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Abstract. Physical numerical weather prediction models have biases and miscalibrations that can depend on
the weather situation, which makes it difficult to post-process them effectively using the traditional model output
statistics (MOS) framework based on parametric regression models. Consequently, much recent work has fo-
cused on using flexible machine learning methods that are able to take additional weather-related predictors into
account during post-processing beyond the forecast of the variable of interest only. Some of these methods have
achieved impressive results, but they typically require significantly more training data than traditional MOS and
are less straightforward to implement and interpret.

We propose MOS random forests, a new post-processing method that avoids these problems by fusing tradi-
tional MOS with a powerful machine learning method called random forests to estimate weather-adapted MOS
coefficients from a set of predictors. Since the assumed parametric base model contains valuable prior knowl-
edge, much smaller training data sizes are required to obtain skillful forecasts, and model results are easy to
interpret. MOS random forests are straightforward to implement and typically work well, even with no or very
little hyperparameter tuning. For the difficult task of post-processing daily precipitation sums in complex ter-
rain, they outperform reference machine learning methods at most of the stations considered. Additionally, the
method is highly robust in relation to changes in data size and works well even when less than 100 observations
are available for training.

1 Introduction

Although physically based numerical weather predictions
(NWPs) have made significant improvements in recent
decades (Bauer et al., 2015), statistical post-processing is still
necessary to correct systematic errors in the forecasts and ac-
curately quantify their uncertainty (Vannitsem et al., 2021).
The popular model output statistics (MOS) framework in-
troduced by Glahn and Lowry (1972) post-processes NWPs
using linear regressions between historical observations and
their corresponding predictions. Since then, the idea be-
hind MOS has been extended to ensemble post-processing
(EMOS) using more flexible regression models that allow for
heteroscedastic forecast errors (NGR, Gneiting et al., 2005)

or non-Gaussian responses (e.g., Scheuerer, 2014; Simon
et al., 2019).

Post-processing with MOS or EMOS is intuitive and can
work well but requires a dataset that is both sufficiently large
to allow for stable estimation of model coefficients and ho-
mogeneous enough for a single model with constant coeffi-
cients to work well. This means that the numerical weather
model which is to be post-processed must have relatively
constant systematic biases and miscalibrations. In order to
obtain such a homogeneous dataset, it is standard practice to
estimate separate MOSs for different atmospheric quantities,
locations, and lead times. Seasonal changes in predictability
can be accounted for using time-adaptive MOSs that employ
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sliding-window training schemes (Gneiting et al., 2005) or
by replacing constant model coefficients with cyclical func-
tions of the day of the year (Lang et al., 2020). This approach
also works with other univariate predictors such as altitude
(Schoenach et al., 2020).

Weather-adaptive post-processing – i.e., allowing biases
and miscalibrations of the NWP model to depend on the
weather situation – is necessary to obtain optimal forecast
performance but is made complicated by the large number of
potentially relevant atmospheric variables whose interactions
are unknown or poorly understood. It is possible to include
such additional predictors in a MOS model by using selec-
tion procedures based on expert knowledge (Stauffer et al.,
2017b) or gradient boosting (Messner et al., 2017), but this
requires that the interactions are either ignored or parameter-
ized a priori.

Machine learning (ML) methods have become increas-
ingly popular post-processing tools in recent years because
they are well suited to dealing with this high-dimensional
predictor space (Schulz and Lerch, 2022). Neural networks
(NNs), for example, have been used in parametric distribu-
tional regressions similar to EMOS (Rasp and Lerch, 2018)
and semi-parametric quantile function regressions based on
Bernstein polynomials (Bremnes, 2020). The predictive skill
of NNs can be impressive, but they typically require combin-
ing data from many different stations to effectively train the
model. Purely local (station-wise) ML-based post-processing
is often performed using random forests, which generally
assume either a parametric distribution for the response
(Schlosser et al., 2019) or predict a collection of specified
quantiles (Taillardat et al., 2016; Evin et al., 2021), although
combinations of the two have been employed as well (Tail-
lardat et al., 2019). Random forests have the advantage of be-
ing straightforward to implement, but they generally can only
approximate linear (or other very smooth) functions by com-
bining many (highly non-linear) step functions from individ-
ual trees. This may prove to be somewhat of a disadvantage
in MOS applications, where the relationship between obser-
vations and model outputs is typically close to linear.

