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Abstract. The climate system as well as ecosystems might undergo relatively sudden qualitative changes in
the dynamics when environmental parameters or external forcings vary due to anthropogenic influences. The
study of these qualitative changes, called tipping phenomena, requires the development of new methodological
approaches that allow phenomena observed in nature to be modeled, analyzed and predicted, especially con-
cerning the climate crisis and its consequences. Here we briefly review the mechanisms of classical tipping
phenomena and investigate rate-dependent tipping phenomena which occur in non-autonomous systems char-
acterized by multiple timescales in more detail. We focus on the mechanism of rate-induced tipping caused by
basin boundary crossings. We unravel the mechanism of this transition and analyze, in particular, the role of such
basin boundary crossings in non-autonomous systems when a parameter drift induces a saddle-node bifurcation
in which new attractors and saddle points emerge, including their basins of attraction. Furthermore, we study
the detectability of those bifurcations by monitoring single trajectories in state space and find that depending on
the rate of environmental parameter drift, such saddle-node bifurcations might be masked or hidden, and they
can only be detected if a critical rate of environmental drift is crossed. This analysis reveals that unstable states
of saddle type are the organizing centers of the global dynamics in non-autonomous multistable systems and as
such need much more attention in future studies.

1 Introduction

The climate system consists of many interacting components
(Ghil and Lucarini, 2020; Franzke et al., 2015). These com-
ponents could either be different compartments of the climate
system itself, e.g., atmosphere, hydrosphere, cryosphere, and
biosphere, or a zoomed-in view of one such compartment,
e.g., the velocity components of the ocean flow or the abun-
dances of different species in an ecosystem. Though there is
no standard definition of a complex system, many researchers
agree on the following properties inherent to such systems:
(1) the interactions between the components and/or the ex-
ternal forcing of the system are, in general, characterized
by nonlinearities that give rise to various positive and neg-
ative feedbacks, possibly resulting in unexpected changes of

the dynamics when intrinsic parameters or external forcings
are varied. (2) These nonlinear interactions lead to the emer-
gence of a remarkably complex, partly unpredictable tempo-
ral dynamics or to the ability of the system to spontaneously
form temporal, spatial or spatiotemporal patterns. (3) Ran-
dom fluctuations, which are unavoidable in natural systems,
lead to dynamics that are governed by both deterministic and
random behaviors.

The study of the impact of nonlinearities in the geo-
sciences has a long history concerning investigations of
(i) chaotic dynamics leading to obstructions to predictability
(Lorenz, 1963; Smith et al., 1999; Tel et al., 2020), (ii) scal-
ing properties of various geophysical processes (Lovejoy and
Schertzer, 2012; Schertzer and Lovejoy, 2011) and (iii) the
formation of coherent structures in flows (Wiggins, 2005;
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Mancho et al., 2013; Haller, 2015; d’Ovidio et al., 2004) and
their impact on marine ecology (Kai et al., 2009; Rossi et al.,
2014; Sandulescu et al., 2007) to name only a few. Several
phenomena in the climate system, like the breakdown of the
Atlantic part of the thermohaline ocean circulation (Atlantic
Meridional Overturning Circulation – AMOC) (Rahmstorf,
1995; Weijer et al., 2019; Lohmann et al., 2021), the loss of
Arctic sea ice (Notz, 2009; Eisenman and Wettlaufer, 2009;
Eisenman, 2012) or the loss of species in ecosystems (Goss-
ner et al., 2016; Binzer et al., 2012; Ficetola and Denoel,
2009), have been discussed in the past in terms of classi-
cal bifurcation theory, i.e., the approach describing qualita-
tive changes in the long-term dynamics of a nonlinear sys-
tem when a control parameter is varied and crosses critical
thresholds (Guckenheimer and Holmes, 1986; Ott, 1992; Al-
ligood et al., 1992). The study of such transitions from a more
general point of view has been intensified during the last
decade due to the need to develop an appropriate mathemati-
cal methodology to tackle the problems of the climate crisis.
Two properties of the climate system call for extensions of
classical bifurcation theory, leading to the new notion of crit-
ical transitions: (1) most processes are multi-scale processes
in space and time; i.e., different physical, chemical or bio-
logical processes immanent to the system evolve on differ-
ent temporal and spatial scales. (2) Many critical transitions
are observed in a time-dependent environment, such that the
control parameters – either intrinsic to the dynamics or to the
strength of an external forcing – vary with a certain arbitrary
time dependence manifested by a specific trend. As long as
the environment evolves on a much slower timescale than the
intrinsic dynamics, classical bifurcation theory is still appro-
priate, and a quasi-stationary approach can be used to study
the response of a nonlinear system with respect to climate
change. This situation changes as the rate of environmental
change becomes comparable with the timescale of the intrin-
sic dynamics, particularly the rate of dissipation in the sys-
tem (Kaszás et al., 2016). While classical bifurcation theory
has been developed to deal with models that are either au-
tonomous or periodically forced systems, the most important
challenge is now to extend the notion of critical transitions
to non-autonomous systems. In addition, temporal changes
in the external forcing following specific trends and mim-
icking climate change often happen on a different timescale
than that of the intrinsic dynamics of the system under con-
sideration. These timescale separations lead to partly unex-
pected behaviors. Such scale dependence has been studied
in the literature in different contexts such as climate sensi-
tivity (Bastiaansen et al., 2022), tipping in excitable systems
(Pierini and Ghil, 2021; Vanselow et al., 2022), overshoot-
ing and reversing tipping (Ritchie et al., 2021, 2023), and the
topological structure of invariant sets in complex systems in-
cluding their characteristics like fractal dimensions (Alberti
et al., 2023; Charo et al., 2021).

In this paper, we review the classification of tipping phe-
nomena, explain their mechanisms, and give examples of

their occurrence in climate science and ecology (Sect. 2
and 2.1). Special emphasis is given to discussing the impact
of the different timescales of the various physical, chemi-
cal or biological processes. Therefore, the main focus is on
rate-induced transitions in which the rate of change in en-
vironmental conditions leads to new bifurcation phenomena
in non-autonomous systems. We explain the different conse-
quences of rate-induced transitions and point out that time-
dependent variations of an external forcing can shift the focus
from stable long-term states (attractors) to unstable states of
saddle type and their stable and unstable manifolds (Sect. 3).
This approach leads to a fresh view on the role of unsta-
ble states in the dynamics of any nonlinear system subject
to a parameter drift. In addition, we show that classical bi-
furcations, which occur in a nonlinear system due to time-
dependent changes of internal parameters or external forc-
ing, can be masked for certain initial conditions depending
on the rate of parameter change. This masking is due to time-
dependent changes in the basins of attraction, which might
happen in the course of the variation of external forcing.
More specifically, the boundaries of the basins of attraction,
which separate regions of qualitatively different behavior in
state space, start moving under time-dependent variation of
intrinsic parameters or external forcing, giving rise to un-
expected changes in the course of certain trajectories. This
process leads to a variation of the relative size of the basins
of attraction and to rate-induced tipping of trajectories by
“crossing basin boundaries”. Finally, we discuss the results
in Sect. 4 and point out several consequences of this dynam-
ics, such as the occurrence of other than rate-induced critical
transitions, that can occur without any warning.

2 Multistability as a prerequisite for tipping
phenomena

In many cases, tipping phenomena require the simultaneous
existence of several different stable states of a system under
the same given environmental conditions. Bi- and multista-
bility can best be illustrated by a stability landscape repre-
sented as a potential (Fig. 1a). The stable states are in the
valleys, while the unstable states are on the hills. This view of
a stability landscape in terms of a potential is always correct
for a one-dimensional system following a dynamical equa-
tion ẋ = f (x)=− dV

dx or in the case of a higher-dimensional
gradient system represented by ẋ = f (x)=−∇V . However,
most nonlinear dynamical systems are not gradient systems,
but even in that case, one can compute the stability land-
scape as a quasipotential (Freidlin and Wentzell, 1998; Gra-
ham et al., 1991; Cameron, 2012).

