal anal-
ysis of moving window data (Monterrubio-Velasco et al.,

Nonlin. Processes Geophys., 30, 571-583, 2023

2020). In spite of the uncertainties with respect to the wait-
ing time of an emission and its corresponding energy esti-
mated by means of forecasting, which are expected to be non-
negligible, these algorithms should depict reasonably good
approaches to real energy emissions, bearing in mind the ob-
tained reconstruction theory results. Additionally, the analy-
sis of the multi-fractal structure is expected to be a warning
factor for volcanic activities associated with high emissions
of energy, quite similar to the analysis of consecutive seismic
magnitudes (Monterrubio-Velasco et al., 2020) and usefully
applied to analyse climatic data as well as thermometric and
pluviometric data (Burguefio et al., 2014; Lana et al., 2023)
and also bearing in mind (Shimizu et al., 2002) the concept
of a multi-fractal complexity index, which could also con-
tribute to detecting imminent extreme volcanic emissions of
energy. In short, the reconstruction theory applied in this re-
search, together with nowcasting and forecasting algorithms
and multi-fractal theory, could be a very important process
for preventing extreme emissions of volcanic energy.
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