MOS random forests (MOS forests for short) fuse tradi-
tional and ML-based post-processing by first assuming an
appropriate parametric MOS model and then adapting its
coefficients to the weather situation at hand using random
forests. The split variables and corresponding split points in
the individual trees of a MOS forest are not selected based on
properties of the response variable directly (e.g., their mean,
quantiles, or other parameters), as done in quantile forests
or distributional forests. Instead, the splits are chosen based
on changes in the MOS coefficients of the assumed model,
which may reflect either changes in the marginal distribu-
tion of the response (e.g., captured by intercepts) or changes
in the dependence on the model outputs (e.g., captured by
slopes). The predictor space is thus partitioned to ensure ho-
mogeneity with respect to the MOS coefficients, meaning
that a single model with constant coefficients can be assumed

to work well in each corresponding subsample of the data. In
order to decrease variance and to allow for smooth dependen-
cies, a MOS forest combines the partitions from many differ-
ent MOS trees grown using bootstrapped or subsampled data
(Breiman, 1996) and only random subsets of predictor vari-
ables for splitting at each node (Breiman, 2001). Weather-
adapted MOS coefficients predicted by the MOS forest can
then be interpreted and used for post-processing in the usual
way.

A detailed description of MOS forests can be found in
Sect. 2. In the following Sect. 3, MOS forests and refer-
ence methods are used to post-process ensemble predictions
of daily precipitation sums in complex terrain. The results
of this real-world application are presented in Sect. 4. The
strengths and limitations of the proposed method are dis-
cussed in Sect. 5, and summarizing remarks conclude the pa-
per in Sect. 6.

2 MOS random forests

MOS forests adapt the regression coefficients of an assumed
(non-adaptive) base MOS to some set of additional atmo-
spheric variables that characterize the current weather situ-
ation. Thus, it is first necessary to choose a suitable base
MOS for the specific post-processing task at hand (Sect. 2.1).
Subsequently, individual MOS trees are grown from this
base MOS using model-based recursive partitioning algo-
rithms which seek to identify homogeneous weather parti-
tions of the predictor space within the tree’s terminal nodes
(Sect. 2.2). Individual MOS trees already allow for weather-
adaptive post-processing but can only approximate smooth
effects through step functions with many splits. To better
capture smooth effects and improve predictive performance,
MOS forests therefore combine the partitions from not just
one but many different MOS trees learned on random sub-
samples of the full data, yielding the final weather-adapted
MOS (Sect. 2.3). This model can then be used for post-
processing as usual.

2.1 Choosing a base MOS

The goal of MOS is to improve upon the quality of physi-
cal NWP models by identifying their weather-related statis-
tics using regression models trained on historical obser-
vations and corresponding predictions (Glahn and Lowry,
1972). Since MOS was first introduced 50 years ago, there
have been substantial changes in both (i) what is meant by
weather-related statistics in the context of MOS and (ii) the
flexibility of the regression methods used to identify these.

In the simplest case – with a single (deterministic) fore-
cast for an atmospheric quantity and forecast errors that may
be assumed to be Gaussian – systematic biases in the NWPs
can be identified using a classical linear regression. A clas-
sical example is to regress observed temperatures y on the
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corresponding temperature predictions x:

E(y | x)= β0+β1 · x. (1)

MOS coefficients β0 and β1 then describe how the temper-
ature forecast from the physical model should be corrected
to better match real-world observations. For the ideal case of
an NWP with no systematic biases, these values would be
β0 = 0 and β1 = 1. In the classical linear model, coefficients
are estimated by minimizing the sum of the squared errors
(OLS) on some set of training data, which is equivalent to
minimizing the root mean square error (RMSE) of the resid-
uals.

This simple post-processing model not only allows biases
in the NWP to be corrected but also implicitly estimates the
uncertainty of the post-processed forecast. Namely, if y can
be assumed to follow a Gaussian distribution conditionally
on x, the minimum RMSE obtained during model estimation
is an estimate of the standard deviation σ of the forecast dis-
tribution, and Eq. (1) may be rewritten as

y ∼N (µ,σ 2), where µ= β0+β1 · x,

and logσ = γ0. (2)

Generally though, weather forecasts do not have con-
stant uncertainty, and many atmospheric variables do not
follow Gaussian distributions, even conditionally. To allow
for more flexibility in post-processing, modern implemen-
tations of MOS therefore often employ distributional regres-
sions (Kneib et al., 2021), also known as generalized additive
models for location, scale, and shape (GAMLSS, Rigby and
Stasinopoulos, 2005). In distributional regression, the obser-
vation y can follow some other parametric distribution, and
all parameters (not just the mean) of this distribution are
modeled on appropriate predictors derived from the NWP
(ensemble).