Here, stability of a state means linear stability with re-
spect to small perturbations given by the eigenvalues of the
corresponding Jacobian matrix for, e.g., steady states x(s)

Jij =
∂fi
∂xj
|x=x(s) or the Jacobian matrix Jp of the Poincaré

map for periodic states. Small perturbations are damped out
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Figure 1. (a) Sketch of the potential (stability landscape) of a bistable system and (b) state space of a bistable system including the unstable
saddle point and its stable manifold, which make up the boundary between the two basins of attraction.

by the system due to dissipation, and the system returns to
its original state. To view it in the picture of the stability
landscape: the disturbance displaces the stable state visual-
ized by the blue ball away from the valley and “rolls” back
again due to the steepness of the walls of the potential V cor-
responding to the strength of the restoring forces. Directly
on the hill, which relates to an unstable state, only a very
small disturbance is needed to initiate the ball to “roll” either
to one or the other side of the hill, depending on the direc-
tion of the disturbance. The unstable state (red ball) located
on the hill of the stability landscape marks the basin bound-
ary. This boundary separates the two basins of attraction, i.e.,
the two sets of initial conditions which all converge to one
of the respective attractors. In higher-dimensional systems
these unstable states on the boundary are of saddle type, pos-
sessing stable and unstable manifolds. The stable manifolds
are hypersurfaces in state space whose dimension is equal
to the number of stable directions or stable eigenvalues of
the corresponding Jacobian matrix of the saddle, while the
unstable manifolds correspond to hypersurfaces determined
by the number of unstable directions or eigenvalues. In the
special case of a two-dimensional system, the saddle steady
state has two eigenvalues, one stable and one unstable, and
the corresponding stable and unstable manifolds are one-
dimensional. This is illustrated in Fig. 1b. The stable mani-
folds along which trajectories move towards the saddle make
up the basin boundaries.

In this setup, critical transitions are associated with a rel-
atively sudden qualitative change of the dynamics in which
the system moves from one stable state to another; i.e., the
system tips by getting from one valley into the other via dif-
ferent mechanisms. In general, those mechanisms are related
to certain disturbances, kicking the system out of the posi-
tion in the valley such that the other valley can be reached.
However, it is essential to note that a specific tipping phe-
nomenon, namely rate-induced tipping, does not necessar-
ily require the existence of bi- or multistability. Instead, in
those critical transitions, it is sufficient that the system tra-
jectory moves into a part of the state space with different
properties. Therefore tipping, in general, cannot always be
identified with the well-known classical bifurcations but can,

particularly in rate-induced tipping, only be explained as bi-
furcations in non-autonomous systems.

2.1 Mechanisms of tipping and the role of different
timescales

Often the picture of the stability landscape mentioned above
is translated into a specific bifurcation diagram exhibiting
hysteresis, showing the two stable states and the unstable one
separating those two depending on the intrinsic parameters of
the system or the external forcing (Fig. 2). In the representa-
tion of the stability landscape, it is rather simple to explain
the different disturbances that cause a system to tip. On the
one hand, state variables, such as temperature and salinity,
as quantities determining the water density in the ocean or
the abundance of species in an ecological system can be dis-
turbed. These disturbances correspond to the displacement of
the state from the valley of the fixed stability landscape, de-
picted as a vertical path of perturbations dsi in Fig. 2. On the
other hand, disturbances in the system parameters or exter-
nal forcings change the stability landscape, corresponding to
a horizontal path of perturbations dpi in Fig. 2. Both types
of disturbances are possible and have very different effects
(Schoenmakers and Feudel, 2021). Such disturbances can oc-
cur in three different ways: (1) fluctuations, i.e., small ran-
dom perturbations of the state variables or the driving forces
of the system that satisfy certain statistics; (2) large individ-
ual disturbances that correspond to extreme events or shocks;
and (3) changes in environmental conditions or driving forces
associated with certain trends, whereby a rate of change can
characterize this trend. In nature, one would always observe
a combination of these disturbances, but for theoretical in-
vestigations of tipping mechanisms, it is helpful to analyze
the individual types of disturbances separately.

Next, we illustrate the different tipping mechanisms in
Fig. 3, essentially following the classification introduced by
Ashwin et al. (2012). To this end we look at a bistable sys-
tem, as shown in the stability landscape in Fig. 1, and its dis-
turbances in Fig. 2. Changing environmental conditions, rep-
resented as a control parameter, cause the stability landscape
to change, and there is generally an interval of environmental
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Figure 2. Relationship between the stability landscape and the con-
trol parameters/the forcing of the system. Cyan arrows indicate the
changes in control parameters or forcings; the light-green and light-
brown arrows refer to changes in the state variables.

conditions in which bistability is present. For illustration pur-
poses, let us assume that the two stable states would be two
alternative states in an ecosystem. The desired state denoted
by A is characterized by, e.g., a high biomass of plants, and
the lower undesired state B is characterized by a low biomass
of plants. Further, we assume that the increasing change of
the environmental conditions points to rising habitat destruc-
tion either by land use change or climate change.

2.1.1 Bifurcation-induced tipping

Environmental changes, e.g., increasing habitat destruction,
can affect the growth of plants. If those environmental
changes are very slow, then the ecosystem state would slowly
“move” along the solid red line A to the right to smaller
biomass states but still on the upper branch until it reaches
the tipping point beyond which the state of high biomass A
ceases to exist. This tipping point is linked to the fact that
one of the minima in the stability landscape disappears when
the critical threshold value of the environmental conditions is
exceeded. Hence, the system tips into the low biomass state
B, the only one existing for those environmental conditions.
In general, such critical transitions, associated with a charac-
teristic qualitative change in the stability landscape, such as
the emergence of new or the disappearance of existing stable
states, are called bifurcation-induced transitions (Fig. 3a).

Let us discuss some examples of bifurcation-induced tip-
ping in the climate system and ecology. Over the past decade,

a number of tipping elements, i.e., climate phenomena, have
been identified as candidates expected to tip in the further
course of climate change (Lenton et al., 2008; Schellnhuber
et al., 2016; Armstrong McKay et al., 2022). Those tipping
elements include ocean circulation and parts of the biosphere
and the cryosphere. Specifically, these include the AMOC,
the Greenland ice sheet, the Arctic sea ice and the Western
Antarctic Ice Sheet as physical systems (hydrosphere and
cryosphere) and the Amazon rainforest, the tropical coral
reefs and the boreal forests as ecological systems. In those
systems, bi- or even multistability, i.e., the coexistence of
more than two stable states for the same environmental con-
ditions, has been discovered. For the AMOC, often two dif-
ferent stable flow patterns exist: one of them can be consid-
ered a conveyor belt transporting heat to the northern lati-
tudes, releasing this heat to the atmosphere, forming North
Atlantic Deep Water (NADW), which is transported back to
the southern latitudes at considerable depth. This would be
the state where the heat transfer to the north is “on”. The
other stable state is related to an “off” state. This bistabil-
ity can give rise to a possible breakdown of the AMOC,
which has been discussed when employing several concep-
tual models (Stommel, 1961; Rahmstorf, 1996; Rooth, 1982;
Wood et al., 2019). In those conceptual models often the sec-
ond state is related to a reverse circulation. In large ocean
circulation models this bistability has also been confirmed
(Weijer et al., 2012), with an “off” state which does not re-
late to a reverse circulation but to a very weak circulation
northwards. In a large ocean circulation model it has been
shown that the system can exhibit the coexistence of several
different flow patterns related to different spatial patterns of
heat transfer to the atmosphere (Rahmstorf, 1995). This oc-
currence of multistability has been confirmed recently with
other high-resolution models (Mehling et al., 2022; Lohmann
et al., 2023).

The possible melting of the Arctic Sea ice is also discussed
in terms of bistability comprising two stable states, where in
one of which the Arctic Sea ice disappears to a large extent
in summer and only shows ice cover in winter (Notz, 2009;
Eisenman and Wettlaufer, 2009; Eisenman, 2012), while the
other corresponds to ice cover for the whole year.

Examples of alternative states in ecosystems have been
discussed in the literature (Folke et al., 2004, and refer-
ences therein), though the existence of thresholds in ecol-
ogy is controversially debated (Hillebrand et al., 2020). A
prominent example in which such transitions from one sta-
ble state to another have nowadays already been observed is
tropical coral reefs, which are found to be overgrown with
green algae due to climate change and other anthropogenic
and non-anthropogenic influences. As a result, the system
collapses and exhibits a shift from a coral-dominated to an
algae-dominated reef (Holbrook et al., 2016). Another eco-
logical example from Europe is shallow lakes, which, due to
increasing nutrient inputs from agriculture, tip from a clear
water state with high visibility at a large depth, which allows
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Figure 3. Illustration of the four different tipping mechanisms: (a) bifurcation-induced tipping; (b) noise-induced tipping; (c) shock-induced
tipping; and (d, e) rate-induced tipping in the case where no alternative states are present, but the rate-induced tipping refers to a very large
excursion in state space with different properties. (d) Rate-induced tipping with a tracking trajectory and (e) rate-induced tipping with a
tipping trajectory. For more explanations, see the text.

for plant cover at the bottom of the lake, to a turbid water
state with high algae concentrations and no plants due to the
lack of light for photosynthesis (Scheffer et al., 1993).

It is important to note that bifurcation-induced tipping is
not restricted to the saddle-node bifurcation shown, but many
other bifurcations, such as Hopf bifurcations, torus bifurca-
tions and homoclinic bifurcations, can be related to tipping
phenomena (Boettiger et al., 2013). There is a large variety
of possible bifurcations in the mathematical literature, local
(Guckenheimer and Holmes, 1986) and global (Kuznetsov,
1995) ones. Still, only a few of them have been addressed so
far concerning tipping in climate and ecology.

2.1.2 Noise-induced tipping

This tipping process is caused by fluctuations (Fig. 3b) that
cannot be avoided in natural systems, as all quantities de-

scribing the physical environment, such as temperature and
precipitation, are subject to fluctuations. Noise-induced tip-
ping is based on the fact that the system, the ball, is per-
manently disturbed by the fluctuations of different sizes and
directions at the minimum of the stability landscape. As a
response to fluctuation-induced kicks of the ball away from
the valley, it is “rolling” towards the minimum again because
of the immediate onset of restoring forces. Since fluctuations
occur at any instant, the next kick usually occurs before the
original stable state is reached again. Therefore, a suitable
sequence of kicks – the most probable exit path (Maier and
Stein, 1992; Khovanov et al., 2008; Kraut and Feudel, 2003)
– can push the system over the hill, and, hence, it tips into
the other state (Fig. 3b). In Fig. 2, this path would correspond
to a sequence of disturbances that pushes the system’s state
along a vertical path dsi over the dashed line correspond-
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ing to the hill (green arrow), subsequently approaching the
alternative state B along the brown arrow. Though this de-
scription sounds like a result of a single trajectory, it needs
a stochastic description, since one has to study ensembles of
trajectories with different realizations of the noise and prob-
ability distributions (pdfs) over the state space. There is a
vast literature on noise-induced transitions in many different
science disciplines, and the notion of noise-induced transi-
tions differs across the literature. While many studies classify
noise-induced transitions as qualitative changes in the afore-
mentioned pdf with the noise strength as the bifurcation pa-
rameter (Horsthemke and Lefever, 1984; Kuehn, 2011), other
works focus directly on the transition from one stable state to
another mentioned under the influence of noise as outlined
above. Ashwin et al. (2012) define “N-tipping” as a system
which leaves the neighborhood of a quasistationary state due
to the influence of fluctuations.

Such noise-induced tipping is hypothesized to be respon-
sible for the regime shift observed in the dominance of two
species – a brittle star and a burrowing mud shrimp species
– living in the sediment of the North Sea. This change in
dominance took place at the end of the 1990s without any
significant changes in environmental conditions and, hence,
cannot be attributed to bifurcation-induced tipping but rather
to a change in fluctuations in the water movement (Van Nes
et al., 2007). This observation highlights an important prop-
erty of noise-induced transitions: they can occur without any
environmental changes, i.e., without changing the stability
landscape. With a fixed stability landscape, the strength of
the fluctuations, their statistical properties, and the height of
the potential barrier that must be overcome are the main es-
sential factors governing this transition.

Noise-induced transitions have also been shown to be a
crucial mechanism of tipping in the climate system, as cli-
mate change involves not only shifting mean values such as
global temperature associated with global warming (Freund
et al., 2006) but also changing the variability of environmen-
tal parameters, such as changing precipitation patterns in the
Indian monsoon towards more extreme precipitation events
(Goswami et al., 2006). Deep convection in the Labrador
Sea as a part of deep water formation and heat exchange
with the atmosphere in the AMOC was investigated as an
example of noise-induced transitions in the climate system.
This convection – a very local phenomenon – is bistable; i.e.,
there are years when deep-convection events take place in
so-called convection chimneys to drive deep water forma-
tion, and there are other years when this is not the case. It
has been shown that fluctuations in temperature and salin-
ity in the ocean can contribute to a shutdown of convection
chimneys and thus to a weakening of the AMOC (Kuhlbrodt
et al., 2002; Lenderink and Haarsma, 1994).

2.1.3 Shock-induced tipping

While noise-induced tipping causes the system to tip through
a whole sequence of small disturbances, shock-induced tip-
ping is caused by a single large disturbance (Fig. 3c) which
moves the system into the basin of attraction of another sta-
ble state. In nature, this could correspond to an extreme event
that can push a system over the hill in the stability land-
scape. This tipping mechanism is closely related to the sta-
bility measure of ecological resilience introduced by Holling
(1996), who considered the smallest possible disturbance
that can cause a system to tip as the crucial determinant of re-
silience. In mathematical terms, this disturbance corresponds
to the smallest distance to the basin boundary of a stable
state, which is simple to compute in low-dimensional sys-
tems (Klinshov et al., 2015; Mitra et al., 2015) but needs to be
calculated by an optimization procedure in high-dimensional
systems (Halekotte and Feudel, 2020).

Calculating these smallest disturbances in ecological net-
works also provides valuable information about which sys-
tem parts are most vulnerable to extreme disturbances. In this
way, it can be shown that in networked ecosystems of plants
and their pollinators, particularly those species have the high-
est extinction risk that are specialists or species that are part
of a tree-like structure in the graph of the network with only
a very loose connection to the core of the species’ network
(Halekotte and Feudel, 2020). Indications for the role of ex-
treme events in tipping phenomena can also be found in coral
reefs, where a massive decrease in sea urchins in an epi-
demic process has been identified as a crucial factor in the
collapse of a coral reef. This transition can be interpreted
as shock-induced tipping by the “epidemic” event combined
with other extreme events such as two devastating cyclones
(Mumby et al., 2007).

2.1.4 Rate-induced tipping

This tipping mechanism describes a system’s response to
an environmental change associated with a particular trend.
It differs from those discussed so far by three essential
points: (1) in this mechanism, the relationship between the
timescales of the physical, chemical and/or biological pro-
cesses in the system under consideration, i.e., the intrinsic
timescales and timescale or rate of the trend of environmental
changes, plays a decisive role. (2) This mechanism does not
necessarily require the existence of alternative stable states.
(3) The critical threshold value is not determined by a spe-
cific environmental parameter itself but by the rate of its
change, which is, of course, strictly speaking, also a parame-
ter of the system but a very particular one. In other words, the
speed at which environmental changes occur is crucial. Addi-
tionally, it is important to note that this tipping phenomenon
is associated with the dynamics in a non-autonomous sys-
tem. For a thorough mathematical description, we refer to the
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seminal papers by Ashwin et al. (2012, 2017) and Wieczorek
et al. (2011).

While all aforementioned tipping mechanisms are related
to the coexistence of alternative states, rate-induced tipping
can also occur when there is only one stable state present and
the system is characterized by different timescales (slow–fast
system). The dynamics of such systems can be described by
so-called critical manifolds in the case of a perfect timescale
separation or slow manifolds, when the timescale separation
is finite. In the case of a complex structure of the critical
manifolds, for instance when these critical manifolds have
stable and unstable parts which meet in a fold, a rate-induced
crossing of this fold can make the trajectory visit very dif-
ferent parts of the state space far away from the original sta-
ble state and perhaps even dangerous for the system (for a
more mathematical description including the conditions un-
der which this transition occurs, see Wieczorek et al., 2011).
This mechanism of rate-induced critical transitions is illus-
trated in Fig. 3d and e where the whole stability landscape is
moved at a certain rate. Suppose that the stability landscape
in Fig. 3d is pulled with a certain rate towards the observer.
Consequently, the ball will no longer be located in the mini-
mum of the valley but will be displaced to the left. The restor-
ing forces will start acting, and the ball begins to “roll” to
catch the moving minimum. If the pulling rate is slow, then
the stable state (ball) follows, or we say it tracks the mini-
mum of the stability landscape. By contrast, in Fig. 3e, the
rate of “pulling away” the stability landscape is much faster
or comparable with the timescale of the restoring forces. In
this case, the ball lands in a completely different region in
state space, leaving the minimum’s proximity and leading to
qualitatively different dynamics. This large excursion in state
space corresponds to rate-induced tipping since the system
visits very different parts of the state space with qualitatively
different behavior. If the change in the environmental con-
ditions stops, this visit to a different state will be transient,
and, finally, the system returns to the stable quasi-stationary
state, which has moved. This transient dynamics could lead
to qualitatively different states, like population collapse in
predator–prey systems (Vanselow et al., 2019) or population
outbreaks (Vanselow et al., 2022). The second mechanism of
rate-induced transitions occurs in multistable systems, where
the trajectory can cross the basin boundary (Ashwin et al.,
2012; O’Keeffe and Wieczorek, 2020; Lohmann et al., 2021),
called basin instability by O’Keeffe and Wieczorek (2020),
and basin crossing by Lohmann et al. (2021). We will dis-
cuss this mechanism of basin boundary crossing in the next
section in more detail and omit a sketch of it here.