Typically, coefficients of distributional regression models
are estimated by maximizing the log-likelihood ` of the dis-
tributional parameters given the observations or by minimiz-
ing the continuous ranked probability score (CRPS). One
prominent example in the post-processing literature is the
nonhomogeneous Gaussian regression (NGR) of Gneiting
et al. (2005), also known as EMOS, where the parameters
µ and σ in Eq. (2) are modeled on the mean and spread
of an NWP ensemble, respectively. Other examples include
truncated Gaussian and generalized extreme value response
distributions for forecasting wind speed (Thorarinsdottir and
Gneiting, 2010; Lerch and Thorarinsdottir, 2013) and cen-
sored and shifted gamma distributions for forecasting pre-
cipitation (Baran and Nemoda, 2016).

In the subsequent sections, we therefore assume that the
base MOS for y explained by x uses some parametric model
with likelihood `((y,x),θ ) and r-dimensional parameter vec-
tor θ that is estimated through likelihood maximization:

θ̂ = argmaxθ
N∑
i=1

`((yi,xi),θ ). (3)

In the example from Eq. (2), the likelihood is Gaussian with
parameter vector θ = (β0,β1,σ ), but other distributions, like
the ones from the previous paragraph, could be used in the
same way.

2.2 Growing individual MOS trees

In order to adapt the coefficients of the base MOS chosen
in Sect. 2.1 to some additional weather-related predictors
z1,z2, . . .zk , a single MOS tree partitions the predictor space
Z1×Z2× . . .×Zk into disjointed subsets that can each be
considered to be homogeneous weather situations for the pur-
pose of NWP post-processing – i.e., where constant MOS co-
efficients work well. It is grown using model-based recursive
partitioning algorithms (Zeileis et al., 2008; Seibold et al.,
2018) according to the following steps.

Step 1: Estimate coefficients of the base MOS

MOS coefficients θ are estimated through likelihood maxi-
mization on the i = 1, . . .N , observations yi and correspond-
ing predictions xi in the dataset. This is done by solving the
first-order condition

N∑
i=1

s((yi,xi),θ )= 0, (4)

where

s((yi,xi),θ )=
(
∂`((yi,xi),θ )

∂θ1
, . . .,

∂`((yi,xi),θ )
∂θr

)>
(5)

contains the partial derivatives of the log-likelihood with re-
spect to each coefficient – i.e., the model scores – evaluated
at the ith observation pair (yi,xi).

Step 2: Select the splitting variable

Scores with respect to each coefficient are again computed at
all observations (Eq. 5) and evaluated at the estimated coef-
ficients θ̂ = (θ̂1, . . ., θ̂r ) from step 1. Since the estimated co-
efficients were obtained using Eq. (4), each score vector has
a mean of zero. If the single MOS with constant coefficients
fits well, the scores for each observation should randomly
fluctuate around zero. On the other hand, systematic depar-
tures of the scores from zero along some of the variables in z
suggest that predictions can be improved by splitting the data
and estimating separate post-processing models based on the
two resulting subsamples. Whether or not the scores fluctu-
ate randomly or depend on one of the weather-related predic-
tors can be assessed using an independence test between the
scores and each of the variables in z (see permutation tests
of Hothorn et al., 2006, 2008). If there is a significant de-
pendence with respect to at least one of the variables, then
the most significant variable (i.e., with the smallest p value)
is selected for splitting. The underlying test statistic captures
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the overall dependence in all score components (i.e., all MOS
coefficients) simultaneously using a quadratic form. To ac-
count for assessing multiple variables from z, a Bonferroni
correction for multiple testing is employed.

Step 3: Identify the optimal split point

Once the splitting variable zj has been selected, an exhaus-
tive search is performed over all possible split points to iden-
tify the partition that improves the log-likelihood the most.
For numerical splitting variables, up to 2 · (N − 1) different
MOSs are estimated in this step – separate models in both
subsamples for each of the N − 1 possible split points. The
number of possible split points (and thus estimated models)
decreases for each tie among the realizations of zj . For un-
ordered categorical splitting variables, the number of possi-
ble split points is equal to the number of ways in which the
different categories can be divided into two subgroups and
thus increases exponentially with the number of distinct cat-
egories.

Repeat previous steps

The three steps described above split a dataset of size N into
two disjoint subsamples that are then each post-processed us-
ing a separate MOS. In order to grow a MOS tree, these steps
are repeated for each subsample until a stopping criterion
has been reached. The terminal nodes of a MOS tree (i.e.,
those nodes that are not split any further) contain disjointed
subsamples of the full data that correspond to different ho-
mogeneous weather situations for post-processing with MOS
(Figs. 1 and 2).