Again, let us look at an ecosystem as an example: if,
for example, environmental changes occur very slowly, as
in bifurcation-induced tipping, the species in the ecosys-
tem have enough time to adapt to the changed environ-
ment. Conversely, if, e.g., climate change happens too fast,
species adaptation fails, and, as a result, ecosystems can col-
lapse. For example, this mechanism can be demonstrated in

predator–prey systems, where the prey’s habitat is destroyed
by climate change or anthropogenic influences like land use
change. It is possible to determine a critical rate of environ-
mental changes beyond which the ecosystem collapses (Si-
teur et al., 2016; Vanselow et al., 2019). In other ecosystems,
it can also happen that a particular species grows to very high
abundances, for instance, forming an (possibly harmful) al-
gal bloom (Vanselow et al., 2022). Such rate-induced criti-
cal transitions exist not only in ecosystems but also in phys-
ical systems, such as the Greenland ice sheet (Klose et al.,
2023). In summary, considering that environmental destruc-
tion is accelerating nowadays, this tipping mechanism seems
particularly dangerous.

2.1.5 Tipping in spatially extended pattern-forming
systems

In the previous analysis, the considered systems were spa-
tially homogeneous and, therefore, usually modeled by ordi-
nary differential equations (ODEs) or time-discrete systems
(maps). However, complex systems in space are often charac-
terized by the fact that they can spontaneously form spatially
inhomogeneous patterns resulting from, e.g., a Turing bifur-
cation (Turing, 1952). With respect to tipping phenomena,
pattern-forming systems play a special role since spatial in-
teractions can lead to an acceleration or to a slowing down of
tipping in adjacent points in space. Due to the spatial interac-
tions, one often observes gradual tipping (Bel et al., 2012;
Siteur et al., 2014; Bastiaansen et al., 2020, 2022; Hasan
et al., 2022); i.e., tipping is only visible locally. Therefore
the tipping of the entire system is only completed on a much
longer timescale: instead of relatively abrupt critical transi-
tions, one observes a transition that occurs “step by step”
via different spatial patterns or by front propagation in sys-
tems possessing different coexisting spatial patterns. Several
examples have been studied by Ehud Meron and coworkers
in dryland vegetation models (Zelnik et al., 2013; Bel et al.,
2012; Zelnik et al., 2018). These models of different com-
plexity study the interplay between vegetation and soil water.
Besides the homogeneous states “bare soil” and “full vege-
tation cover” there exist – depending on the environmental
conditions, in general the precipitation level – different pat-
terns like holes in the vegetation cover, stripes and spots of
vegetation. These patterns can coexist, and fronts separating
the different pattern can occur. The speed of the fronts deter-
mines the speed with which one pattern is exchanged by the
other, leading to a gradual tipping between different patterns
in the whole area.

2.2 Prediction of tipping points and early-warning
signals

In the course of climate change it is becoming more and
more important to find appropriate methods to predict tipping
points and to identify early warning signals. One method that
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has been developed in the physics and chemistry literature
is critical slowing down (CSD) of the restoring forces when
a bifurcation-induced transition is approached (Heinrichs
and Schneider, 1981; Ganapathisubramanian and Showalter,
1983; Tredicce et al., 2004; Scheffer et al., 2009). Result-
ing from these smaller restoring forces that bring the sys-
tem back to its stable state after a perturbation, the response
to inevitable noise is amplified, leading to a rising standard
deviation (Surovyatkina, 2005; Carpenter and Brock, 2006)
and an increasing lag-1 autocorrelation when approaching
the bifurcation (Held and Kleinen, 2004; Dakos et al., 2008).
These methods – critical slowing down and noise amplifica-
tion – have become extremely popular over the last decade
as possible early-warning signals. Besides those methods,
other statistical approaches have been developed to estimate
how close we are to tipping points in the climate system and
in ecology (Lenton, 2011; Lenton et al., 2012; Fan et al.,
2021; Clarke et al., 2023) or how probable noise- and rate-
induced transitions are (Ritchie and Sieber, 2017). They have
been used to estimate the proximity of several tipping points
in climate such as the melting of the Greenland ice sheet
(Boers and Rypdal, 2021), the collapse of the Atlantic Merid-
ional Overturning (Boulton et al., 2014; Boers, 2021) or
the loss of the Amazon rainforest (Boulton et al., 2022).
Despite these various applications of early-warning signals,
they have also been critically discussed from various per-
spectives (Ditlevsen and Johnsen, 2010; Boettiger and Hast-
ings, 2012; Wagner and Eisenman, 2015).

3 Basin boundary crossing in coupled bistable
systems: the role of timescales

3.1 Rate-dependent basin boundary crossing in
one-dimensional ecosystems

To analyze the role of timescales as well as the role of sad-
dles (invariant sets of saddle type possessing stable and un-
stable manifolds), we will employ different simple models
from population dynamics. We start with a one-dimensional
model of the growth of a population influenced by an Allee
effect. The Allee effect describes the ecological fact that cer-
tain populations need a minimal critical population density
to grow (Stephens et al., 1999); i.e., only with an initial den-
sity above the critical one is the probability for successful
reproduction large enough to ensure the growth of the popu-
lation. On the other hand, if the initial population density is
below the critical one, the species goes extinct. In mathemat-
ical terms, this effect is included in the growth rate and can
be written in the simplest form as follows:

Ẋ = rX
(

1−
X

K

)(
b−X

)
−mX, (1)

where r is the growth rate, K is the carrying capacity of the
environment, b is the minimal critical population density and
m denotes the mortality rate. This model has three different

steady states:

X(1)
= 0, (2)

X(2,3)
=
K + b

2
∓

√
(K + b)2

4
−

(
bK +

mK

r

)
. (3)

While the first and the third are stable, denoting either that the
population gets extinct or reaches a population density close
to its carrying capacity K (if mortality m is low), the second
one is unstable and corresponds to a population density close
to the minimal critical population density. Hence, we have a
bistable system as long as the following condition is met: 0<
b <K . The basins of attraction of the two different stable
long-term states are separated by the unstable steady state. In
this simple one-dimensional model, this unstable steady state
is the only point making up the basin boundary.

Let us now assume that changes in the environment lead to
changes in the critical population density b with a certain rate
v. This variation is assumed to happen on a finite time inter-
val to ensure that the saddle-node bifurcation at which the un-
stableX(2) and the stableX(3) steady states merge is avoided.
This excludes an extinction of the species due to bifurcation-
induced tipping to X(1). The corresponding model system
can be written as follows:

Ẋ = rX
(

1−
X

K

)(
b−X

)
−mX,

ḃ =

{
v for 0≤ t ≤ Tr,

0 for Tr < t ≤ Tend.
(4)

We apply a linear drift of parameter b in the interval
[bstart,bend] with bend <K . This drift extends over a time Tr
corresponding to a rate v = (bend−bstart)/Tr. For times larger
than Tr, the parameter b is held constant. Since we are inter-
ested in the dynamics in the whole state space, particularly in
the dynamics of the basins of attraction and their boundaries,
we always start with a set of initial conditions distributed on
a regular grid and monitor the convergence of all initial con-
ditions and check their long-term dynamics. Furthermore, we
always compare the dynamics to those without the parameter
drift, i.e., the convergence to the final states in the frozen-in
case with constant parameter b = bstart.

Varying the critical population density means moving the
two quasi-stationary states X(2)(b(t)) and X(3)(b(t)), with
X(2) corresponding to the location of the basin boundary. We
expect that trajectories that originally converged to X(3) will
now tip and reach the population extinctionX(1). By coloring
the trajectories with two different colors indicating to which
basin of attraction they belong in the frozen-in case, we vi-
sualize how many trajectories now tip for the chosen rate of
environmental change (Fig. 4).

We find that for this given rate of change of environmental
conditions already, quite a large number of trajectories’ ini-
tial conditions tip to extinction. Increasing the rate of change
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Figure 4. Time evolution of trajectories of system Eq. (4) with
parameter drift in b with 1.5≤ b ≤ 2. The movement of the sad-
dle point X(2) demarking the basin boundary is shown in magenta,
while the movement of the stable state X(3) is shown in cyan.
All trajectories colored red would have converged to the extinc-
tion state X(1) in the frozen-in case b = 1.5, while blue trajectories
would have converged to the high population stateX(3). Parameters:
r = 2.0, K = 3.0, m= 0.02, v = 0.5 and Tr = 1.0.

v will force more and more trajectories to tip, and popula-
tion extinction becomes more and more probable. The move-
ment of the unstable steady state X(2) leads to an increase
in the relative size of the basin of attraction of extinction
X(1), while the relative size of the basin of attraction of the
large population density X(3) shrinks. If we were to allow
b(t) to increase even further, the basin of attraction of X(3)

would finally disappear completely when the unstable sad-
dleX(2)(b(t)) merges with the stable large population density
state X(3)(b(t)) in a saddle-node bifurcation.

The mechanism, i.e., how trajectories in this one-
dimensional case tip, is observable in Fig. 4; they cross the
basin boundary directly when they “meet” the moving sad-
dle point. Since the timescale with which the quasi-stationary
saddle point moves and the speed of the trajectory are differ-
ent, each initial condition possesses its own critical rate when
it tips for the first time.

3.2 Basin boundary crossing and the emergence of
multistability

To gain more insights into the interplay between the rate
of moving basin boundaries due to environmental change
and the intrinsic dynamics’ timescale, we analyze a higher-
dimensional problem in which smooth basin boundaries can
be considered hypersurfaces partitioning the state space into
regions of different qualitative behavior. The basin bound-
aries correspond in the frozen-in case to the stable manifolds
of a saddle point. For the sake of simplicity, we would like to

analyze two coupled bistable systems, which can be coupled
in two different ways, unidirectional and bidirectional. In the
context of the simple population dynamical model analyzed
above, it could be interpreted as two habitats (patches) bear-
ing the same species which can move or migrate between
the habitats. An ecologically relevant bidirectional coupling
would be migration based on the population differences be-
tween the habitats, i.e., a diffusive coupling.

To be more general, we choose to consider not only an eco-
logical example but a general bistable model of the following
form:

Ẋ =−ε(X− s1)(X− s2)(X− s3). (5)

Any bistable system can be brought into this form using
a specific coordinate transformation outlined in Kouvaris
et al. (2012). The three steady states are given by X(1)

= s1,
X(2)
= s2 and X(3)

= s3 and depend in general on the intrin-
sic parameters of the system. The ecological example dis-
cussed above can be brought into that form by assuming a
small input of species into each habitat, resulting in two sta-
ble states related to high and low population densities, re-
spectively, to avoid extinction (Sharma et al., 2015). Another
example is the famous Schlögl reaction (Schlögl, 1972), an
autocatalytic chemical reaction extensively studied since the
80s (Ebeling and Malchow, 1979; Grassberger, 1982; Mou
et al., 1986).

Since our focus is on the role of timescales, we have in-
troduced an additional parameter, ε, which describes only
the timescale of intrinsic dynamics of the system. For our
ecosystem above, this would be the turnover time of the pop-
ulation, often denoted as the ratio between growth and mor-
tality rate. To investigate the role of emerging and moving
basin boundaries, we couple the two systems in three differ-
ent coupling schemes: (1) unidirectional as a drive–response
(also known as master–slave) system, (2) bidirectional as
a mutual forcing in both ways and (3) bidirectional with
a diffusion-like coupling. Though the diffusive coupling is
the most relevant for many physical systems, we have in-
cluded the other two coupling schemes here for more gener-
ality since they are widely used in the literature to investigate
tipping cascades (Klose et al., 2020; Kroenke et al., 2020;
Wunderling et al., 2021). The coupling strength determines
how many stable states coexist in the coupled system. Tak-
ing the coupling strength as a bifurcation parameter in the
classical sense as frozen-in, i.e., constant, the coupled system
possesses one, two, three or four attractors in the long-term
limit. Changing the coupling strength in time means travers-
ing the bifurcation diagram, as long as the rate of environ-
mental change would be very slow such that the intrinsic dis-
sipative timescale is fast enough to bring the system quickly
to the attractor. However, we are interested in the case where
intrinsic dynamics and the variation of the coupling strength
are comparable in their timescales. In addition, we focus on
the situation in which the number of stable long-term states
changes and, with it, the global organization of the dynamics
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in state space. We consider the simplest case when two new
steady states, an attractor and a saddle, are born in a saddle-
node bifurcation, and a new basin of attraction emerges and
grows. The stable manifolds of the saddle point emerging in
such a classical saddle-node bifurcation make up the bound-
aries of the newly formed basin of attraction.

3.3 Coupled systems with drive–response coupling

As the first coupling scheme, we consider a unidirectional
coupling corresponding to a drive–response configuration:

Ẋ1 =−ε1(X1− s1)(X1− s2)(X1− s3)+CX2,

Ẋ2 =−ε2(X2− s1)(X2− s2)(X2− s3). (6)

Rescaling the time in terms of τ = ε1t , it turns out that
only the ratios between the intrinsic timescales of the differ-
ent subsystems ε2/ε1 and the ratios between the timescale of
transport or coupling and the intrinsic timescale (like C/ε1)
are important. Therefore we will continue the analysis with
the rescaled equations:

Ẋ1 =−(X1− s1)(X1− s2)(X1− s3)+ cX2,

Ẋ2 =−ε(X2− s1)(X2− s2)(X2− s3), (7)

where ε = ε2/ε1 and c = C/ε1 are the corresponding ratios.
System 2 appears as a driver for system 1. We analyze

the dynamics in the most intuitive way and use the con-
cept of nullclines, which are given by the algebraic equa-
tions Ẋ1 = f1(X1,X2)= 0 and Ẋ2 = f2(X2)= 0. While for
the driver system 2, the nullclines are given by straight lines
at the values of the three steady states of system 2, the
nullcline of system 1 is represented by the cubic function
X2 = (X1− s1)(X1− s2)(X1− s3)/c. The intersection points
of f1 = 0 and f2 = 0 are the steady states of the drive–
response system. Their stability can be computed from the
eigenvalues of the corresponding Jacobian. An illustration of
two possible situation is given in Fig. 5a and b. Depending
on the internal parameters ε and the coupling strength c, the
system possesses two, three or four stable, steady states in the
considered parameter range of coupling strength c (c ranging
from 0.4 to 0.1). The two cases shown serve as the beginning
(Fig. 5a) and the end (Fig. 5b) point of the parameter drift
along a linear ramp. We are fixing all parameters (frozen-
in case) and compute the attractors and their corresponding
basins of attraction by choosing a grid of initial conditions
in a specified region of state space and integrating them all
in parallel until they reach the attractor. This also allows us
to compute the relative size of the basins of attraction BA as
the quotient of the number of initial conditions converging
to attractor A divided by the total number of initial condi-
tions taken into account (Feudel et al., 1996). Figure 5 shows
that the state space is “partitioned” into different basins of
attraction indicated by different colors with basin boundaries
separating them. In the frozen-in case, the basin boundaries

are invariant sets that cannot be crossed by trajectories and,
hence, represent rigid boundaries in state space for the tra-
jectories. Throughout the paper, we fix the parameters defin-
ing the steady states of the uncoupled system to s1 = 1.0,
s2 = 2.0 and s3 = 3.0 and only vary c and ε to focus on the
role of timescales. This means the two systems are identi-
cal and vary only in their timescales and coupling strength,
which, in this coupling scheme, corresponds to the strength
of the impact of the driver.

To investigate the impact of a time-varying environment,
we change the coupling parameter c with a certain rate v.
The corresponding dynamical system is now explicitly time-
dependent. It involves a third differential equation for the dy-
namics of the environment, which is in the drive–response
setup, the strength of the driver:

Ẋ1 =−(X1− s1)(X1− s2)(X1− s3)+ cX2,

Ẋ2 =−ε(X2− s1)(X2− s2)(X2− s3),

ċ =

{
v for 0≤ t ≤ Tr,

0 for Tr < t ≤ Tend.
(8)

The most interesting dynamics happen with a parame-
ter drift along which the number of attractors changes and
saddle-node bifurcations lead to new attractors. This setup is
suitable to elucidate the relative size of the basins of attrac-
tion and tipping probabilities for different initial conditions
depending on the rate of change in the driver strength v.

As mentioned above, classical bifurcations occur along the
course of parameter variation, giving rise to new invariant
sets (in this case, steady states) and new basins of attrac-
tions, including their boundaries that lead to a new “parti-
tioning” of the state space with tremendous consequences
for single trajectories. To illustrate this, we investigate the
following scenario, which is inspired by the scenarios of pa-
rameter drift used by Kaszás et al. (2019): we change the
impact of the driver decreasing c with a constant rate v in the
interval [0.4,0.1], and as soon as c = 0.1 is reached it is kept
constant. This change corresponds to a parameter drift or a
ramping similar to many other papers studying rate-induced
transitions (Ashwin et al., 2012; Vanselow et al., 2019). The
advantage of this piecewise linear parameter drift is that we
can compute the basins of attraction in the frozen-in cases at
the start at t = 0 and the end t = Tend of the whole drifting
process to have those frozen-in basins to quantify the change
in the basins of attraction induced by the parameter drift.