Coefficients θ1, . . .,θk in each terminal node are obtained
through likelihood maximization on the corresponding sub-
sample. Note that this can also be understood as a weighted
estimated using the full data, where weights are either 0 or 1,
indicating whether or not the respective observation is in the
subsample of interest. In the following Sect. 2.3, this idea is
extended to use weights that may change smoothly (rather
than abruptly) between 0 and 1. This can express the de-
gree of similarity (with respect to MOS coefficients) between
some new weather situation and those historical weather sit-
uations in the training data.

2.3 Obtaining weather-adapted coefficients from a
random forest of MOS trees

Individual MOS trees grown according to Sect. 2.2 are easy
to understand and interpret (see Sect. 4.1) but can be sensi-
tive to small changes in the data and may have a suboptimal
fit if the model parameters change smoothly with the weather
situation variables. To solve this problem and improve out-
of-sample predictive skill, a MOS forest combines partitions
from many different trees grown on bootstrap-aggregated

(bagged) data and using only a randomly chosen subset of
the atmospheric variables in z for splitting at each node.

Given a MOS forest with T trees and P t partitions in each
tree t , MOS coefficients are adapted to a new weather situ-
ation z? ∈ Z1×Z2× . . .×Zr by maximizing the likelihood
of the base MOS in relation to the full training data, as in
Eq. (3):

θ̂ (z?)= argmaxθ
N∑
i=1

w(z?,zi) · `((yi,xi),θ ), (6)

but with observations (yi,xi) weighted according to

w(z?,zi)=
1
T

T∑
t=1

P t∑
p=1

1((z? ∈ P tp)∧ (zi ∈ P tp))

| P tp |
. (7)

These weights thus capture how similar the new weather sit-
uation z? is to any of the historical weather situations zi from
the training data by computing how often they end up in the
same homogenous weather partition from the different trees
in the forest. Thus, they characterize their similarity with re-
spect to the MOS coefficients.

By using partitions from many different trees to estimate
the weather-adapted MOS, model coefficients are not re-
stricted to a discrete number of unique values at most equal to
the number of terminal nodes (as can be seen with estimates
for σ from the MOS tree of Fig. 3). Instead, coefficients are
allowed to have smooth dependencies on the additional pre-
dictors, and, as a result, predictions are more stable (see esti-
mates for σ from the MOS forest of Fig. 3).

The MOS coefficients θ̂ (z?) that have been adapted to the
new weather situation z? can be used to post-process the cor-
responding forecast x? in the same way as coefficients ob-
tained from a MOS tree or from the base MOS itself. That
is, the (log-transformed) probability density function for the
unknown observation y? is given by `(y? | x?, θ̂ (z?)), and the
parameters of the response distribution are those values pre-
dicted by the MOS.

Using neighborhood weights as described above is com-
monplace in forests that contain more complex models rather
than just a single scalar value in the terminal nodes (e.g.,
Schlosser et al., 2019; Athey et al., 2019). An alternative ap-
proach would be to obtain the weather-adapted MOS model
by averaging over MOS coefficients predicted by the indi-
vidual trees. In the application considered here, the two per-
formed equally well, except in the case of smaller sample
sizes, where using the weights was slightly better.

3 Post-processing precipitation forecasts in
complex terrain

The MOS forests described in Sect. 2 are applied to the diffi-
cult task of obtaining reliable probabilistic precipitation fore-
casts in complex terrain. Individual topographical features
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cannot be resolved by NWP models, which means that pre-
dictions for these locations rely heavily on subgrid-scale pa-
rameterizations whose accuracy can depend on the weather
situation. Postprocessing models are trained and evaluated
on the RainTyrol dataset described in Sect. 3.1, which
contains observations of daily precipitation sums and vari-
ous ensemble-derived predictor variables that can be used for
weather-adaptive post-processing. The exact configuration of
the MOS forest for this application and a description of the
three reference methods are given in Sect. 3.2.

3.1 Data

The RainTyrol dataset (Schlosser et al., 2019) is com-
posed of observed daily precipitation sums from the Aus-
trian National Hydrographical Service and NWPs from the
11-member global ensemble forecast system (GEFS, Hamill
et al., 2013) of the US National Oceanic and Atmospheric
Administration (NOAA). Data are available at 95 different
stations in Tyrol, Austria, (and surrounding border regions)
for all July days between 1985 and 2012, except the miss-
ing day of 19 July 2011. July is a month with some of the
largest precipitation amounts and variability within the year,
and both large-scale precipitation events and local convective
events occur. To reduce skewness, daily precipitation sums
observed at 06:00 UTC (robs) are power transformed using
a parameter value of 1/1.6, which corresponds to the median
of the power coefficients estimated at all stations (Stauffer
et al., 2017a).

There are 80 different predictor variables derived from the
GEFS that can be used for post-processing. These include
the direct predictor of the observation: the mean of the en-
semble forecast of total (24 h) precipitation between +6 and
+30 h but also the ensemble spread and its minimum and
maximum. To account for the fact that summertime rainfall
in Tirol is often caused by convection during the late after-
noon and evening hours, ensemble statistics for the four sub-
daily 6 h precipitation forecasts (+6 to +12, +12 to +18,
+18 to +24, and +24 to +30 h) are also used as predic-
tors. The same variations are also included for forecasts of
the convective available potential energy (CAPE), a key in-
gredient in thunderstorms. Forecasts of temperature and tem-
perature differences at and between different heights, as well
as incoming solar radiation (i.e., sunshine), pressure, precip-
itable water, and total column-integrated condensate, are also
added. Predictors derived from these atmospheric variables
are not included for every sub-forecast, but the ensemble
means and spreads are temporally aggregated using the mini-
mum, maximum, or mean. For example, pwat_mean_max
refers to the maximum ensemble mean of precipitable wa-
ter forecasted by the GEFS for a lead time between +6 and
+30 h. A thorough description of all available predictor vari-
ables and their naming conventions can be found in Table 1
of Schlosser et al. (2019).

3.2 Methods

The ensemble forecasts described in Sect. 3.1 are post-
processed using MOS forests, two other forest-based
weather-adaptive reference methods, and a non-adaptive
EMOS. An overview of the methods is given in Table 1, and
more details are supplied below.

3.2.1 MOS forests

To deal with the fact that precipitation sums are strictly non-
negative, we follow Schlosser et al. (2019) and assume a left-
censored Gaussian response distribution with log-likelihood
given by

`(µ,σ ;y)=

{
log

(
1
σ
·φ
( y−µ
σ

))
, if y > 0

log
(
8
(
−µ
σ

))
, if y = 0,

(8)

where φ and 8 are the probability density function and cu-
mulative density function of a standard Gaussian distribution
N (0,1), respectively.

The prespecified base MOS

µ= β0+β1 ·tppow_mean, log(σ )= γ0, (9)

linearly models the distributional mean µ on the mean of
the (power-transformed) daily precipitation sums predicted
by the individual ensemble members – i.e., the direct pre-
dictor from the NWP model. The standard deviation of the
response distribution σ is modeled by an intercept.

MOS forests are able to flexibly model MOS coefficients
β0,β1,γ0 on all additional predictors from the dataset. The
direct predictor tppow_mean from the base MOS could
also be included among the splitting variables, but this did
not improve the forecast skill for our application. All model
estimation is performed in R with the model4you (Seibold
et al., 2019) and crch (Messner et al., 2016) packages us-
ing the same hyperparameters as the distributional forests
of Schlosser et al. (2019). In particular, this means that a
node must have at least 50 samples in order to be split again
(minsplit= 50) and that terminal nodes must have at least
20 samples (minbucket = 20).

3.2.2 Distributional forests

Distributional forests (Schlosser et al., 2019) work in a sim-
ilar fashion to MOS forests but do not contain a prespec-
ified MOS model. Instead, θ only contains the parameters
of the assumed response distribution – i.e., in this case, µ
and σ of a censored Gaussian – rather than the MOS coeffi-
cients. Trees are split with respect to distributional parame-
ters rather than MOS coefficients, and the forest estimates the
post-processed response distribution rather than a weather-
adapted MOS. Distributional forests are estimated with the
disttree package in R following the model configuration
chosen by Schlosser et al. (2019) and thus have the same hy-
perparameters as the MOS forests.
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Table 1. Overview of methods used to post-process precipitation forecasts from the RainTyrol dataset (see Sect. 3.1). In the dataset,
variable names tppow_mean and tppow_sprd refer to the mean and standard deviation of the power-transformed ensemble forecasts of
total precipitation, respectively.