As in the previous subsection, we vary the rates of en-
vironmental change by varying the time interval Tr, keep-
ing the c interval fixed. In the course of this time evolution
of c, the system passes two saddle-node bifurcations. They
can be computed analytically and happen at ccrit1 = 0.3849
corresponding to Tsn1 = 0.1007 and ccrit2 = 0.1283 corre-
sponding to Tsn2 = 1.8113, when the nullcline X2 = (X1−

s1)(X1−s2)(X1−s3)/c is touching the nullclinesX2 = s1 and
X2 = s3, respectively. The values given above for Tsn1 and
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Figure 5. Basins of attraction, attractors and nullclines for the autonomous system shown in Eq. (7) with fixed coupling for two different
constant coupling strengths c (frozen-in case) and no timescale separation between system 1 and 2 (ε = 1): (a) c = 0.4 and (b) c = 0.1.
Attractors are indicated by a filled dark-red circle. Dark-blue curves: nullclines Ẋ1 = 0 and Ẋ2 = 0 at c = 0.4; dark-green curves: nullclines
Ẋ1 = 0 and Ẋ2 = 0 at c = 0.1. The basins of attraction of the four attractors are plotted in light green, yellow, violet and light blue.

Tsn2 are computed for the rate v =−0.15, i.e., Tr = 2. We
start with the drift at c = 0.4 and end it at time Tr at c = 0.1,
corresponding to the two values for which we have shown the
frozen-in basins of attraction in Fig. 5. Instead of a single tra-
jectory, we again compute the time evolution of a whole grid
of initial conditions to calculate the basins of attraction after
the parameter drift and additionally exemplarily show four
trajectories starting at different positions in state space indi-
cated by small filled black circles. Here we define the non-
autonomous basin of attraction B̃(Ã) as the set of initial con-
ditions which reach the quasistationary state Ã along a tra-
jectory, which includes the parameter drift. The result, shown
in Fig. 6, demonstrates that the non-autonomous basins of at-
traction have been changed (compare to Fig. 5). We note that
the non-autonomous basins of attraction B̃ look quite differ-
ent from the ones of the frozen-in case B, which indicates
that the location of the boundaries, as well as the relative
size of the basins of attraction, crucially depends on the rate
of change of the environmental forcing. New saddle points
and their stable manifolds appear during the parameter drift.
In the autonomous case, the stable manifolds would make
up the boundaries of the newly formed basins of attraction.
However, comparing the non-autonomous basin of attraction
B̃ at the final value c = 0.1 after the parameter drift and the
frozen-in basin B reveals that the new boundaries of the basin
of attraction after the drift are different from the stable man-
ifolds of the corresponding saddle point as the saddle point
does not even lie on the boundary of the non-autonomous
basin of attraction B̃.

To understand the tipping in more detail, we have plotted
some particular trajectories and observed that some trajecto-
ries tip while others do not. While tipping trajectories change
their course in state space when the bifurcation occurs to
reach the newly emerging stable states, the tracking (non-

tipping) trajectories follow their path largely undisturbed. In
Fig. 6 (right panel), the drifting time Tr = 8.0 is relatively
large, corresponding to a low rate of change v =−0.0375,
while in Fig. 6 (left panel) the drifting time Tr = 2.0 is
relatively small, corresponding to a larger rate of change
v =−0.15. We note that for a fast drift, more initial con-
ditions reach the new stable states. This observation can be
explained by the interplay between the dissipative timescale
with which the trajectory is moving through the state space
towards the quasi-stationary attractor and the rate of environ-
mental change: if the trajectory is fast enough (for a slow
environmental change), it will have converged already to a
position close to the old attractor, when the new basin bound-
aries emerge. By contrast, when the environmental change is
fast compared to the speed of the trajectory, the newly formed
basin boundary will already have emerged, forcing the tra-
jectory to change its course. As mentioned above, a tipping
trajectory belongs at the start of one basin of attraction and
changes on its course to another basin of attraction.

Looking at the basins of attraction as a whole, we note by
comparing the right panel of Fig. 6 with the right panel of
Fig. 5 that for the slow rate of environmental change, one
of the attractors is not reached at all; the light-green basin
has “disappeared” at least in the region of state space con-
sidered. The reason for this behavior is twofold. One rea-
son is the separation between the intrinsic timescale and
the timescale of environmental change. The non-autonomous
basins of attraction are computed, starting from a grid of
initial conditions, but all of them have already converged
to the neighborhood of the attractor at X1 ' 3 and X2 = 3,
when the attractor (X1 ' 1,X2 = 3) appears in the saddle-
node bifurcation due to a faster intrinsic timescale. On the
other hand, the example studied describes either chemical
concentrations or abundances of species, which have to be
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Figure 6. Time evolution of the non-autonomous system shown in Eq. (8) with decreasing impact of the driver c in the interval [0.4,0.1]
together with four exemplary trajectories (ε = 1): (a) fast rate with 0≤ t ≤ 2.0, v =−0.15 and Tr = 2.0 and (b) slow rate with 0≤ t ≤ 8.0,
v =−0.0375 and Tr = 8.0. Attractors are indicated by filled dark-red circles. Dark-blue curves: nullclines at the beginning of the parameter
drift at t = 0 and c = 0.4; dark-green curves: nullclines at the end of the parameter drift at t = Tend = 200 and c = 0.1. The non-autonomous
basins of attraction are presented at the end of the simulation Tend in light green, yellow, violet and light blue.

positive or equal to zero. This restriction of initial condi-
tions is another reason that none of the used initial condi-
tions can reach the new attractor. They can only do so in the
frozen-in case but not beyond a critical rate of environmental
change. As a consequence, the corresponding emerging at-
tractor at (X1 ' 1,X2 = 3) would not have been observed for
any of the considered trajectories. We say that this qualitative
change in the state space resulting from the saddle-node bi-
furcation has been masked by the parameter drift. In other
words, a global change in the dynamics would not have been
noticed, though we simulate a whole set of initial conditions
covering the specified region in state space.

To study that further, we now look at the variation of the
relative size of the basins of attraction for different rates of
environmental change (Fig. 7a). We note that the relative size
of the non-autonomous basins of attraction depends crucially
on this rate of change v, and there is a critical rate vcrit cor-
responding to a critical Trcrit , where the light-green basin is
not visible anymore, corresponding to the masking effect.
This rate-dependent transition in the relative basin size can
be again explained by timescale arguments. For a slow rate
of environmental change (large Tr), where the masking ef-
fect occurs, the dissipative timescale acts faster than the rate
of change, i.e., the trajectory has already reached the neigh-
borhood of the attractor before the bifurcation happens, i.e.,
before the qualitative change in the partitioning of the state
space appears. This bifurcation is “hidden” for all the tra-
jectories. By contrast, if the rate of change is very fast for
smaller and smaller Tr, the bifurcation becomes “visible”
since more and more trajectories change their course due to
the new partitioning of the state space. This behavior is illus-
trated by the tipping probabilities indicating how many tra-
jectories change from one basin to the other (Fig. 7b). Here

we follow the approach introduced in Kaszás et al. (2019)
and compute the tipping probabilities PA1Ã2

. First we calcu-
late the relative size of the non-autonomous basin of attrac-
tion B̃(Ã2) for the quasi-steady-state Ã2 at the end of the pa-
rameter drift simulation Tend and take its intersection with the
frozen-in basin of attraction B of the frozen-in attractor A1 at
the beginning of the simulation normalized by the frozen-in
basin of attraction B(A1) at the beginning of the simulation.
Loosely speaking, we calculate that fraction of initial condi-
tions which would have converged to the attractor A1 in the
frozen-in case but which during the parameter drift tip to the
basin of attraction of the moving quasi-steady-state Ã2. In
mathematical terms this can be expressed as follows:

PA1Ã2
=

B̃(Ã2)
⋂

B(A1)
B(A1)

. (9)

The continuous change of the tipping probabilities shown in
Fig. 7 indicates that we observe partial tipping; i.e., each tra-
jectory possesses its own critical rate at which it tips.