Model name Forecast type Prespecified regression model for Splitting variables

Location: µ Scale: log(σ )

MOS forest censored Gaussian β0+β1·tppow_mean γ0 all, except tppow_mean
Distributional forest censored Gaussian all
Quantile regression forest set of quantiles all
EMOS censored Gaussian β0+β1·tppow_mean γ0+ γ1 · log(tppow_sprd)

3.2.3 Quantile regression forests

Both MOS forests and distributional forests require spec-
ifying a parametric response distribution a priori. Since
this assumption may not always hold (even conditionally),
a fully non-parametric method called quantile regression
forests (Meinshausen and Ridgeway, 2006; Taillardat et al.,
2016) is also considered. Splits are chosen with respect to
the response value as in the standard random forest algo-
rithm (Breiman, 2001), but the partitions are subsequently
used to perform weighted quantile regressions and to gen-
erate probabilistic forecasts. In this application, 99 quan-
tiles are considered, corresponding to probabilities of p =
0.01,0.02, . . .0.99. Model estimation is performed using the
quantregForest (Meinshausen, 2017) package in R.

3.2.4 EMOS

All three methods described above incorporate additional
predictors using forest-based algorithms to allow for
weather-adaptive post-processing. In order to quantify the
benefit that comes with this added model flexibility, a sim-
ple fully parametric non-adaptive EMOS is also considered:

µ= β0+β1 ·tppow_mean,

log(σ )= γ0+ γ1 · log(tppow_sprd). (10)

This EMOS has the same mean model as the pre-specified
MOS in the MOS forest, but it also linearly models log(σ )
on the log-transformed standard deviation of the ensemble
precipitation forecasts.

4 Results

To illustrate how post-processing with MOS forests works in
practice, first a single MOS tree is grown at the station of Ax-
ams (for location, see Fig. 8 of Schlosser et al., 2019). This
MOS tree is analyzed in Sect. 4.1. Subsequently, separate
MOS forests are grown and used to post-process forecasts
at all stations. The quality of these forecasts is evaluated in
Sect. 4.2.

4.1 Interpreting a MOS tree

A MOS tree for Axams is grown from the first 24 years
of data and is visualized in Fig. 1. The first split of
the tree separates rare (n= 23) weather situations with
very high ensemble-averaged total column liquid condensate
(tcolc_mean_mean) from the remainder of the data. The
rest of the data are then split based on the maximum tem-
perature predicted by the ensemble (tmax_mean_mean).
The lower temperature branch has two subsequent splits: first
based on precipitable water (pwat_mean_max) and then on
the ensemble spread of precipitation (tppow_sprd). This
results in three terminal nodes (nodes 5, 6, and 7). The higher
temperature branch has three splits, the first based again on
(tcolc_mean_mean) and the other two based on the en-
semble spreads of 500 hPa temperature (t500_sprd_min)
and precipitation (tppow_sprd1824). This results in four
terminal nodes (nodes 11, 12, 13, and 14).

MOS models for each terminal node (i.e., distinct weather
situation) are visualized in Fig. 2. The majority of observa-
tions are found in either node 5, 13, or 11. For nodes 5 and
13, the MOS are quite similar, the largest difference being
that forecasts in node 13 are less certain (i.e., γ0 is greater).
In contrast, the MOS used to post-process NWPs in node 11
is very different, with a strongly negative intercept for the
mean model (β0 =−8.16) and a high forecast uncertainty
(γ0 = 1.09). This is because node 11 contains many days
where the ensemble mean is greater than zero – i.e., some en-
semble members predict precipitation for Axams – although
no precipitation is actually observed. To understand when the
tree makes such a prediction, it is only necessary to consider
the splits in Fig. 1 that lead to node 11: high maximum tem-
perature, low column liquid condensate, and narrow ensem-
ble spreads for minimum temperature at 500 hPa and accu-
mulated precipitation between 18:00 and 24:00 UTC.

4.2 Evaluating predictive skill

MOS forests are compared to the reference methods de-
scribed in Sect. 3.2 by evaluating the skill of post-processed
forecasts using the widely used continuous ranked probabil-
ity score (CRPS, Matheson and Winkler, 1976; Gneiting and
Raftery, 2007). To replicate a true operational scenario, all
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Figure 1. A single MOS tree estimated for Axams. Ellipses represent nodes used for splitting and contain the name of the splitting variable
along with the p value of the independence test. The corresponding split point is included in the two branches (lines) emanating from the
node. Terminal nodes (which are not split again) are visualized by rectangles and contain the number of observations n and estimated MOS
coefficients β0,β1,γ0. The models fit into each terminal node are visualized in Fig. 2.

evaluations are performed out of sample on data that were not
used to train the models. First, forecasts at Axams are evalu-
ated using multiple replications of a randomized 7-fold cross-
validation (Sect. 4.2.1). At all other stations, forecasts are is-
sued for a single hold-out fold (containing the last 4 years),
and the remaining six folds (containing the first 24 years) are
used for model training (Sect. 4.2.2). Finally, models are also
trained using different amounts of data (12, 6, and 3 years) to
investigate their robustness in this respect (Sect. 4.2.3).

4.2.1 Full cross-validation at individual stations

The Axams data are randomly split into seven disjoint folds
that each contain observations and NWPs from 4 different
years. MOS forests and the reference post-processing meth-
ods outlined in Sect. 3.2 are trained on six out of the seven
folds and are then used to make predictions based on the re-
maining fold. After seven rounds of this, out-of-sample pre-
dictions are available for each day in the 28 years of data
and are used to compute an average CRPS for each method.
The entire process is then repeated 10 times, each with a dif-
ferent random choice for the seven folds. CRPS skill scores
are computed relative to the EMOS model and visualized by
boxplots in Fig. 4. MOS forests improve CRPS by more than
7 % at Axams and thus perform slightly better than both the
distributional forest and the quantile regression forest, which
each lead to improvements of around 6 %.

4.2.2 Hold-out validation at all stations

To investigate predictive performance at all 95 stations, all
models are trained on the first 24 years of data (1985–2008),
and out-of-sample predictions are made for the last 4 years
(2009–2012).

CRPS skill scores relative to EMOS are computed for each
method at each station and are visualized by boxplots in
Fig. 4. MOS forests generally outperform the other forest-
based post-processing methods and are noticeably more ro-
bust. Distributional forests and quantile regression forests
occasionally perform up to 5 % worse than a basic EMOS,
and the quantile regression forest is outperformed by EMOS
nearly 25 % of the time. This is not the case for the MOS
forests, which always perform at least as well as EMOS and
improve the forecasts by more than 5 % at 75 % of the sta-
tions.

Regional differences in model performance can be seen
in the map of Fig. 5. While MOS forests significantly out-
perform distributional forests and quantile regression forests
in the northeast and southeast of the forecast region, results
are less clear in the more mountainous regions further west
and near the main Alpine crest. At these locations, quantile
regression forests often perform slightly better. Such clear
regional differences in model performance are not visible in
Fig. 8 of Schlosser et al. (2019), perhaps because all their
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Figure 2. Scatterplots of observations versus ensemble mean forecasts in each terminal node of Fig. 1. Numbers identifying the nodes are
included in the top left of each plot. Dashed and solid lines are quantiles corresponding to probabilities of 2.5 %, 25 %, 50 %, 75 %, and
97.5 %, obtained from the MOS model fit in each node.

Figure 3. Solid lines are out-of-sample predictions for the location (µ) and scale (σ ) parameters of the response distribution at Axams in
July 2009, obtained from the MOS tree visualized in Figs. 1 and 2, as well as a MOS forest. Dashed lines are corresponding predictions from
the base MOS (Eq. 9).

post-processing methods assumed the same type of response
distribution.

Overall, probabilistic forecasts obtained from the MOS
forests not only have a better CRPS than those obtained from
the other two methods but are also more statistically con-
sistent with observations (i.e., calibrated). Calibration across
all stations is visualized by probability integral transform
(PIT) histograms for MOS forests and distributional forests
and with a rank histogram for the quantile regression forests
(Fig. 6). For perfectly calibrated forecasts, these histograms
should be approximately uniform. Although all methods
somewhat overestimate probabilities for high-precipitation

events, this overestimation is much less pronounced in the
MOS forests.

4.2.3 Sensitivity to size of training data

The methods compared above use 24 years of data for model
training, but since such large datasets are not always available
in post-processing – e.g., for newly erected observational
sites – the hold-out evaluations for all stations in Sect. 4.2.2
are repeated using only 12, 6, and 3 years of data for training.
The boxplots in Fig. 7 show that MOS forests are very robust
in relation to these changes and still perform significantly
better than a non-adaptive EMOS even when trained using
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Figure 4. (a) CRPSS relative to EMOS at Axams based on 10 randomly chosen 7-fold cross-validations. (b) CRPSS relative to EMOS at
each station for the time period 2009–2012. Individual stations are connected by thin gray lines. Scores for the station of Axams are indicated
by filled black circles connected by black lines.