To get deeper insights into the mechanism of basin bound-
ary crossing of a particular trajectory, we analyze for Tr = 2
the trajectory starting at (X1,X2)= (0,4). It has been tipped
when comparing Fig. 6a and b during the drift of c from
c = 0.4 and c = 0.1. The critical rate for this trajectory to
tip for the first time is at Tr = 2.1698, corresponding to
v =−0.1383. As illustrated in Fig. 8, the trajectory tips af-
ter the saddle-node bifurcation has happened, and the trajec-
tory has reached the moving saddle point. The same applies
to all other initial conditions on the non-autonomous basin
boundary at this critical rate. Some additional example tra-
jectories are shown in Fig. 8a and b, all leaving the basin of
attraction via the saddle point. Some of them approach the
stable manifold of the emerging saddle earlier and move into
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Figure 7. The relative size of the non-autonomous basins of attraction (a) and tipping probabilities (b) for the drive–response coupled system
shown in Eq. (8) depending on the rate of environmental change measured in Tr, ε = 1, cstart = 0.4 and cend = 0.1.

its neighborhood towards the saddle quasistationary state. At
exactly the critical rate, the trajectory will reach the saddle
point along its stable manifold and stay there, but this cannot
be demonstrated numerically because of the instability of the
saddle point. This explains the long time intervals the trajec-
tory spends in the vicinity of the saddle point before and after
the tipping (Fig. 8c). At the moment of tipping all trajectories
seemingly cross at the saddle point, which is part of the basin
boundary of the frozen-in case but not of the boundary of
the non-autonomous basin. This means that basin boundaries
in the non-autonomous case, according to our definition, are
no longer identical with the moving stable manifolds of the
corresponding saddle points but are made up by the set of
initial conditions in the past which reach those moving sta-
ble manifolds after integration of the whole system including
the parameter drift. These non-autonomous basin boundaries
depend strongly on the rate of change of the environmental
parameters.

So far, we have only varied the rate of environmental
change but left the intrinsic timescales of the two systems
equal to make the systems identical. However, different in-
trinsic timescales contribute also to a change in the dynam-
ics. This approach is illustrated in Fig. 9 for the two differ-
ent rates of the parameter drift. Now, one of the systems has
a faster timescale than the other given by ε = 0.1. We find
that, although bifurcations and nullclines remain the same,
the non-autonomous basins of attraction change again, lead-
ing to rate-induced partial tipping of trajectories via basin
boundary crossing. This finding becomes visible by compar-
ing Figs. 6a and 9b and watching, e.g., the dynamics of the
initial condition (X1 = 0,X2 = 4).

Overall, we can conclude that bifurcations which change
the topological structure of the state space have a tremen-
dous impact on the evolution of trajectories. This impact de-
pends crucially on the relation between the intrinsic dissipa-
tive timescale and the timescale of environmental change. It
turned out, that following the trajectories, which can be con-
sidered observables, does not necessarily detect those tran-

sitions. There is a detection limit beyond which bifurcations
which happen in state space are not noticed by the observ-
ables. As a consequence, transitions due to other tipping
mechanisms like noise-induced tipping can happen without
any warning.

3.4 Coupled systems with mutual forcing

The second type of coupling we consider is a mutual cou-
pling of the two systems having different timescales and dif-
ferent strengths of impact on each other. This results in the
following system of differential equations:

Ẋ1 =−(X1− s1)(X1− s2)(X1− s3)+ c1X2,

Ẋ2 =−ε(X2− s1)(X2− s2)(X2− s3)+ c2X1,

ċ1,2 =

{
v for 0≤ t ≤ Tr,

0 for Tr < t ≤ Tend.
(10)

Here the third differential equation applies either to c1 or c2.
In contrast to the previous case of a drive–response coupling,
the nullclines now vary with varying ε, leading to an even
stronger impact of the timescale separation compared to the
unidirectional coupling. We study the tipping probabilities
depending on the timescale separation and choose ε = 0.1
and extend the interval of varying the environment to c1,2 ∈

[0.4,0.01] to finally end up again with four attractors when
the drifting process is finished.

Let us consider the symmetrical case in which we assume
the same coupling c1 = c2 = c and apply the variation to both
parameters as indicated above. When checking again the dy-
namics in state space for two different rates of environmental
change, we note that the relative size of the basins changes
even more dramatically, not only depending on the rate of en-
vironmental change but also depending on the timescale sep-
aration between the two subsystems (Fig. 10a, b). Comparing
the slow and the fast drift of the environmental parameter,
i.e., the coupling strength, we observe that even two basins
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Figure 8. Tipping of trajectories starting next to the non-autonomous basin boundary in the points indicated by small filled black circles;
(a) just next to the boundary in the light-green basin and (b) just next to the boundary in the yellow basin. Black nullcline at the critical rate
Tr = 2.1698. In this part of the state space only the light-green and yellow non-autonomous basins are visible. (c) Time evolution of the two
trajectories separated by the non-autonomous basin boundary with X1 = 0.4 at t = 0 (middle trajectory in a and b).

Figure 9. Time evolution of the non-autonomous system shown in Eq. (8) with decreasing impact of the driver c in the interval [0.4,0.1]
together with four exemplary trajectories (timescale separation between system 1 and 2 ε = 0.1): (a) fast rate with 0≤ t ≤ 2.0, v =−0.15
and Tr = 2.0 and (b) slow rate with 0≤ t ≤ 8.0, v =−0.0375 and Tr = 8.0. Attractors are indicated by filled dark-red circles. Dark-blue
curves: nullclines at the beginning of the parameter drift at t = 0 and c = 0.4; dark-green curves: nullclines at the end of the parameter drift
at t = Tend = 200 and c = 0.1. The non-autonomous basins of attraction are presented at the end of the simulation Tend in light green, yellow,
violet and light blue.

have “disappeared”. To compare with the frozen-in case we
also present its basins on attraction in Fig. 10c.

When we continuously vary the rate of environmental
change to identify the rate-dependent masking effect, we find
that the relative size of the non-autonomous basins of attrac-
tion and the tipping probabilities vary non-monotonously in
the case of different timescales ε = 0.1 (Fig. 11a, b). This
finding demonstrates that the masking effect for bifurcations
in more general systems exhibits a highly complex depen-
dence on the timescales, which makes it rather difficult to
predict.

3.5 Coupled systems with diffusive coupling

Finally, we address the third coupling scheme, diffusive cou-
pling, often used when coupling systems bidirectionally with

the same coupling strength c1 = c2 = c. In this case, the over-
all effect of the coupling depends on the difference between
the variables. The corresponding model system reads

Ẋ1 =−(X1− s1)(X1− s2)(X1− s3)+ c(X2−X1),

Ẋ2 =−ε(X2− s1)(X2− s2)(X2− s3)+ c(X1−X2),

˙c1,2 =

{
v for 0≤ t ≤ Tr,

0 for Tr < t ≤ Tend.
(11)

For ecological systems, this would be the appropriate cou-
pling when considering two populations in two different
habitats coupled through species migration. The same cou-
pling would be used for coupled chemical systems, where
diffusion is assumed to be the most important spatial trans-
port process. Following the same protocol of numerical sim-
ulations with the same parameter values, we observe the
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Figure 10. Time evolution of the non-autonomous system shown in Eq. (10) with decreasing impact of the driver c in the interval [0.4,0.01]
together with four exemplary trajectories (timescale separation between system 1 and 2 ε = 0.1): (a) fast rate with 0≤ t ≤ 2.0, v =−0.15
and Tr = 2.0 and (b) slow rate with 0≤ t ≤ 8.0, v =−0.0375 and Tr = 8.0. Attractors are indicated by filled dark-red circles. Dark-blue
curves: nullclines at the beginning of the parameter drift at t = 0 and c = 0.4; dark-green curves: nullclines at the end of the parameter drift
at t = Tend = 200 and c = 0.01. The non-autonomous basins of attraction are presented at the end of the simulation Tend in light green,
yellow, violet and light blue. (c) For comparison: basin of attraction in the frozen-in case for c = 0.01.

Figure 11. The relative size of the non-autonomous basins of attraction (a) and tipping probabilities (b) for the mutually coupled systems
depending on the rate of environmental change measured in terms of Tr ( ε = 0.1, cstart = 0.4, cend = 0.01).

same qualitative behavior as for the other coupling schemes
with one important difference. The masking effect occurs for
much larger Tr, i.e., a much slower rate of environmental
change, if the two systems are identical and no timescale
separation occurs. This is due to the fact that the effective
coupling is much smaller than in cases of a drive–response
coupling or a mutual coupling. The coupling strength is mul-
tiplied by the difference of the two variables in system 1 and
2 instead of the variable itself, and this diminishes the ef-
fect of the coupling. Therefore, the overall effect for identical
systems is much smaller than in the other cases (Fig. 12a, b).
By contrast, if we introduce the timescale separation shown
in Fig. 12c and d, we note that the masking effect is again
much stronger and comparable with the two other coupling
but now essentially determined by the timescale separation
between the two systems 1 and 2. This emphasizes again the
role of the timescale separation between coupled systems.