Figure 5. Map showing the post-processing method that performs best at each station. Three different circle sizes (small, medium, large)
are used to indicate where the CRPSS with respect to the second best method is less than 0.2, between 0.2 and 0.4, and more than 0.4,
respectively. Terrain elevation is indicated by background color.

only 3 years of data (i.e., 93 observations). In contrast, dis-
tributional forests nearly always perform significantly worse
than EMOS in such cases and have a median skill score
of −10% across all stations. Similarly, quantile regression
forests are also outperformed by the non-adaptive EMOS at
around half of the stations.

5 Discussion

When compared to state-of-the-art weather-adaptive post-
processing methods, MOS forests have the main advantage
of being highly robust: they reliably outperform simple non-
adaptive reference methods even when trained on very small
sample sizes. This is possible because, unlike state-of-the-
art weather-adaptive methods that treat all predictors equally
and use a data-driven approach to learn their relationships to

the response, MOS forests directly incorporate prior (phys-
ically based) knowledge about the most important relation-
ships in the form of a parametric model. One might think
that robustness is not important in our current big-data era,
but consider the fact that NWP models are continuously up-
dated (e.g., with improved resolutions or parameterizations),
and new stations (or measurement instruments) can always
be installed. In the words of Glahn and Lowry (1972), “data
samples containing numerical model output are a perishable
commodity”, and this is still true today.

In the application considered here, MOS forests are used
to post-process NWP ensembles, and separate models are es-
timated for each station. Without any modifications, MOS
forests also offer a powerful way to obtain probabilistic
forecasts from deterministic NWPs, where no predictors ex-
plicitly characterizing the forecast uncertainty are available.
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Figure 6. Probability integral transform (PIT) histograms for MOS forests and distributional forests and rank histogram for quantile regres-
sion forests across all stations for the time period 2009–2012. Dashed red lines are the 95 % confidence intervals for a uniform distribution.

Figure 7. As for the hold-out evaluation of all stations in Fig. 4 but with models trained on the past 24, 6, and 3 years. Blue lines highlight
the influence changing data size has on the median CRPSS of each method.

Similarly, MOS forests could also be employed as spatial
(rather than station-wise) post-processing models by includ-
ing predictors that contain information about the individual
grid points or stations within the training data. Potentially
relevant variables would then include latitude, longitude, and
altitude but also surface roughness, land cover type, or other
characteristics.

Despite their many advantages, MOS forests require spec-
ifying the same two things as all other MOS models: (i) a
parametric distribution for the response and (ii) models link-
ing the parameters of that distribution with appropriate pre-
dictors derived from the NWP. Not much can be done about
the first point besides trying different response distributions
or transformations of the data. As for the second point, in
cases where no suitable models for the distributional parame-
ters can be specified a priori, MOS forests have no advantage
over distributional forests. In fact, MOS forests collapse to

distributional forests if the assumed base MOS has intercept-
only models for the parameters of the response distribution.

6 Conclusions

Since NWPs have errors that can depend on the weather sit-
uation, weather-adaptive post-processing methods are neces-
sary to obtain optimal probabilistic forecasts. By fusing tra-
ditional (non-adaptive) and modern (weather-adaptive) post-
processing approaches, MOS forests retain the best of both
worlds: a method that is flexible enough to allow for weather-
adaptive post-processing but that is also robust, intuitive, and
straightforward to implement. This is achieved by using ran-
dom forests to adapt the regression coefficients of a prespec-
ified parametric base MOS to a set of additional predictor
variables that characterize the current weather situation. In
contrast to state-of-the-art post-processing methods, which
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typically directly estimate properties of the response from
these predictors, MOS forests only use them to estimate the
regression coefficients of the assumed base model. As a re-
sult, they can generate skillful forecasts even when only a
very limited amount of data are available for training and
when purely data-driven weather-adaptive methods fail to
outperform a simple non-adaptive model.

Code availability. Code with wrapper functions for training and
evaluating postprocessing models on the RainTyrol dataset can be
found at https://github.com/thomas-muschinski/mos_forests (last
access: 15 November 2023). MOS forests are estimated using the
R package model4you (Seibold et al., 2019) in combination with
crch (Messner et al., 2016). Distributional forests are estimated us-
ing disttree (Schlosser et al., 2021). Quantile regression forests are
estimated using quantregForest (Meinshausen, 2017). EMOS mod-
els are estimated using crch (Messner et al., 2016). Forecast evalu-
ation is performed using scoringRules (Jordan et al., 2023).

Data availability. The RainTyrol dataset used for training and
evaluating the postprocessing models is available at Schlosser et al.
(2020).
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