4 Discussion and conclusions

We aimed to evaluate the consequences of a time-dependent
variation of parameters or external forcing following a pre-
scribed trend in a multistable system. In contrast to many
other studies, our focus was not on the stable long-term be-
havior, i.e., the attractors, but on the unstable sets of saddle
type since their stable manifolds make up the basin bound-
aries. Specifically, we were interested in how the relative size
of the basins of attraction varies in a non-autonomous sys-
tem and how the “movement” of the corresponding basin
boundaries influences the trajectories in state space. As al-
ready known from earlier works on rate-induced tipping,
the time-dependent forcing implies that attractors like sta-
tionary points become quasi-stationary and “move” through
the state space according to the trend (Wieczorek et al.,
2011; Ashwin et al., 2012). Whether a trajectory tracks those
quasi-stationary points or tips is the central question of rate-
induced tipping. However, this property of quasi-stationarity
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Figure 12. The relative size of the non-autonomous basins of attraction (a, c) and tipping probabilities (b, d) for the diffusively coupled
system shown in Eq. (11) depending on the rate of environmental change measured in terms of Tr (cstart = 0.4, cend = 0.01) (a) and (b) ε = 1
and (c) and (d) ε = 0.1.

applies not only to the stable attractors but also to the un-
stable saddle points in the system. In a multistable system,
in which several attractors coexist, those saddles are impor-
tant determinants of the global dynamics since their stable
manifolds make up the boundaries of the basins of attrac-
tion which organize a “partitioning” of the state space in the
sense that they separate regions in state space with different
qualitative behavior. Since the quasi-stationary saddle points
“move” through the state space, the associated basin bound-
aries do that too, and this has tremendous consequences for
trajectories as they can cross the basin boundaries in non-
autonomous systems.

We have demonstrated the mechanism of basin boundary
crossing by employing a system from population dynamics
possessing an Allee effect. In this model, the basin bound-
ary crossing occurs for varying the critical population den-
sity corresponding to the “moving” saddle point making up
the basin boundary. In the case of crossing, the trajectory
tips when it meets the moving saddle point, i.e., the mov-
ing basin boundary. Then we addressed the question of what
happens in higher dimensions when the basin boundaries are
not just saddle points but hypersurfaces in state space that are

moving and/or even changing their shape. In addition, basins
of attraction can even appear and disappear in bifurcations,
e.g., in a saddle-node bifurcation. The classical computation
of the relative size of a basin of attraction applies only to
the frozen-in case with fixed parameters. To extend this ap-
proach to non-autonomous systems, we have called a non-
autonomous basin of attraction the union of all those initial
conditions which converge to a particular quasi-stationary
state including the parameter drift. As an example, we an-
alyzed two coupled, rather general bistable systems with dif-
ferent coupling schemes, which have been studied in a simi-
lar form already in the context of tipping cascades. In climate
science, the most interesting coupling is drive–response cou-
pling, which is particularly used to investigate tipping cas-
cades in two or a few coupled natural systems (Klose et al.,
2020; Wunderling et al., 2021; Kroenke et al., 2020). One ex-
ample is the impact of the melting of the Greenland ice sheet
on the AMOC (Mehling et al., 2022; Klose et al., 2023) or
tipping in unidirectionally coupled networks (Kroenke et al.,
2020). Additionally, we have studied mutually coupled sys-
tems, where each subsystem is a driver for the other. Finally,
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we have compared the results to a diffusive coupling used in
many physical and ecological systems.

To study the impact of moving non-autonomous basin
boundaries in detail, we have focused on a simple system
with smooth basin boundaries in the whole parameter range,
not fractal ones. The most straightforward situation in which
basin boundaries are important is the saddle-node bifurcation
of steady states in which a new stable steady state occurs
together with a saddle point, whose stable manifolds make
up the basin boundary for the newly appearing steady state.
Apart from details that are related to the different coupling
schemes, the main findings are qualitatively the same for all
of them. In our setup, two different timescales are involved,
the intrinsic dissipative timescale of the dynamics of each
subsystem and the timescale of the environmental change,
which in our case was influencing only the coupling strength.
We found that the relative size and the shape of the non-
autonomous basins of attraction depend strongly on the rate
of environmental change of parameters or external forcing.
As a consequence, initial conditions that would converge to
one attractor in the frozen-in case tip into another basin of
attraction during the parameter drift. This leads to a partial
tipping of trajectories. In addition, we showed that for each
finally tipping initial condition, there exists a critical rate of
environmental change for which this tipping occurs for the
first time. Hence this tipping process fulfills the requirements
of rate-induced tipping as defined in Ashwin et al. (2012)
and O’Keeffe and Wieczorek (2020). When the rate of en-
vironmental change becomes slower and slower, the newly
appearing basins of attraction are less and less detected by
the trajectories, leading to a shrinking of the corresponding
non-autonomous basins of attraction. This process happens
gradually until even the last initial condition fails to tip to
the newly formed basin beyond the saddle-node bifurcation.
In other words, the corresponding basin of attraction “disap-
pears”, and the emergence of a new attractor is masked by
the parameter drift.

The tremendous consequences of that masking effect be-
come more evident when we discuss it from the point of view
that anthropogenic changes in parameters/forcing are accel-
erating corresponding to an increasing rate, which means
lowering the time interval Tr (reading Figs. 7, 11 and 12
from the right): suppose our simulated trajectories were ob-
servations starting at some time in the past to monitor the
impact of changes in the environment. Assume further that
the saddle-node bifurcation occurring along the change of
environmental forcing gives rise to a new dangerous, pos-
sibly undesired stable state, implying dramatic changes in
the global dynamics. Then we observe the following: the
slower the environmental changes happen, the smaller the
probability of detecting the change in the global dynamics
in any of those observed time series is. A critical rate of
change exists below which the emergence of the coexisting
dangerous state (beyond the saddle-node bifurcation) cannot
be detected at all since none of the considered trajectories

tips; i.e., the bifurcation, is masked. This detection thresh-
old corresponds to the critical rate where the tipping prob-
ability to the newly formed dangerous state becomes posi-
tive for the first time. The tipping probabilities only increase
gradually and become considerably larger when the environ-
mental changes are already quite fast. This detection thresh-
old beyond which the global change in the dynamics will
be signaled by tipping trajectories depends strongly on the
relationship between the timescale of environmental change
and the intrinsic timescale of the system dynamics. In gen-
eral, our results suggest that the faster the intrinsic timescales
are compared to the rate of environmental change, the lower
the probability of detection due to the small tipping prob-
abilities. While for the drive–response and the mutual cou-
pling, those detection thresholds occur for rather small Tr,
i.e., rather fast critical rates, this threshold corresponds to a
considerably larger Tr, i.e., a much slower rate of environ-
mental change, for a diffusive coupling. However, the larger
the timescale separation between the subsystems (here sys-
tem 1 and 2), the faster the critical rate for the detection of
bifurcations becomes. For all couplings, the following holds:
as long as the global change in state space remains masked
or hidden, we will not detect the emergence of a new danger-
ous state by our monitoring time series starting in the past.
Despite the fact that the new dangerous state has appeared
without notice, other tipping mechanisms like noise-induced
or shock-induced tipping could tip the system into that unde-
sired state without any warning.

We have further unraveled the mechanism of how the tra-
jectory tips from one basin of attraction to the other by cross-
ing the basin boundary. This rate-induced basin crossing hap-
pens at the saddle point; either the trajectory “meets” the sad-
dle point directly, or first it approaches the neighborhood of
its moving stable manifold and travels along it until the sad-
dle point is reached for the crossing.

An analysis of the relative size of the basins of attraction
and the tipping probabilities in a highly multistable system
with fractal basin boundaries has been provided by Kaszás
et al. (2019). This latter study focused on the statistics of
tipping probabilities and a phenomenological description of
the transitions happening when the parameter drift covers not
only a saddle-node bifurcation but also other bifurcations and
even a chaotic region. Our results here and the ones obtained
by Kaszás et al. (2016, 2019) lead to the same conclusion:
while most of the literature on multistable systems focuses
on the investigation of attractors, i.e., the stable long-term
states of a system, and their bifurcations, this study suggests
a necessary shift in the paradigm of analyzing nonlinear dy-
namical systems in climate science, ecology and beyond: un-
stable saddle-type states, either saddle steady states or saddle
periodic orbits with their associated stable manifolds, as well
as chaotic saddles with their associated stable foliations, are
of equal importance and need a lot more attention in future
studies on non-autonomous dynamical systems. Moreover,
rate-induced tipping phenomena, which are closely related to
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those saddles, have to be identified since their “movement” in
state space under a parameter drift determines the fate of any
trajectory. Those unstable saddles are the organizing centers
of the basins of attraction in a multistable system and as such
play a decisive role in rate-induced tipping by crossing basin
boundaries.
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